

Working papers of the Federal Reserve Bank of Cleveland are preliminary materials circulated to stimulate discussion and critical comment on research in progress. They may not have been subject to the formal editorial review accorded official Federal Reserve Bank of Cleveland publications. The views stated herein are those of the authors and are not necessarily those of the Federal Reserve Bank of Cleveland or of the Board of Governors of the Federal Reserve System.

Working papers are available on the Cleveland Fed's website at:
www.clevelandfed.org/research.

Big Data versus a Survey

Stephan Whitaker

Economists are shifting attention and resources from work on survey data to work on "big data." This analysis is an empirical exploration of the trade-offs this transition requires. Parallel models are estimated using the Federal Reserve Bank of New York Consumer Credit Panel/Equifax and the Survey of Consumer Finances. After adjustments to account for different variable definitions and sampled populations, it is possible to arrive at similar models of total household debt. However, the estimates are sensitive to the adjustments. Little similarity is observed in parallel models of nonmortgage debt. While surveys intentionally collect theoretically related variables, it may be necessary to merge external data into commercial big data. In this example, some education and income measures are successfully integrated with the big data, but other external aggregates fail to adequately substitute for survey responses. Big data offers sample sizes, frequencies, and details that surveys cannot match. However, this example illustrates why caution is appropriate when attempting to substitute big data for a carefully executed survey.

Keywords: Big Data; Survey Data; Household Debt.
JEL Codes: C55, C81, D12.

Suggested citation: Whitaker, Stephan, 2014. "Big Data versus a Survey," Federal Reserve Bank of Cleveland, working paper no. 14-40.

Stephan Whitaker is at the Federal Reserve Bank of Cleveland and can be reached at 216-579-2040 or stephan.whitaker@clev.frb.org.

1 Introduction

Economist and other social scientists appear to be rapidly shifting much of their research time and attention from work involving surveys to work on "Big Data." In the process, there has been some discussion of the advantages and disadvantages of this transition, but little empirical exploration of the tradeoffs (Einav and Levin, 2013; Cook, 2014; Sonka, 2014). This analysis will illuminate the discussion by estimating parallel models using data from the carefully designed, long established Survey of Consumer Finances (SCF) and a sample from one of the oldest, most carefully maintained big-data data sets, the Equifax consumer credit records. The credit record sample is known as the Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP).

I estimate models using variables contained in both data sets as well as models with census-tract aggregate demographic data incorporated into the credit records. The SCF collects its own demographic measures. To maximize the chances of reaching comparable results, I take several steps to align the coverage and definitions in the two samples. Despite the adjustments, the corresponding coefficients in the models range from similar in magnitude and sign to starkly dissimilar. Further investigation is needed to understand the reasons for the remaining disagreement between the samples. This example illustrates that while big data can offer frequencies and measures that surveys cannot match, we must be cautious about treating big data as a direct substitute for a carefully designed survey. If policies recommendations will hinge on the magnitude of parameters that econometricians estimate, then research based on big data could point in a different direction from research based on surveys.

1.1 Big Data

"Big data" is not yet a precisely defined term, but some concepts are generally associated with it. With the automation of nearly all economic transactions, and a major portion of
our personal interactions, vast quantities of data are produced as byproducts of our daily activities. Every package shipment and snack purchase is mediated by computer systems and therefore recorded in datasets. The recipient and length of every phone call and email is recorded. The big data sets created by our activities will often include frequencies, observation counts and variable counts that are orders of magnitude larger than the surveys or administrative data that researchers are accustom to working with. The enormous size and complexity of big data often requires that it be stored on multiple computers and accessed through query systems that were not necessary for handling survey or administrative data (Varian, 2014).

Big data shares with administrative data the characteristic that it is generally collected for some purpose other than research. If it is collected for research, it is more likely to be marketing research than academic research. Big data has the advantage that individuals and firms have an economic incentive to pay the cost of gathering and storing the data. The data can be purchased by academic researchers because the fix costs have been paid and the marginal cost of reproducing the data is low. A disadvantage of big data is that firms collecting it might not have the desire or ability to collect variables that would be of interest to academics and policy makers. For example, retailers and service providers might be unable to collect basic demographic information, such as marital status, if they have no obvious reason to request it from their customers. Designers of a survey can deliberately group questions about measures they theorize are related. For example, a survey could ask about health conditions and personal finances. In the world of big data, a hospital may have detailed medical records and a bank could trace savings withdrawals and overdrafts. However someone seeking to identify which diseases are associated with financial distress, for example, may be forbidden from linking the records of the patients and customers in a way that could substitute for the survey. As with survey and administrative data, use of big data for research raises privacy concerns. Even if consumers legally consent to their data being sold to researchers, there is some reputational risk to the selling firms. Privacy violations
and identity theft could be extremely costly to a firm if data they sell is misused.
On some dimensions, big data enables research into questions that would be nearly impossible to reproduce by survey. Internet activity is an obvious example. In an hour of internet browsing, an individual may conduct ten searches and click through fifty resulting links. Trying to survey the individual and have him or her recall this activity, or log it manually, is likely to be extremely burdensome and inaccurate. However, nearly all such activity is recorded by search engines, internet service providers, and online retails, so the data is theoretically available for research.

1.2 Overview

In section 2, I will review the recent discussions of big data, research at the intersection of survey and administrative data, and articles about household debt. I will then give the relevant details about the data sets and adjustments made to increase comparability in section 3. Section 4 presents the results of the estimates and numerous alternate specifications. Section 5 concludes with a discussion of the implications of the analysis.

2 Literature

The use of big data is permeating research in fields including economics, health, and computer science. While there have been thousands of media reports and even a few books on big data, there have only been a few academic papers which discuss the phenomenon directly (Eagle and Greene, 2014). Francis Diebold has claimed to be the originator of the term "Big Data," in its current usage (2012). He first use used the term in a conference presentation in 2000. Einav and Levin discussed the use of big data for economic analysis (2013). They consider whether the predictive modeling tools that have been developed for use with big data can be applied to economic research. They note the opportunities as well as challenges related to obtaining the usually proprietary large datasets. Hal Varian, as Chief Economist for Google

Inc., published an article introducing econometricians to the languages used to store and query big data (2014). The same article includes some suggestions for choosing variables for a useful model when hundreds or thousands of variables are available, and enormous sample sizes make all coefficients significant by traditional criteria. Nickerson walks through the use of big data for contacting and mobilizing voters in recent national election cycles (2014). In the context of policy analysis, Cook argues that big data is useful for correlational exploration and prediction, but it may contribute less to understanding of causation (2014). Similar discussions have been produced for other fields (Sonka, 2014; Pugh and Foster, 2014; Hazen et al., 2014).

The use of administrative data in economic research has a much longer history. Administrative data parallels big data in that is generally collected with little or no intent to support research. Unlike survey respondents, individuals represented by the data usually do not know they are being studied. Administrative data observation counts are generally large relative to surveys. Standard demographics collected in survey are often missing. One advantage administrative data may have is that the organizations that maintain the data have an economic incentive to sustain a high level of accuracy. It is this presumed accuracy that has supported a substantial literature on survey validation. Numerous researchers have attempted to identify survey respondents in administrative data sets and characterize the error represented by the difference between survey responses and the values recorded in the administrative data (for examples, see Warburton and Warburton (2004), Qiao (2005), Davies and Fisher (2009), Liegeois (2011), Dahl, DeLeire, and Schwabish (2011), Lynn, Jackle, Jenkins, and Sala (2012), Ansolabehere and Hersh (2012), and Czajka (2013)). Kapteyn and Ypma highlight the widely held assumption in the literature that the administrative records represent true figures while the equivalent survey responses contain all of the measurement error (2007). They test the sensitivity of published finding to this assumption and demonstrate the use of richer error structures. Abowd and Stinson propose a method that treats survey and administrative measures as noisy representations of the same true value (2013). They call
for an explicit a priori assumption of a weighting to be used in a weighted-average estimate of the true that combines the survey and administrative measures.

For the models of household debt that will be estimated in this analysis, I follow the established literature on lifecycle patterns of household borrowing. The lifecycle hypotheses were first proposed and tested in work by Friedman (1957) and Modigliani and Brumberg (1954). The relationships between current income, anticipated income, age, saving and borrowing have been extensively studied over the subsequent six decades. When current researchers attempt to model household borrowing and test the impact of a novel factor, it is standard practice to include the borrower's ages, family structure (marital status, children), income, and anticipated income. For recent examples, see Brown, Garino and Taylor (2013), Schooley and Wordin (2010), and Tedula and Young (2005). In this analysis, age, income, and family structure will be incorporated to the extent that measures are available. Education serves as a rough proxy for anticipated income.

