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1 Introduction

Observing a randomized treatment, whether induced by human agency or natural processes, is

the central objective of much empirical research. This is because randomization overcomes selection

bias, or unobserved confounders, to identify causal effects within the potential outcomes framework

(ie, the Rubin Causal Model). This paper studies a class of Data Generating Processes (DGPs) in

which the goal of randomization is achieved and causal effects are identified.

Of what use are such causal effects once identified? Causal effects are thought to be useful

for predicting the future state of the world in ways that descriptive statistics are not.1 Despite

this intended use and the careful attention given to the assumptions required for identification, the

assumptions required to predict with causal effects have received little formal treatment.

This paper explicitly connects the identification of causal effects in past data with the prediction

of future experience. Focusing on direct and total effects, which I define in terms of how corre-

sponding interventions to the DGP affect covariates, I show that while identifying each distinct

type of effect requires different assumptions, the same is true for prediction.2 Unfortunately, the

assumptions necessary for identification and prediction do not coincide, and so there is a tradeoff:

Stronger assumptions about covariates must be invoked in the identification stage when using direct

effects and in the prediction stage when using total effects.3

The relative strengths of direct and total effects are generated by a fact I call the problem

of context: Treatment always influences the outcome variable in combination with covariates.

I show how the relative strength of total effects for identification results from the response of

covariates to variation in treatment. This feature of the DGP impedes scientists from identify-

ing direct effects, which requires not only that an intervention would randomize treatment, but

that it would also hold covariates at fixed values. In contrast, random variation in treatment is

sufficient to identify total effects. When considered separately from the issue of prediction, the

relative difficulty of identifying direct effects might actually be seen as a point of agreement in

the literature contrasting structural and experimental approaches to econometrics (Deaton (2010),

1Zellner (2007) follows Jeffreys (2011) and others to distinguish between two key steps of science as being (1)
Description of the past, and (2) Generalization/Prediction of future (or as of yet unobserved) experience. Angrist
(2004) notes that “empirical research is almost always motivated by a belief that estimates for a particular context
provide useful information about the likely effects of similar programmes or events in the future” (p C52). Simi-
larly, Angrist and Pischke (2009) “believe that the most interesting research in social science is about questions of
cause and effect . . . , ” because “A causal relationship is useful for making predictions about the consequences of
changing circumstances or policy; it tells us what would happen in alternative (or ‘counterfactual’) worlds” (p 3).
Heckman and Vytlacil (2007) (pp 4787-92) and Manski (2007) (p 6) contrast this common goal in economics with a
competing view that understanding causal effects adds to “knowledge” that is useful in some general sense.

2I define covariates as observable (but not necessarily observed) variables other than treatment that causally
influence the outcome variable. As discussed in the paper, direct effects are useful for predicting outcomes under
interventions allocating treatment while holding the values of covariates fixed (Pearl (2014b), Robins et al. (2009)).
Total effects predict outcomes under interventions allocating treatment while holding the process generating covariates
fixed (Angrist et al. (1996)). Because covariates can respond to treatment as a part of this process, interventions
allocating treatment in this way can influence the outcome variable through any number of covariates known as
mediators (Imai et al. (2010), VanderWeele (2009), Heckman and Pinto (2015), Sobel and Arminger (1992)).

3This tradeoff is under-appreciated because internal validity has received more formal attention than external
validity in the literature contrasting the structural and experimental approaches devoted to one effect or the other.
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Rosenzweig and Wolpin (2000), Keane (2010), White and Chalak (2013), Heckman (1997), Imbens

(2010), Freedman (1987), Holland (1988)).

I also show how the relative strength of direct effects for prediction results from changes to the

process generating covariates. Remember the problem of induction: Because future experience is

outside the support of the data, any prediction is based on unverifiable assumptions about how the

DGP evolves over time. A scientist predicting with total effects must make restrictive assumptions

about the evolution of the DGP: All features of the DGP will remain the same.4 In contrast, direct

effects allow for prediction when only some features of the DGP remain the same.

