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1 Introduction

While runs experienced in the recent financial crisis involved intermediation activities beyond

traditional banking, the financial arrangement and the associated risk of runs often resembled

those of traditional banks.1 Financial intermediaries invest in risky assets funded by short-

term liabilities similar to demand deposits. These short-term liabilities allow investors to

satisfy their liquidity needs, while participating in profitable long-term investments. The

maturity mismatch of assets and liabilities expose intermediaries to the risk of runs. An

investor’s decision whether to roll over funding is determined by considerations about the

risk of the intermediary’s investment and the strategic behavior of other investors. Premature

liquidation by some investors exerts a negative externality on those investors who roll over

funding. Does the availability of a safe asset decrease financial fragility by mitigating runs?

In a seminal paper, Diamond and Dybvig (1983) analyze a setup with risk-less in-

vestment and risk-averse investors who face unobservable idiosyncratic liquidity risk. The

first-best allocation provides liquidity risk-sharing among investors. A demand-deposit con-

tract implements the first-best allocation by promising an interim return above the liquida-

tion value of the investment. As a result, the demand-deposit contract is run-prone and two

equilibria emerge. In the good equilibrium, only investors with liquidity needs withdraw pre-

maturely. In the bad equilibrium, all investors withdraw, resulting in the bank’s insolvency.

However, the probability of a run remains outside the perimeter of the analysis.

In another seminal paper, Goldstein and Pauzner (2005) introduce investment risk and

noisy private information in the Diamond/Dybvig setup. They derive a unique equilibrium

in which the probability of a bank run depends on the promised interim return. Resolving the

multiplicity of equilibria allows for a meaningful examination of welfare, whereby the costs

of a run ex post are internalized ex ante. That is, the bank’s promised interim return trades

off a larger run probability with enhanced liquidity provision (greater liquidity risk-sharing).

1See Covitz et al. (2013) for a run on the Asset-Backed Commercial Paper market, Kacperczyk and
Schnabl (2013) and Schmidt et al. (2014) for a run on money market mutual funds, and Gorton and Metrick
(2012) for a run on the repo market. See Brunnermeier (2009) for a review.
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We expand the portfolio of the bank by introducing investment in a safe asset. Building

on the Goldstein/Pauzner setup, banks can now hold safe assets, such as cash, government

debt or central bank reserves. This allows the bank to insure those risk-averse investors who

roll over funding by reducing their exposure to investment risk.2 Expanding the analysis

of Goldstein and Pauzner (2005), we study the effect of safe assets holdings on financial

stability. This allows us to examine the effect of both liquidity risk-sharing and insurance

against investment risk on bank fragility.3 More broadly, we aim to contribute to the ongoing

discussion about the role of safe assets in society (Gorton et al. (2012)).4

We show that safe asset holdings decrease the probability of a bank run and enhance

financial stability. Banks can decrease the probability of a run by either providing less

liquidity to investors or holding safe assets. The demand-deposit contract we analyze consists

of two parts. First, the bank promises a non-contingent interim return to investors who

withdraw prematurely. Second, after all withdrawing investors have been served, the bank

may also liquidate more investment. Holding the proceeds as a safe asset offers insurance

against investment risk.

To analyze the withdrawal behavior of investors when the bank holds safe assets, we

use the methods of one-sided strategic complementarity proposed by Goldstein and Pauzner

(2005). When the bank insures patient investors against investment risk, fewer investors

withdraw prematurely. Thus, the probability of a bank run is overstated in Goldstein and

Pauzner (2005), and the ex-ante welfare of investors is understated. Figure 1 shows the

unique thresholds with and without safe asset holdings as the interim return varies.

2Positive safe asset holdings always occurs if the marginal utility at zero is sufficiently high. The Inada
conditions assumed in Diamond and Dybvig (1983) are an extreme assumption satisfying this requirement.

3In both Goldstein and Pauzner (2005) and our model, there is no role for holding safe assets at the
initial date since it is dominated by risky investment. At the interim date, however, it is optimal to hold
safe assets, through partial liquidation of investment.

4Gorton et al. (2012) argue that the safe asset share of total assets remained stable at about one third
since 1952. This is striking because economic conditions and regimes varied extensively in this long period.
Gorton et al. (2012) focus on the liabilities side of bank’s balance sheet, and consider banks as safe asset
producers. In contrast, we focus on the asset side of bank’s balance sheet and provide a rationale for bank
demand for safe assets produced outside of the banking sector. Banks demand safe assets produced outside
the banking sector to decrease financial fragility and increase stability.
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Figure 1: Withdrawal thresholds and the interim return with and without safe asset holdings.

Safe asset holdings also affect the optimal provision of liquidity. Revisiting the trade-off

between liquidity provision and bank fragility, we derive the optimal interim-rate promised

by a bank that holds safe assets. Numerical exercises and preliminary evaluation confirm

our intuition that the ex-post insurance against investment risk allows the bank to provide

more ex-ante insurance against liquidity risk. The rise in the optimal interim-rate with safe

assets bridges part of the gap between the first-best interim-rate of Diamond and Dybvig

(1983) and the one in Goldstein and Pauzner (2005). Figure 2 depicts the ex-ante expected

utility with and without insurance against investment risk as the interim rate varies. It also

shows that optimality with ex-post insurance against investment risk is achieved at a higher

interim return than without insurance, implying greater ex-ante liquidity risk-sharing.

Figure 2: Expected utility and the interim return with and without safe asset holdings.
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Besides showing the role of safe asset holdings in financial stability, we make some

technical contributions to the literature. Most importantly, we show that the equilibrium

threshold below which a run occurs is continuous in the noise. Continuity allows us to obtain

a unique limit that was not otherwise guaranteed: uniqueness for every positive noise does

not imply uniqueness with vanishing noise. Hence, we prove Goldstein and Pauzner (2005)’s

conjecture about the existence of such a unique limit with vanishing noise. Second, we

provide a condition for the lower dominance region to emerge naturally. Third, we provide

a strictly tighter bound on the promised interim return, above which an investor wishes to

withdraw prematurely, irrespective of the strategies of other investors. Fourth, we provide a

more extensive treatment than the proofs in Goldstein and Pauzner (2005). Some technical

issues do arise, it is shown that these do not affect the main results.5

This paper proceeds as follows. Section 2 describes the model. In section 3 we analyze a

competitive bank’s safe asset holdings. We study the impact of these holdings on the optimal

withdrawal threshold in section 4. Section 4.1 contains an important technical contribution

regarding the continuity of the withdrawal threshold. In section 4.2 we establish a link

between the withdrawal threshold and the promised return, which gives rise to a trade-off

between bank fragility and liquidity risk-sharing as in Goldstein and Pauzner (2005). Finally,

in section 5 we study how the withdrawal threshold, investor welfare and the bank’s provision

of liquidity are affected by safe asset holdings.

5For example, the fact that the probability is strictly increasing does not guarantee that the net incentive
integral is increasing in the fundamental. For small enough noise, this integral initially decreases as the
fundamental increases. We show that there exists a level of the fundamental above which it increases, as in
Goldstein and Pauzner (2005). Furthermore, we show that the utility differential increases in the number of
withdrawals, when the fundamental is in the upper dominance region. This result arises since the promised
interim return is less than the liquidation value. This fact contrasts with the case when the fundamental
is below the upper dominance threshold. Consequently, we show that there is a discontinuity in the utility
differential as the threshold approaches the upper dominance region. This complicates the one-sided strategic
complementarities argument.

4



2 Environment

We revisit the global games model of banking proposed by Goldstein and Pauzner (2005).

The economy extends over three dates t ∈ {0, 1, 2} and there is no discounting. A single good

is used for consumption and investment. There is a unit continuum of investors i ∈ [0, 1],

each endowed with one unit of the good at the initial date. As in Diamond and Dybvig

(1983), each investor privately learns his individual preference ωi ∈ {0, 1} at the interim

date. An impatient investor (ωi = 1) values interim-date consumption only. By contrast, a

patient investor (ωi = 0) is indifferent between interim-date and final-date consumption:

Ui(c1, c2) = ωi u(c1) + (1− ωi)u(c1 + c2) (1)

where ct is consumption at date t. The initial-date probability of facing idiosyncratic liquidity

risk, Pr{ωi = 1} ≡ λ ∈ (0, 1), is identical and independent across investors and equals the

economy-wide proportion of impatient investors at the interim date. The utility function

u(c) is twice continuously differentiable, strictly increasing, and strictly concave. The relative

risk aversion, −cu
′′(c)

u′(c)
, exceeds unity for c ≥ 1.6 We follow Goldstein and Pauzner (2005) in

imposing u(0) ≡ 0, which is without loss of generality if the utility at zero is bounded.

A constant-return-to-scale investment technology is publicly available at the initial

date. Departing from Diamond and Dybvig (1983), Goldstein and Pauzner (2005) introduce

investment risk, whereby the gross return on investment is R in the good state and zero in

the bad state. Let θ be the economy’s fundamental, which can be interpreted as a macro-

economic indicator. The good state occurs with probability p(θ), an arbitrary continuously

differentiable function that strictly increases in the fundamental, p′(θ) > 0. The investment

technology has a positive expected net present value, Eθ[p(θ)]R > 1. Investment can be

liquidated at par at the interim date. Storage is available at the interim date and yields a

6Diamond and Dybvig (1983) show that this assumption generates risk-sharing in the first-best allocation
without investment risk. In the Goldstein and Pauzner (2005) setting with investment risk, Elamin (2013)
provides a stronger condition for risk sharing to occur in the first-best allocation.
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unit gross return at the final date. Holding liquidity at t = 0 is dominated by investment.

There is incomplete information about the fundamental. At the interim date it is drawn

from a uniform distribution, θ ∼ U [0, 1], but not publicly observed. Each investor receives a

noisy private signal at the interim date:

θi ≡ θ + εi, (2)

where the idiosyncratic noise is independent of the fundamental and identically and inde-

pendently distributed across investors, εi ∼ U [−ε, ε], for some ε > 0.

At the initial date, a competitive bank offers a demand-deposit contract to maximize

the expected utility of its investors.7 Unlike in Goldstein and Pauzner (2005), where the

contract only specified a promised return at the interim date, the demand-deposit contract

we consider consists of two parts.

First, an investor who withdraws at the interim date is promised a fixed return 1 <

r1 <
R

1+λ(R−1) .
8 By pooling resources, the demand-deposit contract insures investors against

the idiosyncratic liquidity risk as in Diamond and Dybvig (1983) and Goldstein and Pauzner

(2005). Upon observing their private information, investors simultaneously decide whether

to withdraw from the bank or not. Let n ≥ λ denote the proportion of investors who

withdraw at the interim date. The bank can fulfill the promised interim-date return r1 only

if sufficiently few investors withdraw, n ≤ 1
r1

. When the bank is insolvent, n > 1
r1

, an investor

is paid r1 only with probability 1
nr1

(sequential service constraint).9

7Since the autarky allocation is feasible, the contract offered by the bank yields at least the same expected
utility to investors. Hence, investors always deposit their endowment with the bank at the initial date.

8The provided upper bound on r1 is more restrictive than that in Goldstein and Pauzner (2005). In
particular, R

1+λ(R−1) < min{ 1λ , R}, where the right-hand side is the bound in Goldstein and Pauzner (2005).