This analysis will build upon one publication in particular. Brown, Haughwout, Lee and der Klaauw released a Federal Reserve Bank of New York Staff Report in which they compare household debts as measured in the CCP and the 2001 through 2010 SCFs (2011). They report the incidence of non-zero debt balances by type of debt as well as conditional means and medians. They compare the implied national aggregate household debt levels and bankruptcy incidence. They plot the prevalence and conditional mean of debts by type over age and number of adults in the household. However, they do not go beyond descriptive statistics to model estimation. The analysis presented here takes the next two steps by merging the CCP with external data and estimating models using the CCP and SCF data. Brown and her co-authors find that consumers and lenders report similar debt balances for secured debts including mortgages, home equity loans, and auto loans. However, substantial disparities appear in the unsecured debt categories of credit cards and student loans. The analysis in this paper will investigate whether the parallels between the prevalence and conditional means extends into the relationships between the debt balances and age, income
and family structure. In the cases of credit cards and student loans, I investigate whether similar estimated coefficients appear on right-hand-side variables despite the differences in the means and medians of the left-hand-side variables.

3 Data

For complete descriptions of the data used in this analysis, readers should consult Lee and der Klaauw (2010), the SCF codebook, and the ACS documentation site. ${ }^{1}$ I will discuss here the characteristics of the data most important to the modeling.

For decades, the Survey of Consumer Finances was the main source of information about American's household debts. The SCF has been conducted every three years since 1983. It is designed to be a nationally representative sample of households, and it records numerous measures related to the respondents' incomes, expenses, assets, and debts. The data is organized into "Primary Economic Units," which exclude people living in the same household if they are financially independent from the primary respondent.

The analysis presented here is conducted entirely with the publicly-available version of the SCF data. The publicly available data has several features intended to protect the privacy of the respondents. First, there is no geographic information in the records. This precludes merging in any aggregate measures, even at the metropolitan or state level. Second, the data are in a multiple imputation format. Each household is represented by five observations rather than a single observation. In instances where any variable had a missing value, the value has been replaced by five imputed values (Kennickell, 1998). Multiple imputation methods must be applied when estimating any descriptive statistics or models. These methods are well established and corresponding routines are available in most statistics software packages (Rubin, 1987). In the course of the imputation, the Federal Reserve Board staff make further changes to the data that are meant to prevent anyone from identi-

[^0]fying the respondents. The exact details are not published, to discourage anyone who would attempt to reverse them. However, we might hypothesize that they would involve something like switching the income measures for two respondents. This would leave the mean, variance, and other moments of the income variable unchanged, but it would result in neither observation representing an identifiable person. For estimating correlations or regressions involving income and other variables, these swaps would also introduce measurement error proportional to the differences between the incomes.

The SCF asks respondents for the balance on their credit cards after their most recent payment. The question is designed to capture debt balances that are carried from month to month and accrue interest. The processed public data set reports zero balances for households that make "transactional" or "convenience" use of credit cards, meaning they pay the balance off in full each month. The dollar values involved in "transactional" uses may be small. However, whether or not these short-lived balances are included can have a major impact on estimates of the percentage of households that use credit cards or use any credit product.

The Federal Reserve Bank of New York Consumer Credit Panel is a sample drawn from the Equifax credit bureau records. The Equifax database is "big" on several dimensions. It contains records on approximately 220 million individuals. It is updated continuously to reflect billions of payments to lenders and the consequent balance adjustments. The FRBNY CCP sample is drawn quarterly, so twelve updates are available between SCF years. Because this analysis is attempting to mirror a cross-sectional survey, it does not delve into the never-before-possible research questions that are being explored with the CCP. Many of these opportunities arise from being able to observe the same borrowers immediately before and after an important event, or track individuals as they migrate within a metro area. This research is possible because the CCP contains an anonymous record id that can create a quarterly panel of data for each borrower. Names, social security numbers and street addresses are removed from the sample to guarantee privacy and identity security.

The CCP sample contains outstanding balances by type of debt for approximately fifteen percent of all US residents with a credit history. The sample begins by randomly selecting pairs of digits and matching these to the last two digits of borrowers' social security numbers. When approximately five percent of the credit records have been selected, these records are designated "primary" observations, and every other individual with a credit record who is observed to be living at the same address is added to the sample. The sample for a specific quarter will contain approximately 13 million primary records and 29 million co-residents. Each record has an indicator of the census 2000 block containing the current address of the credit record. The blocks map easily into Census 2010 tracts, which enables the merging of ACS estimates of income, education, and family demographics at the tract level. The data used here are as-of the end of the second quarters of 2013.

While the CCP contains no information on the person's marital status, or even gender, we can infer something from co-residence. To prepare observations that are similar to what the SCF calls a "Primary Economic Unit," I first drop co-resident observations that are over 15 years distant in age from the primary record. This should remove adult children and elderly parents who may have their own debts and income. If the children or parents happen to also be primary sample individuals, they are treated as a separate household. The records are then collapsed into households. Single households remain as they are, but married and cohabiting households become a single unit of observation with an indicator in their record that the household has two adults (Couple $=1$). Roommates of similar ages are inadvertently treated as couples because there is no way to differentiate them. The SCF does exclude roommates because they can ask respondents about their relationship. Approximately 3.2 percent of the CCP sample has to be discarded because anywhere from three to several hundred adults are reported as living at the same address. The larger head counts are probably apartments, condominiums, or other joint quarters where mail is delivered via individual names rather than unit numbers. In these cases, there is no way to identify which records represent single people or which adults are coupled.

To parallel the SCF, all CCP-reported balances secured by the primary residence are combined into the variable labeled mortgage. This includes closed-end home equity loans and the current balances on open-ended home equity lines of credit. Auto and student loans stand alone in both data sets. The variable cards includes balances on credit cards, retail cards, and miscellaneous other debts, such as pay-day loans, rent-to-own durables contracts, and medical bills.

The CCP and SCF are drawn from different universes because the SCF seeks to be nationally representative while the CCP can only represent people with credit records. Unless models are conditional on debts being non-zero, the SCF representatives of nonusers of credit will greatly influence the estimates. In the CCP, approximately 32 percent of single's and eight percent of couple's records have zero total debt. We can assume that records that have no other debt except a credit card balance below $\$ 250$ would appear as nonborrowers if they were sampled in the SCF. By this definition, 36 percent of singles and 11 percent of couples in the CCP are nonborrowers. Thirty-five percent of the singles in the SCF report no debts, and 23 percent of the couples report no debts. To balance the samples, I randomly drop 353 of the 853 nonborrower couples from the SCF sample. With this exclusion, the percentage of couples households in the SCF declines from 58 to 55 percent. Only 51 percent of the households in the CCP are identified as couples. Some couples in the CCP sample might be misclassified as singles if they opt to keep all debts in one person's name.

The demographic controls used to augment the CCP are derived from the American Community Surveys conducted from 2008 to 2012 . To reach a sufficient sample size for tract-level estimates, five years of observations must be aggregated. Using tract-aggregate values for income results in every household's income being mis-measured to the extent that it differs from its tract's value. A number of different income values are available in the ACS estimates, and one set of models reported below (table 4) is estimated with five potential income measures.

The education measures are assigned to CCP households based on the household's tract
and the age in the primary record. For example, if a 40-year-old is observed in a tract in which 33 percent of people aged 35-44 have a bachelor's degree, the variable Bachelors is assigned a value of 0.33 in her record. In the same tract, Bachelors may be set equal to 0.10 for a 70 -year-old if that is the average undergraduate attainment for people in his age category in the tract. The percentage of households with children is assigned the same value for everyone in the same tract because no differentiation by age or number of adults in the household is available in the ACS aggregates. Obviously there is a contrast between the continuous percentage values in the CCP-merged data and the binary values in the SCF data.

3.1 Descriptive Statistics

After the adjustments described above, table 1 illustrates how similar the sample become. In the CCP and adjusted SCF samples, 81 and 78 percent of households have some debt, respectively. However, the proportions having mortgage, card, and student debt are not equal. Thirty-eight percent of the households in the CCP have a mortgage or other homesecured debt, while 47 percent of SCF households have the equivalent debt. As mentioned above, the CCP does not distinguish between people who carry balances on their credit cards and those who pay off their entire balance each month. The SCF excludes the "transactional" use of credit cards. Thus the difference between the incidence of credit card debt in the CCP (72 percent) and the incidence in the SCF (49 percent) suggests approximately 23 percent of households make transactional use of cards. The incidence of student loans in the CCP is 71 percent of that in the SCF. This finding stands in contrast to the finding reported in Brown et al. (2011). They were comparing household-level student loan reports in the 2010 SCF to individual-level reports in the CCP in 2010, and they estimated that SCF respondents underreported student loan debt by approximately 25 percent.

