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1 Introduction

Do interbank markets help to stabilize the banking system by providing liq-
uidity efficiently? Or do they pose a threat to financial stability by propagat-
ing shocks through the network, thereby increasing the risk that participating
banks become distressed? This paper provides empirical evidence based on
proprietary interbank and bank distress data paired with innovative econo-
metric methods borrowed from spatial science. We observe bilateral lending
and borrowing exposures of virtually all banks active in the German inter-
bank market and estimate risk as the probability of distress (PD) of bank i
at time t using a Bayesian spatial probit model. This method permits us to
treat the matrix of interbank exposures as a source of contagion reflected by
a so-called spatial autocorrelation parameter, and disentangle its effect on
bank i’s PD from that of the financial health of neighbours in the network
and own network centrality.

Theoretical studies show that the contagion potential of interbank mar-
kets depends crucially on the structure of the network and that it is generally
larger for incomplete networks (Allen and Gale, 2000)1. The model of Allen,
Carletti, and Gale (2009) illustrates the fragility of these markets if banks
do not have sufficient possibilities to hedge counterparty-specific and aggre-
gate liquidity shocks, which may justify interventions by a central planner to
avoid contagion of distress. Craig and von Peter (2010) show that the Ger-
man banking market is characterized by two tiers, i.e. a few money centre
banks which intermediate funds among many periphery banks. Therefore,
contagion potential may exist and connections to distressed banks could also
increase the risk of connected banks themselves. But Castiglionesi and Wag-
ner (2013) show that bilateral interbank relations in the form of insurance
can generate socially optimal outcomes in terms of liquidity provision if they
occur through direct transfer rather than renumerated credit lines. In a tiered
banking system like the German one, existing direct ties between periphery
banks may serve exactly as such an efficient insurance mechanism. Therefore,
it remains an empirical question whether interbank connectivity increases or
mitigates the probability of distress of individual banks.

The empirical literature on interbank markets’ contagion potential is grow-
ing rapidly. One strand of literature infers interbank exposures from payment

1Allen and Gale compare two canonical network structures: a "complete" network, in which all banks
lend to and borrow from all other banks, and an "incomplete" network, in which each bank borrows from
only one neighbor and lends to only one other neighbor.
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system data by matching credited flows of funds with debited ones plus inter-
est (see Furfine, 2000, 2002, 2003). Upper (2011) provides a comprehensive
review of another strand of literature, which relies on simulated bilateral
interbank exposures and possible risks of contagion. He concludes that simu-
lation exercises are rather sensitive to the assumptions how contagion occurs.
In addition, the method to distribute aggregate interbank positions of banks
to bilateral exposures tends to overstate the potential for contagion as shown
by a comparison between observed and imputed interbank market data in
Mistrulli (2011).

The first contribution of this paper is to use interbank exposures that we
observe for the entire German banking system from the large credit register of
the central bank from 2000 until 2006 (Craig and von Peter, 2010). Evidence
on this large and important banking system is so far only indirectly available
based on aggregate interbank activity data (Upper and Worms, 2004).

The second contribution of this paper is the approach to explain the link
between interbank market exposures and bank risk. Existing studies usually
face two major challenges: unobservable bank distress and the inherent cross-
sectional dependence of risk due to the connections of banks i = 1, ..., N in
the interbank network. For instance, Dinger and von Hagen (2009) assess the
effect of aggregate net interbank loans in transition economies on bank risk
as measured by loan-loss provisions, non-performing loans, and net charge-
offs relative to equity. They carefully control for the possible endogeneity
of net interbank assets and find that long-term net exposures in interbank
markets reduce the risk of banks. However, the consideration of aggregate net
interbank lending precludes any inference on possible effects of the network
position of counterparties and thus the effect of their respective riskiness
on the lending bank’s stability. In this regard, Liedorp, Medema, Koetter,
Koning, and van Lelyveld (2010) investigate the effect of connected banks’
risk profiles for the Dutch banking system based on interbank exposures
imputed from the large credit register of the Dutch Central Bank. They find
hardly any relationship between risk-drivers of banks connected via interbank
markets on individual bank risk.

A first problem in interpreting these results is the measurement of risk.
Frequently used accounting-based measures are by definition backward look-
ing and inevitably prone to endogeneity concerns. Market-based measures, in
turn, are only available for a small fraction of banks, even in banking indus-
tries of developed economies. We use instead regulatory records of distressed
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states of banks. Distress is a situation where "an institution’s existence will
be endangered [. . .] without support measures" (Deutsche Bundesbank,
2007, p. 75). The probability of distress (PD) is thus exogenous to the bank
because it is the regulator who defines distress events, often based on legal
rules laid down in the banking act ("Kreditwesengesetz").2

The second problem is of a methodological nature. Exposures in the in-
terbank network imply cross-sectional dependence among banks’ risks borne
out by their network connectivity. Akin to autocorrelation in a time-series
setting, the PD of i, denoted as PDi, is likely not independent of the PD
of connected peers, PDj for j 6= i. The basic approach in Liedorp et al.
(2010) to specify risk determinants of all N banks except i, weighted by the
exposure between the former and the latter to each other, is a first step to
account for potential spill-overs (Anselin, 1988). We follow-up on this idea to
treat the matrix of interbank exposures as a weight matrix very much in the
vein of how geographic distances are treated in spatial econometrics. How-
ever, we advance by using recent spatial estimation methods that are needed
to obtain unbiased parameters in the presence of spatial and serial correla-
tion (Elhorst, 2008). Specifically, we adapt a Bayesian probit framework by
Albert and Chib (1993) and Smith and LeSage (2004) to explain bank i’s
PD as a function of its own historic bank-specific characteristics Xit−1 as
well as all other banks’ risk Xjt−1, j 6= i, that are weighted by connectivity.
Connectivity is measured by the matrix of bilateral exposures of all N banks
excluding the bank i itself, which we call W . In addition, we allow the error
terms to be dependent across banks conditional on their distance’ from each
other in interbank markets. This distance thus reflects directly each bank’s
position in the network. It is captured by a "spatial" autocorrelation term ρ.
The latter gauges the dependence of PD’s across banks due to the existence
and intensity of interbank exposures and ensures the consistent estimation
of remaining parameters.

