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1. Introduction

The use of vector autoregressions (VARs) has grown steadily since Sims
(1980) and VARs now serve as a vital element of the macroeconomist’s toolkit.
Bayesian methods have come to dominate the literature on VAR applications for
twomain reasons. Firstly, VARs have a large number of parameters relative to data
in typical macroeconomic applications, causing researchers to seek the additional
parameter discipline that Bayesian priors can provide. Secondly, researchers have
developedmethods that make Bayesian estimation of VARs a straightforward task.
Posterior sampling is often the most challenging aspect of Bayesian inference,
but for VARs a family of known priors yields (conditional) posteriors amenable
to an efficient posterior sampling algorithm called the Gibbs sampler.

The interests of macroeconometricians have recently moved beyond the basic
VAR framework to specifications with time-varying parameters. Sims and Zha
(2006) pioneered the extension of the structural VAR framework to include
Markov-switching parameters (MS-VARs) and use their model to infer the cause
of the “Great Moderation.” Based on the results of their MS-VAR estimation
Sims and Zha (2006), conclude that “good luck” remains the most parsimonious
explanation consistent with the data. As a byproduct of their inquiry, Sims and
Zha (2006) also document dramatically superior data fit of MS-VARs when
compared to constant parameter specifications.

Yet, despite the ability of MS-VARs to illuminate time-varying relationships
in the data, few researchers besides Sims and Zha (2006) and Sims et al. (2008)
have used MS-VARs in econometric applications. We suspect that the sparse use
of MS-VARs owes to the complicatedness of the estimation process. MS-VARs
do not admit Gibbs samplers with the efficiency or simplicity of their constant-
parameter predecessors. Sims et al. (2008) describe a four-step process for MS-
VAR. First, search (in a high dimensional parameter space) for the posterior
mode from which to initialize the MCMC algorithm. Second, code and deploy
a highly model-specific Gibbs sampler (which relies on so-called Metropolis-
within-Gibbs steps). Third, impose both sign and state-labeling normalizations
on the posterior draws at the post-processing stage. Fourth and finally, code
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a complicated extension of the modified harmonic mean (MHM) algorithm
for marginal data density (MDD) estimation. In a recent paper investigating the
macroeconomic effects of financial crises (and a notable exception to the hesitance
of economists to use MS-VARs), Hubrich and Tetlow (2014) estimate their model
using the algorithm of Sims et al. (2008) and summarize the length of the process
as follows, “Computation of a specification’s posterior mode and the marginal
data density takes a minimum of 7 hours in clock time and can take as long as 8
days, depending on the specifics of the run. Adding lags, imposing restrictions
on switching on variances and restricting switching in equation coefficients is
costly in terms of computing times.” Of course, even at the end of this process
uncertainty would remain about whether or not one has found the true posterior
mode in the first step.

Motivated by these difficulties, we use an alternative class of algorithms called
Sequential Monte Carlo (SMC) to estimate MS-VARs. We demonstrate that SMC
allows for simple and accurate posterior inference for MS-VARs. Furthermore,
SMC makes it easy to use alternative priors. In our MS-VAR estimation, we
show that using a prior based on that typically applied to the analysis of reduced-
form VARs, improves model fit and substantially alters posterior inference about
macroeconomic dynamics.

SMC algorithms begin by propagating a set of “particles” from the prior
distribution, where each particle is a vector of values for the model’s parameters.
The algorithm then moves and reweights the particles to iteratively approximate a
sequence of distributions, each of which combines the prior with partial informa-
tion from the likelihood. Each distribution in the sequence uses more information
from the likelihood than its predecessor and the algorithm concludes once the
full likelihood is incorporated. Importantly, the effectiveness of SMC does not
rely on any particular analytical convenience of the posterior except for the abil-
ity to generate random draws from the prior and to evaluate a posterior kernel
pointwise; a far weaker set of restrictions than those required for an effective
Gibbs Sampler.

For our first contribution, we demonstrate that SMC algorithms give extremely
reliable estimates of VAR marginal data densities, and that one can obtain accu-
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rate results when using quantities of particles readily implementable on current
computers. We show solid performance by SMC under a variety of choices for
the algorithm’s tuning parameters, but also highlight a few small changes to
existing SMC implementations that yield particularly dramatic performance im-
provements for VARs. One aspect of particular importance is accounting for
the nontrivial correlation structure of parameters typically present in both VAR
priors and posteriors.

For our second contribution, we use SMC to estimate an MS-VAR similar to
the model in Sims et al. (2008). We use the ease of SMC implementation under
alternative priors to show that, relative to the conclusions of Sims et al. (2008), the
use of an off-the-shelf prior typically applied to reduced-form VARs improves
data fit and substantially alters posterior beliefs about changes to economic
dynamics. When using the reduced-form prior, we find nearly 50% posterior
weight on amodel that features a periodically flattening Phillips Curve, in addition
to changing structural shock variances. The results in our paper suggest that prior
choice deserves careful attention when working with densely parameterized
MS-VARs.

We also want to emphasize that our ability to readily estimate MS-VARs
results directly from the genericness of the SMC algorithm. One can use the same
basic SMC algorithm to estimate reduced-form VARs, structural and exactly-
identified VARs, structural and over-identified VARs, VARs with steady-state
priors, and MS-VARs, each of which relies on a unique posterior sampler when
using MCMC for estimation. For two reasons, this fact should not be discounted.
Firstly, the genericness allows us to explore the implications of using alterna-
tive priors for MS-VARs. Secondly, as emphasized by Geweke (2004), reliance
on model-specific Gibbs samplers for posterior simulation typically involves a
lengthy processes of tedious algebra and coding, both of which lend themselves
well to making difficult-to-detect errors.

With regards to the estimation algorithm, our paper builds on the recent work
by Durham and Geweke (2012) and Herbst and Schorfheide (2014), who also
explore the use of SMC algorithms for estimating econometric models. Durham
and Geweke (2012) emphasize the massive parallelization possibilities for SMC
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algorithms, particularly for use with GPUs. Herbst and Schorfheide (2014) apply
SMC algorithms to the estimation of DSGE models and show that DSGE-model
posteriors can possess multi-modality that random walk Metropolis-Hastings
algorithms fail to uncover in reasonable amounts of time. We also make use of a
number of advances from the statistics literature, on which we elaborate further
in the next section.

From here the rest of the paper proceeds as follows. In Section 2 we describe
our estimation algorithm and its place within the larger SMC literature. In Section
3 we demonstrate the algorithm’s effectiveness in settings in which we have
closed-form expressions for the objects of interest. In Section 4 we estimate a
suite of MS-VAR models and describe the results. In Section 5 we conclude.

2. The Sequential Monte Carlo Algorithm

In this section we describe the details of the general SMC algorithms used in
this paper. Chopin (2002), Del Moral, Doucet, and Jasra (2006), Creal (2012) and
Herbst and Schorfheide (2014) offer additional details on SMC implementation.
The Bayesian researcher is interested in the posterior density p(�|Y ), which is
given by

p(�|Y ) =
p(Y |�)p(�)
p(Y )

, where p(Y ) = ∫ p(Y |�)p(�)d� ,(1)

where p(�) denotes the prior density and p(Y |�) denotes the likelihood of the
parameters � under the observed data Y . The term p(Y ) is known as the “marginal
data density” (MDD) or “marginal likelihood”, an important measure of model
fit.1 For ease of exposition, we will abbreviate these objects by �(�) = p(�|Y ),
f (�) = p(Y |�)p(�), and Z = p(Y ), which gives an equivalent expression to (1)
as

�(�) =
f (�)
Z

.(2)

1Giannone, Lenza, and Primiceri (2013) use the MDD to select among prior densities of a
common family for VARs.
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For VARs, the literature has previously concentrated on families of priors that
induce a posterior such that either �(�) can be sampled directly or there exists
groups of parameters � = [�1,… , �n] such that each conditional posterior can be
sampled directly, yielding draws from the posterior through a Gibbs sampler.2

Unfortunately, MS-VARs lack priors that induce such tractable posteriors. The
goal of this paper is to develop an SMC algorithm that robustly overcomes the
challenges and opacity of MS-VAR posteriors.

Importance sampling (IS) serves as the keystone of SMC. Indeed, the SMC
method we use in this paper is sometimes known as Iterated Batch Importance
Sampling. Under IS, the target density f is approximated by another, easy-to-
sample density g. Importance sampling is based on the identity

E�[ℎ(�)] = ∫ ℎ(�)�(�)d� = 1
Z ∫Θ

ℎ(�)w(�)g(�)d�,

where w(�) =
f (�)
g(�)

,
(3)

Suppose that �i iid∼ g(�), i = 1,… , N . Then, under suitable regularity conditions
| see Geweke (1989) | the Monte Carlo estimate

ℎ̄ =
N
∑

i=1
ℎ(�i)W̃ i, where W̃ i =

w(�i)
1
N

∑N
j=1w(�j)

,(4)

converges almost surely (a.s.) toE�[ℎ(�)] asN ⟶∞. The set of pairs {(�i, W̃ i)}Ni=1
provides a discrete distribution which approximates �(�). The W̃ i’s are known
as the (normalized) importance weights assigned to each particle value �i. The
accuracy of the approximation is driven by the distance between g(⋅) and f (⋅)
and is reflected in the distribution of the weights. If the distribution of weights is
very uneven, the Monte Carlo approximation ℎ̄ is inaccurate, because only a few
particles contribute meaningfully to the estimate. On the other hand, uniform
weights arise if g(⋅) ∝ f (⋅), which means that we are sampling directly from

2Researchers usually estimate VARs under a conjugate prior of the Normal-Inverse Wishart
form. One can efficiently estimate structural VARs that have linear over-identifying restrictions
by using the algorithm described in Waggoner and Zha (2003a).
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�(�).
Unfortunately, constructing “good” importance distributions, g, is difficult

for densely parameterized models in which the econometrician does not know
the shape of f .3 We recursively build particle approximations to a sequence of
distributions, starting from a known distribution (in this case the prior), then
slowly adding information from the likelihood until we have obtained the posterior.
Specifically, we index the distributions by n,

�n(�) =
fn(�)
Zn

=
[p(Y |�)]�np(�)

∫ [p(Y |�)]�np(�)d�
, n = 1,… , N�.(5)

and choose an increasing sequence of values for the scaling parameter, �n, such
that �1 = 0 and �N�

= 1. The choice of �1 = 0 implies that the initial target
distribution, �1(�), is simply the prior, p(�). Hence, we can initialize the algorithm
by propagating the particles as random draws from the prior. Our algorithm thus
requires that one can sample from the prior directly, but this is a far weaker
restriction than is restricting oneself to the use of priors currently standard in
the estimation of VARs. The choice of �N�

= 1 implies that the final target
distribution, �N�

(�), is the posterior.4 Thus our final particles will approximate
the distribution of interest to the researcher. The general form of our algorithm
is the same as the one used in Herbst and Schorfheide (2014). We describe the
algorithm here for completeness and then follow with discussion.