The second section of table 1 presents conditional means, standard deviations, and medians for each type of debt. On home-secured debt, the CCP and SCF are very closely
aligned. The median home-secured debts differ by a trivial $\$ 16$. The variances in the SCF data are higher for auto, card, and student debt, and they are driven by some extremely high observations in the SCF measures. Major disparities are evident in student loans, with the conditional median SCF-reported loans being over twice as high as the CCP-reported loans. This may be due to the SCF including dependent students in their parents' households.

Figure 1 represents the conditional (>0) distributions of total borrowing in the SCF and CCP. The CCP has more density below $9 \log$ points, or approximately $\$ 8,100$ of total debt. The distributions in both samples appear to be mixtures of two normal distributions. The higher distribution is comprised of households with mortgages, and the lower distribution is households without a mortgage. Looking at the distributions of debt for the subcategories (figures 2-5) reveals the source of the dissimilarity between the distributions of total borrowing. It appears to be concentrated in student loans. The CCP reflects a lower distribution of student loan debts, conditional on the debts being non-zero. The conditional distributions of mortgage debt, auto debt, and even credit card balances are very similar. The congruent credit card distributions are surprising given that the SCF observations include only carried balances.

The descriptive statistics of the right-hand-side variables are presented in table 2. The challenge of identifying couples in the CCP can be seen in the difference between the shares of couples in the two samples. The SCF reports 55 percent of households having more than one adult, while the CCP reports 52 percent. The age distributions represented in the SCF and CCP are displayed in figure 6. The SCF sample includes adults from age 18 onward. Representation rises for ages between 19 and 30 as a larger fraction of each cohort has established their own households. In the CCP, young adults will be under-represented because some fraction have not yet made their first reportable credit transaction. Regarding people 80 and older, they have a higher representation in the CCP. This could reflect that many families opt to continue paying debts owed by deceased family members if they do not see an advantage to changing the names on the accounts. In these cases, creditors would
continue to report payments and the deceased's records continue to be in the sample (Lee and der Klaauw, 2010). The SCF does not contain any records for the deceased. Also, at very advanced ages, people are more likely to become dependents in their adult children's household. In that case, the SCF would list the child's age as the primary respondent.

The various income measures from the ACS are summarized in table 2. The mean of the household incomes reported to the SCF is higher, at $\$ 85,214$, than any of the means of the aggregate measures assigned to the CCP households. The tract median household income is approximately $\$ 7,000$ higher than the median of the SCF household incomes. One ACS table (table B19215) provides median incomes by tract for subpopulations defined by combinations of male/female, living alone/not alone, and under 65/over 65 years of age. When household incomes are assigned to CCP households according to this table, the median $(\$ 48,630)$ is closer to the median of the SCF incomes $(\$ 46,668)$. The male and female figures are averaged before being assigned. The education measures linked to the CCP records reflect lower levels of education than those reported in the SCF. In particular, the SCF sample appears to contain more undergraduate degree holders and fewer people with some post-secondary education. Likewise, the tract-assigned percentage of households with children is centered around a value of 30 percent while 43 percent of the SCF households have children.

4 Results

4.1 Internal Data Models

As a first attempt to estimate relationships between the household debt values and household demographics, I fit models with the two covariates available in both the SCF and CCP. The first models include only age and age squared. The coefficients on both are quite a bit larger in the SCF estimate, and the CCP coefficient would be outside a reasonable confidence interval around the former. When the Couple indicator is added to the models, the coefficients on this indicator appear quite similar, at 2.81 in the SCF estimate and 2.91 in the CCP
estimate. The standard errors in the CCP results are much smaller, as we would expect given the sample sizes.

In the second pair of models in table 3, terms are introduced for age cubed, and all the age variables are interacted with Couple. Most of the newly introduced terms are not statistically significant in the SCF estimates, and they add little to either model. The R^{2} terms increase only slightly. Finally, the continuous age variables are replaced with categories and interacted with Couple in the last two models. This model does not fit the data as well. Most of the coefficients in the categorical-age SCF estimates are very imprecisely measured and do not closely parallel those in the CCP estimates.

4.2 External Data Models

The models presented in table 4 incorporate the external income measures. In the SCF models, the observed household income is used while the CCP income measures are various tract-level aggregates merged in from ACS estimates. When income is introduced to the SCF model, the coefficient on Couple drops from 2.81 to 1.96. The first CCP model uses the log of the tract median household income. The coefficient on income in the SCF model is 0.90 . The CCP coefficient on this tract median income measure is much higher at 1.77. If measurement error were the primary factor at work here, we would expect that the coefficient on \log income in the CCP model would be bias toward zero because it is mis-measured for every household that is not exactly at the median. Using tract per capita income rather than tract median household income returns similar results.

In the models with income assigned to the household by the age of the householder (table 4, column 5), we encounter a limitations to the usefulness of merging external data. In the CCP records we have a precise geography, an age, and a rough measure of the family structure. We might expect to increase the precision of our estimates by merging data using two or more of these characteristics. For example, the tract median income for households headed by people between 18 and 34 would have to be a more precise proxy for the income
of a household head by someone aged 25 than the overall tract median. However, if we are also including age in the model, merging age-subcategory measures within the geography leads to the merged measures drawing explanatory power away from age. In the model with age-conditional income measures, the coefficients on Age and $A g e^{2}$ fall. When a familytype conditional income measure replaces the age-conditional measure, the coefficient on age returns to its previous level, and the coefficient on the family-type indicator (Couple) declines. Throughout these changes, there is very little movement in the explanatory power of the model overall. Merging in the external data provides a point estimate for income and a corrected estimate for couple. However, if our goal is prediction, the merged data did not provide new information.

Using a median measure raises the concern that tracts with very different income distributions could have the same median. The final model in table 4 introduces the tracts' whole income distribution in the form of percentages of the households with incomes in ten categories. Despite the high collinearity between these groupings, due to neighborhood sorting on income, each measure is still highly significant. In the remainder of the analysis, the income measure used for the CCP models is the tract median income assigned by the household's type (single/couple, $<65 />65$). Judging by the contrast with the SCF results, the other ACS income measures are not capturing the substantial income differences between one-earner and two-earner households.

Table 5 presents the SCF and CCP models when measures of education and children are introduced. The coefficient on the education measures in the SCF and CCP models reflect parallel ordering and direction. Borrowing by an adult lacking a high school degree is estimated to be $1.27 \log$ points lower than borrowing by high school graduates (the omitted category) in the SCF model. In the CCP model, the coefficient on the no-high-school-degree share in the tract is -1.60 . People with some post-secondary education borrow more than high school graduates, and BA holders borrow more yet. Graduate degree holders' borrowing is higher than that of high school graduates, but lower than that of BA holders, conditional
on other observables.
The coefficient on Children in the CCP estimate (1.44) is over twice as large as in the SCF estimate (0.61). The CCP model implies that living in a tract where a higher percentage of households have children is associated with more borrowing on the credit record. The SCF model suggests that having children in the home is associated with additional borrowing. The models agree on the direction, but the big data estimate seems to be capturing something fundamentally different with the geographic aggregates. Perhaps it reflects something about house prices and the newness of mortgages in tracts with high percentages of families raising children.

4.3 Sample Sizes

Through the model discussed so far, we have seen that the standard errors estimated in the SCF models are generally two or more orders of magnitude larger than the standard errors in the CCP models. One could even argue that there it is not critical to report standard errors or statistical significance in big data estimates like these because the standard errors are always minuscule. In the eleven CCP models discussed above, all but one coefficient was significant at the . 001 level. Recall that the CCP is just a 5 percent sample of the data set maintained by Equifax. Researchers considering using big data may want to consider even smaller samples if the cost of the proprietary data is proportional to the sample size. The estimates in table 6 illustrate what difference we might expect if we could only afford a 1 percent, .1 percent or .01 percent sample. As the sample shrinks, the standard errors naturally grow. For the relationships internal to the data set (coefficients on Age, Age ${ }^{2}$, and Couple) the errors remain small enough to easily identify statistical differences from zero. The standard errors rise more rapidly on the geographically merged education and children measures. Only when we reach the .001 sample do the point estimates change appreciably. The R^{2} are also indistinguishable.