We find that connections with peers in the German interbank market in-
fluence the idiosyncratic risk of banks significantly through two channels.
The first concerns the financial profile of banks weighted with their position
in the interbank network. Aggregate sample results highlight that better
capitalized peers that are managed efficiently and tend to write down losses
on security and loan portfolios promptly enhance the stability of connected

2A number of studies on German banks use similar data to analyse, for example, moral hazard impli-
cations of bank bailouts (Dam and Koetter, 2012).
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banks. Separate estimations by banking groups highlight however that sig-
nificant differences exist across banking pillars regarding both the magnitude
and the significance of specific aspects of CAMEL financial profiles. The sec-
ond channel concerns autocorrelated errors in the cross-section of interbank
exposures. For the aggregate sample this autocorrelation term is significantly
negative, indicating that the probability of distress is lower if connected peers
in the interbank market experienced distress. We interpret this result as a
possible indication of too-many-to-fail mechanics at work since a frequent
distress event are capital injections. These may be less likely if many insti-
tutions already had to be bailed out. However, this finding is tempered by
the fact that the result is only driven by the group of small savings banks.
Insurance schemes in the savings bank sector are regional and thus smaller
as well as potentially quicker depleted compared to the to remaining banking
sectors. However, given the unobservability of insurance fund capitalization
this interpretation remains tentative.

The remainder of this paper is structured as follows. In Section 2, we
introduce the econometric model. The data on bank distress, interbank ex-
posures, and bank-specific controls is presented in Section 3. We discuss the
results in Section 4 and conclude in Section 5.

2 Econometric model

We observe an exposure network neighborhood of a bank and utilize this
information in two ways. The first one is direct, using the observed variables
of banks within the neighborhood of the bank. The second way is indirect by
imposing structure upon the unobservable error terms of the system of bank
observations. With the first approach, we directly measure variables that
affect a bank as well as the financial profiles of banks to which it is exposed
to. The likelihood that a bank i is distressed at time t is described on the
basis of a probit model. We use an N×N neighborhood matrix of exposures
at time t, denoted as Wt, to weight the observed variables measuring other
banks’ health in the contemporaneous system, where Wt has entries equal to
zero on the main diagonal. Thus, if Xit is a row vector of observed variables
that include measures of the bank’s health, we also include WtXt in the
probit equation that account for banks in bank i’s ”neighborhood", where
Xt = (X

′

1, X
′

2, . . . , X
′

N)
′ is the N×K matrix of explanatory variables at time

t. If only banks in the immediate exposure neighborhood are included in
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this set of variables, and Zjt is a row vector measuring the relevant variables
through which a neighboring bank could affect the failure probability of a
bank, then the variables in a probit would also include WtZt where Zt is a
matrix of the stacked Zjt. The format of the matrix Zt is N ×K reflecting
that each bank has up to N neighbors, and each of these neighbors has
K variables describing its financial profile. We also measured the second
(and higher) order effects of the network of exposures recursively through
the variables WtWtZt. As an example, banks which have distance 2 from a
bank in the network affect neighbors of this bank which again influence the
risk-characteristics of the bank under consideration.

This approach of modelling distress is captured by the probit estimating
equation Pr(Failureit) = Φ(yit − eit),where Φ(•) is the cumulative of the
standard normal distribution and

yit = Xit−1β +Wit−1Zt−1γ + eit. (1)

Note that we use the observations at time t−1 to explain bank distress at time
t. Consequently, the matrix Wit−1Zt−1 describes the impact of the direct
neighbors of each bank. Equation (1) picks up the line which corresponds to
the bank i. The error term, eit, is assumed to be distributed as standard
normal. Whereas we do not observe yit itself, we do observe bank distress
whenever yit > 0.

Observation of W also enables us to measure network positions directly.
This includes measures of the bank nodes with respect to their centrality
within the weighted exposure network and the number of links that are re-
ported by each node. Roughly speaking, a bank is considered to be central
in the network if it has strong links to other banks which themselves have a
central position. Consequently, the concept of centrality is a recursive one.
The usage of weights in the definition implies that a bank becomes more
central if the links to other banks having a high centrality are stronger, ie
have a higher weight. There are a number of centrality measures available
for use in a network. For this paper, we use the "Bonacich centrality" mea-
sure, which is an eigenvalue based centrality measure. We wish to distinguish
the network centrality effects from the effects of the unobserved variables of
close-by banks. Bonacich centrality is defined as the solution to

cit(α, δ) =
N∑
j=1

(α− δcjt)Wijt, (2)
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where cit is the centrality measure for node i andWt is the weighting matrix.
The Bonacich centrality measure has a normalization parameter, α, and a free
parameter, δ, that can vary between the reciprocal of the highest eigenvalue
of Wt and its negative. The normalization parameter here is conventionally
set so that the norm of all of the centrality parameters is equal to the square
root of the size of the network. A higher value of Bonacich centrality indicates
a bank that is more central in the network. The possible values of δ can be
interpreted as the weight that is placed on the centrality of the bank’s near
neighbors. We report the coefficients on a centrality measure with δ set to
a value of .999 1

λ1
, where λ1 is the highest eigenvalue of Wt, and because the

Bonacich is undefined at this value, we chose a value arbitrarily close. Other
values of δ were tried with little change in the results. When the measure δ
gets close to 1

λ1
it becomes similar to other eigenvalue centrality measures

such as the Page index. When δ is zero, then the Bonacich becomes a link
measure of centrality which places a neutral weight on the centrality of close
neighbors and is equivalent to a weighed measure of the direct links that the
node is exposed to. The measure reported here places the largest weight
on the centrality of a central node’s near neighbors, a measure that we feel
relates to the reality of the quality of information flows and possible contagion
within the interbank system, where centrally placed nodes are more likely to
transmit information to other centrally placed nodes.