A causal effect discussed in Freedman (1987) is illustrative: If we spend another million dollars

on schools, how much will that affect test scores? In terms of Woodward (2003)’s notion of degrees

of invariance, education funding and test scores have a weakly invariant relationship:5 It matters

how the money is spent! While randomized spending on schools might identify the total effect of

spending on test scores, prediction based on this total effect will require that the behavior of all

covariates remains the same over time.

I also illustrate implications of the identification-prediction tradeoff for the current literature

by interpreting estimates of returns to schooling. I cite evidence that a long list of covariates that

are determined in response to educational attainment also have large effects on wages, including

on-the-job training; participation in job training programs; self-employment; vocational education;

criminal behavior; arrest; incarceration; fertility; household formation; geographic location; military

service; working while in school; smoking; and neighborhood quality. Selection into these covariates

is likely to result in violations of the direct effect exclusion restriction requiring randomized and

controlled variation in treatment (Deaton (2010), Rosenzweig and Wolpin (2000), Keane (2010)).

In such cases where we do not expect to observe randomized and controlled variation in treat-

ment, randomized variation in treatment, and therefore identification of total effects, may be the

best we can hope to observe (Imbens (2010)). But thinking in terms of returns to schooling, since

human behavior related to selection into the above covariates is likely to change over time, so too

are the total effects of the corresponding DGPs likely to change. If total effects of social systems

are unstable over time, why should they be more useful than descriptive statistics for predicting

the outcome variable under interventions manipulating the treatment variable?

Explicitly connecting identification and prediction links the literature on causal effects from the

Rubin Causal Model to the macroeconomic literature using theory to construct predictions when

4When the DGP does not change over time the main obstacle to prediction is linking Local Average Treatment
Effects (LATEs, Imbens and Angrist (1994)) relevant to a particular subpopulation to the ATE summarizing infor-
mation about the DGP for the entire population (Angrist (2004)). A more complicated version of the issues studied
in this paper also apply to the DGPs studied in the dynamic treatment effects literature where selection into treat-
ment are dynamic (Frangakis and Rubin (2002), Robins (1986), Lechner and Miquel (2010), Heckman and Navarro
(2007)). The distinguishing feature of the issues studied in this paper is that the dynamics under consideration will
occur from the present moment into the future instead of occurring entirely in the past.

5This recent work in philosophy would characterize specific causal effects neither as exceptionless laws of nature
nor as complete accidents, but rather as having a degree of invariance located somewhere between these all-or-nothing
extremes (Woodward (2000), Woodward (2003)). This analysis has been strongly influenced by Woodward (2003)’s
argument that generalizations invariant under some interventions need not be invariant under all others.
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the process generating covariates is dynamic (Lucas (1976), Kydland and Prescott (1977)).6 For

such DGPs, formally studying prediction illustrates that internal validity need not be the sum-

mum bonum of inductive inference. If we define credibility as the strength of assumptions required

to make a claim (Manski (2007)), then explicitly connecting identification and prediction high-

lights that the credibility revolution in empirical economics has been focused on only one step

of inductive inference: Identifying causal effects in past data. Explicitly connecting identification

and prediction also helps to extend the formal analysis of transportability (Only recently begun:

See Pearl and Bareinboim (2011), Bareinboim and Pearl (2013b), Bareinboim and Pearl (2013a),

Angrist (2004).) to populations for which not even passive observations can be collected (ie, pop-

ulations in the future).

The paper proceeds as follows: Section 2 defines the set of DGPs to be considered in the paper.

Section 3 presents three definitions of causal effects, and Section 4 discusses the identification of

these causal effects in past data. Section 5 states the assumptions necessary to accurately predict

future effects from causal effects identified in past data, and makes clear that researchers’ choice

between direct effects and total effects represents a tradeoff between the generality of the DGP that

can be studied in the past and the generality of the DGP for which the future can be predicted.