Algorithm 1 describes the three steps to construct a particle approximation to
�n from a particle approximation to �n−1, in the terminology of Chopin (2002).
We enter stage n with a particle approximation {�n−1, W̃ i

n−1}
Npart

i=1 of �n−1. In the
first step of stage n, the correction step, the particles are reweighted according to
�n. This is an importance sample of �n using �n−1 as the proposal distribution. In
the second step, selection, if the sample is unbalanced in the sense that only a few

3Note that VAR estimation has a history with importance sampling: Leeper, Sims, Zha, Hall,
and Bernanke (1996) and Uhlig (1997) developed importance samplers for VAR models.

4The “tempering” formulation is not the only avenue one could have pursued. For example
Durham and Geweke (2012) propose a GPU-based SMC algorithm as a blackbox for many
time series economic models with fn(�) = p(Y1∶n|�)p(�). This is attractive for obtaining on-line
parameter estimates.
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Algorithm 1: Simulated Tempering SMC
Initialization. (�1 = 0). Draw the initial particles from the prior:

�i1
iid∼ p(�), W i

1 = 1, i = 1,… , N.

for n = 2,… , N� do
1. Correction. Reweight the particles from stage n − 1 by defining the
incremental and normalized weights

w̃i
n = [p(Y |�

i
n−1)]

�n−�n−1 , W̃ i
n =

w̃i
nW

i
n−1

1
N

∑N
i=1 w̃i

nW
i
n−1

, i = 1,… , N.

2. Selection. Compute the effective sample size

ESSn = N∕

(

1
N

N
∑

i=1
(W̃ i

n )
2

)

if ESSn < Npart∕2 then
Resample the particles via multinomial resampling and reinitialize the
weights to uniform, i.e.

W i
n = 1, �̂in ∼ {�

j
n−1, W̃

j
n }j=1,…,N , i = 1,… , N

else
W i
n = W̃

i
n , �̂in = �

i
n−1

end

3. Mutation. Propagate the particles {�̂in,W
i
n} viaM steps of an MCMC

algorithm with transition density �in ∼ Kn(�n|�̂in; �n) and stationary
distribution �n(�).

end

Compute posterior moments. An approximation of E�n[ℎ(�)] is given by

ℎ̄n,N =
1
N

N
∑

i=1
ℎ(�in)W

i
n .(6)

This approximation is valid using the particle approximations,
{�in−1, W̃

i
n}

Npart

i=1 , {�̂
i
n,W

i
n}

Npart

i=1 and {�in,W
i
n}

Npart

i=1 after the correction, selection,
and mutation step, respectively.
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particles have meaningful weight, the particles are rejuvenated using multinomial
resampling. This process ensures that sampler avoids the well-known issue of
particle impoverishment. On the other hand, the resampling itself induces noise
into the simulation, and so we avoid doing it unless necessary. In the third and
final step, mutation, particles are moved around the parameter space, usingM
iterations of a Metropolis-Hastings algorithm (on each particle individually).

The last step, mutation, is crucial. Mutation allows particles to move towards
areas of higher density of �n and ensures diversity across replicated particles when
resampling occurs during the selection step. Were the algorithm to run without
mutation, repeated resampling of the corrected particles would leave only a few
unique values surviving until the final stage, resulting in a poor approximation to
the posterior.

From a computational perspective, a point to stress about the mutation step is
that each particle operates independently of one another, in a sense formingNpart

independent Markov chains. This stands in contrast to Markov Chain Monte
Carlo (MCMC) techniques (standard for posterior estimation of VARs), which
rely on a single chain. The independence of particles during mutation allows us
to exploit parallel computations during the mutation step, which provides the
benefit of greatly speeding up the algorithm, as highlighted by both Durham and
Geweke (2012) and Herbst and Schorfheide (2014).

We follow Herbst and Schorfheide (2014) in our specification for the temper-
ing schedule, {�n}

N�

n=1, and choose a schedule which follows

�n =
(

n − 1
N� − 1

)�

.(7)

The hyperparameter �(> 0) controls the rate at which “information” from the
likelihood is added to the sampler. If � = 1, then the schedule is linear, and, very
roughly speaking, each stage has the same contribution. We use � > 1 which
means that we add only small increments of the likelihood to the prior at the
beginning of the sampler, and more quickly as the sampler moves on. We discuss
the role of � in more detail in Section 3.

Algorithm 1 presents the generic algorithm for estimating Bayesian models,
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but does not specify the exact nature of the MCMC transition kernel used for
particle mutation. As we show in Section 3, the form of the MCMC kernel can be
crucial for the performance of the sampler. Our base mutation kernel is a block
random walk Metropolis-Hasting (RWMH) sampler, detailed in Algorithm 2.
Block MH algorithms have been useful in the estimation of DSGE models (see,
for example, Chib and Ramamurthy (2010) and Herbst (2012)). Breaking the
parameter vector into blocks reduces the dimensionality of the target density for
each MCMC step, making it easier to well approximate it by the proposal density.

A key point of departure from Herbst and Schorfheide (2014) is our con-
struction of the proposal variance in the block Metropolis-Hasting algorithm, an
important determinant of the efficacy of the sampler. Herbst and Schorfheide
(2014) use the estimation of the marginal variance for the bth parameter block,
that is, the submatrix of Σ̂n,

Σ̂b,n = [Σ̂n]b,b.(8)

We find that this is a suboptimal choice for densely parameterized models, as it
ignores the relationship between the b block of parameters and the other “condi-
tioning” parameters. To account for this, we use the multivariate normal approxi-
mation to the conditional variance,

Σ̂b,n = [Σ̂n]b,b − [Σ̂n]b,−b[Σ̂n]−1−b,−b[Σ̂n]−b,b.(9)

While this change may appear small, we will show in Section 3 that it can improve
the efficacy of the sampler greatly because of the complex correlation structure
inherent in (MS)VAR models.

The contribution of this paper is not theoretical, so we will not go into detail
about the formal arguments proving the strong law of large numbers (SLLN)
and central limit theorem (CLT) for the particle approximation in (6). Readers
interested in the details of the SLLN and CLT should refer to Chopin (2002),
which provides a recursive characterization of the SLLN and CLT that apply after
each of the correction, selection, and mutation steps. Herbst and Schorfheide
(2014) characterize the high level assumptions sufficient for the SLLN and CLT
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Algorithm 2: Mutation Step
Let {Bn}

N�

n=2 be a sequence of random partitions of the parameter vector. For a
given partition Bn, let b denote the block of the parameter vector so that �ib,n
refers to the b elements of the ith particle. Further let �i<b,n the denote the
subpartition of Bn refering to elements of �in partitioned before the bth set and so
on.

At each stage, n, obtain a particle estimate of the covariance of the parameters
after selection but before mutation,

Σ̂n =
Npart
∑

i=1
W i
n (�̂

i
n − �̂n)(�̂

i
n − �̂n)

′ with �̂n =
Npart
∑

i=1
W i
n �̂

i
n.

Denote a covariance matrix for the b-th block, at stage n, which is some function
� (.) of Σ̂n as,

Σ̂b,n = � (Σ̂n).

We consider two different functions � (.), which we describe, and compare the
performance of, in the text.

LetM be an integer (≥ 1) defining the number of Metropolis-Hastings steps in
the mutation stage. Introduce an additional subscript m so that �im,b,n refers to the
bth block of the nth stage, ith particle after mMetropolis-Hastings steps. Set
�i0,b,n = �̂

i
b,n.

for m = 1,… ,M do
for b ∈ Bn do

1. Draw a proposal �∗b ∼ N
(

�im−1,b,n, Σ̂b,n
)

.

Denote �∗ =
[

�im,<b,n, �
∗
b , �

i
m−1,>b,n

]

and �im,n =
[

�im,<b,n, �
i
m−1,≥b,n

]

.

2. With probability,

� = min

{

[p(Y |�∗)]�np(�∗)
[p(Y |�im,n)]�np(�im,n)

, 1

}

Set �im,b,n = �
∗
b . Otherwise set �

i
m,b,n = �

i
m−1,b,n.

end
end
Retain the last step of the Metropolis-Hastings sampler. Set �ib,n = �

i
M,b,n for all

b ∈ Bn.
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to apply when the mutation stage is adaptive; that is, when features of the MCMC
algorithm depend on previous particle approximations. While difficult to verify
in practice, the extension of the SLLN and CLT provides at least a basis for the
use of such a transition kernel. Finally, though the variances associated with
the CLTs have the formulation given in Chopin (2002), the recursive form is,
unfortunately, not useful in practice. Instead, we rely on estimates computed
across multiple independent runs of the algorithm as in Durham and Geweke
(2012).