In addition to directly measured covariates of the exposed to banks, we
also look at the effect of unobserved characteristics of such banks on the
distress probability. The specification of the model is as in equation (1)
except that a random bank-specific effects term is added. In this we closely
follow the structure of Smith and LeSage (2004). We observe only whether
yit is greater than 0 or not (that is, we observe whether the bank is distressed
or not) along with observable variables Xit,WitZt, andW , an average matrix
of exposures which is explained below, in estimating the parameter vectors
β, γ, and ρ. In other words,

yit = Xit−1β +Wit−1Zt−1γ + θi + eit, (3)

where yit is the dependent variable, i.e. the indicator of distress for bank i in
period t, and the parameter θi is an observed random effect that is assumed
constant across time. This random effect has its own structure, which is
related to the matrix of exposures. In vector notation,

θ = ρWθ + u, (4)
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where the parameter ρ represents a first-order spatial autoregressive param-
eter, θ = (θ1, θ2, . . . , θN)

′ and u is a N × 1 disturbance term, which is
assumed to be normally distributed, u v N (0, σ2uIN). Equation (4) identi-
fies a random effect in the non-linear context where the dependent variable
can take values of only 0 or 1. It should be noted that the equations (3) and
(4) include two different weighting matrices, the time-varying matrixWt and
and the average matrix W , which is constant. The matrices Wt are derived
from the bilateral exposures which change over time.

The dynamic evolution of the bank holding companies presents an obvious
challenge to the construction of the elements wij of the matrix W . The
reason is that the nodes i and j can change over time. We tried several
aggregation schemes, all of which face several constraints.

First, because we measure bank distress with a limited dependent variable,
we can not easily measure a residual eit. This means that it is difficult in
practice to identify a system where W is block diagonal where each block
represents a separate time period and a separate network.

Second, the dynamics from the change in the nodes is largely due to
mergers, exits, and to a lesser extent, entries of banks into the German
market. A weighting matrix must take into account the fact that some of
the weights only last as long as the exposed-to bank survives.

Our solution to this problem is to construct the matrixW in the following
way: each entry wij represents the average exposure of bank i to bank j across
time. The average is computed only taking into account those banks j to
which bank i has a positive (i.e. a non-zero) exposure for at least some time
within our sample period. Thus,

wij =

∑
j∈samplewijt

#years(j ∈ sample)
. (5)

For those banks that did not survive the entire sample, the average exposure
of bank i to this non-surviving bank j, wij is weighted only by those periods
for which the bank was in existence. For example, if the bank j only survived
for the initial three periods within our sample, then the average exposure is
the sum of the exposures divided by three. The effect of this is to focus
attention on regions of exposure which include unobserved characteristics of
banks that exit as well as those that survive. After the wij are computed,
they are normalized so that their sum over the exposures for node, i is one:

wij =
wij∑
j wij

. (6)
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Given this structure, we estimate our parameters using the Bayesian methods
proposed by Smith and LeSage (2004) for use in spatial settings because it
has better small sample properties, appropriate to our problem. Alternatively
we could have tried simple maximum likelihood methods although these can
create difficult computational problems with convergence. In this model,
we rewrite equation (4) so that the individual effect is expressed entirely in
terms of the normal draw, uit. If we define Bρ = I − ρW then θ = B−1ρ u so
that the θ is drawn from a distribution conditioned on ρ and σ2u as

θ|ρ, σ2u v N (0, σ2u(B
′
ρBρ)

−1).

Finally, following Smith and LeSage, we also assume that the error term
for eit is distributed as normal with a heteroskadastic variance, viI, and 0
cross covariances. Also following Smith and LeSage, we use the following
diffuse priors for the parameters: β and γ have normal priors centered on
0 with variance of 1012(I), σ2 and each of the variances, vi are given the
conjugate inverse gamma priors Geweke (2003), and ρ is given a uniform
prior that varies between 1

λmax
and 1

λmin
, where the λ are the largest and

smallest eigenvalues associated with weighting matrix W . As mentioned
above, we use these methods because of their good small sample properties
and also because the likelihood functions can be difficult to compute under
this structure. We compute the statistics about the posterior distributions
using classic Bayesian Markov Chain Monte Carlo (MCMC) methods.

3 Institutional background and data

3.1 Bank distress

Distress events are systematically recorded by the German central bank,
Deutsche Bundesbank, because they can jeopardize the existence of the bank
as a going concern. Distress events reflect risk that is estimated regularly with
a hazard rate model developed by Porath (2006) and reported annually in
the financial stability report of the Bundesbank since 2004.

Six events that are, by and large, drawn from the German Banking Act
("Kreditwesengesetz, KWG") constitute distress (see also Kick and Koetter,
2007). The first three are early indications of potential future problems: an-
nual operating profit contractions in excess of 25 percent, losses of 25 percent
of regulatory capital or above requiring a notification of the regulator accord-
ing to §24(1) KWG, and general notifications by banks that the existence of
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the bank might be at risk in line with §29(3) KWG.
The next distress category are capital injections received by banks from

sector-specific insurance funds. Note that it is neither the central bank nor
the government that rescues banks directly in our sample. In Germany, the
Federal Financial Supervisory Authority ("Bundesanstalt für Finanzdienst-
leistungsaufsicht, BaFin") is responsible for prudential supervision. It con-
ducts the ongoing supervision together with the Bundesbank. But ultimately
the BaFin has the mandate to, for example, revoke banking charters. In ad-
dition, the auditors of the three banking sectors in Germany, commercial,
savings, and co-operative banks, are closely involved to identify potential
hazards to their member banks. It is often the insurance fund of e.g. savings
and cooperative banks that decides on grounds of auditor reports that capital
preservation measures are necessary to keep a member afloat.