In more subgames than considered by Goldstein and Pauzner (2005) investors always withdraw from the
bank, irrespective of the fundamental. This upper bound also applies to Goldstein and Pauzner (2005),
where insurance against investment risk is absent. See also section 3.4.

9In Diamond and Dybvig (1983), the sequential service constraint prevents the interim-date payment r1
from depending on the withdrawal volume n. Likewise, the promised interim-date payment in Goldstein and
Pauzner (2005) is independent of withdrawals and any information about the realized fundamental θ. This
is identical to what we consider for the first part of the contract.

6



Second, an investor who does not withdraw at the interim date receives an equal share

of the bank’s final-date assets. These assets comprise the investment return and the storage

of additional interim-date liquidation (safe asset holdings). Although Goldstein and Pauzner

(2005) introduce risky investment into the setup of Diamond and Dybvig (1983), they do

not consider insurance against such investment risk. Our contract allows a solvent bank at

the interim date to liquidate an additional amount of the investment to insure the remaining

risk-averse investors against the risk of a low return. Investors who do not withdraw at the

interim date must be patient. The bank’s investment after withdrawals at the interim date

is 1− nr1 and it liquidates a per-capita amount 0 ≤ y(n, r1) ≤ 1−nr1
1−n for insurance purpose.

Working backwards, we start by finding the bank’s liquidation policy y∗(n, r1) at the

end of the interim date for any given withdrawal volume n and promised interim return r1.

Next, we move to the withdrawal decision of investors at the beginning of the interim date.

Using their private information, investors update their belief about the fundamental and

the proportion of withdrawing investors. Each investor withdraws if and only if the private

signal is sufficiently low, θi < θ∗(r1). Finally, we find the optimal interim-date return r∗1

promised by the bank at the initial date. Table 1 summarizes.

Initial date Interim date Final date

1. Banks offer demand- 1. Private information 1. Investment matures.
deposit contract. about investment.

2. Investors deposit 2. Investors may withdraw. 2. Remaining investors withdraw.
their endowment.

3. Bank liquidates investment 3. Late Consumption.
to hold safe assets.

4. Early Consumption.

Table 1: Timeline.
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Similar to Goldstein and Pauzner (2005), we make assumptions to establish dominance

regions in each withdrawal subgame. When investors are certain that the fundamental is

in any of these regions, they act without regard to the strategies or information of other

investors (Carlsson and van Damme (1993), Morris and Shin (2003)). That is, for high

values of the fundamental, the liquidation value increases from 1 to R and the investment

always succeeds. That is, there exists a θ ∈ (0, 1) such that p(θ) = 1 for all θ > θ and

the liquidation value is R.10 Except for this upper dominance region, the probability of the

good state strictly increases in the fundamental and the liquidation value is 1. We assume

θ̄ < 1−2ε, so this bound can be arbitrarily close to 1 as ε→ 0. Subsequently, we consider this

limit and the upper dominance region shrinks to a point. The improvement in the liquidation

value is crucial for establishing the upper dominance region (θ̄, 1]. If the fundamental is in

the upper dominance region, withdrawing does not pose a negative externality on those who

do not withdraw. Each unit liquidated at the interim date is worth R but only r1 < R is

paid out.11 The upper dominance region exists in all subgames by assumption.

To show that a lower dominance region exists, we assume that the lowest possible

fundamental leads to certain default, p(0) = 0. This natural assumption is sufficient for the

existence of a lower dominance region in all subgames.12

3 Insurance against investment risk

We start by analyzing the optimal insurance against the investment risk. If the bank is

insolvent, 1 − nr1 ≤ 0, each investor receives r1 with probability 1
nr1

, as implied by the se-

quential service constraint. No resources remain for non-withdrawing investors and insurance

is absent, y∗(n, r1) = 0. This result is unchanged from Goldstein and Pauzner (2005).

10Unlike the lower dominance region, this upper dominance region is assumed and is independent of r1.
11If the fundamental is in the upper dominance region, the incentive of an investor to withdraw actually

decreases in the proportion of withdrawing investors. Each investor who withdraws generates an extra
amount of resources R− r1, which can be distributed to non-withdrawing investors.

12We show that the lower dominance region has an endogenously generated non-zero bound which depends
on the interim return r1, as we explain in section 3.4.
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In contrast, if the bank is solvent, the amount 1−nr1 > 0 of investment is available for

non-withdrawing patient investors. Departing from Goldstein and Pauzner (2005), the bank

optimally chooses how much of this amount to liquidate, while keeping the remainder in-

vested. Let y(n, r1) denote the additional liquidation per capita. Optimal insurance against

investment risk maximizes the interim-date expected utility of non-withdrawing patient in-

vestors by shifting resources from the good state to the bad state. Hence, patient investors

consume R[1−nr1
1−n ]− (R− 1)y in the good state and y in the bad state.

What information is available to the bank when determining the optimal insurance

of the remaining patient investors against investment risk? We assume that the bank ob-

serves the realization of the fundamental at the interim date. This assumption might seem

innocuous, given that we consider vanishing noise. It is innocuous in the following sense:

the unique equilibrium under this assumption is still an equilibrium when the bank receives

a private signal, and forms a posterior on θ, given the signal and the realized n.13 Because

the bank’s information is more precise, we base the optimization problem on its information.

Therefore, the bank solves the following optimization problem at the end of the interim date:

y∗ ≡ arg max
y
p(θ)u

(
R[

1− nr1
1− n

]− (R− 1)y

)
+ (1−p(θ))u (y) s.t. 0 ≤ y ≤ 1− nr1

1− n
. (3)

All investment is liquidated, y∗ = 1−nr1
1−n , if the realized fundamental is sufficiently low,

p(θ)R ≤ 1. If the fundamental is high enough, p(θ)R > 1, it is optimal to keep some of the

resources invested, y∗ < 1−nr1
1−n . Provided that marginal utility at zero is sufficiently high,

which we assume throughout this paper, some insurance is always optimal, y∗ > 0.14 This

interior solution is determined by the first order condition:

13Each patient investor bases his withdrawal decision at the interim date on his private information θi of
the fundamental. This gives rise to the aggregate number of withdrawals n observed by the bank. The bank
uses the observed n and its signal, to form a posterior about the fundamental θ. Therefore, the insurance
would be based on a posterior, but for small εs that would be very close to what we have here.

14Elamin (2013) provides a more detailed analysis of optimal insurance when investors do not receive
private information about investment risk.
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u′(y∗)

u′
[
1−nr1
1−n R− y∗ (R− 1)

] =
p(R− 1)

1− p
(4)

We characterized the optimal insurance against investment risk in terms of n and θ.

The number of early withdrawals n is an equilibrium object that depends on the realized

fundamental θ through the investors’ equilibrium strategies. Nevertheless, we now solve for

the optimal expected utility in three auxiliary problems, where this dependence between n

and θ is broken. These will be useful in establishing subsequent results on existence of lower

dominance region and the one-sided strategic complementarity property. In section 3.1, we

fix the fundamental at an arbitrary level p(θ), and vary n. In section 3.2, we fix both n and

p(θ) and vary r1. And in section 3.3, we fix n at an arbitrary level where the bank is solvent

and vary the fundamental.

3.1 Interim-date expected utility and proportion of withdrawals

In this subsection, we fix the information of the bank at some level θ, so p(θ) is constant.

We derive the optimal expected utility of a non-withdrawing patient investor as a function

of n. As n increases, consumption decreases in both the good state and the bad state. The

logic of this result is explained in Elamin (2013): an increase in n decreases the resources

available for consumption by a patient investor. As a result, it will be optimal to decrease

both consumption levels.

Lemma 1 Fix θ < θ. If the bank is solvent, λ ≤ n ≤ 1
r1

, both the consumption in the good

state and the bad state decrease in n. Therefore, the expected utility decreases in n.

Proof: See Appendix A.1. �
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3.2 Interim-date expected utility and interim-date return

We now fix λ ≤ n ≤ 1
r1

(solvent bank) and θ. We show that the optimal expected utility of

a non-withdrawing investor decreases in r1, the interim-date return that insures investors at

the initial date against idiosyncratic liquidity risk. Just as in subsection 3.1, higher values

of r1 leave less resources for remaining patient investors. Therefore, the optimal expected

utility decreases in r1.

Lemma 2 For a solvent bank, λ ≤ n ≤ 1
r1

, fix both n and θ. The consumption level in

both the good and the bad state decrease in r1 and so does the optimal expected utility of

non-withdrawing patient investor.

Proof: See Appendix A.2. �

3.3 Interim-date expected utility and the fundamental

In this subsection, we fix λ ≤ n ≤ 1
r1

. We show that the optimal expected utility is

increasing and continuous in the fundamental θ if the fundamental takes an intermediate

value. In the higher and lower dominance regions, no extra liquidation or full liquidation

occurs, respectively. In both these cases, the optimal expected utility does not depend on

the fundamental. Let p−1 denote the inverse of p(θ) for all 0 ≤ θ ≤ θ. Over this domain,

p(.) is strictly increasing and thus invertible.

Lemma 3 If the bank is solvent, λ ≤ n ≤ 1
r1

, fix n independent of the fundamental θ. If

the fundamental takes an intermediate value, p−1
(
1
R

)
< θ < θ, the interim-date optimal

expected utility of a non-withdrawing patient investor is continuous and strictly increasing in

θ. Otherwise, the optimal expected utility is independent of the fundamental.

Proof: See Appendix A.3. �
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3.4 Lower Dominance Region

The upper dominance region exists and is independent of r1 by assumption. By contrast, the

lower dominance region naturally arises from the withdrawal subgame between investors and

thus depends on r1. Specifically, the range of the lower dominance region increases in the

interim return r1. Every r1 in the domain 1 < r1 <
R

1+λ(R−1) defines a withdrawal subgame.

The global games techniques we use require the existence of a nontrivial upper dominance

region and lower dominance region in each subgame defined by r1. In this subsection, we

focus on the sufficiency of the assumption p(0) = 0 for the existence of a lower dominance

regions across the entire domain of r1, and on the necessity of the upper bound R
1−λ(R−1) .

If r1 ≥ R
1+λ(R−1) , the lower dominance region is the whole domain of θ. First, when

r1 = R
1−λ(R−1) , we have u(1−λr1

1−λ R) = u(r1). Thus, ∀p(θ) < 1 and all n ≥ λ, each patient

investor has a dominant strategy to withdraw from the bank, so n = 1 holds independent

of θ. Second, when r1 >
R

1−λ(R−1) , we even have u(1−λr1
1−λ R) < u(r1). Thus, ∀p(θ) ≤ 1 and

all n ≥ λ, each patient investor has a dominant strategy to withdraw, and again n = 1

independent of θ. Both cases yield θ = 1. Hence, if we assume an upper dominance region,

there would not exist intermediate region, since these dominance regions collide at θ.

Next, we consider the interesting case of r1 <
R

1+λ(R−1) , so u(1−λr1
1−λ R) > u(r1). When

p(θ) = 1 and n = λ, each patient investor prefers to wait. Thus, we can show that a lower

dominance region exists with some bound θ < 1. The interval 1− θ > 0 allows us to assume

an upper dominance region on a portion of it, leaving space for an intermediate region.15

Lemma 4 If p(0) = 0 then there exists a non-trivial lower dominance region in every sub-

game defined by r1 ∈
(

1, R
1+λ(R−1)

)
.