Finally, a few key questions remain about the use of the algorithm in practice.
How should one choose n� (or �)? Howmany particles should one use? Howmany
blocks should one use? While theoretical results on the optimal hyperparameters
for estimation are beyond the scope of this paper, in the next section we will
exploit the relative transparency of VARs to move beyond the suggestions of
Herbst and Schorfheide (2014) and find well-performing choices for tuning
parameters.

3. Testing Sequential Monte Carlo in Practice

Before moving to the application of interest, MS-VARs, we first test our SMC
algorithm’s effectiveness at estimating the MDD of two models for which we
know the true MDD in closed-form: 1) a reduced-form VAR with conjugate prior
and, 2) as a more challenging test, a mixture of reduced-form VAR posteriors.

3.1 Constant-Parameter VAR

A three-variable, three-lag, reduced-form VAR serves as our starting point.
We test the SMC algorithm on two parameterizations of the VAR commonly
explored in the literature. The first, given by

y′t = Φ0 + y′t−1Φ1 + y′t−2Φ2 + y′t−3Φ3 + u′t, ut ∼ (0,Σ) ,(10)
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is referred to as the reduced-form VAR. Letting Φ = [Φ′
0,Φ

′
1,Φ

′
2,Φ

′
3]
′, the

reduced-form VAR has parameters D = {Φ,Σ}. The second, given by

y′tA = y
′
t−1F1 + y

′
t−2F2 + y

′
t−3F3 + "

′
t , "t ∼ (0, I) ,(11)

is referred to as the structural VAR. Collecting the matrices F1,… , Fn as F =
[F ′

1 , F
′
2 , F

′
3]
′, the structural VAR has parameters S = {A, F }. In the absence of

restrictions on the values of either D or S both VAR representations have the
same likelihood function.

We estimate both reduced-form and structural versions of the VAR and
compare the MDD estimates to the true MDD. Since there exists a conjugate
prior for D for which we know the MDD in closed form, the exercise is simple
for the reduced-form model.5 We discuss the conjugate prior’s features in Section
4 but for now it suffices to know that the prior is standard in the literature.
Unfortunately, the prior forS described in Sims and Zha (1998), which is standard
in the structural VAR literature, does not allow a closed-form expression for the
MDD. To take advantage of the closed-form expression for the VAR’s MDD
as a convenient benchmark, we need a prior for S that gives the same MDD as
our prior for D. If we assume that A = (cℎol(Σ)′)−1, where cℎol refers to the
lower-triangular Cholesky factor of Σ, then there exists a one-to-one mapping
between D and S given by the pair of functions g and g−1 defined as

g1(Φ,Σ) = A = (cℎol(Σ)′)−1(12)

g2(Φ,Σ) = F = ΦA(13)

and

g−11 (A, F ) = Σ = (AA
′)−1(14)

g−12 (A, F ) = Φ = FA
−1 .(15)

The Cholesky factor identification is common in the literature and yields an

5Appendix A gives the details on the expression for the MDD.
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exactly identified structural VAR in the sense of Rubio-Ramírez, Waggoner, and
Zha (2010). We can then estimate S under the prior

p(S) = pD(g−1(S)) | det(J (g−1(S)))|,(16)

which is the prior over S induced by the prior on D.
To estimate S with the prior density in (16) we need to be able to both

evaluate and sample from p(S). Evaluating (16) requires only the straightforward
application of g−1(S) to evaluate pD(g−1(S)) and accounting for the Jacobian
term associated with the transformation g−1, which we derive in Appendix A.3.
We can sample from the density in (16) by first sampling from p(D) and then
applying the transformation g(D).

3.2 Assessing SMC: Baseline Performance

Since the SMC algorithm produces, as a by-product, an estimate for the
marginal data density, we use the MDD to gauge the accuracy of the SMC esti-
mator. To assess the algorithm’s performance we run a Monte Carlo experiment
using SMC on both D and S.6 The data for our test consists of observations
on the output gap, inflation (GDP deflater), and the Federal Funds Rate from
1959:Q1 to 2005:Q4. We use the exact dataset from the empirical example of
Sims et al. (2008), which we will use again when estimating Markov-switching
models in Section 4.

Recall that the SMC sampler in Section 2 features a number of hyperparame-
ters that must be set by the user. For our baseline experiment, we setNpart = 2000,
N� = 500,M = 1,Nblocks = 3 (random), and � = 4, which is approximately our
best performing choice of hyperparameters when asessing hyperparameter com-
binations according to both estimation bias and root mean squared errors. We run
20 Monte Carlo replications of the sampler for each choice of hyperparameters
and examine the distribution of ln(MDD) estimates.

The first row of Table I shows the results, giving the average bias (Avg Bias)
and the root mean squared error (RMSE) of the estimates of ln p(Y ) for both the

6In both the reduced form and the structural case, the true log MDD is the same, as the
structural relationships do not affect the models description of the data.
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reduced-form and structural parameterizations. We can see that the sampler is
quite accurate under both parameterizations of the algorithm. The mean error of
the log marginal data density is 0.01 percent of the true value (1791.9), while the
root mean squared error is less than 0.3 in both cases, or less than 0.02 percent.
Under the baseline setting, the sampler using the structural parameterization
is slightly more accurate. The primary reason for this is that the RWMH is
restricted to draws which satisfy a positive definiteness condition for Σ. When
a draw does not have this property, it is rejected, reducing the efficiency of the
MH algorithm and hence the size of movements in the parameter space. The
structural parameterization operates on the Cholesky decomposition of Σ thus
negating the problem of drawing inadmissable parameterizations and allowing
for more effective moves.7

3.3 Assessing SMC: Importance of Tuning Parameters

To assess the importance of each of the algorithm parameters, we vary each
component while holding the rest of the hyperparameters at the baseline case.
This gives a rough “partial derivative” of each parameter’s contribution to the
effectiveness of the algorithm. In particular, we 1) consider the use of the proposal
distribution for the mutation steps as described in Herbst and Schorfheide (2014),
2) vary the number of particles to 1000 and 5000, 3) vary the number of blocks
and the mechanism for selecting them, 4) assess the trade-off between the number
of bridge distributions and intermediate Metropolis-Hastings steps while keeping
the number of likelihood evaluations fixed by setting (N�,M) = (50, 10), and
5) vary the � schedule by testing � = 1, 7. As before, we run 20 Monte Carlo
replications of the sampler for each configuration of hyperparameters and examine
the distribution of the estimates of ln p(Y ). Table I shows the results of our Monte
Carlo exercise. Each row after the first describes a deviation from the baseline
tuning parameters and shows the estimation performance of the algorithm under
that parameterization.

The first set of deviations we consider, line two in Table I, shows when (8)
7Since our identification scheme is the Cholesky decomposition, negative elements along the

diagonal should technically have zero density. However our prior density does not actually rule
out these values and thus treats the sign of a column of A and F as simply a normalization.
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TABLE I
SMC ESTIMATES OF ln p(Y ) FOR VAR(3): EFFECTS OF ALGORITHM TUNING

PARAMETERS

VAR Parameterization
SMC Tuning Parameters Reduced Form Structural

Avg Avg
Σprop Npart Nblocks Blocking N� M � Bias RMSE Bias RMSE
Cond 2000 3 Random 500 1 4 0.01 0.29 0.01 0.21
Un - - - - - - 0.01 1.37 −0.08 1.90
- 1000 - - - - - 0.01 0.39 0.02 0.47
- 5000 - - - - - 0.00 0.19 0.00 0.11
- - 1 - - - - 0.05 0.61 0.08 0.50
- - 2 - - - - 0.02 0.39 0.03 0.38
- - 2 (Φ,Σ) - - - 0.02 0.44 −0.32 3.95
- - 3 Row - - - 0.01 0.26 −0.02 0.75
- - 4 (Row,Σ) - - - 0.00 0.18 −0.11 1.51
- - - - 50 10 - 0.00 0.43 −0.02 1.33
- - - - - - 1 −0.27 1.87 −0.77 4.02
- - - - - - 7 0.00 0.41 0.01 0.37

Notes: The symbol “ - ” indicates inheritance of the parameter value from the baseline
parameterization given in the first line of the table. “Avg Bias” refers to mean error of
the estimate of ln p(Y ) and RMSE is the root mean squared error of the estimates. The
true value is 1791.9.

is used as the RWMH proposal variance rather the conditional approximation,
given by (9). This variation of the sampler most closely resembles the one used
for DSGE models by Herbst and Schorfheide (2014). Using the unconditional
variance estimate in the block RWMH leads to substantial deterioration in perfor-
mance of the sampler. While the average log marginal data density still reliably
estimates the true value, the standard deviation of the log MDD estimate across
the twenty simulations has increased markedly: relative to the baseline algorithm
the RMSE is about five times larger for the reduced-form parameterization and
almost ten times larger for the structural. One reason for this is that the VAR
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prior exhibits substantial correlation among key parameters. When this is not
accounted for, the sampler performs very poorly in the key early stages when the
prior dominates the likelihood contribution. To contextualize the efficiency gains
from our modification of the Herbst and Schorfheide (2014) proposal variance,
we find that the gains in accuracy from using the conditional approximation are
significantly greater than the gains from doubling the number of particles (or
even moving from 1000 to 5000 particles).

The second set of deviations we consider, rows 3 and 4 of Table I, shows the
effects of changing the quantity of particles. As one would expect, RMSEs fall as
the number of particles increases, roughly in line with the central limit theorems
in the previously mentioned literature.