As an alternative, these insurance funds may order a bank to engage in a
restructuring merger, which constitutes the fifth event recorded by the Bun-
desbank as distress. Note that it is not the supervisory authorities, which
arrange mergers or other resolution efforts. It is rather the insurance scheme
of banks themselves aiming to resolve financial distress in this way. Pruden-
tial supervisors may require an extraordinary audit and demand the bank
to present scheduled actions to heal its financial problems though. Finally,
the BaFin can revoke charters by a moratorium if the bank fails to provide
a convincing strategy, which did not happen during our sample period.

Table 1 shows the frequency distribution of distress over time. The data
comprise bank holding companies from 2001 to 2006 from the three so-called
’pillars’ in the German banking industry: private-owned commercial banks,
government-owned savings banks, and mutually-owned cooperative banks.

On average, 3.8% of all these universal banks experienced a distress event.
Distress occurred almost exclusively among smaller banks during this period.3
Note that we observe distress at the level of single banking entities. In
contrast, we observe interbank market exposures at the level of bank holding
companies. Therefore, we show in Table 1 the evolution of observations
for the latter entities, which are also the unit of analysis in this study. The
number of bank holding companies is only slightly smaller compared to that of
single entities, corroborating the well-known structure of the German banking
market that is characterized by the presence of many local, relatively small

3Note that each banking pillar contains also large institutions, either the big banks in the commercial
pillar or head institutions like Landesbanken and Central Cooperatives in the other two pillars.
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Table 1: Observations and distress events over time and banking group
Year Commercials Savings Cooperatives All

N Distressed N Distressed N Distressed N Distressed
2001 126 8 444 6 1,077 86 1,647 100
2002 125 14 450 6 1,090 72 1,665 92
2003 118 4 446 8 1,131 49 1,695 61
2004 116 3 447 9 1,150 46 1,713 58
2005 111 5 453 9 1,157 26 1,721 40
2006 113 7 454 7 1,151 24 1,718 38
Total 709 41 2,694 45 6,756 303 10,159 389

Notes: The table shows the frequency distribution of distress events aggregated to the bank
holding company level. Distress events are defined according to Deutsche Bundesbank (2007).
Distress comprises six events based on the German Banking Act ("Kreditwesengesetz, KWG"):
annual operating profit contractions in excess of 25 percent, losses of 25 percent of regulatory
capital or above requiring a notification of the regulator according to paragraph 24(1) KWG,
general notifications by banks that the existence of the bank might be at risk in line with paragraph
29(3) KWG, capital injections from sector-specific insurance funds, restructuring mergers, and
moratoria.

banks (see also IMF, 2011).

3.2 Interbank exposures to construct Wt and W

To assemble the data on interbank exposures, we closely follow Craig and von
Peter (2010). Bilateral interbank credit and liabilities wij between all banks
i = 1, ..., N are observed from the large credit register of the Bundesbank
("Millionenkreditevidenz"). Description of these data can be found in Craig
and von Peter (2010). Exposures equal or larger than 1.5 million euro are
observed for individual bank holding companies ("Konzerne") and banks
that are not in bank holding companies. Exposures of individual banks
within bank holding companies are only reported for the entire bank holding
company. The same data include definitions of the bank holding companies
which change over time which also complicated the computation ofW above.
We report some summary statistics using the charts in Figure 1 and Figure 2
for the network of exposures matrix,W. For the interpretation of these figures
it is relevant to point out that the network described by W is more dense
as the networks described by the individual matrices Wt. By definition
the matrix W does not differentiate between links which exist throughout all
years and those which disappear or enter in a certain year. Plotting the two
figures we want to derive an intuition on how significantly some basic network
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Figure 1: Histogram

parameters change through the usage of the constant matrix W instead of
the time-varying matrix Wt.

Chart 1 is a histogram showing the number of banks whose out-degrees
exceed a given number k. Here, "out-degree" refers to the number of links
which exit each node. There are two lines in this chart, a blue one which
refers to the average for the out-degrees for each individual matrix Wt. The
red line refers to the out-degrees for the matrix W.4 Several things can
be noted in this chart. First, there is a large amount of heterogeneity in the
number of links of each of the nodes. Second, the matrix of exposures is quite
sparse, having a density of less than 1% of all possible links. Third, the red
line is close to the blue line and both lines move parallel which confirms that
the construction of the matrix W from the individual matrices Wt preserves
the basic network structure of each of the individual quarters. Besides this
the impact of equations (5) and (6) is fairly proportional accross the network
of banks.

4The endpoints of both lines are averaged with Pareto smoothing, so as to preserve the anonymity of
the links for individual banks.
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Additional justification for our approach to model the distances between
the banks using the matrix W is provided by the two charts in Figure 2.
The first chart in this Figure describes the evolution of the average number
of nodes across time for the matrices Wt and compares it with the density of
the matrixW . In addition the second chart shows the probabilities of a node
exit or a link exit. Both probabilities are quite low over this time period.
Consequently, the structure of network is fairly constant. As the density of
W is only slightly higher as the average for the individual matrices Wt, the
matrix W is a reasonable approximation of our network. Summarizing these
observations we may state that choosing a fairly constant set of network
weights, with some modification for those banks that exit the sample by
disappearing as we have done above, may be a good approximation to the
idea of the network neighborhood facing an individual node.