A survey like the SCF could cost several million dollars to conduct. If a researcher is only
interested in a few measures and some demographics, and a big data provider is available, purchasing 10,000 observations out of a $100,000,000$-observation data set might be more feasible. If we draw a single sample out of the CCP that is the same size as the SCF, we can see that there is still sufficient power to identify most coefficients. However, it is concerning that some of the point estimates change. A 90 confidence interval on the coefficient for Couple would easily contain the coefficient estimated with the 5 percent sample. The same cannot be said for the coefficients on Age and $A g e^{2}$. Was this just an idiosyncratic shift in this particular sample of $\mathrm{N}=5634$?

To explore this, I draw multiple small samples and repeat the estimation. I randomly group the $11,040,764$ CCP observations into 1840 samples of $N=6000$. I estimated the model on each sample and plotted the coefficients in figure 7. The coefficient of 0.20 on Age (table 6, column 6) appears to be a low draw from the distribution of coefficients (figure 7, top left). The coefficient on Age $^{2}(-0.22)$ is offsetting in that it is a high draw. The coefficient on Income of 0.43 also appears to have been a low draw. The 90 percent confidence intervals on the estimates from the SCF model contain the coefficients from the 5 -percent sample CCP model for all variables except Bachelors and Children. This is a confirmation that the SCF is sufficiently large to estimate models of this type, even with the additional measurement error built into the publicly-released data.

4.4 Sensitivity to Adjustments to Equate Coverage

As discussed in section 3, adjustments need to be made to account for the CCP's lack of observations representing nonborrowers. In table 7, there are four models that demonstrate how sensitive the results are to alternate adjustments to the data. The SCF estimates presented above were all estimated after dropping 353 nonborrower couples. If we estimate the model with the full SCF public data set, the coefficients on Income and Children increase somewhat. The coefficient on Couple declines from 2.03 to 1.27 , which reflects that the distribution of couples' borrowing become more similar to that of singles when more
nonborrowers are included, because a higher share of singles are nonborrowers. The other coefficients are quite similar between the full sample and the adjusted sample.

If we are uncomfortable with dropping only some of the nonborrowers, we could estimate the models conditional on observing non-zero balances. The second and third models presented in table 7 are conditional on the total being non-zero. Very few of the coefficients are similar between the SCF and CCP models. Perhaps this is due to the numerous low balances observed in the CCP for households whose only debt is transactional credit card balances. If we drop the 364,000 observations with no debts other than card balances below $\$ 250$, the coefficients of the model all shift toward those of the SCF conditional model. However, the coefficients estimated with this limited CCP sample still fall outside reasonable confidence intervals on the SCF conditional estimates. Overall, these alternate adjustments to the samples are not reassuring. They suggest that similarity in the models presented in table 2 is highly sensitive to the adjustments selected. Choosing other reasonable adjustments could leave us with divergent estimates.

4.5 Alternate Specifications

Using logs of the debt measures and income measures has the advantage of muting the influence of extreme observations, without having to determine which extreme observations to drop. However, the coefficients are then measured in log points or elasticities, which are not as intuitive or as easily conveyed to general audiences. Table 8 presents results if we return to dollars. To avoid having a handful of observations exerting extreme leverage, I exclude all observations in either sample that have total debts or household income over $\$ 1,000,000$. The coefficients on Age differ by approximately $\$ 1000$ in the levels models. They are not as similar as the coefficients in the log models. Near the mean of logged total debt outstanding (10.7-10.9), the difference between the coefficients in the log models (0.0066) corresponds to about $\$ 300$. The relationship between the measures of education and debt are in agreement that households with education beyond high school borrow more. However,
the CCP level model returns a positive coefficient on the share of people in the records' tract and age category who do not have a high school degree. The measure of children, as in the log models, attributes more additional debt to the presence of children if the children are measured at the tract rather than household level.

Although the analysis thus far has combined all debts together, it should not be surprising that total household debts are dominated by mortgage debt. When separate models are estimated for each type of debt, as in table 9, the results for the mortgage debt model are similar to those of the total debt model. The coefficients on income in the SCF model is higher (1.20) in the mortgage model than the total debt model (0.65). The coefficients on Children in the mortgage models are both much higher than in the total debt models, but they do not agree. In the models of nonmortgage debt, the estimates based on big data rarely agree with those based on the survey. The coefficients on $A g e$ and $A g e^{2}$ are similar in the cards and student loan models. Among the coefficients on education and children measures, huge differences in magnitude and differences in sign are more common that coefficients than agree.

For the analysis so far, we have opted to use the CCP data with individual observations and tract values assigned to all individuals living in a tract. How different would the results be if we aggregated the CCP data to tracts before estimating the model? Estimates of this kind might be the only option if, for example, the big data provider is not willing to share individual observations but is willing to release tract-level aggregates. The third model presented in table 8 is estimated with the CCP data collapsed to the census tract. Only three of the coefficients in the tract-aggregate model are recognizable from the individual model. These three are coefficients on tract aggregate values for education levels at Bachelor's and below. The coefficients on Age, Age ${ }^{2}$, Couple, Income and Children all make major shifts.

Some of the literature on household debt prefers tobit specifications because zeroes are common in household debt data (Brown et al., 2013; Schooley and Worden, 2010). The zeroes could represent a preference for borrowing that is below zero. The household's true
optimal borrowing bundle may not be available in incomplete markets, or as in the CCP , it is represented by saving data that is not available. As mentioned above, multiple imputation routines are available for many types of econometric models, but the tobit model is not among them. In its place, table 10 presents tobit models estimated on each of the five implicates. The results for the five SCF models are all very similar, and the coefficients are uniformly highly significant. Compared with the CCP tobit model, the SCF tobit models agree on most coefficients. The two points of disagreement are coefficients on Bachelors and Children.

The final alternate set of models explores the possibility of moving one of the geographically merged aggregate measures to the left-hand side. In the CCP models, the debts are divided by the tract median income assigned by household type (single/couple, $<65 />65$), to create a debt-to-income (DTI) ratio. The log of the DTI is taken to reduce the influence of extreme values. Modeling the DTI ratios with the remaining explanatory variables results in a mixture of agreement and disagreement between the big-data-based and the surveybased estimates. The coefficients on $A g e$ and $A g e^{2}$ appear similar, although not statistically indistinguishable. The other coefficients in the total debt models are comparable with the exception, again, of Bachelors and Children. The mortgage models using DTI from the SCF and CCP generally agree on the direction and relative magnitude of the coefficients. In the nonmortgage model, only the coefficients on No Degree and Bachelor are roughly equivalent.

5 Conclusions

Through this example, we have learned that it is possible to arrive at similar model estimates using big data in place of a survey. However, this is dependent on adjustments that must be made to one or the other data set to account for differences in the sampled universe and definitions of the variables. To arrive at similar model estimates using the CCP and SCF,
one must first adjust for the CCP's lack of observation of people with no credit records. Some nonborrowers need to be dropped from the SCF sample or added to the CCP sample. Also, the similarity in the models seems to be driven by the predictability of the largest category of debt, mortgages. Models of auto debt arrive at very different estimates using CCP data rather than SCF data even though the two sampled distributions of auto debt are very similar. Models of credit card and student loan debt show even more disparity.

While surveys usually collect demographic data and questions on multiple related topics, big data set will only contain variables created for the data set's original purpose. In the demonstration above, we see both the potential and limitations of merging in external data. The CCP data was augmented with ACS data by assigning tract-level measures according to location, age and family structure. Estimates using the merged income and education data appear to do an adequate to good job of replicating individual observations. However, in the case of representing the influence of children on borrowing, the attempt is not successful. The prevalence of children in the borrower's tract seems to be representing something different than an indicator of children in the borrower's own household. The model coefficients are much higher on the tract-level measure. Measurement error bias should attenuate the estimated impacts to the extent that an aggregate value differs from individual values.

In the coming years, we can anticipate repeated debates about the advisability of substituting purchased big data sets for survey data where possible. The analysis presented here gives both arguments for and against such a substitution. The massive sample sizes available in big data sets can provide levels of precision far beyond what is obtainable from a survey. We saw above that a single sample with several thousand observations can return model coefficient estimates that are substantially higher or lower than other samples of equal size. The survey researcher has no way to know where the current draw is relative to others. On the other hand, if big data research has to incorporate external data because key variables are not in the data set, then a parallel survey is essential as a benchmark.