The third set of deviations we consider, rows 5 through 9 of Table I, examines
the role of the blocking configurations of the parameter vector during the mutation
phase. First, we consider using a single block for all parameters and we can see
that failing to break the parameters into smaller blocks yields RMSEs twice as
large as our baseline configuration. Second, we allow for two blocks instead
of the baseline number, three. These two blocks are chosen either randomly or
by dividing the parameter vector in a “natural way,” with one block for Φ and
another for Σ. We also allow for a three block fixed scheme where the parameters
are grouped by the row in which they enter this VAR. For the samplers using
the reduced form parameterization, the effects of blocking is generally smaller.
Reducing the number of blocks to 2, but maintaining the random assignment
of parameters into blocks each stage, results in an increase in the RMSE to
0.39, relative to the baseline of 0.29, which has three blocks. Removing the
randomization every stage and partitioning the parameter in the “natural way”:
[Φ,Σ], results in a modest increase in the RMSE. For the sampler using the
structural parameterization, the quality of the marginal data density estimate
deteriorates much more when using a fixed block scheme. Under the natural
partitioning of � into Φ and Σ, the RMSE of the log marginal data density is
3.95, more then ten times the size when randomizing the blocks.

The fourth type of deviation we consider concerns the number of � stages
and mutation steps. Row 10 of Table I shows the results when the number of
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stagesN� is reduced to 50 but the number of intermediate MH steps is increased
to 10, thus keeping the total number of likelihood evaluations the same as under
the baseline configuration. We see that performance, measured in terms of RMSE
is, deteriorates under this setting relative to the baseline. In the case of structural
parameterization, the increase in RMSE is substantial. One reason for this is that
the drop in the number of intermediate stages causes the “difference” between
two subsequent distributions to increase substantially, in a way that the increased
MH steps cannot compensate for. Another reason is that even though the blocks
are randomized at each stage, the blocks are fixed within the sequence of mutation
MH steps at a given stage, so that even a few “bad” configurations of blocks can
deteriorate performance despite a large number of MH steps.

Finally, the fifth set of deviations we consider, the bottom two rows of Table
I, shed light on the role of the � schedule. When � = 1, the schedule is linear,
resulting in information being added too quickly. Only a few particles have
meaningful weight as we move from the prior to the early stages of the schedule.
This means that many particles at the end of the algorithm share a common
ancestor, and this dependence manifests itself in poor estimates. Indeed, this
configuration is the only one exhibiting meaningful bias. Moreover, the RMSE of
the log marginal data density estimate under the structual parameterization is 4.02
more than twice that of the reduced form estimate, suggesting that the discrepancy
between the prior and posterior is worse under the structural parameterization.
Adding information “too” slowly does not incur the same penalty, as the results
when � = 7, show. While the RMSEs of 0.41 and 0.37 are slightly higher
than under the baseline case, because of the relatively large differences in the
distributions later in the sampler, the mean error is still quite small. One reason
for this is that the shape of the posterior is largely determined when � is quite
small, so even large differences between � later in the schedule don’t result in
radically different distributions.

Overall, the SMC algorithm works well across a wide range of values for the
hyperparameters under both the reduced form and structural parameterizations
of the VAR.
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3.4 Accuracy of SMC for Irregular VAR Posteriors

In Section 4 we apply SMC to the estimation of MS-VARs. Sims et al. (2008)
stress that the posterior of MS-VARs “tends to be non-Gaussian” and may well
contain “multiple peaks.” Indeed, we find evidence of fat-tailed and multipeaked
posterior densities in our posterior draws, even after normalizing them. This leads
us to ask, does SMC deliver reliable performance for multipeaked posteriors? To
answer the question we conduct a Monte Carlo simulation on a bimodal target
density for which: 1) we know the integrating constant in closed-form, which
provides an absolute measure of success, 2) we can sample the target distribution
directly and then apply existing MDD estimation techniques, which provides
a relative measure of success, and 3) the distribution is similar to the SMC-
estimated posterior of the MS-VARs we consider in Section 4, which means our
simulation has empirical relevance.

When estimating the MDD with draws sampled directly from the target
distribution, we test the modified harmonic mean (MHM) method originally
considered in Geweke (1989) and the version that Sims et al. (2008) adapt for
better performance with non-Gaussian distributions.8 Since iid draws represent
an upper bound on the usefulness of MCMC draws9, if SMC performs similarly
to existing MDD estimators when we supply them with iid draws then we would
conclude that SMC performs as well as any MCMC algorithm ever could as long
as the researcher had to rely on currently available methods of estimating the
MDD from the MCMC output. Thus we implicitly compare SMC to MCMC.

We construct the bimodal target distribution as follows. Let � be the param-
eters of a model, p(�) be a prior over those parameters, p(Yi|�) be the model’s
likelihood function for observations Yi, and

p(Yi) = ∫Θ
p(�)p(Yi|�) .(17)

8Frühwirth-Schnatter (2004) documents the poor performance of Chib’s estimator for even
small mixture models, so we do not consider it here.

9In principle, it possible to use Monte Carlo to obtain more precise estimates relative to iid
draws (i.e., antithetic variates), in this environment it is impractical
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Let L take the form

L(Y1, Y2|�) = �p(Y2)p(Y1|�) + (1 − �)p(Y1)p(Y2|�)d� ,(18)

which we call a pseudo-likelihood.We take � as given and known, so we implicitly
condition on this value. We then consider the following pseudo-posterior for �

p(�|Y1, Y2) =
p(�)L(Y1, Y2|�)

∫Θ p(�)L(Y1, Y2|�)d�
.(19)

We can rewrite the denominator as

∫Θ
p(�)[�1p(Y2)p(Y1|�) + (1 − �1)p(Y1)p(Y2|�)]d�

= �1p(Y2)∫Θ
p(�)p(Y1|�)d� + (1 − �1)p(Y1)∫Θ

p(�)p(Y2|�)d�(20)

= p(Y1)p(Y2)(21)

and hence we know the integrating constant in closed-form as long as we know
p(Y1) and p(Y2). Some simple algebra (see Appendix C.1) reveals that p(�|Y1, Y2)
equals the distribution that would result from a mixture of posteriors with a
common prior of p(�) and likelihoods p(Y1|�) and p(Y2|�), hence we can easily
sample the distribution directly.10

Since we know their MDD in closed-form, we use reduced-form VARs as
the mixture components in our example. We generate 50 replications of pseudo-
posterior draws and MDD estimates via each of the methods mentioned above.
Table II shows the results of our simulation for a VAR(n = 3, p = 5), from which
we arrive at three main conclusions.

Firstly, the MHM extension developed by Sims et al. (2008) performs ex-
traordinarily well (at least compared to traditional MHM), even in the presence
of bimodality, when given iid draws from the target distribution. Even though
the SWZ estimator constructs its approximating density around one of the dis-
tribution’s modes, the approximating density has fat enough tails to reliably

10See Appendix C.2 for the simple direct sampling algorithm.
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TABLE II
ESTIMATES OF ln p(Y ) FOR MIXTURE OF VAR POSTERIORS UNDER

DIFFERENT METHODS OF POSTERIOR SAMPLING AND MDD ESTIMATION

Posterior Sampler MDD Estimator Avg Bias RMSE
SMC:Npart = 2000 SMC 0.122 0.421
SMC:Npart = 5000 SMC 0.133 0.337

Direct: 10,000 draws
MHM - SWZ 0.187 0.311
MHM 0.682 1.068

Single Mode
MHM - SWZ −0.812 0.812
MHM −0.829 0.829

Notes: VAR(n = 3, p = 5), true ln p(Y ) = 1725.289. Values are based on 50 replications.
“MHM" refers to the original implementation of the modified harmonic mean estimator
from Geweke (1989). “MHM - SWZ" refers to the adaptation of MHM proposed and
implemented in Sims et al. (2008). VAR algorithm settings: SMC sampler uses � = 4,
n� = 500,Nblocks = 8; and MHM estimate uses p = 0.9 for truncation.

incorporate information throughout the parameter space.
Secondly, and most central to our interests, SMC estimates the MDD as

well as SWZ when we give SWZ an i.i.d. sample of 10,000 draws, despite the
fact that SMC must simultaneously sample the posterior of a model whose
parameters are treated as unknown. Since researchers typically simulate posterior
draws using MCMC algorithms, as with the MS-VARs we estimate in the next
section, and since our simulation represents an upper bound on the performance
of the SWZ algorithm, we conclude that the SMC algorithm shows superior
performance in the presence of substantive multimodality. Furthermore, the
presence of substantive multimodality in posteriors gives us little reason for
concern when estimating a model with SMC.

Thirdly, bimodality rendersMDD estimation via theMHMmethod of Geweke
(1999) hopeless, as it fails even under large numbers of draws from the target
distribution. Since the average bias is in terms of units of ln p(Y ), we can interpret
these values as approximately percentage errors of p(Y ). Hence, for the VAR
simulation, the MHM estimator tends to overstate p(Y ) by more than 50% of its
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true value.
The extent to which multimodal target densities pose problems for MCMC

methods remains a subject of debate; a debate whose waters we do not care to
wade into any more deeply than necessary. However, we do find it worthwhile to
document the stakes of proper posterior sampling. The basic concern when using
an MCMC sampler with multimodal target distributions is that the sampler may
not mix properly in a reasonable amount of time, particularly when the single
chain relies on local moves via random walk-MH steps. In the worst-case scenario
the MCMC sampler never leaves a neighborhood around the mode nearest to
the point from which the algorithm initialized.11 The rows in Table II labeled
“Single Mode” show MDD estimates computed from just such a caricature of a
failed MCMC algorithms, i.e. the draws are simulated from only one of the two
modes. In such a situation the results are disastrous.

4. Application of Interest: Structural MS-VARs

While conceptually straightforward, just a cursory glance at Sims et al. (2008)
reveals that inference for MS-VARs is messy in practice. In this section we
revisit the empirical application of Sims et al. (2008) using SMC estimation and
alternative prior specifications. We will show that the use of an off-the-shelf prior,
common in the analysis of reduced-form VARs, significantly alters posterior
inference about the presence of structural changes to the macroeconomy.