3.3 Controls

To control for bank-specific differences in risk taking, we follow the extensive
bank hazard literature and specify a so-called CAMEL covariate vectorXit−1,
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Table 2: CAMEL covariates for sound and distressed banks
Sound Distressed All

Variable Mean Sd Mean Sd Mean Sd
Direct
Equity over total assets 8.7 2.8 8.1 3.3 8.7 2.8
Depreciation and adjustments over equity 10.5 8.8 15.6 23.4 10.7 9.8
Administration expenses over total assets 2.3 4.5 2.7 3.0 2.3 4.4
Return on equity 4.7 6.5 0.1 18.0 4.5 7.4
Cash and overnight IB loans over total assets 7.3 5.2 8.4 5.3 7.4 5.3
Weighted
Equity over total assets 8.8 6.2 8.5 4.2 8.7 6.2
Depreciation and adjustments over equity 13.4 10.3 13.2 8.1 13.4 10.3
Administration expenses over total assets 0.9 0.4 0.9 0.5 0.9 0.4
Return on equity 0.8 5.5 1.4 5.0 0.8 5.5
Cash and overnight IB loans over total assets 4.5 1.8 4.8 3.2 4.5 1.9

Notes: The table lists descriptive statistics across sound and distressed banks during 2001 until
2006. The total number of observations is 10,159 and the total number of banks is 1,821. All
variables except log of total assets and centrality are expressed in percent.

which is lagged by one year to avoid endogeneity by construction (see, for
example, and DeYoung (2003) and Wheelock and Wilson (2000)).5 Table 2
describes the data for sound and distressed banks. We distinguish direct
terms for the banks themselves as well as the spatial lags of CAMEL covari-
ates, i.e. those of neighbors weighted by the interbank market exposure.

We measure capitalization as equity capital relative to risk-weighted as-
sets. Larger equity buffers reduce bank risk by absorbing asset price shocks
and by reducing the funding cost of the bank. To proxy for asset quality,
we specify the ratio of depreciation and revaluations of securities and con-
tributions to loan-loss provisions relative to book equity. A higher quality
of both security and credit portfolios should reduce this share and we ex-
pect a positive effect on PDs. To proxy for managerial skill, we relate labor
and other non-financial, operating expenses to total assets of the bank. In-
efficiently operated intermediaries should exhibit higher cost-income ratios
and be more prone to distress. We expect a positive coefficient. As a next
covariate we specify the return on equity and expect a negative sign. The
liquidity variable used for our regressions is defined as the total asset share
of overnight net interbank assets. It is difficult to forecast its sign because
it may indicate higher risk if these low-yield items reflect a lack of business
opportunities. On the other hand a negative effect could arise if it represents

5CAMEL is an abbreviation for Capitalization, Asset quality, Managerial skill, Earnings, Liquidity.
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safety buffers against sudden shocks.
In addition to CAMEL covariates, we include the log of total assets to

control for size differences to gauge potential (and implicit) too-big-to-fail
guarantees of some very large intermediaries. To directly gauge the exposure
of the bank to the complete network, we also use the Bonacich centrality
for each bank as a centrality measure. It has been introduced in section
2 as a member of a larger family of centrality measures based around the
eigenvalues of the network of exposure weights. Finally, we specify dummies
for banking groups as well as federal states to control for regional macro
effects.

The direct terms in the upper panel of Table 2 shows that distressed
banks do not differ significantly along all dimensions captured by these con-
trol variables. Capitalization and profitability exhibit the largest (negative)
differences compared to sound banks. But the dispersion of banking traits is
rather large, indicating that univariate differences of banking traits are not
sufficient to identify statistically significant differences.

Similar inference follows from a comparison of weighted CAMEL covari-
ates in equation (1), i.e. the characteristics of those banks which are close in
terms of exposure. Recall that for each bank i and each covariate an addi-
tional covariate has been introduced as a weighted average of the respective
covariates of those banks which are close to i.

Univariate differences between distressed and sound banks are often in-
significant and thus corroborate a multivariate regression approach. In ad-
dition, the comparison of both panels shows also that neighboring banks ex-
hibit rather different characteristics than distressed banks themselves. Thus,
augmenting a conventional hazard rate model with spatial lags and spatial
autocorrelation terms that gauge the connectivity among banks more directly
seems warranted.

4 Results

4.1 Spatial lags and spatial autocorrelation

The first column in Table 3 shows the results from a simple probit model
to predict bank distress with lagged covariates during the period 2000 until
2006. We specify throughout banking group and state dummies to control for
regional macro developments but do not report the according coefficients to
conserve space. The discriminatory power is good as reflected by a pseudo-R2
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of 11.8%.
Parameter estimates resemble to a large extent those obtained in previ-

ous German bank hazard studies. Better capitalized and more profitable
banks, as measured by return on equity, are significantly less likely to ex-
hibit distress. Larger banks are in turn more likely to experience a distress
event. Note that the majority of distress events are capital injections from
sector-specific insurance schemes. Therefore, the positive effect of size on
the likelihood of distress is in line with the too-big-to-fail notion that larger
banks are more likely to be rescued (O’Hara and Wayne, 1990). This result
is consistent with evidence provided on the existence of moral hazard due
to bank bailouts in Dam and Koetter (2012). Other banking traits, such
as proxies for asset and managerial quality and liquidity do not correlate
significantly with observed distress events.

The next pair of columns in Table 3 shows the results from a simple
spatial lag model similar to that in Liedorp et al. (2010). The financial
profile of neighboring banks in the interbank market contributes significantly
to explaining bank distress as reflected by a slightly higher explanatory power
of pseudo-R2 of 12.3%. Previously mentioned risk-reducing direct effects
of better capitalization and profitability and size are corroborated. In line
with expectations, the specification of spatial lags implies also a significantly
positive effect on risk if banks are managed less efficiently, as reflected by a
positive coefficient regarding cost-income ratios.