Proof: See Appendix A.4. �

15The exactly same logic carries through in the setup Goldstein and Pauzner (2005). Hence, the bound
on r1 we provide should replace min{ 1λ , R} in their paper. Our bound is lower, R

1+λ(R−1) < min{ 1λ , R}.
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We next show that θ(r1) increases in r1.

Lemma 5 The bound that defines the lower dominance region, θ(r1), increases in r1. It

converges to 1 as r1 goes to the upper bound, R
1+λ(R−1) .

Proof: See Appendix A.5. �

4 Withdrawal behavior of investors

Having solved for the optimal insurance against investment risk, we now analyze the with-

drawal behavior of investors. At the interim date, each feasible interim return r1 defines a

subgame in which investors simultaneously decide whether to withdraw.

An investor’s decision is based on their type (patient or impatient) and their signal

of the fundamental. An impatient investor always withdraws at the interim date. The

incentive of a patient investor to withdraw depends on both the realized fundamental θ

and the proportion of withdrawals n. The signal provides a patient investor with relevant

information about the proportion of withdrawing patient investors, and the possible level

of fundamental. Following the notation of Goldstein and Pauzner (2005), let v(θ, n) denote

the utility differential between not withdrawing and withdrawing at the interim date. If the

fundamental is in the upper dominance region, θ ≥ θ, the utility differential is u(R−nr1
1−n ) −

u(r1) if n < 1 and u(R)− u(r1) if n = 1. If the fundamental is not in the upper dominance

region, the utility differential is:16

v(θ, n; r1) =

 (1− p(θ))u(y∗) + p(θ)u((1−nr1
1−n − y

∗)R + y∗)− u(r1) ifλ ≤ n ≤ 1
r1

− 1
nr1
u(r1) if 1

r1
≤ n ≤ 1

(5)

16If insurance against investment risk was absent, y∗ = 0, the utility differential collapses to the expression
in Goldstein and Pauzner (2005), which is p(θ)u( 1−nr1

1−n R)− u(r1) for a solvent bank.
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To establish one-sided strategic complementarity as in Goldstein and Pauzner (2005),

we show that the utility differential decreases in the proportion of early withdrawals when the

bank is solvent (λ ≤ n < 1
r1

). This is already shown in Lemma 1. At n = 1
r1

, the differential

becomes −u(r1) < 0. If the bank is insolvent n ≥ 1
r1

, then there is no change arising from

insurance against investment risk. The utility differential increases in early withdrawals n

but remains negative since −u(r1)
nr1

< 0 even for n = 1, as in Goldstein and Pauzner (2005).

Figure 4 shows how the utility differential is affected by insurance against investment risk.
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Figure 3: The utility differential with insurance against investment risk (blue, solid) and
without (red, dotted). For a solvent bank, n ∈ [λ, 1

r1
], insurance against investment risk

increases the interim-date expected utility of a patient investor, provided that θ < θ. In
contrast, for an insolvent bank, n ≥ 1

r1
, there is no role for such insurance.

Proposition 1, the analogue of Theorem 1 in Goldstein and Pauzner (2005), states that

the withdrawal subgame determined by an interim return r1 has a unique equilibrium, when

noise is presents. To prevent possible confusion, we highlight the distinction between an

equilibrium in the subgame, and an equilibrium of the overall game. An equilibrium of the

overall game comprises the optimal r1 chosen by the bank at the initial date and, in every

subgame determined by every possible r1, the optimal withdrawal behavior of investors at

the interim date, and optimal insurance in each subgame given the realized proportions of

early withdrawals and the realized fundamental. Having clarified that, we will abuse the

concepts from now on and refer to an equilibrium in the subgame as equilibrium.
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Proposition 1 Unique equilibrium in each withdrawal subgame. Given subse-

quent optimal insurance against investment risk, in every subgame determined by r1 ∈(
1, R

1+λ(R−1)

)
, there exists an upper bound on private noise ε(r1) > 0 such that a unique

Bayesian equilibrium exists for every 0 < ε < ε. This equilibrium is characterized by a

threshold θε(r1), below which a bank run occurs, θ < θε(r1).17

Proof: See Appendix A.6. �

The proof provided here simplifies, explains and extends the proof in Goldstein and

Pauzner (2005). We identify some issues and caveats that arise, and shows that these do

not affect the main result. The proof works in three steps. First, we show there is a

unique symmetric threshold candidate for an equilibrium. Therefore, there exists only one

θ that all patient investors can use as a threshold, where each investor is indifferent between

running and not when receiving this threshold as a signal. That is, the net incentive from

withdrawing, the integral ∆r1(θ
′
, n(., θ

′
)), is zero at exactly one θ

′
.18 Second, we show that

the candidate threshold of step 1 is actually an equilibrium. Assume that all investors except

investor i play threshold strategies at the θ
′

computed in step 1, i ′s unique best response is

to use a threshold strategy at that θ
′
. Third, we show that any equilibrium has to be the

threshold equilibrium identified.

4.1 Continuity of withdrawal threshold in noise

Uniqueness of the threshold θ∗(ε) at every positive ε > 0 does not imply convergence to a

unique limit as private noise vanishes. Indeed, it may converge to two or many limits. In this

subsection, we prove that it converges to a unique limit. The same result holds in Goldstein

and Pauzner (2005), and the proofs of that are very similar to those in our environment.

17The threshold θε(r1) depends on both ε and r1, while the upper bound on private noise ε(r1) depends
on the interim return r1. As r1 approaches 1, ε(r1) approaches zero.

18This rules out the existence of two symmetric threshold equilibria. It does not rule out that some mass
of investors may use one threshold and another mass uses another threshold.
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Note that θ∗(ε) is defined for every ε > 0 by Proposition 1. We show that it is

continuous for every ε > 0. Next, we show that, as ε→ 0, θ∗(ε) converges to a unique limit

that we define as θ∗(0).

Proposition 2 Continuity. The withdrawal threshold θ∗(ε) is continuous in ε for every

ε > 0.

Proof: See Appendix A.7. �

We show next that there is a unique limit which θ∗(ε) converges to with every sequence

going to zero. This limit will be defined as θ∗(0).

Proposition 3 There exists a unique limit of θ∗(εn) for every sequence {εn} with εn → 0.

Proof: See Appendix A.8. �

We have already shown that θ∗(ε) converges when ε → 0. By dominated convergence

theorem, the following explicit expression of θ∗(0) obtains and we call it θ∗ from now on.

Proposition 4 As private noise vanishes, the unique limit of the withdrawal threshold θ∗ is

defined by:

p(θ∗) =

u(r1)
r1

[1− λr1 + ln(r1)]−
∫ 1
r1
λ u(y∗)dn∫ 1

r1
λ u(

[
1−nr1
1−n − y∗

]
R + y∗)dn−

∫ 1
r1
λ u(y∗)dn

. (6)

Proof: See Appendix A.9. �

4.2 Liquidity risk sharing and bank fragility

As in Goldstein and Pauzner (2005), increased liquidity risk sharing has a destabilizing effect.

A higher interim return r1 allows for more risk sharing, but comes at the cost of an increased

16



probability of a bank run. We show that the threshold increases in the interim return r1.

Goldstein and Pauzner (2005)’s proof of this monotonicity theorem relies on operating

on the indifference equation at strictly positive noise, and then showing that the theorem

holds when ε is small. Therefore, they prove this result for small levels of private noise.

When the threshold is continuous with respect to noise, as we showed in the previous section,

operating as in Goldstein and Pauzner (2005) is equivalent to working directly with the limit

indifference condition (which we do here). We expand on this equivalence in Appendix B.

Proposition 5 Liquidity risk sharing and bank fragility. The withdrawal threshold

θ∗(r1) increases in the interim return r1.

Proof: See Appendix A.10. �

5 Comparison with Goldstein and Pauzner (2005)

In this section, we describe the effect of insurance against investment risk on the results

of Goldstein and Pauzner (2005). In section 5.1, we show that such insurance lowers the

probability of a run, and therefore that the costs of liquidity provision are overestimated in

Goldstein and Pauzner (2005). Risk-averse investors have less incentive to withdraw at the

interim date when insured against investment risk.

In section 5.2, we describe the effect of this insurance on ex-ante expected utility.

Insurance affects three contingencies that comprise the ex-ante expected utility: expected

utility when the bank fails (u(r1)
r1

), expected utility when the bank does not fail, but the

investor is impatient (λu(r1)), and when the investor is patient. Because insurance lowers

the run probability, less weight is put on the first contingency than the second, yielding

a lower expected utility in the combination of these two contingencies with insurance.19

19Note that u(r1)
r1

> λu(r1).
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θ∗ u(r1)
r1

+ (1− θ∗)λu(r1) < θ∗GP
u(r1)
r1

+ (1− θ∗GP )λu(r1). The third contingency, yields higher

expected utility because of the combined effect of the decrease in the run probability, and the

increase in expected utility from insurance. The increase in this third contingency dominates

the decrease in the convex combination of the first two, and we get that the ex-ante expected

utility of an investor increases in every subgame.

5.1 Insurance lowers the withdrawal threshold in each subgame

We start by identifying the subgames in which the bank provides so much liquidity (very

high r1) that a bank run always occurs (θ∗ = 1).20 First, there is no guarantee that the

withdrawal threshold θ∗ computed in Proposition 4 is below 1 for all r1. Indeed, we showed

in Lemma 5 that θ(r1) converges to 1 as r1 goes to the upper bound, R
1+λ(R−1) . Second,

when r1 is close to 1, the threshold satisfies θ∗ < 1. By Proposition 5, θ∗(r1) is increasing

in r1. At r1 = R
1+λ(R−1) , we already showed that θ = 1, therefore θ∗ = 1. Therefore, by the

intermediate value theorem, we have that there exists an r1 such that θ∗(r1) = 1 ∀r1 ≥ r1.

The next proposition shows that in every subgame defined by r1 < r1, the threshold

we compute with insurance against investment risk θ∗ is lower than θ∗GP , the threshold in

Goldstein and Pauzner (2005). Both thresholds are unity in subgames with r1 > r1. Note

that θ∗GP hits 1 before θ∗ does. Therefore, some subgames would have θ∗GP = 1, while

θ∗ < 1. This proposition shows that insurance against investment risk, or holding safe

assets, decreases the probability of a bank run, and therefore decreases financial fragility.

Proposition 6 Lower withdrawal threshold than Goldstein and Pauzner (2005).

Consider subgames in which the withdrawal threshold with insurance against investment risk

is below one, θ∗ < 1 for all r1 < r1. Then, the withdrawal threshold with insurance is lower

20It is important to note that the ex-ante optimal interim return r∗1 should be different than these.
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than the withdrawal threshold without insurance:

θ∗ < θ∗GP . (7)

Proof: See Appendix A.11. �

For convenience, we include the formulas for these thresholds here:

p(θ∗) =

u(r1)
r1

(1− λr1 + ln(r1))−
∫ 1
r1
λ u(y∗)dn∫ 1

r1
λ u((1−nr1

1−n − y∗)R + y∗)dn−
∫ 1
r1
λ u(y∗)dn

, p(θ∗GP ) =

u(r1)
r1

(1− λr1 + ln(r1))∫ 1
r1
n=λ u(1−nr1

1−n R)dn
.