11Celeux, Hurn, and Robert (2000) document degeneracies of this nature when posterior
sampling with simple MCMC for mixture models. However, Geweke (2007) shows that there
exist MCMC methods able to handle the known-a priori-symmetric multimodality of mixture
models. Frühwirth-Schnatter (2001) gives the details on effective MCMC methods for mixture
models. Unlike the examples in Celeux et al. (2000) and Geweke (2007), our results fromMS-VAR
estimation in the subsequent section suggest, in addition to the typical symmetric multimodality
which can be normalized away, the presence of asymmetric posterior multimodality. The target
density in the present section possesses that property by construction.
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4.1 The Model: Structural MS-VAR

We consider MS-VAR models of the form

y′tA(st) = x
′
tF (st) + "

′
tΞ(st)

−1, "t ∼ iid (0n, In)(22)

Ξ(st) = diag([�1(st),… , �n(st)])(23)

p(st|St−1, Yt−1, �, q) = qst,st−1(24)

qst=i,st−1=j = qi,j ∀i, j, t,(25)

where Ξ(st) is an n × n diagonal matrix, st is the joint state of the latent process
at time t, St−1 is the history of states up to and including t − 1, and Yt−1 is the
history of observations up to and including t − 1.

LetH be the total number of joint states in the latent process and let

A = {A(ℎ)}ℎ∈{1,…,H}, F = {F (ℎ)}ℎ∈{1,…,H}, Ξ = {Ξ(ℎ)}ℎ∈{1,…,H} .(26)

We then let � = {A, F ,Ξ}. Note that we use the set notation in (26) to collect
only the unique parameters in each set of matrices; nothing about our framework
so far assumes that all parameters of A(1) and A(2), or any other two states, are
unique. For example, one might restrict the regime-switching so that A(1) and
A(2) differ by only their last column, which is one specification that Sims and
Zha (2006) and Sims et al. (2008) consider. The state of the latent process at time
t may be determined by the joint realization of K independent Markov processes,
which determine the state of different sets of parameters. We will refer to the set
of parameters corresponding to only process k as �k. The notation st refers to the
joint state of all latent processes, while the notation skt refers to the state of only
process k.

The probability model for the data we described in (22)-(25) belongs to the
class of models considered in Sims et al. (2008) and, in particular, has the same
general form as their empirical application. Our only point of departure from
their model is that we do not restrict the parameters multiplying variable i in
equation j at each lag l to change only proportionally across regimes. We will
find that not imposing those restrictions allows the model to achieve superior
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data fit.
For ease of comparison with Sims et al. (2008), we assume that {A, F } and

{Ξ} follow independent regime-swi tching processes and thus �1 = {A, F } and
�2 = {Ξ}. Since {A, F } determine the conditional mean of yt and {Ξ} determines
the volatility of the structural shocks, we refer to the state of {A, F } at time t as smt
and the state of Ξ at time t as svt . Denote the number of regimes for {A, F } asHm

and the number of regimes for Ξ asHv. If a model hasHm = 2 andHv = 3, then
we refer to it using the shorthand 2m3v. Since we assume that the two processes
evolve independently, a 2m3v model has 6 joint states.

The MS-VAR has the conditional likelihood

p(yt|�, q, st,Yt−1) = (2�)n∕2| det(A(st)−1
′Ξ(st)−1A(st)−1)|−1∕2

× exp
{

−1
2
(y′tA(st) − x

′
tF (st)) Ξ(st)

2 (y′tA(st) − x
′
tF (st))

}

.
(27)

and the likelihood

p(yt|�, q, Yt−1) =
H
∑

ℎ=1
p(yt|�, q, st, Yt−1) p(st|st−1) .(28)

and

p(YT |�, q) =
T
∏

t=1
p(yt|�, q, Yt−1)(29)

To evaluate the likelihood one must filter the sequence of state probabilities in
(28). We filter the probabilities using the algorithms derived in Sims et al. (2008).

We estimate MS-VAR models with a variety of choices forHm andHv using
the data described in Section 3) and lag length (p = 5). For each choice of H ,
we estimate the model under four different priors for (A, F ). In each case, the
prior on {(A(k), F (k))}Hm

k=1 is identical and independent across k. We now provide
additional details on the construction of each prior.
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SWZ Prior. This is the prior used in Sims et al. (2008). For each state k, the
prior takes the form

a(k) ∼ (0, In ⊗H0)(30)

f (k)|a(k) ∼ (vec(S̄A(k)), In ⊗H+) ,(31)

where

S̄ =

[

In
0(n(p−1)+1)×n

]

.(32)

Here a(k) = vec(A(k)), f (k) = vec(F (k)) andH0,H+ are prior parameters. In
practice, the prior is implemented with dummy observations as described in Sims
and Zha (1998). The dummy observations depend on a few moments constructed
from the data, ȳ and �̄, and vector of hyperparameters,Λ = [�0, �1, �2, �3, �4, �5, �6],
that control the influence of different subsets of the dummy observations. The
standard implementation sets ȳ as the mean of the observations used to initial-
ize the lags of the VAR and �̄ as the standard deviations of the residuals from
univariate autoregressions for each data series, both of which we follow here.12

For this prior we set Λ identically to Sims et al. (2008) at �0 = 1.0, �1 = 1.0,
�2 = 1.0, �3 = 1.2, �4 = 0.1, �5 = 1.0, and �6 = 1.0 and we refer to this set of
values as ΛSWZ .

The prior has the desirable properties of invariance of density with respect to
orthogonal rotations of (A, F ) (see Rubio-Ramírez et al. (2010) for proof) and,
in constant-parameter VARs, accessibility of conditional posteriors that allow
Gibbs sampling via the algorithm in Waggoner and Zha (2003a).13 However, a
less desirable property is the structural prior’s strong shrinkage of A towards
zero. We find this property unreasonable since it implies Σ = ∞ at the modal
value of A.

Sims and Zha (1998) note that the prior for A in (41) is equivalent to what

12As has been common since Litterman (1986), we use six lags in the univariate autoregressions
from which we estimate �̄.

13A well known property of the SVAR’s likelihood is invariance with respect to orthogonal
rotations of (A, F ). It then seems reasonable that the prior density should have the same property.
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one would derive from beliefs about Σ = (AA′)−1 that had the inverse Wishart
distribution with n + 1 degrees of freedom and while also ignoring the Jacobian
term for the transformation from A→ Σ. The modal value of Σ = ∞ is, in fact,
a by-product of the ignored Jacobian term. In practice, one can interpret the
resulting beliefs about A as derived from an inverse Wishart distribution with 1
degree of a freedom, a value too low for the distribution to actually exist, since it
would imply unbounded density as Σ→∞. We address this shortcoming in the
next prior we consider.

Sims-Zha Reduced-Form-Based (RFB-SZ) Prior. Wederive a prior for (A, F )
by placing a prior distribution over the reduced-form dynamics, summarized
by Φ and Σ, then mapping to (A(k), F (k)) using equations (12) and (13) as dis-
cussed in Section 3. With n + 1 degrees of freedom for Σ, this is exactly the
prior that Sims and Zha (1998) note would likely give superior performance, but
which they could not use for computational reasons. With appropriate choices
of hyperparameters, the RFB prior differs from the SWZ prior only in that it
includes the Jacobian, which serves to recenter beliefs about A away from 0,
while preserving invariance to orthogonal rotations. Given A, the prior on F is
equivalent to what one would derive from the RFB prior.

RFB - Constant-Parameter (RFB-CP). The third prior we consider features
choices for Λ that are informed by the MDD of a constant-parameter VAR
(CP-VAR). When using the RFB prior we know the MDD for the CP-VAR in
closed form for any choice of the Λ, making it simple to understand a given
Λ’s the consequences for model fit. It turns out that ΛSWZ is a particularly poor
performing choice, which affects posterior model comparison. We do not fully
maximize the MDD of the constant-parameter VAR with respect to Λ because we
fear that the resulting prior would be too tight to allow time-varying features of the
MS-VAR to come through.14 Onemight think of our tighter VAR hyperparameters
as an alternative to the proportionality based shrinkage imposed in Sims and Zha
(2006) and Sims et al. (2008), but an alternative which is favored by the data.

14Indeed, we ran simulations in which excessive shrinkage towards “optimal”Λ for the CP-VAR
resulted in lower MS-VAR MDDs.
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We change ΛSWZ to have �0 = 0.4, �1 = 1.0, �2 = 1.0, �3 = 1.2, �4 = 1.0,
�5 = 3.0, and �6 = 1.0. These choices make three substantive changes to the
basic RFB prior. Note that for �i parameters, lower values imply tighter beliefs,
while for �i parameters, higher values imply tighter beliefs. First, we loosened the
prior on the constant term (�4 = 1.0 instead of 0.1). Second, beliefs are otherwise
generally tighter (�0 = 2.5 instead of 1.0 and �5 = 3.0 instead of 1.0). Third, we
increase the degrees of freedom of the inverse Wishart distribution to 7, as would
be standard for this model in the reduced-form analysis of VARs.15 We refer to
these hyperparameters as ΛCP

RFB - Constant Parameter, Population Mean (RFB-CP-PM). The dummy
observations used to construct the priors draw significant information from the
means of the observations that initialize the lagged data in the VAR, ȳ. The fourth
prior we consider uses ΛCP , but forms ȳ from the means over the entire sample
rather than from only the initial observations. On one hand, this does “use the data
twice” and thus violates tenets of strict Bayesian inference. On the other hand,
it speaks to the issue that shrinking towards the mean from one specific period
(the lagged data) may not be advisable in a setting where means are modelled as
potentially changing over time. Moreover, this is similar in spirit to the common
practice of choosing prior hyperparameters based on posterior information (i.e.,
the marginal data density).

Priors on Other Parameters. All the priors share common specifications for
the volatilities and transition regimes. For the volatilities, each p(�j(k)) indepen-
dent and identically distributed such that

�2j (k) ∼ (�̄j , �̄j)(33)

and we set �̄j = 1 and �̄j = 1 for all j and k, as in Sims et al. (2008). Additionally,
we normalize the first state to �j(1) = 1 for all j.