Spatial lags themselves exhibit additional insights into the importance of
connections through the interbank market on bank-specific distress proba-
bilities. Ties to well-capitalized and efficiently managed peers reduce banks’
probabilities of distress. These results indicate that individual bank stability
exerts also a positive spillover effect on connected banks, thereby contribut-
ing to the systems overall resilience. Whereas profitability, liquidity, and
size do not exhibit such statistically significant spillover effects, we also find
connections to peers with poor asset quality. Larger write-downs on loans
and securities relative to equity actually reduce probabilities of distress. A
possible interpretation of this result is that links to banks that are prudent
and conservative in their evaluation practice are beneficial for the risk of
interbank trading partners. For example, Hoshi and Kashyap (2010) and
Wheelock and Wilson (2000) argue that the timely realization of losses from
revaluing assets is crucial to system stability. The significantly negative spa-
tial lag coefficient on depreciation found in our sample may thus capture the
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beneficial effects on bank risk if write downs are done promptly.
The spatial lag model disregards, however, the lack of independence be-

tween connected banks in the interbank network. The final pair of columns
in Table 3 therefore presents results from the Baysian probit model which
permits for autocorrelated errors in the cross-section reflected by interbank
exposures captured in W . As such, this autocorrelation term therefore cap-
tures unobserved dependencies arising from links in the interbank network,
whereas exposure-weigthed bank traits of connected peers represent observ-
able potential for contagion through interbank markets.

The significant estimate of the autocorrelation term ρ supports the pres-
ence of correlated errors. The negative sign of ρ implies that bank distress
is less likely if neighbors in the interbank network are in distress. Note,
however, that the most frequent distress event are actually capital injections
by pillar-specific insurance schemes. The result that distress events are less
likely if close-by peers in the interbank market are in distress as well may
therefore be due to two interpretations.

First, insurance schemes may want to subdue the moral hazard arising
from rescuing banks by being hard-nosed on remaining banks in the scheme
after having bailed out a peer. The negative estimate of ρ would then indicate
that authorities are credible and able to overcome the commitment problem.
Insurance participants act on the assumption (i.e. take risk) that they won’t
be rescued if in trouble despite past bailouts happening.

Alternatively, the negative effect of ρ may simply indicate that bailouts of
neighboring banks already depleted insurance schemes such that the rescue of
another bank is less likely. Ultimately, we cannot identify whether insurance
schemes are unwilling or unable to inject capital because the capitalization
of insurance schemes is unobserved. Note, however, that for example the
regional insurance scheme architecture among savings banks is based on the
idea that regionally close-by banks assist ailing peers, for instance by pro-
viding equity and/or by merging with the bank. Generally, regional savings
contribute to a bailout the moment that a peer is in need, but they do not
stock an insurance fund ex ante. Thus, it is not implausible that many bank
rescues of peers reduce the likelihood of receiving another bailout for an in-
dividual bank that is last in line. In the vein of the too-many-too-fail notion
described theoretically in Acharya and Yorulmazer (2007) and Brown and
Dinç (2011), the Bayesian probit model may thus indicate the existence of a
too-many-to-fail challenge. If too many banks have to be rescued, the like-
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lihood for unassisted banks to receive support when in distress are lower.
Further research on the identification of whether it is the unwillingness or
the inability of bailout schemes to step in would be desirable.

Regarding direct effects and those of spatial lags, the Bayesian autocor-
relation model corroborates earlier results. In fact, the specification of the
autocorrelation term renders points estimates more precise and now yields
significant effects for direct asset quality and liquidity proxies. The former
are in line with expectations positive. Contrary to the beneficial results of
neighbors realizing write-downs promptly, the risk of the bank facing such a
loss increases. The latter direct liquidity effect, in turn, is negative. Larger
liquidity buffers thus reduce the risk of banks, for instance by serving as a
means to absorb sudden and unexpected shocks (see, for example, Bouwman
and Berger, 2009).

4.2 Direct measures of network position

The Bayesian autocorrelation model is very suited to augment observed con-
tagion effects from connected peers’ financial traits with unobserved links
through the interbank network. Another direct channel of potential conta-
gion relates to an individual bank’s position in the structure of the network.
To this end, we specify in Table 4 the Bonacich measure of degree centrality
described before.

The first column corroborates previous findings with regards to CAMEL
covariates when neglecting both spatial lags and autocorrelated error terms.
Better capitalized, more profitable, and smaller banks are less likely to ex-
perience distress.

The upshot in Table 4 is that banks, which are more central in the in-
terbank network, are less likely to be distressed. Recall that the Bonacich
measure of centrality gauges in particular the type of ties a bank maintains in
the network. Simply speaking, the measure gives a larger weight to connec-
tions with banks that are themselves central in the network in terms of having
many connections. One may thus think of this centrality measure to gauge
the "gatekeeper" importance of a bank in the network. Exhibiting links to
banks with many ties renders a Bonachich-central institution an important
multiplier of shocks should it require assistance or exits e.g in the wake of
a restructuring merger. In sum, the negative effect of centrality on bank
risk as measured by the probability of distress suggests that centrality in the
network contributes to individual bank stability. This result is in line with
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Allen and Gale (2000), who emphasize a better resilience of financial systems
towards common shocks that are characterized by complete networks.

Augmenting the model with spatial lags in the second pair of columns
shows that network centrality remains to exert a risk-reducing effect for the
bank itself. The effects of both direct and connected bank traits are very close
to those reported in Table 3. The negative direct effect of centrality on risk is
mitigated when banks are connected to other central players in the industry.
Weighted centrality measures of neighbors exhibit a positive coefficient, albeit
only at a substantially smaller magnitude compared to the direct effect of
degree centrality on bank risk. Intuitively, distress of a peer which fulfils an
important gatekeeper function in the interbank network aggravates a bank’s
own riskiness. As such, this result would therefore highlight a potentially
important observable channel of contagion through interbank networks.

However, the specification of the Bayesian autoregressive model in column
3 of Table 4 puts this result into perspective. There, the centrality measure
of neighbors turns insignificant. Hence, the results clearly indicate a risk-
reducing effect of individual bank risk whereas any spillover effects from
connections to peers in the interbank market are either captured by selected
spatial lags, as before capitalization, profitability, and managerial skill, or the
autocorrelation term. The latter becomes negative after explicitly accounting
for the position of banks themselves in the network as well as the network
position of their peers through Bonacich centrality. In contrast the negative
autocorrelation term is bigger in magnitude compared to the model without
centrality measure. Therefore, this robustness check supports the too-many-
to-rescue notion mentioned in the previous subsection. It also emphasizes
the importance of unobservables to capture the entire spectrum of potential
contagion channels through interbank markets.