The intuition for this result is clear. Fix a subgame given by r1 and consider each pro-

portion of early withdrawals n. The total amount of resources available to patient investors

is the same, irrespective of insurance against investment risk. However, the given amount of

resources are used more efficiently from the perspective of a patient investor, when insurance

is present. That is, the expected utility with insurance is strictly higher than the expected

insurance without such insurance (GP). Note that the expected utility of withdrawing is fixed

at u(r1)
r1

(1−λr1+ ln(r1)) in both cases, but the expected utility of a patient investor who does

not withdraw decreases in the threshold θ∗. Therefore, the marginal patient investor who is

indifferent between withdrawing and waiting must have received a lower private signal under

insurance than without insurance.

5.2 Insurance Raises the Ex-ante Expected Utility

The optimal insurance against investment risk and the optimal threshold equilibrium in

each subgame determine an ex-ante expected utility for any given interim rate (r1). In this

subsection, we write the expected utility as a function of r1, after the upper dominance region

shrinks to a point (θ → 1), and private noise vanishes (ε→ 0). In each subgame determined

by the interim rate r1, the ex-ante expected utility with insurance against investment risk is
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higher than without insurance.

We start with the case of no insurance. The ex-ante expected utility in Goldstein and

Pauzner (2005) for any given r1 is:

lim
θ→1,ε→0

EUGP (r1) =

∫ θ∗GP (r1)

0

1

r1
u(r1)dθ +

∫ 1

θ∗GP (r1)

λu(r1) + (1− λ)p(θ)u(
1− λr1
1− λ

R)dθ

=
u(r1)

r1
θ∗GP + λ(1− θ∗GP )u(r1) + (1− λ)u(

1− λr1
1− λ

R)

∫ 1

θ∗GP

p(θ)dθ (8)

With insurance against investment risk, the ex-ante expected utility for a given r1 is:

lim
θ→1,ε→0

EU(r1) =
u(r1)

r1
θ∗+λ(1−θ∗)u(r1)+(1−λ)

∫ 1

θ∗
p(θ)u(

1− λr1
1− λ

R−(R−1)y∗)+(1−p(θ))u(y∗)dθ,

(9)

where y∗ = y∗(r1, λ, p(θ)) and therefore y∗ depends on the realized θ whenever θ ≥ θ∗. This

complicates the integrated expression, because unlike in Equation 8, the utility itself depends

on the realized fundamental through the insurance.

The next proposition shows that insurance against investment risk raises the initial-

date expected utility of investors for each interim rate r1.

Proposition 7 At any fixed interim rate ∀ r1 < r1, the expected utility with insurance

against investment risk is greater than that without such insurance:

EU(r1) > EUGP (r1). (10)

Proof: See Appendix A.12. �
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6 Conclusion

We study the optimal demand-deposit contract subject to sequential service in the bank-run

model of Goldstein and Pauzner (2005). We show that competitive banks hold safe assets

in order to insure risk-averse investors against investment risk. As a result, fewer investors

withdraw prematurely, which reduces the probability of a bank run and increases investor

welfare. Furthermore, safe asset holdings may also allow banks to provide more liquidity.
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A Appendix: Proofs

A.1 Proof of Lemma 1

Proof: This is an application of Lemma 3 in Elamin (2013).

Case 1: We start by considering the corner solutions. If p(θ)R ≤ 1, then full liquida-

tion occurs, so y = 1−nr1
1−n and y′ = 1−n′r1

1−n′ . Thus n′ > n implies y′ < y. Since the respective

expected utility in case of full liquidation equals u(y) and u(y′), it decreases in n.

Case 2: If p(θ)R > 1 but θ < θ, we get an interior solution. Let n′ > n, y′ > 0 and

y > 0 be the optimal insurance that solve the respective optimization problems in 3. The

first order condition of the problems give:

u′(y)

u′
[
1−nr1
1−n R− y (R− 1)

] =
p(R− 1)

1− p
=

u′(y′)

u′
[
1−n′r1
1−n′ R− y′ (R− 1)

] (11)

First, assume y′ = y. Thus 1−nr1
1−n = 1−n′r1

1−n′ by strict concavity, resulting in n = n′.

Contradiction.

Second, assume y′ > y. Then, by strict concavity, we have u′(y′) < u′(y). Thus, for

equation 11 to hold, we require:u′
[
1−n′r1
1−n′ R− y

′ (R− 1)
]
< u′

[
1−nr1
1−n R− y (R− 1)

]
. There-

fore, again by strict concavity, 1−n′r1
1−n′ R−y

′ (R− 1) > 1−nr1
1−n R−y (R− 1) and (y−y′) (R−1)

R
>

1−nr1
1−n −

1−n′r1
1−n′ . Since y − y′ < 0, 1−n′r1

1−n′ > 1−nr1
1−n , which implies n′ < n. Contradiction. This

shows that y′ < y and the consumption level in the bad state decreases in n.

y′ < y implies u′(y′) > u′(y). Equation 11 implies that: u′
[
1−n′r1
1−n′ R− y

′ (R− 1)
]
>

u′
[
1−nr1
1−n R− y (R− 1)

]
. Therefore, 1−n′r1

1−n′ R − y
′ (R− 1) < 1−nr1

1−n R − y (R− 1) and the con-

sumption level in the good state also decreases in n. Since the consumption in both states

decrease in n, so does the expected utility of a non-withdrawing investor at the interim date.

�
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A.2 Proof of Lemma 2

Proof: This is another application of Lemma 3 in Elamin (2013). Cases 1 and 2 deal with

corner solutions.

Case 1: If θ ≥ θ, then p(θ) = 1 and the investment is riskless. All resources remain

invested and there is no need for insurance, y∗ = 0. The expected utility at the interim date

is u(R−nr1
1−n ), which decreases in r1.

Case 2: If p(θ)R ≤ 1, the expected return on investment is below the liquidation

value, so full liquidation occurs. The expected utility at the interim date becomes u(1−nr1
1−n ),

which also decreases in r1.

Case 3: We focus next on an interior solution, which occurs if p(θ)R > 1 but θ < θ.

Let r′1 > r1, and let y′ and y solve the respective maximization problems. The first-order

conditions of these problems give:

u′(y)

u′
[
1−nr1
1−n R− y (R− 1)

] =
p(R− 1)

1− p
=

u′(y′)

u′
[
1−nr′1
1−n R− y′ (R− 1)

] (12)

First, assume y′ = y. This implies 1−nr1
1−n =

1−nr′1
1−n by strict inequality and thus r1 = r′1.

Contradiction.

Second, assume y′ > y. Then, by strict concavity: u′(y′) < u′(y). Steps very similar to

Lemma 1 lead to the required contradiction.

Therefore, the consumption levels in both states decrease in r1, and so does the interim-

date expected utility of the non-withdrawing patient investor. �
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A.3 Proof of Lemma 3

Proof: Case 1: Corner solutions. If p(θ)R ≤ 1, full liquidation occurs and the optimal

interim-date expected utility becomes u(1−nr1
1−n ). In this case, the expected utility does not

depend on the fundamental. Likewise, if θ ≥ θ, there is no need for insurance, y∗ = 0. The

expected utility at the interim date is u(R−nr1
1−n ), which is independent of the fundamental.

Case 2: We now focus on the (more relevant) range of fundamentals that yield an

interior solution, p(θ)R > 1 but θ < θ. The continuity of y∗ in θ follows from continuity

of marginal utility, u′(.), and the continuity of p(.). Thus, the continuity of the optimal

expected utility in θ follows.

To prove that the optimal expected utility increases in the fundamental, let p′ > p as

a short hand for θ′ > θ. Moreover, let the optimal insurance level against investment risk

be y′ and y, corresponding to p′ and p. By optimality of y′ and strict concavity of utility

function:

p′u

[
1− nr1
1− n

R− y′(R− 1)

]
+ (1− p′)u(y′) > p′u

[
1− nr1
1− n

R− y(R− 1)

]
+ (1− p′)u(y).

We also have y < 1−nr1
1−n from the interior solution of this case (see also the constraint

of Problem 3). Therefore, u
[
1−nr1
1−n R− y (R− 1)

]
> u (y). Since p′ > p, we have:

p′u

[
1− nr1
1− n

R− y(R− 1)

]
+ (1− p′)u(y) > pu

[
1− nr1
1− n

R− y(R− 1)

]
+ (1− p)u(y).

Combining both of these inequalities proves strict monotonicity. �
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A.4 Proof of Lemma 4

Proof: Consider a fixed r1 ∈ (1, R
1+λ(R−1)). If the bank is insolvent, withdrawing from the

bank at the interim date yields u(r1)
nr1

in expected utility terms, while waiting yields u(0) = 0.

Therefore, a patient investor always prefers to withdraw. When the bank is solvent, to use

the intermediate value theorem, we show that the expected utility differential is negative

at θ = 0 and positive on the upper dominance region. Fix n = λ for now. At θ = 0, the

investment fails for sure by assumption of p(0) = 0. Therefore, all investment is liquidated,

y∗ = 1−λr1
1−λ . Thus, a non-withdrawing patient investor’s expected utility at the interim date

is: u(1−λr1
1−λ ), which is strictly below u(r1) because r1 > 1, the lower bound on r1. When θ ≥ θ,

the investment is guaranteed to succeed, p(θ) = 1. Optimal insurance against investment

risk is zero, y∗ = 0, and all resources remain invested. The interim-date expected utility

becomes u(1−λr1
1−λ R), which is strictly above u(r1), because r1 <

R
1+λ(R−1) , the upper bound

on r1.

For each r1, by the continuity of expected utility in θ at n = λ (Lemma 3) and the

intermediate value theorem, there exists a cut-off θ(r1) defined by:

p(θ(r1))u

[
1− λr1
1− λ

R− y∗ (R− 1)

]
+ (1− p(θ(r1)))u (y∗) = u(r1). (13)

Since the expected utility increases in θ when n = λ by Lemma 3, we have for any θ < θ(r1)

that p(θ)u
[
1−λr1
1−λ R− y

∗(R− 1)
]

+ (1− p(θ))u(y∗) < u(r1).

Because the optimal expected utility at the interim date decreases in n at every θ < θ,

Lemma 1 shows that for all n > λ, the patient investor still has a dominant strategy to

withdraw at the interim date. This establishes a lower dominance region for every r1 in the

domain and concludes our proof. �
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A.5 Proof of Lemma 5

Proof: Let r′1 > r1, y
′ and y solve the respective maximization problems with the associated

bound θ′ and θ. We have that: p(θ)u
[
1−λr1
1−λ R− y (R− 1)

]
+ (1− p(θ))u (y) = u (r1).

When r1 increases to r′1, the expected utility evaluated at p(θ) decreases by Lemma 2.