I am grateful to Joel Elvery, Ashley Orr, and Tricia Waiwood for their work on extracting and processing data for this research.

References

Abowd, J. M. and M. H. Stinson (2013). Estimating measurement error in annual job earnings: A comparison of survey and administrative data. Review of Economics and Statistics 95(5), 1451 - 1467.

Ansolabehere, S. and E. Hersh (2012). Validation: What big data reveal about survey misreporting and the real electorate.

Brown, M., A. Haughwout, D. Lee, and W. v. der Klaauw (2011). Do we know what we owe? a comparison of borrower- and lender-reported consumer debt.

Brown, S., G. Garino, and K. Taylor (2013). Household debt and attitudes toward risk. Review of Income and Wealth 59(2), 283-304.

Cook, T. D. (2014). 'big data' in research on social policy. Journal of Policy Analysis and Management 33(2), 544 - 547.

Czajka, J. L. (2013). Can administrative records be used to reduce nonresponse bias?. Annals of the American Academy of Political and Social Science 645, 171-184.

Dahl, M., T. DeLeire, and J. A. Schwabish (2011). Estimates of year-to-year volatility in earnings and in household incomes from administrative, survey, and matched data. Journal of Human Resources 46(4), 750-774.

Davies, P. S. and T. L. Fisher (2009). Measurement issues associated with using survey data matched with administrative data from the social security administration. Social Security Bulletin 69(2), 1-12.

Diebold, F. (2012). A personal perspective on the origin(s) and development of 'big data': The phenomenon, the term, and the discipline, second version.

Eagle, N. and K. Greene (2014). Reality Mining: Using Big Data to Engineer a Better World. Cambridge and London:.

Einav, L. and J. D. Levin (2013). The data revolution and economic analysis.
Friedman, M. (1957). A Theory of the Consumption Function. National Bureau of Economic Research, Inc.

Hazen, B. T., C. A. Boone, J. D. Ezell, and L. A. Jones-Farmer (2014). Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics 154, 72 - 80.

Kapteyn, A. and J. Y. Ypma (2007). Measurement error and misclassification: A comparison of survey and administrative data. Journal of Labor Economics 25(3), 513-551.

Kennickell, A. B. (1998). Multiple imputation in the Survey of Consumer Finances. Federal Reserve Board Working Paper.

Lee, D. and W. v. der Klaauw (2010). An introduction to the FRBNY Consumer Credit Panel.

Liegeois, P., F. Berger, N. Islam, and R. Wagener (2011). Cross-validating administrative and survey datasets through microsimulation. International Journal of Microsimulation 4 (1), 54-71.

Lynn, P., A. Jackle, S. P. Jenkins, and E. Sala (2012). The impact of questioning method on measurement error in panel survey measures of benefit receipt: Evidence from a validation study. Journal of the Royal Statistical Society: Series A (Statistics in Society) 175(1), 289-308.

Modigliani, F. and R. Brumberg (1954). Utility analysis and the consumption function: An interpretation of cross-section data. In K. Kurihara (Ed.), PostKeynesian Economics. Rutgers University Press.

Nickerson, D. W. and T. Rogers (2014). Political campaigns and big data. Journal of Economic Perspectives 28(2), 51-74.

Pugh, K. and G. Foster (2014). Australia's national school data and the 'big data' revolution in education economics. Australian Economic Review 47(2), 258-268.

Qiao, C. (2005). Combining administrative and survey data to derive small-area estimates using loglinear modelling. Labour 19(4), 767 - 800.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.
Schooley, D. K. and D. D. Worden (2010). Fueling the credit crisis: Who uses consumer credit and what drives debt burden?. Business Economics 45(4), 266-276.

Sonka, S. (2014). Big data and the ag sector: More than lots of numbers. International Food and Agribusiness Management Review 17(1), 1-19.

Tedula, M. and G. Young (2005). The determinants of household debt and balance sheets in the United Kingdom.

Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspectives 28(2), 3-28.

Warburton, R. N. and W. P. Warburton (2004). Canada needs better data for evidence-based policy: Inconsistencies between administrative and survey data on welfare dependence and education. Canadian Public Policy 30(3), 241 - 255.

	Mean		SD		Median		Min		Max	
	CCP	SCF								
Any Debt	0.81	0.78	0.40	0.41	1	1	0	0	1	1
Any Mortgage Debt	0.38	0.47	0.49	0.50	0	0	0	0	1	1
Any Auto Debt	0.34	0.32	0.47	0.47	0	0	0	0	1	1
Any Card Debt	0.72	0.49	0.45	0.50	1	1	0	0	1	1
Any Student Debt	0.15	0.21	0.35	0.41	0	0	0	0	1	1
						dian				ax
Debts	CCP	SCF								
Mortgage	\$170,850	\$167,956	\$205,943	\$199,815	\$117,984	\$118,000	\$1.0	\$188	\$8,091,418	\$16,615,000
Auto	\$14,024	\$14,567	\$13,057	\$21,954	\$10,704	\$12,000	\$0.5	\$72	\$449,702	\$6,237,500
Credit Cards, Other	\$10,120	\$11,596	\$25,787	\$498,580	\$3,443	\$13,900	\$0.5	\$8	\$2,006,751	\$277,512,496
Student	\$16,713	\$29,100	\$27,949	\$40,390	\$8,297	\$17,000	\$0.5	\$22	\$390,428	\$413,198
Total	\$97,891	\$122,135	\$175,837	\$436,196	\$27,859	\$60,400	\$0.5	\$10	\$8,106,715	\$277,512,500

[^1]

Figure 1: Total Household Debt (Conditional (balance >0)). Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF).

Figure 2: Mortgage Debt (Conditional (balance >0)). Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF).

Figure 3: Auto Debt (Conditional (balance >0)). Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF).

Figure 4: Credit Card and Other Debt (Conditional (balance >0)). Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF).

Figure 5: Student Debt (Conditional (balance >0)). Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF). In the SCF sample, $\mathrm{N}=5,662$. In the CCP sample, $\mathrm{N}=11,040,764$.

	Mean		SD		Median		Min		Max	
	CCP	SCF								
Couple	0.52	0.55	0.50	0.50	1	1	0	0	1	1
Age	53	51	19	17	52	50	18	18	112	95
Household Income		\$85,214		\$364,944		\$46,668		\$0		\$176,845,511
Tract Median Income	\$59,720		\$27,949		\$53,554		\$4,010	.	\$246,500	
Tract Per Capita Income	\$74,667		\$36,461	.	\$65,843		\$6,079		\$514,211	
Tract Income by Age	\$59,896		\$31,819	.	\$53,182		\$2,656	.	\$249,554	
Tract Income by Couple/Senoir	\$55,177		\$32,981		\$48,630		\$2,639		\$249,028	
Log Income	10.90	10.73	0.45	1.14	10.89	10.75	8.30	0.00	12.42	19.01
Percent of Tract Households in Income Categories										
<\$10K	6.87		6.06	.	5.20		0		100.00	
\$10k-\$15k	5.27		4.06	.	4.40		0		46.60	.
\$15k-\$25k	10.45		5.83	.	9.90		0		100.00	.
\$25k-\$35k	10.18	.	4.89	.	9.90		0	.	38.70	.
\$35k-\$50k	13.56		5.18	.	13.50		0		100.00	.
\$50k-\$75k	18.16	.	5.64	.	18.20		0	.	50.00	.
\$75k-\$100k	12.42		5.12	.	12.30		0		100.00	.
\$100k-\$150k	13.20		7.62	.	12.30		0		64.50	.
\$150k-\$200k	4.99		4.81	.	3.40	.	0	.	58.60	.
$>\$ 200 \mathrm{k}$	4.89	.	7.38	.	2.20	.	0	.	73.70	.
No Degree	0.15	0.11	0.14	0.31	0.11	0	0	0	1	1
High School	0.29	0.31	0.14	0.46	0.29	0	0	0	1	1
Some College	0.29	0.19	0.12	0.39	0.28	0	0	0	1	1
Bachelor's	0.17	0.26	0.12	0.44	0.15	0	0	0	1	1
Graduate	0.10	0.13	0.10	0.34	0.07	0	0	0	0.85	1
Children	0.30	0.43	0.10	0.50	0.30	0	0	0	1	1

Table 2: Descriptive Statistics - Income and Demographics. Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF), and American Committee Surveys 2008-2012 (ACS). The demographic observations for the SCF are included in the survey. The CCP measures age and whether the household contains a single adult or couple. All income, education and child observations are merge into the CCP from the ACS. In the SCF sample, $\mathrm{N}=5,662$. In the CCP sample, $\mathrm{N}=11,040,764$.