Priors over the transition probabilities qij for both the mean and shock regimes
are of the unrestricted Dirichlet form from Sims et al. (2008). For an n state

15See the Appendix for details on this point.
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process i, this distribution is parameterized by n hyperparameters, {�ij}nj=1 which
SWZ suggest eliciting by introspection about the persistence of each regime. For
every specification (regardless of the number of regimes), we set

�i,j = 5.667, i = j and �i,j = 1, i ≠ j.

For a two state process, this implies an average duration of a given regime of about
6.5 quarters. As the number of states increases, this expected length decreases.

4.1.1 Estimation Details

Under each prior, we estimate MS-VARs for Hm = 1, 2 and Hv = 1,… , 6
using the SMC algorithm described above. We set Npart = 2000, Nblocks =
8 (random) and M = 1, using the conditional variance given by the normal
approximation for the mutation step. We set the tempering schedule with � = 4
andN� = 2000.16 We estimate each model 20 times to assess the stability of the
sampler.

The SMC sampler was written in Fortran and the calculations were executed
on 12-core desktop with an Intel Xeon x5670 CPU. Estimation of a given model
takes between one and ten minutes, with likelihood evaluations parallelized across
the 12 cores. A Matlab version executing on the same machine roughly takes
between twenty minutes to six hours, depending on the number of states.

We could, in principle, also simulate from the posteriors using the sampler
proposed by Sims et al. (2008) for the Structural Prior and modify the Metropolis-
within-Gibbs stages of the sampler to accommodate the RFB prior. However, both
we and other researchers have found the MCMC estimation process cumbersome
and lengthy. Indeed, experimentation across models indicated difficulties with
finding the (a) posterior mode reliably making the batch estimation exercise
tedious. On a subset of models with the SWZ Prior, which we successfully
repeatedly sampled using MCMC, the SMC and MCMC posteriors more-or-less
coincided. The SMC posteriors were slightly wider than the MCMC ones, which
generally indicates a more thorough posterior exploration.

16For a few specifications, we setNpart = 4000 to increase estimation precision.
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TABLE III
COMPARISON OF LOG MDDS OF MS-VARS TO CONSTANT-PARAMETER

VARS

Prior
Model SWZ RFB-SZ RFB-CP RFB-CP-PM
Constant Parameter VAR 1759.41 1759.62 1770.47 1772.86
MS-VAR: Best - 1m3v-4v 1872.75 1877.13 1879.92 1882.59
MS-VAR: 2nd worst 1867.14 1873.03 1876.16 1878.73
MS-VAR: Worst - 2m1v 1844.55 1846.32 1852.51 1856.46

Notes: The best fitting MS-VAR is always either 1m3v or 1m4v.

4.2 Estimation Results and Model Comparison

From our estimation results we deduce four main findings. First, across all
priors and model-specifications, Markov-switching parameters offer large gains
in model fit compared to constant-parameter specifications, as was also found in
Sims and Zha (2006). Table III shows the point estimates of the log MDDs of a
constant parameter VAR and various MS-VARs estimated under each prior. For
all models the typical MDD gains exceed a staggering 100 log points.

Second, according to point estimates, the best fitting model under each prior
is a only-variances-switch model. One can see this point clearly from Figure 1,
which shows the means and standard deviations (across twenty simulations) of
the log MDDs from estimating each MS-VAR specification under each prior.17

Furthermore, regime-switching in structural shock variances is critical for data fit.
As is evident from Table III, the 2m1v model is the worst fitting of all MS-VAR
specifications by a significant margin regardless of which prior we use. These
findings are consistent with Sims and Zha (2006) and Sims et al. (2008) and
they form the foundation of their “good luck” narrative of the Great Moderation.
However, estimation with successively better fitting priors increases the fragility
of the conclusion that a only-variances-change model fits the data best. We return
to this point below.

17Table A-1, in the Appendix, contains the exact numerical values.
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FIGURE 1.—Model log MDDs Across Priors
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Notes: The figure shows the point estimate for the log MDD of each model
and under each prior (the thin lines). The shaded region shows ±1.96 times the
standard error around each point estimate. We omit the 1m1v and 2m1v because
they are the worst fitting models by significant margins.

Third, each successive prior gives higher MDDs for all regime-switching
models. This is important. This means that each change to the prior is first and
foremost favored by the data rather than any particular specification. Thus the
increasing posterior probability If, for example, we had formed a hierarchical
model in which we started with discrete, uniform prior beliefs over each of our
Λ vectors, then the our final results would be very similar to those of the top line
in Figure 1.18

Fourth, under successively better-performing priors the 2m models merit
increasing attention (and perform impressively well considering their number

18Giannone et al. (2013) estimate a constant-parameter VAR in which they form a hierarchical
prior for the “overall tightness” hyperparameter, �0.
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of free parameters). Table IV shows how the posterior probability of on 2m
regime changes conditional on each prior, along with the unconditional posterior
probability on all specifications for each prior. Under the SWZ Prior, there is
negligible probability on changes in themean parameters; that is, the 2mmodels.19

However these models garner nearly 50% of the posterior probability both for the
best-fitting prior and overall if one takes the model-selection interpretation that
we described in above. Furthermore, for the best-fitting prior the 2m3v and 1m3v
models are separated by margins well within the range of standard errors for the
MDD estimates. This finding contrasts with the results in Sims and Zha (2006)
and Sims et al. (2008). Recall that a key difference between our model and the
models in Sims and Zha (2006) and Sims et al. (2008) is that we do not impose
the additional restriction of only proportional switching across the coefficients
multiplying variable i in equation j. The concern expressed in Sims et al. (2008)
was that allowing all parameters to change would over-parameterize the model
and such models would be heavily penalized for their complexity in the MDD
calculation. Our results show that these fears are unwarranted.20

The fact that choices of Λ and ȳ matter substantially in both data fit and pos-
terior model probabilities lays bare the delicacy of prior selection for MS-VARs.
On the one hand, the dramatic increase in the dimension of the parameter space
increases the need for shrinkage. On the other hand, designing good shrinkage
schemes becomes more difficult when we estimate a model to discover time-
varying features of the data that we may know little about a priori. Since brief
episodes may display dynamics that we might consider unreasonable if they
occurred for the entire sample, when adapting a prior developed for estimating
constant parameter VARs to the estimation of MS-VARs we must take care to
ensure that our prior allows for such parameterizations. For example, explosive
VAR dynamics seem more reasonable a priori for MS-VARs than VARs since

19Relatedly, the SMC algorithm has more difficulty estimating the 2m model MDDs precisely
under the structural prior, as seen by the larger standard deviations likely owing to its inferior
data fit.

20We also find such restrictions undesirable on theoretical grounds. As is well-known, and
was pointed out particularly starkly in Benati and Surico (2009), all coefficients of the VAR
representation of a DSGE model should be expected to change if one changes the DSGE models’
policy rule parameters.
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TABLE IV
POSTERIOR MS-VAR PROBABILITIES OF 2M MODEL FOR EACH PRIOR

Prior P (2m|Prior, Y ) P (Prior|Y )
SWZ 0.04 0.00
RFB-SZ 0.12 0.00
RFB-CP 0.30 0.05
RFB-CP-PM 0.46 0.94

Notes: The second column gives the posterior probability of the 2m models, conditional
on the prior. The third column gives the posterior probability on all models for a given
particular prior.

they may approximate dynamics that occur for only brief periods.21 One might
interpret the proportionality restrictions imposed in Sims et al. (2008) as an
attempt at striking this balance. However, the MDDs we achieve without these
restrictions clearly show the suboptimality of the dogmatic shrinkage based on
proportionality.

It’s worth going into a bit more detail on how the prior can affect inference
in these kind of models. We focus on the extreme cases: the SWZ prior and the
RFB-CP-PM prior. Figure 2 plots kernel density estimates of the posterior for
A22(smt ) for 2m3v model under the RFB-CP-PM prior. In our model comparison
exercise, this model receives substantial probability, indicating a role for changing
mean dynamics, the economics of which we discuss in the next section. The
green line traces the posterior density for A22(smt ) when ℎm = 2, while the the
red line is the posterior density for A22(smt ) when ℎm = 1. The solid grey line is
the prior density of the RFB-CP-PM (which the same for both regimes), while
the grey dashed line is the prior density under the SWZ prior. It turns out that
centering A22 at zero (i.e., shrinking towards Σ = ∞) is, in fact, one key reason
for the different model rankings across prior choice. From the plot of A22 one
can see that the SWZ prior assigns nearly zero probability mass to the portion

21For a theoretical justification of this intuition, consider a DSGE model with a monetary
policy rule that evolves as in Davig and Leeper (2007).
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FIGURE 2.—Priors and Reduced Form Posterior on A22(smt )
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Notes: Figure shows density estimates for SWZ and RFB-CP-PM for elements
of A22(st) (the dashed and solid grey line, respectively) as well as the posterior
under the RFB-CP-PM prior for both ℎm = 1 (the red line) and ℎm = 2 (the green
line).

of the parameter space inhabited by what we call the flat Phillips Curve regime
(described in the next section), thus ruling out the presence of such a regime a
priori. Indeed, this shrinkage is so severe that when estimating the 2m3v model
under the SWZ prior, the model throws away the second regime for {A, F }, since
the prior density does not allow their values to move to locations in the parameter
space that most improve data fit.