4.3 Banking pillars

The German banking system is, however, subject to legal and de facto sepa-
ration into the three pillars. It is also characterized by large size differences
and vastly different business models, for example international full-service
providers versus regional retail banks. The market structure implies that pil-
lar specific head institutions in the savings and cooperative banking sectors
frequently act as clearing houses for their local banks and conduct numerous
wholesale and investment banking operations on their behalf.

Since head institutions are primarily of relevance for the savings and, to a
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lesser extent, the cooperative banking sector, we also estimate the Bayesian
spatial lag model with autocorrelation and explicit measures of centrality
for separate banking groups. The first column in Table 5 groups all large,
(inter)nationally active banks like the big four, Landesbanken, and central
cooperatives as well as regional commercial banks together. The remain-
ing two pairs of columns pertain to local savings and co-operative banks,
respectively.

A comparison of direct terms in the first panel corroborates a number
of aggregate results, such as the risk-reducing effects of higher profitability.
While the directions of most other effects are in line with prior results for the
full sample, group-specific estimations also highlight a number of differences
regarding the significance of factors across banking pillars.

First, capitalization reduces risk for commercials and cooperative banks
but is not statistically significant for savings banks. Second, risk among
large banks from any pillar does not respond significantly to size differences
within this group. Among regional cooperative and savings banks, in turn,
larger players are more likely to experience distress. Third, liquidity held
among large banks from any pillar reduces risk, thus apparently acting as
an effective buffer against unexpected shocks. Larger liquidity shares among
savings banks, in turn, enhances risk, which indicates inefficient levels of low-
yield cash and net-interbank positions. Cooperative banks, at last, do not
respond significantly to this liquidity proxy. Higher centrality reduces the
risk of distress significantly only for the group of large banks and regional
cooperative banks, but not for savings banks.

Consider next the results for interbank exposure-weighted CAMEL co-
variates of peers. These emphasize also important differences across pillars.
For the first group only connections to peers with poor managerial skill as
measured by cost-income ratios or peers that are relatively small increase
risk. The aggregate result of lower risk in response to connections with bet-
ter capitalized and higher asset quality peers is driven by cooperative banks,
as shown in column 2. Poorly managed peers increase cooperative bank risk.
The beneficial effects of prompt depreciation in the overall sample is also due
to the most numerous group of small cooperative banks. Also connections to
banks that hold more liquidity buffers enhance the stability of small cooper-
ative banks. Among savings banks, in turn, it is only the size of connections
that matter for a savings banks own risk.

A final important upshot of Table 5 is that the negative autocorrelation is
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solely driven by the (large) group of cooperative banks. This result supports
the notion of too-many-to-rescue issues in a pillar with many regionally active
banks that may not bear enough rescue capacity due to too depleted support
funds if the frequency of distress that requires bailouts becomes too high.

5 Conclusion

We adapt spatial econometric techniques to test more explicitly for possible
spillover effects of bank risk among participants in the German interbank
network between 2001 and 2006. To this end we combine observed inter-
bank loans from the large exposure database of the Bundesbank with official
distress events as a measure of bank risk.

The comparison of plain probit models with a model augmented by inter-
bank-exposure weighted financial traits of peers as well as Bayesian autocor-
relation models provides clear evidence of spillover effects of neighbors in the
interbank market on individual bank risk.

One observed channel concerns weighted financial characteristic of con-
nected peers. These indicate that neighbors which are better managed,
are well capitalized, and conduct write-downs promptly enhance system re-
silience. Separate regressions for different banking groups highlight that these
effects are largely driven by the most numerous group of small cooperatives.
For large banks only the size and the management quality of peers have sig-
nificant risk-reducing effects. And regional savings banks’ risk is only affected
by the size of connected banks.

In addition, we also gauge spillovers from unobservable dependence in the
cross-sectional dimension of interbank market exposures in terms of signifi-
cant autocorrelation in the Bayesian probit model. This autocorrelation term
is negative, which indicates that distress is less likely if a bank is connected
in the interbank market. The most frequent distress event are bailouts. One
possible interpretation is therefore that banks are less likely rescued if many
peers already had to be bailed out. We do not observe the state of insurance
scheme funding. Therefore, we cannot identify whether such a mechanism
is due to depleted funds or reflecting attempts of authorities to be credibly
hard-nosed so as to avoid moral hazard as a result of bank bailouts. Either
way, the German banking system appears to exhibit a too-many-to-rescue
pattern between 2001 and 2006. As with direct effects, the significance of
the autocorrelation term is driven by the group of regional cooperative banks.
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Finally, the structure of the interbank network and a bank’s position
therein has a significant effect on bank distress as well. Generally, a higher
centrality of a bank itself reduces its likelihood to be officially classified as dis-
tressed. The centrality of neighbors in the interbank network is insignificant
after accounting for dependence in the cross-section of interbank exposures in
the Bayesian autocorrelation model. This effect is also significant for separate
banking group samples, except regional savings.
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Table 3: Baseline – interbank-exposure weights and Bayesian autocorrelation model
Simple probit Exposure weighted Bayesian AR

Variables βi βi βi

Direct

Constant -10.032 -10.039 7.543 ***

(0.950) (0.955) (0.002)

Equity over total assets -0.007 ** -0.008 *** -0.088 ***

(0.024) (0.009) (0.000)

Depreciation and adjustments over equity 0.002 0.002 0.011 *

(0.298) (0.206) (0.067)

Administration expenses over total assets 0.004 0.006 * -0.048 ***

(0.200) (0.074) (0.000)

Return on equity -0.033 *** -0.033 *** -0.032 ***

(0.000) (0.000) (0.008)