	SCF	CCP	SCF	CCP	SCF	CCP	SCF	CCP
Age	$\begin{aligned} & \hline 0.3822 * * * \\ & (0.0214) \end{aligned}$	$\begin{aligned} & \hline 0.3083 * * * \\ & (0.0005) \end{aligned}$	$\begin{aligned} & \hline 0.3066 * * * \\ & (0.0213) \end{aligned}$	$\begin{aligned} & \hline 0.2522 * * * \\ & (0.0004) \end{aligned}$	$\begin{aligned} & \hline 0.3288 * * * \\ & (0.0906) \end{aligned}$	$\begin{aligned} & \hline 0.3053 * * * \\ & (0.0018) \end{aligned}$		
Age ${ }^{2}$	$\begin{aligned} & -0.0042 * * * \\ & (0.0002) \end{aligned}$	$\begin{aligned} & -0.0032 * * * \\ & (0.0000) \end{aligned}$	$\begin{aligned} & -0.0034 * * * \\ & (0.0002) \end{aligned}$	$\begin{aligned} & -0.0027 * * * \\ & (0.0000) \end{aligned}$	$\begin{gathered} -0.0043 * \\ (0.0018) \end{gathered}$	$\begin{aligned} & -0.0042 * * * \\ & (0.0000) \end{aligned}$		
Age ${ }^{3}$					$\begin{gathered} 0.0000 \\ (0.0000) \end{gathered}$	$\begin{aligned} & 0.0000 * * * \\ & (0.0000) \end{aligned}$		
Couple			$\begin{aligned} & 2.8122 * * * \\ & (0.1331) \end{aligned}$	$\begin{aligned} & 2.9051 * * * \\ & (0.0029) \end{aligned}$			$\begin{aligned} & 3.1168 * * * \\ & (0.2813) \end{aligned}$	$\begin{aligned} & 3.2580 * * * \\ & (0.0062) \end{aligned}$
Couple*Age					$\begin{aligned} & 0.1212 * * * \\ & (0.0276) \end{aligned}$	$\begin{aligned} & 0.1347 * * * \\ & (0.0005) \end{aligned}$		
Couple*Age ${ }^{2}$					$\begin{gathered} -0.0013 \\ (0.0010) \end{gathered}$	$\begin{aligned} & -0.0015 * * * \\ & (0.0000) \end{aligned}$		
Couple*Age ${ }^{3}$					$\begin{gathered} 0.0000 \\ (0.0000) \end{gathered}$	$\begin{aligned} & 0.0000 * * * \\ & (0.0000) \end{aligned}$		
Age 18-34							$\begin{gathered} -0.5363 \\ (0.3286) \end{gathered}$	$\begin{gathered} -0.6522 * * * \\ (0.0069) \end{gathered}$
Age 35-44							$\begin{gathered} 0.3959 \\ (0.3629) \end{gathered}$	$\begin{gathered} -0.0171 * \\ (0.0072) \end{gathered}$
Age 55-64							$\begin{array}{r} -0.3950 \\ (0.3538) \end{array}$	$\begin{aligned} & -0.1503 * * * \\ & (0.0074) \end{aligned}$
Age 65+							$\begin{aligned} & -2.9144 * * * \\ & (0.3390) \end{aligned}$	$\begin{aligned} & -2.7408 * * * \\ & (0.0077) \end{aligned}$
Couple*Age 18-34							$\begin{gathered} -0.4276 \\ (0.3926) \end{gathered}$	$\begin{aligned} & -0.4966 * * * \\ & (0.0078) \end{aligned}$
Couple*Age 35-44							$\begin{gathered} -0.2995 \\ (0.4073) \end{gathered}$	$\begin{aligned} & 0.0639 * * * \\ & (0.0084) \end{aligned}$
Couple*Age 55-64							$\begin{gathered} -0.0429 \\ (0.4056) \end{gathered}$	$\begin{aligned} & -0.2679 * * * \\ & (0.0084) \end{aligned}$
Couple*Age 65+							$\begin{gathered} 0.2779 \\ (0.4330) \end{gathered}$	$\begin{aligned} & -0.1154 * * * \\ & (0.0082) \end{aligned}$
Constant	$\begin{gathered} 0.7588 \\ (0.5369) \end{gathered}$	$\begin{aligned} & 1.6396 * * * \\ & (0.0113) \end{aligned}$	$\begin{gathered} 0.8313 \\ (0.5171) \end{gathered}$	$\begin{aligned} & 1.6046 * * * \\ & (0.0105) \end{aligned}$	$\begin{gathered} 0.8954 \\ (1.4191) \end{gathered}$	$\begin{aligned} & 1.1019 * * * \\ & (0.0260) \end{aligned}$	$\begin{aligned} & 7.3474 * * * \\ & (0.2491) \end{aligned}$	$\begin{aligned} & 7.1043 * * * \\ & (0.0072) \end{aligned}$
R^{2}	0.1266	0.1256	0.2116	0.2305	0.2130	0.2338	0.1805	0.1866
N	5,662	11,040,764	5,662	11,040,764	5,662	11,040,764	5,662	11,040,764

Table 3: Models of Logged Total Household Debt with Internal Demographics. Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF), and American Committee Surveys 2008-2012 (ACS). Significance key: * for $\mathrm{p}<.05,^{* *}$ for $\mathrm{p}<.01$, and ${ }^{* * *}$ for $\mathrm{p}<.001$.

	SCF	CCP				
		Median	Per Capita	Age	Type	Categories
Age	0.2458***	0.2460***	0.2467***	0.1950***	0.2451***	0.2459***
	(0.0223)	(0.0004)	(0.0004)	(0.0005)	(0.0004)	(0.0004)
Age ${ }^{2}$	$-0.0028 * * *$	$-0.0027 * * *$	$-0.0027 * * *$	$-0.0022 * * *$	-0.0026***	$-0.0027 * * *$
	(0.0002)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
Couple	1.9599 ***	2.7329 ***	$2.7508 * * *$	$2.7815 * * *$	1.9018***	$2.7232 * * *$
	(0.1608)	(0.0027)	(0.0027)	(0.0027)	(0.0049)	(0.0027)
Income	0.8964***	$1.7605 * * *$	1.8256***	1.4287***	$1.3454 * * *$	
	(0.1046)	(0.0056)	(0.0069)	(0.0046)	(0.0053)	
<\$10k						$-0.0393 * * *$
						(0.0006)
\$10k-\$15k						$-0.0399 * * *$
						(0.0009)
\$15k-\$25k						$-0.0321 * * *$
						(0.0007)
\$25k-\$35k						$-0.0225 * * *$
						(0.0007)
\$35k-\$50k						$-0.0101 * * *$
						(0.0007)
\$75k-\$100k						0.0108***
						(0.0007)
\$100k-\$150k						0.0145***
						(0.0006)
\$150k-\$200k						0.0131***
						(0.0008)
$>\$ 200 \mathrm{k}$						0.0132***
						(0.0005)
Constant	$-6.8243 * * *$	$-17.3411 * * *$	$-18.4812 * * *$	$-12.6136 * * *$	$-12.2604 * * *$	2.5718***
	(1.0336)	(0.0611)	(0.0753)	(0.0484)	(0.0559)	(0.0390)
R^{2}	0.2480	0.2613	0.2600	0.2576	0.2515	0.2628
N	5,662	11,030,492	11,033,464	10,785,638	10,972,930	11,034,525

Table 4: Models of Logged Total Household Debt with Income Data. Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF), and American Committee Surveys 20082012 (ACS). CCP model standard errors are clustered on the Census tract. Significance key: * for $\mathrm{p}<.05,{ }^{* *}$ for $\mathrm{p}<.01$, and *** for $\mathrm{p}<.001$.