Finally, it is, of course, difficult to know for certain that our posterior estimates
are correct. However, this difficulty is only more severe with the alternative
MCMC posterior samplers. We feel that the results in Section 3 leave us with
compelling reasons to trust our results in this section. Recall that we can execute
multiple independent runs of our algorithm and compare the precision of results.
Indeed, Table A-1 includes standard errors from independent runs of the algorithm
for each model, rather than from different subsets of draws along a single MCMC
chain. Since we initialize each run by an independent draw of initial particles,
there is no risk of the precision resulting from influential initial conditions, i.e.,
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it is highly unlikely that we would get similar estimates across runs by random
chance unless they were, in fact, near the true answer. Hence, we take the precision
of our estimates to reflect accuracy. Recall also that, SMC performs well in the
example based on mixtures in Section 3.4, which we take as evidence that the
multipeaked posteriors that other MS-VAR users have raised concerns about,
pose little danger for SMC.22

In the remainder of this section we focus on describing the important features
of the 2m3v model estimated under the RFB-CP-PM prior (the best fitting one),
which, as mentioned above, fits the data well and has not received much attention
in the literature, to the best of our knowledge. To be sure, our estimation exercise
indicates substantial weight should be placed on m1 models as well; these have
been studied before in, for example, Sims and Zha (2006).

4.3 Examining the 2m3v Model: Time-Series of Regimes and

Economic Interpretation

Figure 3 summarizes the estimated regime-occurrences for the 2m3v model.
The first plot shows the data, the second plot shows the probabilities of ℎv = 1
and ℎv = 2 with p(svt = 2) stacked on top of p(s

v
t = 1), and the third plot shows

the probability of being in regime ℎm = 1. We computed the probabilities at the
highest density parameter from the SMC sampler.

4.3.1 Time-Varying Volatilities

Turning to the shock volatility regimes, shown in the middle panel of 3,
one can see that a single regime prevailed from the mid-1980s to the end of
the sample and that same regime occurs in the late 1960s. Not surprisingly, the
regime with the largest shock standard deviations occurs during the mid-1970s
and early 1980s, similar to the 1m models. Echoing the main result of Sims and
Zha (2006) and Sims et al. (2008), our model interprets the Great Moderation

22Note that our posterior distributions for the MS-VAR parameters also show evidence of
irregularities and multipeakedness, corroborating the characterizations described in other papers.
From Figure 2 one can see that even after normalizing regime labels, the posterior density for
the values of A33(ℎm = 1) tend to exhibit multimodality. As we alluded to in Section 3.4, the
dangers that such irregularities pose for MCMC remains a subject a debate.
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FIGURE 3.—Observables and Regime Probabilities
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Notes: The figure shows the data used in estimation (top panel) together with the
smoothed posterior probabilities for the volatily regimes (middle panel) and the
conditional mean regimes (bottom panel).

as a once-and-for-all decrease in shock volatilities in line with a “good luck”
explanation. The “good luck” regime also prevailed during the late 1960s.

4.3.2 Time-Varying Means

From the second panel of Figure 3 one can see that the ℎm = 1 regime
dominated the mid-1960s as well as well as the late 1990s, with some marginally
likely occurrences in second half of the 1970s, second half of 1980s, and 2003.
The ℎm = 2 regime prevails for the remainder of the sample.

The key feature of both periods in which ℎm = 1 occurs with certainty is
that the output gap is closing while inflation and the nominal interest rate remain
relatively stable. Thus the model points to repeated episodes of diminished
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economic slack without significant upward pressure on inflation. While a 1m (or
constant coefficient DSGE) model would ascribe these outcomes to a particular
sequence of shock realizations (or perhaps volatility regimes), the 2mmodel finds
substantial shifts structural economic dynamics. Both explanations are equally
plausible, according to our posterior probabilities.

To further investigate this result, we concentrate on the joint dynamics of the
output gap and inflation under the two mean regimes. Specifically, we compute
estimates of the slope of the Phillips Curve, which we call �, under each regime.23

The left panel of Figure 4 shows the posterior of � under each regime.24 One
can see that the posterior estimates of � under ℎm = 1 (the red line) are centered
at 0, while under ℎm = 2 (the green line) the estimates are centered near 0.1.
Hence, we refer to ℎm = 1 as the flat Phillips Curve regime and point to one
interpretation our results as evidence of a periodic flattening of the Phillips Curve.
One can also see from the the plot that the ℎm = 1 estimate of � is similar–but
not identical–to the its prior. The structural prior is much more diffuse on the
object. It is flat over a wide range of possible values for �. The middle panel of 4
shows similar kernel density estimates for Φ22, the reduced-form weight given to
�t−1 when predicting �t. Under ℎm = 1, inflation exhibits random-walk behavior,
with Φ centered at 1, while the inflation is markedly less persistent when ℎm = 2.
Finally, density estimates for the reduced-form correlations of the innovations
to the output gap and inflation, �21 are shown in the right panel. Again we see a
marked difference between states ℎm = 1 and ℎm = 2.

23We compute � by first transforming {A, F } into the reduced-form parameters and then
summing the coefficients on lags of the output gap in the equation that predicts inflation. We have
also computed � as a ratio of the cumulative impulse responses over eight quarters of inflation
and the output gap to a monetary policy shock. The results from the second exercise are virtually
the same as the results shown in the paper.

24When we describe the features of a particular regime’s posterior, there is an issue about which
of a given particle’s parameter values represent which regime. In the statistics literature on mixture
models, which is a well-known annoyance and is referred to as the “label switching problem.” We
refer readers interested in the issue to Jasra, Holmes, and Stephens (2005)’s excellent description
and survey of solutions. We handle label switching by trying a variety of methods proposed in
the literature on mixture-models; all methods give similar results and Appendix B contains the
details.
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FIGURE 4.—Priors and Reduced Form Posterior
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Notes: Figure shows posterior density estimates under the RFB-CP-PM prior for
�, Φ22, and � for both ℎm = 1 (the red line) and ℎm = 2 (the green line). The
RFB-CP-PM and SWZ prior densities for these objects are also shown in the
solid and dashed grey lines, respectively.

4.4 Connection to Other Literature

Reduced form approaches have yielded nonlinearity in the Phillips curve. Stock
and Watson (2010) and many references therein document a nonlinear relation-
ship between the traditional gap measures and inflation. They show that the
strongest Phillips curve relationship occurs in recessions which is roughly consis-
tent with the finding here: that the relationship between inflation and economic
slack deteriorates during (some) periods of quickly diminishing slack.

One can also examine economic dynamics during the ℎm = 1 period in a fixed
coefficient structural general equilibrium model. That these periods represent a
structural change in economic dynamics is, in a sense, visible from the historical
decompositions implied by relatively rich NK-DSGE models, such as the model
of Smets and Wouters (2007). For example, the Smets and Wouters (2007) model
interprets the second half of the 1990s as a period in which the joint dynamics
of output growth and inflation are caused by a sequence of similarly sized and
negative “mark-up" shocks occurring for more than 5 years in a row. The “mark
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up” shocks in the Smets and Wouters (2007) model function largely as a time-
varying slope to the Phillips Curve. The persistence of these innovations suggests
a dimension of model misspecification and our results suggest that economic
dynamics may well have changed.

5. Conclusion

Led by Sims and Zha (2006) and Sims et al. (2008), MS-VARs have played
a prominent role the debate over whether or not any structural change to US
macroeconomic dynamics has occurred in the last 50 years. In this paper we have
shown that some small tweaks to recently-developed SMC algorithms allows us
to apply them to MS-VAR estimation. SMC delivers fast, reliable characterization
of posteriors and dramatically broadens the space of tractable priors. We use the
ease of SMC implementation under alternative priors to show that, relative to
the conclusions of Sims et al. (2008), the use of an off-the-shelf prior typically
applied to reduced-form VARs improves data fit and substantially alters posterior
beliefs about changes to economic dynamics. When using the reduced-form
prior, we find nearly 50% posterior weight on a model that features a periodically
flattening Phillips Curve, in addition to changing structural shock variances.

The results in our paper suggest that the choice of priors deserves careful
attention when working with densely-parameterized models, such as MS-VARs.
It may well be the case that appropriate priors for such models require us to depart
from previous methods that were chosen for either analytical or computational
tractability. Whether or not such departures are necessary is an empirical question,
but this paper shows that it is a question whose answer will most likely be found
by using SMC methods.
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A. VAR Priors

A.1 Reduced-Form Prior Parameterization

The standard conjugate prior for a VAR gives Inverse-Wishart beliefs about
Σ and Gaussian beliefs about Φ|Σ.

Σ ∼ (Ψ, d)(34)

vec(Φ)|Σ = (vec(Φ∗),Σ⊗Ω−1)(35)

where Ψ,d,Φ∗, and Ω are (matrices of) prior hyperparameters specified by the
econometrician. In practice, researchers typically implement VAR priors by
supplementing the data matrices Y and X with dummy observations Y ∗ and X∗.
The resulting posterior for Σ and Φ is identical under either approach as long as

Ω = X∗′X∗(36)

Φ∗ =
(

X∗′X∗)−1X∗′Y ∗(37)

Ψ =
(

Y ∗′Y ∗
)

−
(

Φ∗′ΩΦ∗)(38)

d = T ∗ − m ,(39)

with T ∗ and m the number of rows and columns of X∗.
Given the data and choices of prior hyperparameters, the MDD of the VAR

is given in closed form by the expression

p(Y ) = (2�)−T n∕2
(

|(X′X + Ω)|−n∕2

|Ω|−n∕2

)(

|S̃ + Ψ|−(T+d)∕2

|Ψ|−d∕2

)

×
(

2(T+d)n∕2

2dn∕2

)(

Γn((T + d)∕2)
Γn(d∕2)

)

.
(40)
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A.2 Structural Prior Parameterization

The reference prior of Sims and Zha (1998) for structural VARs, as described
in Rubio-Ramírez et al. (2010), takes the form

a ∼ (0, In ⊗H0)(41)

f |a ∼ (vec(S̄A), In ⊗H+) ,(42)

where

S̄ =

[

In
0(n(p−1)+1)×n

]

.(43)

and a = vec(A), f = vec(F ) andH0,H+ are prior parameters.