But to raise the expected utility to u(r′1) > u(r1), Lemma 3 shows that we need to increase

θ. This establishes strict monotonicity of θ(r1) in r1. The discussion at the beginning of the

section shows that θ = 1 when r1 = R
1+λ(R−1) . This concludes our short proof. �

A.6 Proof of Proposition 1

A threshold strategy for investor i is a mapping from possible interim-date returns r1 to

a threshold signal: θ
′
i : <+ → [0, 1] s.t. i runs when his signal is below the threshold

(θi < θ
′
i) and does not run when it is above (θi ≥ θ

′
i). We assume that the strategy is doubly

measurable in i and r1.

The first step assumes we are looking for a symmetric threshold equilibrium. By

showing a potential candidate at a unique θ
′
, we rule out the possibility of two symmetric

threshold equilibria θ
′
1(r1) and θ

′
2(r1). Assume all investors except i use the same threshold

θ
′
(r1). By the law of large numbers, i ′s belief n(θ, θ

′
(r1)) about the proportion of investors

who run at the true fundamental θ is degenerate21 and defined by:

n(θ, θ
′
(r1)) =


1 ifθ ≤ θ

′
(r1)− ε

λ+ (1− λ)(1
2

+ θ
′
(r1)−θ
2ε

) ifθ
′
(r1)− ε ≤ θ ≤ θ

′
(r1) + ε

λ ifθ ≥ θ
′
(r1) + ε

i ’s utility differential at the interim date becomes:

21This assumption is morally correct, but technically wrong. We follow the literature in assuming it.
The analysis of continuum of random variables have well known and widely discussed problems, which we
abstract from here, and refer the reader to the literature discussing it. See Judd (1985)and Al-Najjar (1995)
and the references therein, for identification of the problem and a possible solution.
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v(θ, n; r1) =

 (1− p(θ))u(y∗) + p(θ)u((1−nr1
1−n − y

∗)R + y∗)− u(r1) ifλ ≤ n ≤ 1
r1

− 1
nr1
u(r1) if 1

r1
≤ n ≤ 1

Combining these two definitions, let v(θ) = v(θ, n(θ, θ
′
)). This is i’s utility difference

at the true fundamental θ, when all investors beside i use a threshold strategy at θ
′
. i

does not observe the true fundamental θ however, only a signal θi. His posterior of θ at

signal θi is uniform over the interval [θi − ε, θi + ε]. Therefore, i ’s incentive at signal θi

is: ∆r1(θi, n(., θ
′
)) = 1

2ε

∫ θi+ε
θi−ε v(θ)dθ. We will show that i’s integral of net incentives when

he receives the threshold θ
′

as a signal: ∆r1(θ
′
, n(., θ

′
)) intersects zero at exactly one point

θ
′

= θ∗, is negative below it and positive above it, and therefore provide a unique potential

threshold that could serve as a symmetric equilibrium.22

To analyze the integral, we first plot the function v(θ) and focus on when the threshold

θ
′

is far from the upper dominance region (θ
′
+ ε ≤ θ). v(θ) achieves its minimum value

at fundamental θ̂ ∈ (θ
′ − ε, θ

′
+ ε), where the proportion of investors running is equal to

1
r1

.23 On the interval [θ
′ − ε, θ̂], v(θ) = −u(r1)

nr1
. As θ increases from θ

′ − ε to θ̂, n decreases

from 1 to 1
r1

and v(θ) decreases to its minimum value −u(r1). On the interval [θ̂, θ
′
+ ε],

v(θ) = (1− p(θ))u(y∗) + p(θ)u((1−nr1
1−n − y

∗)R+ y∗)−u(r1). As θ increases from θ̂ to θ
′
+ ε, n

decreases from 1
r1

to λ and by Lemma 3, v(θ) increases in θ. At the upper dominance region,

v(θ) is discontinuous because the liquidation value discontinuously increases from 1 to R at

θ. Because of continuity of p() and because p(θ) = 1, v(θ) approaches u(1−λr1
1−λ R)− u(r1) as

θ approaches θ. But v(θ) = u(R−λr1
1−λ R) − u(r1) ∀θ ≥ θ. The following picture codes what

has been discussed here.24

We now analyze what happens as the threshold θ
′
increases, but is still below the upper

dominance region. Evaluating n(θ̂, θ
′
) = 1

r1
leads to θ

′ − θ̂ = ( 1
r1
− 1+λ

2
) 2ε
1−λ . Therefore, the

22This only establishes a possible candidate. To show the candidate is an equilibrium, we have to show
monotonicity of ∆r1(θi, n(., θ

′
)) as a function of the signal θi.

23 For λ < n(θ, θ
′
(r1)) < 1, n(., θ

′
(r1)) has an inverse function since it is linearly decreasing over that

segment. Therefore, let θ̂ = θ : n(θ, θ
′
(r1)) = 1

r1
. By the intermediate value theorem θ̂ exists, and θ

′ − ε <
θ̂ < θ

′
+ ε.

24Although by assumption the upper dominance region is greater than 2ε, for expositional purposes, it is
drawn as smaller than the interval [θ

′ − ε, θ′
+ ε].
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Figure 4: The utility differential when the threshold is away from the upper dominance
region (θ

′
+ ε ≤ θ).

interval [θ
′ − ε, θ̂] stays constant in length, does not shrink or expand, as the threshold θ

′

changes. On the interval [θ
′ − ε, θ̂], v(θ) = −u(r1)

nr1
, which is independent of θ

′
. Therefore, the

function v(θ) and the integral
∫ θ̂
θ′−ε v(θ)dθ are constant when the threshold θ

′
changes. The

change happens on the interval [θ̂, θ
′
+ ε]. As the threshold θ

′
is raised, the function v(θ) is

evaluated at a translation to the right of the interval [θ̂, θ
′
+ ε], therefore again by Lemma 3,

the function v(θ) increases. This information is coded in the following picture, which plots

v(θ) at two different thresholds. The function v(θ) on interval [θ̂, θ
′
+ ε], is drawn in blue

at the higher threshold. It is clear that
∫ θ′+ε
θ̂

v(θ)dθ increases in the threshold θ
′
, when this

threshold is sufficiently far from the upper dominance region.

We now focus on the case when the threshold is closer to the upper dominance region

(θ
′
+ ε > θ). An investor, sure that the fundamental θ is in the upper dominance region, has

a dominant strategy not to run. Investors with signals θi ≥ θ + ε, do not run. Therefore,

θ
′ ≤ θ+ ε. If not, then when true fundamental is at θ

′
, investors with signals θ+ ε ≤ θi ≤ θ

′
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Figure 5: The utility differential with two thresholds (θ̂2 > θ̂1). Differences highlighted in
blue in the graph with the higher threshold.

are expected to run, when they are sure they are in the upper dominance region. Therefore,

irrespective of where the threshold θ
′

is, v(θ) is constant at u(R−λr1
1−λ R)− u(r1) for θ ≥ θ+ ε.

On the interval [θ
′−ε, θ), the graph of v(θ) is similar to when the threshold was far from

the upper dominance region. A minor difference from before concerns θ̂. If θ̂ < θ, then v(θ)

decreases first, achieves its minimum at θ̂, then increases and exhibits a point of discontinuity

at θ. When θ̂ ≥ θ however, v(θ) decreases and approaches an infimum value at θ but never

achieves it. It still exhibits the point of discontinuity at θ. At θ ≥ θ, v(θ) has a peculiar

feature. When the threshold was far from the upper dominance region, v(θ) was constant

at u(R−λr1
1−λ R)− u(r1) for θ ≥ θ. But now, for θ ∈ [θ, θ

′
+ ε], v(θ) = u(R−nr1

1−n R)− u(r1) > 0.25

Unlike in regions below the upper dominance region, u(R−nr1
1−n R)−u(r1) is actually increasing

in n. We experience a reversal in the incentives, more investors running is good news. Since

there is no default in this region, an increase in θ mainly means an increase in the proportion

25This expression is positive, since R−nr1
1−n is increasing in n (r1 < R), R > 1, and R−λr1

1−λ > r1.
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of running investors (n). Therefore, on the domain θ ∈ [θ, θ
′
+ ε], v(θ) decreases in θ but

remains positive, until it becomes constant at u(R−λr1
1−λ R)− u(r1), when θ is above θ

′
+ ε. It

is useful to keep in mind that u(R−λr1
1−λ R) − u(r1) is still greater than the greatest expected

utility that could be achieved on the domain below θ. This will be useful when we show

the integral still increases later on. To minimize the clutter on the graph, Figure 6 plots

v(θ) assuming that θ
′

= θ, and θ̂ > θ. It is easy to see how the graph would be different

when θ̂ < θ. We note here that this analysis is crucial for understanding what happens in

some of the subgames when r1 is high enough. We will prove later that the threshold θ∗(r1)

is increasing in r1, we know it is definitely 1 when it is close to its upper bound R
1−λ(R−1) .

Therefore, the analysis here is crucial for understanding the resulting behavior in some of

the subgames even when noise vanishes and the upper dominance region shrinks to a point.
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Figure 6: Utility differential when the threshold θ
′
= θ.

What happens to the graph as the threshold θ
′

increases? When θ
′
+ ε = θ, the figure

would be very close to the one we drew in Figure 4. As θ
′

increases, the resulting figure

would resemble Figure 4 on the domain below θ, and Figure 6 on the domain above θ. As

θ
′

increases, the interval [θ
′ − ε, θ] shrinks. The integral increases because higher values of
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v(θ), values when θ is above θ, are included in the integral instead of lower values, values

when θ < θ. At the point when θ
′ − ε = θ, the negative portion of v(θ) disappears from the

integral. The lower domain of integration starts to slide off the decreasing part of the graph

above θ. As θ
′

increases, we are dropping off higher values of v(θ) (the part that declines

in θ) and adding lower values (the constant portion over θ
′
+ ε). At this point, the integral

decreases. However, by then all values of v(θ) are positive and the integral stays positive.

The crucial aspect here is that the decreasing portion of the integral does not cross zero,

since u(R−λr1
1−λ R)− u(r1) > 0.

Having understood the v(θ) function and how it changes with the threshold, we are

ready to tackle how ∆r1(θ
′
, n(., θ

′
)) behaves. To show existence and uniqueness of a potential

threshold, we will first show that ∆r1(θ
′
, n(., θ

′
)) is continuous in θ

′
. It starts negative when

θ
′

is close to 0, increases until it is positive, and then decreases while remaining positive.

The intermediate value theorem then proves our claim.

Lemma 6 ∆r1(θ
′
, n(., θ

′
)) is cont in θ

′
.

Proof: The integrand is bounded making the continuity of the integral straightforward.

Because the discontinuity in v(θ) is a simple discontinuity, it has no effect on the continuity

of the integral. �

Lemma 7 ∃ ε s.t. ∆r1(θ
′
, n(., θ

′
)) increases in θ

′
then decreases. It is positive when it starts

decreasing and remains positive after the decrease.

Proof: The graphical description of the v(θ) function and how it changes with the threshold

constitutes most of the proof. We only provide here a lower bound on the decreasing portion

of the integral and show that it is bounded away from zero. Once the integral starts to decline,

this means that as the threshold θ
′

is increasing, portions of v(θ) = u(R−nr1
1−n R) − u(r1) are

replaced by v(θ) = u(R−λr1
1−λ R)−u(r1). Remember that v(θ) = u(R−nr1

1−n R)−u(r1) is increasing
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with n and therefore decreasing in θ. Therefore, the decreasing portion of the integral is

bounded below by 2ε(u(R−λr1
1−λ R)− u(r1)) > 0. �

That the integral is positive on the higher part of the upper dominance region when ε

is small enough is clear by the positive lower bound on the decreasing portion we showed in

the proof before. Similarly in the lower dominance region, fix r1 > 1, we have that θ(r1) > 0.