	SCF	CCP	SCF	CCP
Age	$0.2458 * * *$	$0.2450 * * *$	$0.2420 * * *$	$0.2354 * * *$
	(0.0223)	(0.0004)	(0.0216)	(0.0004)
Age 2	$-0.0028 * * *$	$-0.0026 * * *$	$-0.0027 * * *$	$-0.0025 * * *$
	(0.0002)	(0.0000)	(0.0002)	(0.0000)
Couple	$1.9599 * * *$	$1.9022 * * *$	$2.0332 * * *$	$2.3191 * * *$
	(0.1608)	(0.0049)	(0.1583)	(0.0047)
Income	$0.8964 * * *$	$1.3451 * * *$	$0.6374 * * *$	$0.6642 * * *$
	(0.1046)	(0.0053)	(0.0983)	(0.0057)
No Degree			$-1.2656 * * *$	$-1.6006 * * *$
			(0.2426)	(0.0235)
Some College			$0.8679 * * *$	$0.9485 * * *$
			(0.1750)	(0.0203)
Bachelors			$1.2994 * * *$	$2.1667 * * *$
			$1.0962 * * *$	(0.0212)
Graduate			$1.5634 * * *$	
			$0.2067)$	(0.0272)
Children			(0.1294)	(0.0249)
Constant	$-6.8243 * * *$	$-12.2545 * * *$	$-5.1233 * * *$	$-6.0770 * * *$
	(1.0336)	(0.0559)	(0.9815)	(0.0589)
R 2	0.2481	0.2515	0.2750	0.2606
N	5,662	$10,973,062$	5,662	$10,950,025$

Table 5: Models of Logged Total Household Debt with Demographic Data Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF), and American Committee Surveys 20082012 (ACS). CCP model standard errors are clustered on the Census tract. Significance key: * for p<.05, ** for p<.01, and *** for $\mathrm{p}<.001$.
Table 6: Model of Logged Household Debt using Various Sample Sizes. Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF), and American Committee Surveys 20082012 (ACS). CCP model standard errors are clustered on the Census tract. Significance key: * for $\mathrm{p}<.05,{ }^{* *}$ for $\mathrm{p}<.01$, and *** for $\mathrm{p}<.001$.

\[

\]

Figure 7: Regression Coefficients based on 1840 samples, $\mathrm{N}=6000$, from the CCP data. Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP) and American Committee Surveys 2008-2012 (ACS).

	SCF		SCF	CCP
	All Observations	Debt $>\$ 0$	CCP	
Debt $>\$ 0$	Debt $>\$ 250$			
Age	$0.2476 * * *$	$0.0926 * * *$	$0.1734 * * *$	$0.1503 * * *$
	(0.0220)	(0.0134)	(0.0003)	(0.0003)
Age 2	$-0.0027 * * *$	$-0.0009 * * *$	$-0.0017 * * *$	$-0.0015 * * *$
	(0.0002)	(0.0001)	(0.0000)	(0.0000)
Couple	$1.2718 * * *$	$0.5551 * * *$	$0.8319 * * *$	$0.7092 * * *$
	(0.1627)	(0.0824)	(0.0029)	(0.0026)
Income	$0.7005 * * *$	$0.4366 * * *$	$0.2250 * * *$	$0.2275 * * *$
	(0.1025)	(0.0638)	(0.0035)	(0.0032)
No Degree	$-1.4210 * * *$	$-0.4845 * * *$	$-0.6326 * * *$	$-0.5646 * * *$
	(0.2458)	(0.1392)	(0.0145)	(0.0132)
Some College	$0.9135 * * *$	$0.2988 * * *$	$0.7664 * * *$	$0.6788 * * *$
	(0.1820)	(0.0835)	(0.0127)	(0.0115)
Bachelors	$1.4297 * * *$	$0.6935 * * *$	$1.3795 * * *$	$1.3425 * * *$
	(0.1724)	(0.0848)	(0.0141)	(0.0130)
Graduate	$0.8868 * * *$	$1.0622 * * *$	$1.2999 * * *$	$1.2154 * * *$
	(0.2248)	(0.0957)	(0.0185)	(0.0167)
Children	$0.7956 * * *$	$0.1679 * *$	$1.3751 * * *$	$1.3043 * * *$
	(0.1364)	(0.0618)	(0.0156)	(0.0143)
Constant	$-5.8784 * * *$	$2.9023 * * *$	$2.1972 * * *$	$2.8944 * * *$
	(1.0176)	(0.5956)	(0.0363)	(0.0330)
R^{2}	0.2318	0.2537	0.1957	0.1856
N	6,015	4,368	$8,737,664$	$8,373,889$

Table 7: Sensitivity Analysis for Models of Total Household Debt. Data Sources: Federal Reserve Bank of New York Consumer

CCP model standard errors are clustered on the Census tract. Significance key: ${ }^{*}$ for $\mathrm{p}<.05,{ }^{* *}$ for $\mathrm{p}<.01$, and ${ }^{* * *}$ for $\mathrm{p}<.001$.

	SCF	CCP	CCP
	Levels	Levels	Tract Aggregates
Age	$4078.3154 * * *$	$5075.8555 * * *$	$0.0574 * * *$
Age 2	(403.7912)	(16.5588)	(0.0046)
	$-40.7422 * * *$	$-48.3402 * * *$	$-0.0009 * * *$
Couple	(3.7065)	(0.1472)	$(0.00000$
	$30847.1071 * * *$	$33277.4611 * * *$	$4.8359 * * *$
Income	(3374.7107)	(208.6129)	(0.0318)
	$0.5132 * * *$	$0.6379 * * *$	$0.9834 * * *$
No High School	$-16698.0412)$	(0.0052)	(0.0088)
	(3491.7209)	$(6056.5604 * * * *$	$-1.5117 * * *$
Some College	$7775.8987 *$	$39981.7862 * * *$	(0.0415)
	(3621.1836)	(739.1379)	$0.9120 * * *$
Bachelors	$38696.8369 * * *$	$89690.9086 * * *$	$1.0428)$
	(4390.0115)	(973.8093)	$(0.0456 * *$
Graduate	$55186.0059 * * *$	$121583.1351 * * *$	$0.2227 * * *$
	(6632.8609)	(1375.7355)	(0.0474)
Children	$28020.6138 * * *$	$74420.5474 * * *$	$0.7956 * * *$
	(3409.2542)	(1128.2653)	(0.0271)
Constant	$-86112.7718 * * *$	$-163007.4144 * * *$	$-6.3487 * * *$
	(10124.2750)	(777.3295)	(0.1417)
R^{2}	0.3112	0.1977	0.7667
N	5,159	$10,920,300$	71,737

Table 8: Level and Aggregate Models of Total Household Debt. Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF), and American Committee Surveys 2008-2012 (ACS).
CCP model standard errors are clustered on the Census tract. Significance key: ${ }^{*}$ for $\mathrm{p}<.05,{ }^{* *}$ for $\mathrm{p}<.01$, and ${ }^{* * *}$ for $\mathrm{p}<.001$.

	Mortgage		Auto		Cards		Student	
	SCF	CCP	SCF	CCP	SCF	CCP	SCF	CCP
Age	0.3694***	0.3633***	0.0462*	0.1125***	0.1906***	0.2253***	-0.1703***	$-0.1662 * * *$
	(0.0245)	(0.0006)	(0.0186)	(0.0004)	(0.0192)	(0.0004)	(0.0177)	(0.0004)
Age ${ }^{2}$	$-0.0034 * * *$	$-0.0032 * * *$	$-0.0007 * * *$	$-0.0013 * * *$	$-0.0019 * * *$	$-0.0021 * * *$	0.0010 ***	0.0010***
	(0.0002)	(0.0000)	(0.0002)	(0.0000)	(0.0002)	(0.0000)	(0.0001)	(0.0000)
Couple	$1.8197 * * *$	2.1308***	1.5606***	$1.7980 * * *$	0.7969***	2.0560***	0.5661***	0.9489***
	(0.2106)	(0.0073)	(0.1432)	(0.0054)	(0.1394)	(0.0042)	(0.1175)	(0.0039)
Income	1.2035***	0.5704***	0.4866***	$-0.0215 * *$	0.1096	0.4844***	$-0.2819 * * *$	$-0.1917 * * *$
	(0.1503)	(0.0083)	(0.0663)	(0.0065)	(0.0648)	(0.0050)	(0.0581)	(0.0044)
No Degree	$-1.1816 * * *$	$-2.8316 * * *$	-0.1354	$-2.0943 * * *$	$-0.6494 * *$	$-1.0374 * * *$	$-0.7596 * * *$	$-0.5600 * * *$
	(0.2623)	(0.0337)	(0.2037)	(0.0262)	(0.2079)	(0.0209)	(0.1357)	(0.0170)
Some College	0.4329	1.2925***	0.1509	0.2064***	0.5525**	0.3654***	0.8890***	0.4821***
	(0.2212)	(0.0306)	(0.1761)	(0.0246)	(0.1753)	(0.0182)	(0.1503)	(0.0179)
Bachelors	1.3572***	2.5422***	0.0050	0.9271***	0.1839	2.0372***	1.4195***	1.4489 ***
	(0.2210)	(0.0377)	(0.1704)	(0.0281)	(0.1667)	(0.0181)	(0.1497)	(0.0201)
Graduate	1.3520***	2.3240 ***	-0.3592	$-0.8025 * * *$	$-0.5420 * *$	1.5229***	1.9684***	0.2077***
	(0.2770)	(0.0470)	(0.2173)	(0.0359)	(0.2076)	(0.0212)	(0.2037)	(0.0229)
Children	1.0536***	4.0920***	0.3539*	2.0201***	0.2834*	0.4911***	0.6478***	$-0.4584 * * *$
	(0.1681)	(0.0448)	(0.1395)	(0.0344)	(0.1359)	(0.0221)	(0.1240)	(0.0210)
Constant	$-18.5324 * * *$	$-14.0517 * * *$	$-3.5443 * * *$	0.2855***	$-2.0348 * *$	$-6.4342 * * *$	9.5317***	8.5479***
	(1.3587)	(0.0839)	(0.7312)	(0.0677)	(0.7133)	(0.0524)	(0.7103)	(0.0477)
R^{2}	0.2576	0.1869	0.1043	0.1005	0.0613	0.2124	0.1701	0.1303
N	5,662	10,950,025	5,662	10,950,025	5,662	10,950,025	5,662	10,950,025