A.3 RFB Prior for Structural VAR Parameters

A.3.1 Prior Density for A

Our reduced-form-based prior for A is derived from the fact that, in the ab-
sence of changing shock variances, (AA′)−1 = Σ. As is standard in the analysis of
reduced-form VARs, we give Σ a density of the inverse-Wishart family (Ψ, �),
i.e.

p(Σ|Ψ, �) =
|Ψ|�∕2

2�n∕2Γn(�∕2)
|Σ|−(�+n+1)∕2 exp

{

−1
2
tr[Σ−1Ψ]

}

(44)

and then derive the implied density of A. Let the function g map a symmetric
positive definite matrix into the inverse of the transpose of its Cholesky decom-
position matrix. So

g(Σ) =
(

cℎol(Σ)−1
)′ = A(45)

g−1(A) = (AA′)−1 = Σ(46)
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We can then define a density directly over A as

ℎ(A) = p
(

g−1(A)
)

|J (A)|(47)

J (A) = dg−1(A).(48)

Note that g is one-to-one since the Cholesky decomposition, inverse, and trans-
pose each yields a unique matrix. The mapping will necessarily be onto as well,
as long as we restrict our interest to A matrices that are the Cholesky factors of
some Σ.

Applying results from Magnus and Neudecker (1988) we derive J (A) as
follows

d(AA′)−1

dA
=
(

d(AA′)−1

d(AA′)

)(

dAA′

dA

)

(49)

d(AA′)−1

d(AA′)
= −

(

(AA′)′
)−1 ⊗ (AA′)−1(50)

dAA′

dA
= 2Nn(A⊗ In)(51)

Nn =
1
2
(

In2 +Knn
)

(52)

where Knn is the commutation matrix between vec(A) and vec(A′). So we have

d(AA′)−1

dA
=
[

−
(

AA′
)−1 ⊗

(

AA′
)−1

]

× 2Nn
(

A⊗ In
)

(53)

=
[

−
(

AA′
)

⊗
(

AA′
)]−1 × 2Nn

(

A⊗ In
)

(54)

Now accounting for the fact that Σ and A each have only n(n + 1)∕2 unique
elements, we derive

J (A) = D+
n,Σ

(

d(AA′)−1

dA

)

MA(55)

whereMA is such that

MAvecℎ(A) = vec(A) .(56)
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Summing up we have

ℎ(A) = p
(

(AA′)−1
)

|

|

|

|

|

det
(

D+
n,Σ

(

d(AA′)−1

dA

)

MA

)

|

|

|

|

|

(57)

where d(AA′)−1∕dA is given in (54).

A.3.2 Prior Density for F

The reduced-form parameters on lagged coefficients of the VAR have density

p(Φ|Σ) = (2�)−kn∕2|Σ⊗Ω−1|−1∕2 exp
{

−1
2
tr[Σ−1(Φ − Φ∗)′Ω(Φ − Φ∗)]

}

.

The mapping of reduced-form to structural parameters is given by

g(Φ|A) = ΦA = F(58)

g−1(F |A) = FA−1 .(59)

Hence the density of F |A will be given by

ℎ(F |A) = p(g−1(F |A)) |J |(60)

where

J = dFA−1

dF
=
dImFA−1

dF
(61)

= (A−1)′ ⊗ Im(62)

Summing up we have

ℎ(F |A) = p
(

FA−1
)

|

|

|

|

|

det
(

dFA−1

dF

)

|

|

|

|

|

(63)

and d(FA−1)∕dF is given in (63).
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A.4 Relationship Between RFB and Structural Priors

It turns out that priors for F |A described in (42) and (64) are equivalent for
H+ = Ω−1. Thus, when moving back and forth between the RFB prior and the
structural prior the only inherent difference is the inclusion of the Jacobian term
in the prior for A.

A.5 Details for the Minnesota Prior

The reduced-form based prior is a Minnesota-style prior centered at a random
walk. The multivariate-normal-inverse-Wishart density parameterization is set
via dummy-observations following closely the procedure in Sims and Zha (1998).
Their approach requires three sets of hyperparameters ȳ, �̄, and �.

Λ = [�0, �1, �2, �3, �4, �5, �6](64)

The first parameter �0 controls the overall tightness of the prior. The parameter
�1 functions similarly to lambda0 but it does not affect beliefs about the constant
term. The parameter �2 should always be set to 1 in this framework. The parameter
�3 shrinks the prior for the own lags so that prior standard deviation on lag l
shrinks by l−�3 . The parameter �4 controls tightness of beliefs on the constant
term in the VAR. The parameter �5 controls what is known as the “sums-of-
coefficients” dummy. Higher values give more weight to the view that, if an
element of the observables has been near its mean ȳi for sometime, ȳi will be a
good forecast for that observable, regardless of the values of other observables.
This induces correlations between “own” lags of Φ. Finally, �6 controls the
so-called “co-persistence” dummy observations. The observations are similar
to the “sums-of-coefficients”, but operate jointly on the observables, inducing
correlations among columns of Φ.

B. Normalization in the MS-VAR

The MS-VAR posterior density is invariant to sign changes on VAR equations
and state labeling. To interpret our results economically we thus have to perform
normalization in both of these dimensions.
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For each state of {A, F }, we first normalize each column of theA((ℎm), F (ℎm))
system by sign, forcing nonnegativity of A(ℎm)’s diagonal elements. When we
change the sign of the Aii element to satisfy nonnegativity, we also change the
sign of all elements in the ith column of (A(ℎm), F (ℎm)). With the Cholesky iden-
tification employed in this paper, this method of sign-normalization implements
the “likelihood-preserving” normalization of Waggoner and Zha (2003b).

After normalizing signs, we assign regime labels via an ordering by the size
of a particular coefficient in {A, F } that most reduces the multimodality in the
posterior densities of parameter values. In the 2m models we use the A22 element
to assign regime labels. Assigning labels to the volatility regimes works basically
the same way, where we order on �2.

We have also implemented a version of the algorithm described in Stephens
(2000) for clustering inference. This algorithm seeks to minimize the the expected
loss from reporting a sequence of state probabilitiesQ(�), when the loss function
is the Kullback-Leibler divergence ofQ(�) from the true state probabilities, P (�).
Hence, the algorithm selects state labels using a rule that has a reasonable decision
theoretic foundation. A similar approach used in the population genetics literature
is that of Jakobsson and Rosenberg (2007), who minimize a different notion of
average distance between Q(�) across draws. Both approaches give very similar
results to the posteriors reported in the text.

C. Bimodal Example

C.1 Equivalence of “Pseudo-Posterior” and Mixture of Posteriors

Consider the mixture of posteriors

p̃(�|Y1, Y2) = �1

(

p(�)p(Y1|�)
p(Y1)

)

+ (1 − �1)
(

p(�)p(Y2|�)
p(Y2)

)

.(65)
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We can rewrite the mixture as

p̃(�|Y1, Y2) =
p(Y2)�1p(�)p(Y1|�) + p(Y1)(1 − �1)p(�)p(Y2|�)

p(Y1)p(Y2)
(66)

=
p(�)[�1p(Y2)p(Y1|�) + (1 − �1)p(Y1)p(Y2|�)]

p(Y1)p(Y2)
,(67)

which matches (19).

C.2 Direct Sampler for Mixture of Posteriors

To generate nsim draws, execute:

Algorithm 3: Direct Sampler for Mixture of Posteriors

for i = 1,… , nsim do

1. Draw latent state si according to

p(si = 1) = �

p(si = 2) = 1 − �

2. Draw Σi|si,Φi, Ysi , which is a draw from p(Σi|Φi, Ysi). Under the conjugate
prior this is simply p(Σi|Ysi).

3. Draw Φi|si,Σi, Ysi , which is a draw from p(Φi|Σi, Ysi).

end
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D. Tables

TABLE A-1
SMC ESTIMATES OF log(MDD) FOR MARKOV-SWITCHING VAR(n = 3, p = 5)

MODELS.

Prior
SWZ RFB RFB-CP RFB-CP-PM

Model log(MDD) (S.E.) log(MDD) (S.E.) log(MDD) (S.E.) log(MDD) (S.E.)
1m 1v 1759.41 (0.08) 1759.62 (0.10) 1770.47 (0.10) 1772.86 (0.08)
1m 2v 1869.59 (0.13) 1873.38 (0.14) 1877.19 (0.11) 1879.95 (0.12)
1m 3v 1872.75 (0.15) 1876.78 (0.18) 1879.92 (0.19) 1882.59 (0.18)
1m 4v 1872.70 (0.22) 1877.13 (0.17) 1879.49 (0.24) 1882.03 (0.32)
1m 5v 1871.42 (0.25) 1876.03 (0.30) 1878.10 (0.46) 1880.74 (0.44)
1m 6v 1869.67 (0.44) 1874.34 (0.58) 1876.16 (0.64) 1878.73 (0.56)
2m 1v 1844.55 (2.30) 1846.32 (1.75) 1852.51 (0.33) 1856.46 (0.44)
2m 2v 1867.14 (0.40) 1873.03 (0.67) 1877.62 (0.29) 1881.30 (0.27)
2m 3v 1869.53 (0.59) 1874.91 (0.85) 1879.16 (0.45) 1882.44 (0.56)
2m 4v 1869.58 (0.60) 1875.17 (0.66) 1878.42 (0.56) 1881.54 (0.65)
2m 5v 1868.11 (0.64) 1873.59 (0.86) 1876.66 (0.61) 1880.07 (1.03)

Notes: log(p(Y )) estimates are means from 20 independent runs of the algorithm for each
model, from which we also compute standard errors, given in italics. The values for the
SMC algorithm hyperparameters areNpart = 2000, � = 4,Nblocks varies across models
to keep about 10 parameters per block,N� = 2000, andM = 1. The hyperparameters
we choose give stable estimates of the log(MDD) across multiple runs of the algorithm
on the 2v2m model.
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