Therefore, ∃ ε(r1) > 0 small enough, such that θ(r1)− 3ε(r1) > 0. When θ
′
< θ(r1)− ε(r1)

v(θ) < 0 ∀θ ∈ [θ
′ − ε, θ′ + ε), therefore ∆r1(θ

′
, n(., θ

′
)) < 0. Note that this still holds for any

ε ≤ ε(r1). We have established by the intermediate value theorem, the unique state θ∗ where

∆r1(θ∗, n(., θ∗)) = 0.

In step 2, we look at how ∆r1(θi, n(., θ∗)) varies as θi the signal that i receives increases.

We know it is zero at θi = θ∗. We show it is negative for all θ < θ∗, and positive for all

θ > θ∗, thereby showing a threshold best response by investor i at θ∗, when all investors use

a threshold strategy at θ∗. We also show continuity and use intermediate value theorem to

wrap up step 2 of the proof.

Lemma 8 Function ∆r1(θi, n(., θ∗(r1))) is continuous in θi.

Proof: v(θ) is bounded and only has simple discontinuities, therefore the integral is con-

tinuous. �

Lemma 9 ∃ ε s.t. the function ∆r1(θi, n(., θ∗(r1))) starts negative and decreasing in θi and

then bottoms out and increases till it is positive, and remains positive after that.

Proof: The integral ∆r1(θi, n(., θ∗(r1))) starts constant at −2εu(r1)
r1

when θi < θ
′ − 2ε. It

decreases on the downward sliding chunk of v(θ). A bit of thinking shows that it bottoms out

at the θ that achieves the following infimum: inf{θi : v(θi−ε) < v(θi+ε)}.26 After that point,

26if this is not achieved because θ
′

is close to the upper dominance region, the same logic carries through.
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as θi increases, the integral substitutes values of v(θ+ ε) which are higher than the v(θi− ε)

that get dropped out of the integral. Therefore, the integral increases. Straightforwardly,

the integral is positive when θi > θ̄+ ε. If θ
′

is close to the upper dominance region, there is

a decreasing part of the integral once it is positive, but it remains positive after the decrease.

�

We now focus on step 3. We consider the finitely many thresholds case first, and then

a special case of the proof for the general case. We refer the reader to Goldstein and Pauzner

(2005) for an expansion on the general case. Rank the finite thresholds, pick the highest two

and apply the following procedure. Call these two thresholds: (θ∗1 and θ∗2). Now note that

at each θ in the interval (θ∗1, θ
∗
2), some investors are supposed to run at that θ and some are

not. This can only happen when ∆r1(θ, n(.)) = 0. Therefore, the integral is constant at zero

for fundamentals in [θ∗1, θ
∗
2]. Now consider the point θ∗2 + ε, ∃ an interval [θ∗2 + ε− η, θ∗2 + ε]

over which v(θ, n) > 0. If not, how can the integral be positive? We will show that the

integral can not be zero at both θ and θ − η. Note that because of threshold strategies,

n(θ) ≤ n(θ − η). As we move from θ to θ − η, we drop off these positive values from the

integral and add values of v(θ, n) that has possibly lower n, and definitely lower θs. If the

values we are adding are negative, which definitely encompasses the situation when n > 1
r1

,

then since the values we dropped are positive the integral has got to decline. If the values

we are adding are positive, then we are definitely in the portion of λ ≤ n ≤ 1
r1

and on this

portion v(θ, n) increases in θ, so again we are dropping higher and adding lower values to

the integral, and the integral declines. In both cases, the integral can not be constant at

zero. This wraps up the finite threshold case.

For the general case, we assume all the measurability restrictions on the strategies that

would get us a measurable n(.) function and an integrable v(.) function. Now the integral of

net incentives at signal θi has the usual definition: ∆r1(θi, n(.))) = 1
2ε

∫ θi+ε
θi−ε v(θ)dθ. Moreover,

because v(θ) is bounded, the integral is continuous.

Let θB = sup{θi : ∆r1(θi, n(.))) ≤ 0}. By continuity, ∆r1(θB, n(.))) = 0. If we are not
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in a threshold equilibrium, there are signals below θB at which ∆r1(θi, n(.))) ≥ 0. LetθA be

their supremum. θA = sup{θi < θB : ∆r1(θi, n(.))) ≥ 0}. By continuity, ∆r1(θA, n(.))) = 0.

We focus here only on the case where the distance between θA and θB is greater than 2ε. Let

the range (θB − ε, θB + ε) be called dB and similarly (θA− ε, θA + ε) be called dA. Because of

the threshold nature of θB and θA, as θ declines from θB to θA, n(.) can not decrease. So both

θ and n(.) decrease, and therefore v(θ) can only decrease. Assuming ∆r1(θB, n(.))) = 0, then

∆r1(θA, n(.))) 6= 0. Figure 7 illustrates the points discussed. This contradiction concludes

the proof.

θB + ε

r
θB

r∆ = 0

θB − ε
r

θA + ε

r
θA

r∆ = 0

θA − ε
r ∆ < 0 ∆ > 0

Figure 7: θA and θB are the thresholds at which ∆ = 0. Distance betwen them is more than
2ε.

A.7 Proof of Proposition 2

The first lemma establishes that the optimal insurance does not depend directly on the noise

ε, but only indirectly through n and θ.

Lemma 10 For a given n, y∗ depends on ε through θ.

Proof: First assume ε1 6= ε2. At the same n and θ, both problems have the same first

order condition 4. Therefore by strict concavity, y∗(n, θ, ε1) = y∗(n, θ, ε2). And y∗ does not

depend directly on ε.

Now we show the dependence through θ(ε). When θ(ε1) 6= θ(ε2) and at the same n,

the first order condition 4, shows that:

u′(y∗(ε1))

u′[ 1−nr11−n R−y∗(ε1)(R−1)]
= p(θ(ε1))(R−1)

1−p(θ(ε1)) .
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Therefore by strict concavity, y∗(n, θ(ε1)) 6= y∗(n, θ(ε2)). �

The next lemma determines the relationship between θ∗(ε1) and θ∗(ε2) for different εs.

Lemma 11 ∀ ε1 6= ε2 > 0, the following equation holds:

∫ 1
r1
λ p[θ∗(ε1) + ε1(1− 2n−λ

1−λ )]u((1−nr1
1−n − y

∗)R + y∗) + p[θ∗(ε1) + ε1(1− 2n−λ
1−λ )]

]
u(y∗)dn =∫ 1

r1
λ p[θ∗(ε2) + ε2(1− 2n−λ

1−λ )]u((1−nr1
1−n − y

∗)R + y∗) + p[θ∗(ε2) + ε2(1− 2n−λ
1−λ )]u(y∗)dn

(14)

Proof: At any ε, an investor with signal θ∗(ε) is indifferent between running and not

running. The following definition will be useful. Define θ̂ as the θ at which n(θ, θ∗(r1)) = 1
r1

.

We know that θ̂ ∈ (θ∗ − ε, θ∗ + ε).

Expected utility of not running when the investor receives the threshold as a signal:

1
2ε

∫ θ∗+ε
θ̂

p(θ)u((1−nr1
1−n − y

∗)R + y∗) + (1− p(θ))u(y∗)dθ

Expected utility of running:
∫ θ̂
θ∗−ε

u(r1)
nr1

1
2ε
dθ +

∫ θ∗+ε
θ̂

u(r1)
1
2ε
dθ

So we have that:

1

2ε

∫ θ∗+ε

θ̂

p(θ)u((
1− nr1
1− n

−y∗)R+y∗)+(1−p(θ))u(y∗)dθ =

∫ θ̂

θ∗−ε

u(r1)

nr1

1

2ε
dθ+

∫ θ∗+ε

θ̂

u(r1)
1

2ε
dθ

(15)

We use the fact that n = λ+ (1− λ)(1
2

+ θ∗−θ
2ε

) to change the integration variables:

dθ = − 2ε
1−λdn, also using Lemma 10, we get:∫ 1

r1
λ p(θ∗+ε(1−2n−λ

1−λ ))u((1−nr1
1−n −y

∗)R+y∗)+(1−p(θ∗+ε(1−2n−λ
1−λ )))u(y∗)dn =

∫ 1
1
r1

u(r1)
r1n

dn+∫ 1
r1
λ u(r1)dn
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Therefore we have the following equation:

∫ 1
r1
λ p(θ∗ + ε(1− 2n−λ

1−λ ))u((1−nr1
1−n − y

∗)R + y∗) + (1− p(θ∗ + ε(1− 2n−λ
1−λ )))u(y∗)dn

=
∫ 1
r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn
(16)

Note that the right hand side of the equation is independent of ε. Plugging in ε1 and ε2,

transitivity gives us Equation 14. �

Contrapositive. Assume ∃x > 0 at which θ∗(ε) is not continuous. Then ∃{εn} a

sequence with εn > 0 s.t. εn → x but θ∗(εn) 9 θ∗(x).

θ∗(εn) ∈ [0, 1] so it has a convergent subsequence with limit θ 6= θ∗(x). Let |θ−θ∗(x)| =

η. There exists n̄ s.t. ∀n > n̄, |εn − x| < δ but |θ∗(εn)− θ∗(x)| > η
2
.

Assume θ > θ∗(x) (similar argument holds for θ < θ∗(x)), then θ(εn) − θ∗(x) > 0

∀n > n̄. But then by choosing εn close enough to x, ∃ n̄ (we abuse notation here) s.t.

∀n > n̄, θ(εn)− θ(x)− (1− 2n−λ
1−λ )(εn− x) > η

4
for all run proportions λ ≤ n ≤ 1

r1
. Note that

the n inside the equation denotes run proportion while the n in εn is for counting.

By using Lemma 3, we show that the expected utility at θ(εn)− (1−2n−λ
1−λ )εn is greater

than at θ(x)− (1− 2n−λ
1−λ )x for all n. But then the integral of the expected utility across n,

still preserve the same sign which contradicts Lemma 11.

In other words,

∫ 1
r1
λ p[θ∗(εn) + εn(1− 2n−λ

1−λ )]u((1−nr1
1−n − y

∗)R + y∗) + p[θ∗(εn) + εn(1− 2n−λ
1−λ )]

]
u(y∗)dn−∫ 1

r1
λ p[θ∗(x) + x(1− 2n−λ

1−λ )]u((1−nr1
1−n − y

∗)R + y∗) + p[θ∗(x) + x(1− 2n−λ
1−λ )]u(y∗)dn > 0

(17)

The contradiction with Lemma 11 completes the proof.

36



A.8 Proof of Proposition 3

θ∗(εn) has a convergent subsequence, for any sequence {εn} going to zero. We will show

there can not be two subsequential limits and that proves the proposition.