Table 9: Models of Logged Total Household Debt by Type of Debt. Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF), and American Committee Surveys 2008-2012 (ACS). CCP model standard errors are clustered on the Census tract. Significance key: ${ }^{*}$ for $\mathrm{p}<.05,{ }^{* *}$ for $\mathrm{p}<.01$, and ${ }^{* * *}$ for $\mathrm{p}<.001$.

	CCP	SCF				
		Implicate 1	Implicate 2	Implicate 3	Implicate 4	Implicate 5
Age	0.3058***	0.3330***	0.3322***	0.3346***	0.3366***	0.3315***
	(0.0006)	(0.0315)	(0.0314)	(0.0315)	(0.0314)	(0.0314)
Age ${ }^{2}$	$-0.0033 * * *$	$-0.0037 * * *$	$-0.0037 * * *$	$-0.0037 * * *$	$-0.0037 * * *$	$-0.0037 * * *$
	(0.0000)	(0.0003)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
Couple	$2.7330 * * *$	2.5358***	2.5356***	$2.5455 * * *$	$2.5413 * * *$	$2.5391 * * *$
	(0.0058)	(0.2011)	(0.2010)	(0.2012)	(0.2011)	(0.2005)
Income	0.9000***	0.7191***	0.7159***	0.7140***	0.7144***	0.7199***
	(0.0071)	(0.1201)	(0.1202)	(0.1197)	(0.1198)	(0.1202)
No Degree	$-1.8619 * * *$	$-1.7225 * * *$	$-1.7518 * * *$	$-1.7506 * * *$	$-1.7052 * * *$	$-1.7406 * * *$
	(0.0295)	(0.3439)	(0.3439)	(0.3463)	(0.3447)	(0.3430)
Some College	1.0007***	1.0733***	1.0648***	1.0729 ***	$1.0938 * * *$	1.0838***
	(0.0249)	(0.2247)	(0.2239)	(0.2247)	(0.2240)	(0.2243)
Bachelors	2.1717***	1.5437***	1.4932***	1.5104***	1.5167***	1.5173***
	(0.0252)	(0.2069)	(0.2078)	(0.2072)	(0.2078)	(0.2068)
Graduate	1.4689***	1.2056***	1.1805***	1.2058***	1.1901***	1.1949 ***
	(0.0316)	(0.2547)	(0.2549)	(0.2540)	(0.2550)	(0.2542)
Children	1.3226***	0.6497***	0.6793***	$0.6437 * * *$	0.6439***	0.6593***
	(0.0301)	(0.1645)	(0.1648)	(0.1647)	(0.1647)	(0.1643)
Constant	$-10.5226 * * *$	$-8.6250 * * *$	$-8.5670 * * *$	$-8.5944 * * *$	$-8.6517 * * *$	$-8.6059 * * *$
	(0.0740)	(1.2422)	(1.2467)	(1.2403)	(1.2424)	(1.2457)
Sigma	4.6400***	4.9938***	4.9968***	4.9970***	4.9932***	4.9849***
	(0.0036)	(0.0770)	(0.0770)	(0.0770)	(0.0770)	(0.0769)
N	10,950,025	5,662	5,662	5,662	5,662	5,662
AIC	56,492,294	121,726,651	121,787,664	121,730,689	121,767,995	121,775,628
BIC	56,492,450	121,726,725	121,787,737	121,730,762	121,768,068	121,775,701

Table 10: Models of Logged Household Debt with a Tobit Specification. Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF), and American Committee Surveys 20082012 (ACS). CCP model standard errors are clustered on the Census tract. Significance key: * for $\mathrm{p}<.05,{ }^{* *}$ for $\mathrm{p}<.01$, and *** for $\mathrm{p}<.001$.

	Total		Mortgage		Nonmortgage	
	SCF	CCP	SCF	CCP	SCF	CCP
Age	$0.1067 * * *$	$0.1400 * * *$	$0.1849 * * *$	$0.1646 * * *$	-0.0125	$0.0642 * * *$
	(0.0104)	(0.0002)	(0.0105)	(0.0003)	(0.0090)	(0.0002)
Age 2	$-0.0012 * * *$	$-0.0014 * * *$	$-0.0017 * * *$	$-0.0015 * * *$	-0.0001	$-0.0008 * * *$
	(0.0001)	(0.0000)	(0.0001)	(0.0000)	(0.0001)	(0.0000)
Couple	$0.8410 * * *$	$0.9758 * * *$	$1.0283 * * *$	$0.9965 * * *$	$0.3284 * * *$	$0.6144 * * *$
	(0.0676)	(0.0017)	(0.0773)	(0.0018)	(0.0558)	(0.0014)
No Degree	$-0.6259 * * *$	$-0.6990 * * *$	$-0.7323 * * *$	$-1.2437 * * *$	$-0.2052 *$	$-0.3426 * * *$
	(0.1199)	(0.0128)	(0.1223)	(0.0156)	(0.0953)	(0.0105)
Some College	$0.4421 * * *$	$0.6159 * * *$	$0.2405 *$	$0.7326 * * *$	$0.3821 * * *$	$0.1879 * * *$
	(0.0902)	(0.0115)	(0.1042)	(0.0144)	(0.0752)	(0.0090)
Bachelors	$0.6613 * * *$	$1.1207 * * *$	$0.7339 * * *$	$1.4082 * * *$	$0.2446 * * *$	$0.2284 * * *$
	(0.0806)	(0.0131)	(0.0953)	(0.0171)	(0.0684)	(0.0097)
Graduate	$0.6791 * * *$	$0.7424 * * *$	$0.8321 * * *$	$1.2915 * * *$	0.1571	$-0.3612 * * *$
	(0.0958)	(0.0165)	(0.1117)	(0.0210)	(0.0858)	(0.0118)
Children	$0.3351 * * *$	$0.8716 * * *$	$0.5463 * * *$	$1.8893 * * *$	0.1093	$-0.1398 * * *$
	(0.0672)	(0.0145)	(0.0782)	(0.0198)	(0.0590)	(0.0122)
Constant	0.4481	$-0.9986 * * *$	$-3.3492 * * *$	$-3.7251 * * *$	$2.6967 * * *$	$0.9095 * * *$
	(0.2640)	(0.0101)	(0.2568)	(0.0125)	(0.2408)	(0.0077)
R^{2}	0.1750	0.1871	0.1764	0.1603	0.1066	0.1302
N	5,625	$10,949,904$	5,625	$10,949,904$	5,625	$10,949,904$

Table 11: Models of Logged Debt-to-Income Ratios. Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF), and American Committee Surveys 2008-2012 (ACS). CCP model standard errors are clustered on the Census tract. Significance key: * for $\mathrm{p}<.05,{ }^{* *}$ for $\mathrm{p}<.01$, and ${ }^{* * *}$ for $\mathrm{p}<.001$

[^0]: ${ }^{1}$ SCF Codebook: http://www.federalreserve.gov/econresdata/scf/files/codebk2013.txt. ACS Documentation: http://www.census.gov/acs/www/data_documentation/documentation_main. Accessed December, 2014.

[^1]: Table 1: Descriptive Statistics - Household Debt Balances. Data Sources: Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP), Survey of Consumer Finances 2013 (SCF). In the SCF sample, N=5,662. In the CCP sample, $\mathrm{N}=11,040,764$.