Cash and overnight IB loans over total assets 0.004 0.004 -0.025 *

(0.307) (0.360) (0.058)

ln total assets 0.167 *** 0.164 *** -1.017 ***

(0.000) (0.000) (0.000)

Variables for the neighbors (weighted)

Capitalization -0.024 ** -0.094 ***

(0.023) (0.000)

Depreciation and adjustments over equity -0.006 * -0.025 ***

(0.042) (0.000)

Administration expenses over total assets 0.129 ** 0.346 **

(0.022) (0.015)

Return on equity 0.008 0.004

(0.122) (0.361)

Cash and overnight IB loans over total assets 0.014 -0.005

(0.284) (0.402)

ln total assets 0.001 0.002

(0.522) (0.285)

ρ -0.063 ***

(0.000)

Log likelihood -1455.714 -1446.796

(pseudo) R2 0.118 0.123

Notes: The table lists limited dependent variable regression results explaining the occurrence of a

distressed event among German banks during 2001 until 2006. The total number of observations is

10,159 and the total number of banks is 1,821. All variables except log of total assets and centrality

are expressed in percent. ρ is the autocorrelation term as in equation (4). Standard errors are in

brackets. Fixed effects for states ("Bundesländer") and banking sectors (commercial, savings, and

cooperative) are included but not reported. *,**, and *** denote significance at the 10%, 5%, and

1% levels, respectively.
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Table 4: Baseline results augmented with Bonacich centrality measure
Simple probit Exposure weighted Bayesian AR

Variables βi βi βi

Direct

Constant -10.052 -10.013 12.314 *

(0.955) (0.955) (0.063)

Equity over total assets -0.007 ** -0.009 *** -0.052 ***

(0.022) (0.007) (0.000)

Depreciation and adjustments over equity 0.002 0.002 0.013 ***

(0.346) (0.190) (0.006)

Administration expenses over total assets 0.004 0.007 ** -0.056 ***

(0.192) (0.029) (0.000)

Return on equity -0.033 *** -0.033 *** -0.025 *

(0.000) (0.000) (0.063)

Cash and overnight IB loans over total assets 0.005 0.004 -0.013

(0.285) (0.375) (0.193)

ln total assets 0.174 *** 0.178 *** -0.909 ***

(0.000) (0.000) (0.000)

Centrality measure -0.032 * -0.036 ** -0.030

(0.047) (0.028) (0.299)

Variables for the neighbors (weighted)

Equity over total assets -0.019 * -0.074 ***

(0.067) (0.000)

Depreciation and adjustments over equity -0.007 ** -0.030 ***

(0.020) (0.000)

Administration expenses over total assets 0.129 ** 0.477 **

(0.019) (0.028)

Return on equity 0.001 -0.005

(0.797) (0.348)

Cash and overnight IB loans over total assets 0.017 -0.009

(0.177) (0.322)

ln total assets -0.009 *** -0.012 *

(0.001) (0.054)

Centrality measure 0.011 *** 0.014 *

(0.000) (0.050)

ρ -0.104 ***

(0.000)

Log likelihood -1453.552 -1437.114

(pseudo) R2 0.119 0.129

Notes: The table lists limited dependent variable regression results explaining the occurrence of a

distressed event among German banks during 2001 until 2006. The total number of observations is

10,159 and the total number of banks is 1,821. All variables except log of total assets and centrality

are expressed in percent. ρ is the autocorrelation term as in equation (4). Standard errors are in

brackets. Fixed effects for states ("Bundesländer") and banking sectors (commercial, savings, and

cooperative) are included but not reported. *,**, and *** denote significance at the 10%, 5%, and

1% levels, respectively.
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Table 5: Separate estimation per banking group
Larger banks Small cooperatives Small savings

Variables βi βi βi

Direct

Constant -9.708 *** -7.754 *** -16.605 *

(0.005) (0.000) (0.074)

Equity over total assets -0.014 *** -0.417 *** -0.428

(0.000) (0.000) (0.162)

Depreciation and adjustments over equity 0.015 0.001 0.004

(0.151) (0.520) (0.463)

Administration expenses over total assets 0.058 *** 0.010 0.009

(0.000) (0.238) (0.426)

Return on equity -0.031 ** -0.060 *** -0.131 ***

(0.018) (0.000) (0.000)

Cash and overnight IB loans over total assets -0.070 *** -0.001 0.217 ***

(0.000) (0.475) (0.000)

ln total assets 0.054 0.471 *** 0.400 *

(0.557) (0.000) (0.050)

Centrality measure -0.110 -3.217 *** 1.639 ***

(0.221) (0.000) (0.000)

Variables for the neighbors (weighted)

Capitalization -0.086 -0.124 *** -0.135

(0.155) (0.009) (0.247)

Depreciation and adjustments over equity 0.052 -0.022 *** 0.013

(0.143) (0.000) (0.387)

Administration expenses over total assets 0.697 * 0.424 * 1.506 *

(0.045) (0.059) (0.063)

Return on equity 0.080 -0.001 -0.016

(0.125) (0.436) (0.307)

Cash and overnight IB loans over total assets 0.029 -0.067 -0.061

(0.213) (0.121) (0.335)

ln total assets -0.033 -0.012 * -0.026

(0.175) (0.087) (0.113)

Centrality measure 0.034 0.018 *** -0.022

(0.228) (0.006) (0.255)

ρ 0.000 -0.725 *** -0.262

(0.992) (0.000) (0.205)

Observations 792 6744 2623

Notes: The table lists limited dependent variable regression results explaining the occurrence of a

distressed event among German banks during 2001 until 2006. The total number of observations is

10,159 and the total number of banks is 1,821. All variables except log of total assets and centrality

are expressed in percent. ρ is the autocorrelation term as in equation (4). Standard errors are in

brackets. Fixed effects for states ("Bundesländer") and banking sectors (commercial, savings, and

cooperative) are included but not reported. *,**, and *** denote significance at the 10%, 5%, and

1% levels, respectively. 24
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