The idea of the proof follows the proof of Proposition 2. We sketch it here. Contrapos-

itive, assume there are two subsequential limits. Then there are two sequences converging

to those two different limits. One limit is greater than the other. But then we can find two

elements along the two sequences, call them x and εn, close enough to each other (since they

are close to zero) s.t. Inequality 17 holds.

A.9 Proof of Proposition 4

We first note that the proof of Lemma 3 contains a discussion on why y∗ is continuous in p,

which we will use here.

Let g(n) = p(θ∗)u
[
1−nr1
1−n R− y

∗(R− 1)
]

+ (1− p(θ∗))u(y∗). Let gε(n) = p(θ∗(ε) + ε[1−

2n−λ
1−λ ])u

[
1−nr1
1−n R− y

∗(R− 1)
]

+ (1 − p(θ∗(ε) + ε[1 − 2n−λ
1−λ ]))u(y∗). We direct the reader to

Lemma 10 to point out that y∗ depends only indirectly on ε through θ = θ∗(ε) + ε[1− 2n−λ
1−λ ].

By continuity of p(.), u(.), and y∗ in θ, gε → g point-wise. Now, focus on Equation 15.

Taking limits:

limε→0

∫ 1
r1
λ p(θ∗ + ε(1− 2n−λ

1−λ ))u((1−nr1
1−n − y

∗)R + y∗) + (1− p(θ∗ + ε(1− 2n−λ
1−λ )))u(y∗)dn

=
∫ 1
r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn

(18)

We use the dominated convergence theorem to get:∫ 1
r1
λ limε→0p(θ

∗ + ε(1− 2n−λ
1−λ ))u((1−nr1

1−n − y
∗)R + y∗) + limε→0(1− p(θ∗ + ε(1− 2n−λ

1−λ )))u(y∗)dn

=
∫ 1
r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn
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This becomes:∫ 1
r1
λ p(θ∗)u((1−nr1

1−n − y
∗)R + y∗) + (1− p(θ∗))u(y∗)dn =

∫ 1
r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn

y∗ in the last equation is y∗ = y∗(p(θ∗), n). Simplifying we get:

p(θ∗)
∫ 1
r1
λ u((1−nr1

1−n − y
∗)R + y∗)dn+ (1− p(θ∗))

∫ 1
r1
λ u(y∗)dn =

∫ 1
r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn

p(θ∗) =
∫ 1
r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn−
∫ 1
r1
λ u(y∗)dn

/(∫ 1
r1
λ u((1−nr1

1−n − y
∗)R + y∗)dn−

∫ 1
r1
λ u(y∗)dn

)

p(θ∗) =

∫ 1
r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn−
∫ 1
r1
λ u(y∗)dn

∫ 1
r1
λ u((

1−nr1
1−n −y∗)R+y∗)dn−

∫ 1
r1
λ u(y∗)dn

This proves the claim.

A.10 Proof of Proposition 5

r1
∫ 1
r1
n=λ p(θ

∗)u(1−nr1
1−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1))dn = u(r1)(1− λr1 + ln(r1)).

Taking derivatives:∫ 1
r1
n=λ p(θ

∗)u(1−nr1
1−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1))dn

+r1
∂
∂r1

∫ 1
r1
n=λ p(θ

∗)u(1−nr1
1−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1))dn

= u′(r1)[1− λr1 + ln(r1)] + (u(r1)/r1)(1− λr1)

which becomes:∫ 1
r1
n=λ p(θ

∗)u(1−nr1
1−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1))dn

+r1
∫ 1
r1
n=λ p

′(θ∗)∂θ
∗

∂r1
u(1−nr1

1−n R− (R− 1)y∗(r1))− p′(θ∗)∂θ
∗

∂r1
u(y∗(r1))dn

+r1
∫ 1
r1
n=λ p(θ

∗) ∂
∂r1
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂r1
u(y∗(r1))dn

= u′(r1)[1− λr1 + ln(r1)] + (u(r1)/r1)(1− λr1)

Therefore:
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∂θ∗

∂r1
p′(θ∗)r1

∫ 1
r1
λ u(1−nr1

1−n R− (R− 1)y∗)− u(y∗)dn =

−r1
∫ 1
r1
n=λ p(θ

∗) ∂
∂r1
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂r1
u(y∗(r1))dn

−
∫ 1
r1
n=λ p(θ

∗)u(1−nr1
1−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1))dn

+u′(r1)[1− λr1 + ln(r1)] + (u(r1)/r1)(1− λr1)

(19)

In other words, the lhs is equal to the negative of r1 multiplied by the expected derivative

minus the expected utility and the last two positive terms. The difference between us and

Goldstein and Pauzner (2005)’s equation is that our expected utility and expected derivative

differs from theirs.

The last two terms are positive. p(.) is increasing, and the difference u(1−nr1
1−n R− (R−

1)y∗) − u(y∗) > 0 in an interior y∗, therefore we have that ∂θ∗

∂r1
> 0 if the negative of the

expected derivative minus the expected utility is positive. When:

−r1
∫ 1
r1
n=λ p(θ

∗) ∂
∂r1
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂r1
u(y∗(r1))dn

−
∫ 1
r1
n=λ p(θ

∗)u(1−nr1
1−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1))dn > 0

We now focus on the expected derivative wrt r1 term, we write it as a derivative wrt n

to use integration by parts:

∂
∂r1
u(1−nr1

1−n R− (R− 1)y∗(r1)) = u′(1−nr1
1−n R− (R− 1)y∗(r1))(− nR

1−n − (R− 1)∂y
∗

∂r1
)

∂
∂r1
u(y∗) = u′(y∗)∂y

∗

∂r1

Therefore,

p(θ∗) ∂
∂r1
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂r1
u(y∗(r1)) =

−p(θ∗)u′((1−nr1
1−n R− (R− 1)y∗(r1)))(

nR
1−n)

−p(θ∗)(R− 1)∂y
∗

∂r1
u′(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗))∂y∗
∂r1
u′(y∗)

Collecting terms we get:

p(θ∗) ∂
∂r1
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂r1
u(y∗(r1)) =

−p(θ∗)u′((1−nr1
1−n R− (R− 1)y∗(r1)))

nR
1−n)

−∂y∗

∂r1
[p(θ∗)(R− 1)u′(1−nr1

1−n R− (R− 1)y∗(r1))− (1− p(θ∗))u′(y∗)]
Using the foc on y∗, makes the last term null and we get:
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p(θ∗) ∂
∂r1
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂r1
u(y∗(r1)) =

−u′((1−nr1
1−n R− (R− 1)y∗(r1)))p(θ

∗)( nR
1−n)

Similarly,

p(θ∗) ∂
∂n
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂n
u(y∗(r1)) =

−p(θ∗)u′((1−nr1
1−n R− (R− 1)y∗(r1)))(

R(r1−1)
(1−n)2 )

−p(θ∗)(R− 1)∂y
∗

∂n
u′(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗))∂y∗
∂n
u′(y∗)

Using the foc on y∗ makes the last two terms null again and we get:

p(θ∗) ∂
∂n
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂n
u(y∗(r1)) =

−p(θ∗)u′((1−nr1
1−n R− (R− 1)y∗(r1)))(

R(r1−1)
(1−n)2 )

Therefore,

p(θ∗) ∂
∂r1
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂r1
u(y∗(r1))

p(θ∗) ∂
∂n
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂n
u(y∗(r1))

=
n(1− n)

r1 − 1
(20)

Using Equation 20, rewrite the second term of Equation 19 as:

−r1
∫ 1
r1
n=λ p(θ

∗) ∂
∂r1
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂r1
u(y∗(r1))dn =

− r1
r1−1

∫ 1
r1
n=λ p(θ

∗)n(1− n) ∂
∂n
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗))n(1− n) ∂
∂r1
u(y∗(r1))dn

(21)

Now integrate by parts the two terms (we only do the harder term the other one follows

identically), let u = n(1 − n) and dv = ∂u
∂n

(1−nr1
1−n R − (R − 1)y∗), then du = (1 − 2n)dn and

v = u(1−nr1
1−n R− (R− 1)y∗). We get:

−p(θ∗) r1
r1−1 [−λ(1− λ)u(1−λr1

1−λ R− (R− 1)y∗(λ))−
∫ 1
r1
n=λ(1− 2n)u(1−r1n

1−n R− (R− 1)y∗)dn]

and

−(1− p(θ∗)) r1
r1−1 [−λ(1− λ)u(y∗(λ))−

∫ 1
r1
n=λ(1− 2n)u(y∗)dn]
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We get that:

−r1
∫ 1
r1
n=λ p(θ

∗) ∂
∂r1
u(1−nr1

1−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂r1
u(y∗(r1))dn =

−p(θ∗) r1
r1−1 [−λ(1− λ)u(1−λr1

1−λ R− (R− 1)y∗(λ))−
∫ 1
r1
n=λ(1− 2n)u(1−r1n

1−n R− (R− 1)y∗)dn]

−(1− p(θ∗)) r1
r1−1 [−λ(1− λ)u(y∗(λ))−

∫ 1
r1
n=λ(1− 2n)u(y∗)dn]

(22)

Therefore going back to the two terms of Equation 19 gives,

p(θ∗) r1
r1−1λ(1− λ)u(1−λr1

1−λ R− (R− 1)y∗(λ)) + p(θ∗)
r1−1

∫ 1
r1
n=λ(1− 2nr1)u(1−nr1

1−n R− (R− 1)y∗)dn

(1− p(θ∗)) r1
r1−1λ(1− λ)u(y∗(λ)) + 1−p(θ∗)

r1−1

∫ 1
r1
n=λ(1− 2nr1)u(y∗)dn

(23)

We need to show Expression 23 is positive and we are done.

-

?

λ
1
r1

1
r1

+λ

2
n

...

...

...

...

...

...

A picture helps with the next step. The picture could be drawn in two ways, and in

both cases we get the desired result. Note that if 1 − 2λr1 < 0 then 1 − 2nr1 never hits

zero on the domain. If it is positive it does hit zero. In both cases 1 − 2nr1 evaluated at

the midpoint of the domain segment (
1
r1

+λ

2
) is negative. We will assume it does not hit zero,

the other case follows similarly. Note that there are two triangles: one to the left and one

to the right of the dotted line. These two triangles are congruent. Since u(.) is decreasing,

substituting
1
r1

+λ

2
instead of n inside the integral just shifts weights on different u(.) values
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inside the integral. Now note that the blue line is a plot of the line 1− 2nr1, while the red

line is the constant function at 1−2r1
1
r1

+λ

2
. By Lemma 3.1, we have that 1−nr1

1−n R− (R−1)y∗

and y∗ are both decreasing in n. Because u(.) is decreasing, this exchange shifts weight from

higher valued u()s to lower valued ones. Therefore, we have the following:

p(θ∗)
r1−1

∫ 1
r1
n=λ(1− 2nr1)u(1−nr1

1−n R− (R− 1)y∗)dn >

p(θ∗)
r1−1

∫ 1
r1
n=λ(1− 2(

1
r1

+λ

2
)r1)u(1−nr1

1−n R− (R− 1)y∗)dn = −λr1p(θ∗)
r1−1

∫ 1
r1
n=λ u(1−nr1

1−n R− (R− 1)y∗)dn

And also:

p(θ∗)
r1−1

∫ 1
r1
n=λ(1− 2nr1)u(y∗)dn > p(θ∗)

r1−1

∫ 1
r1
n=λ(1− 2(

1
r1

+λ

2
)r1)u(y∗)dn = −λr1p(θ∗)

r1−1

∫ 1
r1
n=λ u(y∗)dn

Moreover, since by Lemma 3.1, 1−nr1
1−n R − (R − 1)y∗ and y∗ are both decreasing in n

and u(.) is decreasing,

( 1
r1
− λ)u(1−λr1

1−λ R− (R− 1)y∗(λ)) >
∫ 1
r1
n=λ u(1−nr1

1−n R− (R− 1)y∗)dn. We get that:

−λr1p(θ∗)
r1−1

∫ 1
r1
n=λ u(1−nr1

1−n R− (R− 1)y∗)dn > −p(θ∗) r1
r1−1λ( 1

r1
− λ)u(1−λr1

1−λ R− (R− 1)y∗)

Similarly,

( 1
r1
− λ)u(y∗(λ)) >

∫ 1
r1
n=λ u(y∗)dn. We get that:

−λr1p(θ∗)
r1−1

∫ 1
r1
n=λ u(y∗)dn > −p(θ∗) r1

r1−1λ( 1
r1
− λ)u(y∗(λ)).

But then looking at the sum on the top again we see that,

p(θ∗) r1
r1−1λ(1− λ)u(1−λr1

1−λ R− (R− 1)y∗(λ)) + p(θ∗)
r1−1

∫ 1
r1
n=λ(1− 2nr1)u(1−nr1

1−n R− (R− 1)y∗)dn >

p(θ∗) r1
r1−1λ(1− λ)u(1−λr1

1−λ R− (R− 1)y∗(λ))− p(θ∗) r1
r1−1λ( 1

r1
− λ)u(1−λr1

1−λ R− (R− 1)y∗(λ))

(24)

p(θ∗) r1
r1−1λ(1− λ)u(1−λr1

1−λ R− (R− 1)y∗(λ)) + p(θ∗)
r1−1

∫ 1
r1
n=λ(1− 2nr1)u(1−nr1

1−n R− (R− 1)y∗)dn >

p(θ∗)λu(1−λr1
1−λ R− (R− 1)y∗(λ)) > 0

(25)
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Similarly,

p(θ∗) r1
r1−1λ(1− λ)u(y∗(λ)) + p(θ∗)

r1−1

∫ 1
r1
n=λ(1− 2nr1)u(y∗)dn >

p(θ∗)λu(y∗(λ)) > 0
(26)

This completes our proof.

A.11 Proof of Proposition 6

∀ 1 < r1 < r1, the equation that determines the threshold with insurance is:∫ 1
r1
n=λ p(θ

∗)u(1−nr1
1−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1))dn = u(r1)

r1
(1− λr1 + ln(r1)).

The equation that determines the threshold without insurance, θ∗GP is:∫ 1
r1
n=λ p(θ

∗
GP )u(1−nr1

1−n R)dn = u(r1)
r1

(1− λr1 + ln(r1))

Assume for a contradiction that θ∗ ≥ θ∗GP . Fix a proportion of early runners n : λ ≤

n ≤ 1
r1

. n determines the resources left for the remaining patient investors. Under p(θ∗) and

without insurance, these resources are all invested in the project, netting: p(θ∗)u(1−nr1
1−n R).

With insurance, these resources are used to net:

p(θ∗)u(1−nr1
1−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1)).

Since investors are risk averse and marginal utility is high enough at zero, we get y∗(r1) > 0

and so:

p(θ∗)u(1−nr1
1−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1)) > p(θ∗)u(1−nr1

1−n R)

θ∗ ≥ θ∗GP implies that p(θ∗) ≥ p(θ∗GP ), and therefore,∫ 1
r1
n=λ p(θ

∗)u(1−nr1
1−n R)dn ≥

∫ 1
r1
n=λ p(θ

∗
GP )u(1−nr1

1−n R)dn.

But then,
∫ 1
r1
n=λ p(θ

∗)u(1−nr1
1−n R−(R−1)y∗(r1))+(1−p(θ∗))u(y∗(r1))dn >

∫ 1
r1
n=λ p(θ

∗)u(1−nr1
1−n R)dn ≥∫ 1

r1
n=λ p(θ

∗
GP )u(1−nr1

1−n R)dn = u(r1)
r1

(1− λr1 + ln(r1)) contradiction.

Therefore, θ∗ < θ∗GP . This completes the proof.
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A.12 Proof of Proposition 7

Fix any θ > θ∗. Remember that θ∗ < θ∗GP . We know that when no patient player runs, a

player with a signal above the equilibrium threshold strictly prefers to wait than run. At

n = λ, v(θ, λ) > 0, therefore (1 − p(θ))u(y∗) + p(θ)u((1−nr1
1−n − y

∗)R + y∗) > u(r1) >
u(r1)
r1

.

The second inequality follows because r1 > 1. But then by taking a convex combination of

the two terms strictly greater than u(r1)
r1

, the result is still greater than u(r1)
r1

:

(1− λ)[(1− p(θ))u(y∗) + p(θ)u((1−nr1
1−n − y

∗)R + y∗)] + λu(r1) >
u(r1)
r1

. but then:∫ θ∗GP
θ∗

(1− λ)[(1− p(θ))u(y∗) + p(θ)u((1−nr1
1−n − y

∗)R + y∗)] + λu(r1) >
u(r1)
r1

(θ∗GP − θ∗).

Therefore,

u(r1)
r1
θ∗ +

∫ θ∗GP
θ∗

λu(r1) + (1− λ)[(1− p(θ))u(y∗) + p(θ)u((1−nr1
1−n − y

∗)R + y∗)]dθ > u(r1)
r1
θ∗GP .

Now since:
∫ 1

θ∗GP (r1)
λu(r1)+(1−λ)[(1−p(θ))u(y∗)+p(θ)u((1−nr1

1−n −y
∗)R+y∗)]dθ >

∫ 1

θ∗GP (r1)
λu(r1)+

(1− λ)p(θ)u(1−λr1
1−λ R)dθ.

Adding the inequality to the one before, we get:

u(r1)
r1
θ∗+λ(1−θ∗)u(r1)+(1−λ)

∫ 1

θ∗
p(θ)u(1−λr1

1−λ R−(R−1)y∗)+(1−p(θ))u(y∗)dθ > u(r1)
r1
θ∗GP +

λ(1− θ∗GP )u(r1) + (1− λ)u(1−λr1
1−λ R)

∫ 1

θ∗GP
p(θ)dθ. This completes the proof.

B Appendix: Limit of derivatives of f

f̂(θ∗, r1) = r1

∫ 1
r1

λ

p(θ∗ + ε(1− 2
n− λ
1− λ

))u(
1− nr1
1− n

R)dn− u(r1)[1− λr1 + ln(r1)] = 0 (27)

First we look into ∂f̂
∂θ∗

.

By Leibniz rule,

∂f̂
∂θ∗

= r1
∫ 1
r1
λ p′(θ∗ + ε(1− 2n−λ

1−λ ))u(1−nr1
1−n R)dn

Because of continuity of θ∗(r1, ε) in ε, p is continuously differentiable and because of

the dominated convergence theorem, we get that
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limε→0
∂f̂
∂θ∗

= r1
∫ 1
r1
λ p′(θ∗)u(1−nr1

1−n R)dn = r1p
′(θ∗)

∫ 1
r1
λ u(1−nr1

1−n R)dn

Next we look into ∂f̂
∂r1

. By proof of theorem 2 section above we get:

∂f̂
∂r1

= −
∫ 1
r1
λ (1−2nr1

r1−1 )p(θ∗ + ε)u(1−nr1
1−n R)dn− r1

r1−1λ(1− λ)p(θ∗ + ε)u(1−λr1
1−λ R)

+ 2ε
1−λ

r1
r1−1

∫ 1
r1
λ p′(θ)n(1− n)u(1−nr1

1−n R)dn− 2ε
1−λ

∫ 1
r1
λ (2nr1−1

r1−1 )
∫ n
λ
p′(θ)dnu(1−nr1

1−n R)dn

−u′(r1)[1− λr1 + ln(r1)]− u(r1)
r1

(1− λr1)

(28)

limε→0
∂f̂
∂r1

= −p(θ∗)
∫ 1
r1
λ (1−2nr1

r1−1 )u(1−nr1
1−n R)dn− r1

r1−1λ(1− λ)p(θ∗)u(1−λr1
1−λ R)

−u′(r1)[1− λr1 + ln(r1)]− u(r1)
r1

(1− λr1)
(29)

Let g(θ∗, r1) = limε→0f̂(θ∗, r1):

g(θ∗, r1) = r1

∫ 1
r1

λ

p(θ∗)u(
1− nr1
1− n

R)dn− u(r1)[1− λr1 + ln(r1)] = 0 (30)

∂g
∂θ∗

= r1p
′(θ∗)

∫ 1
r1
λ u(1−nr1

1−n R)dn

∂g
∂r1

=
∫ 1
r1
λ p(θ∗)u(1−nr1

1−n R)dn + r1
∫ 1
r1
λ p(θ∗) ∂u

∂r1
(1−nr1

1−n R)dn − u′(r1)[1 − λr1 + ln(r1)] −
u(r1)
r1

(1− λr1)

We focus on first two terms, and do a change of variable as in the proof of GP to get:

p(θ∗)
∫ 1
r1
λ u(1−nr1

1−n R)dn+ p(θ∗) r1
r1−1

∫ 1
r1
λ n(1− n)∂u

∂n
(1−nr1

1−n R)dn

Integrating by parts, let u = n(1−n) and dv = ∂u
∂n

(1−nr1
1−n R), then du = (1− 2n)dn and

v = u(1−nr1
1−n R). We get:

p(θ∗)
∫ 1
r1
λ u(1−nr1

1−n R)dn+ p(θ∗) r1
r1−1

[
− λ(1− λ)u(1−λr1

1−λ R)−
∫ 1
r1
λ (1− 2n)u(1−nr1

1−n R)dn
]

−p(θ∗) r1
r1−1λ(1− λ)u(1−λr1

1−λ R)− p(θ∗)
∫ 1
r1
λ

1−2nr1
r1−1 u(1−nr1

1−n R)dn
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Collecting terms we see that:

∂g
∂r1

= −p(θ∗) r1
r1−1λ(1− λ)u(1−λr1

1−λ R)− p(θ∗)
∫ 1
r1
λ

1−2nr1
r1−1 u(1−nr1

1−n R)dn

−u′(r1)[1− λr1 + ln(r1)]− u(r1)
r1

(1− λr1)
(31)

We note here that limε→0
∂f̂
∂r1

= ∂g
∂r1

and limε→0
∂f̂
∂θ∗

= ∂g
∂θ∗

.

This is an application of the following theorem from real analysis:

Theorem 1 Let [a,b] be an interval, and ∀ n ≥ 1, let fn : [a, b] → < be a differentiable

function whose derivative f ′n : [a, b] → < is continuous. Suppose that the derivatives f ′n

converge uniformly to a function g : [a, b] → < and that there exists a point x0 such that

limn→∞fn(x0) exists. Then the functions fn converge uniformly to a differentiable function

f , and the derivative of f equals g.
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