Section 6 discusses implications for the literature, with a focus on the fact that LATE and MTE

estimates of returns to schooling are total effects. Section 7 concludes.

2 Data Generating Processes

Suppose that at time t ∈ N data are generated by a Data Generating Process (DGP) Dt in

which the outcome variable (Yti) for each individual i is causally determined by two observed

variables, treatment (Dti) and observed covariates (Xti), as well as unmeasured covariates (UY
ti ), or

additional factors not observed by the econometrician. The unmeasured covariates can be broken

down into those factors that are unobserved (Eti) and those that are unobservable (ǫti) at the

given level of measurement. To generalize the typical mediation problem (Pearl (2014a), Pearl

(2014b)), we consider a class of four DGPs in which both observed and unobserved covariates

might be determined by treatment. Where variables U are unmeasured variables, the four DGPs

are characterized by the following structural equations:

Endogenous

Variable DI
t DII

t DIII
t DIV

t

Dti
←−= fD

t (UD

ti ) fD
t (UD

ti ) fD
t (UD

ti ) fD
t (UD

ti )

Xti
←−= fX

t (UX
ti ) fX

t (Dti, U
X
ti ) fX

t (UX
ti ) fX

t (Dti, U
X
ti )

Eti
←−= fE

t (UE
ti ) fE

t (UE
ti ) fE

t (Dti, U
E
ti ) fE

t (Dti, U
E
ti )

Yti
←−= fY

t (Xti, Dti, Eti, ǫti) fY
t (Xti, Dti, Eti, ǫti) fY

t (Xti, Dti, Eti, ǫti) fY
t (Xti, Dti, Eti, ǫti)

6A simple version of the Lucas (1976) critique can be restated as Xt being an indicator for guards at Fort Knox, Dt

being an indicator for an attack on Fort Knox, and Yt being the gold stolen from Fort Knox with Yt
←−= δDt− δDtXt.

Total effects will change, and therefore so will decisions about whether to intervene to allocate treatment, when all
features of DGP stay the same over time except for the process generating the covariate Xt (ie, fX

t ).
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These DGPs are considered because they represent a canonical simple system that lend them-

selves to analysis with potential outcomes (Pearl et al. (2014)). I study a typical mediation system

without confounders in order to focus on the role of unobserved mediators over time.7 In order to

distinguish clearly between functional forms fV and parameterizations ΘV , I will define a DGP as

Dt ≡< Ut, Vt, Ft,Θt > (1)

where Ut ≡ (UD
ti , U

X
ti , U

E
ti , U

Y
ti ) = (UD

ti , U
X
ti , U

E
ti , Eti, ǫti), Vt ≡ (Dti,Xti, Eti, Yti), Ft ≡

(fD
t , fX

t , fE
t , fY

t ), and Θt ≡ (ΘD
t ,Θ

X
t ,ΘE

t ,Θ
Y
t ).

8 I assume the functional form of fY
t is linear,

so that the outcome equation is:9

Yti
←−= θ0t +Dtiθ

1
t +Xtiθ

2
t + Eti + ǫti.

Figure 1 shows the four sets of DGPs {DI
t }, {D

II
t }, {D

III
t }, and {D

IV
t } comprised of each of

the possible functional form specifications and parameterizations of the structural equations, and

omitting the unmeasured factors in U except the unobserved factors in UY :

bc
Et

b
Dt

b Yt

b
Xt

t time

(a) {DI
t }

bc
Et

b
Dt

b Yt

b
Xt

t time

(b) {DII
t }

bc
Et

b
Dt

b Yt

b
Xt

t time

(c) {DIII
t }

bc
Et

b
Dt

b Yt

b
Xt

t time

(d) {DIV
t }

Figure 1: Directed Acyclic Graphs of the Four Sets of Data Generating Processes

7Appendix D shows that the key results also apply to DGPs extended to include unobserved confounders.
8This is a slight deviation from Pearl (2009)’s Definition 7.1.1 of a structural causal model, where the triple

< U, V, F > would be defined as U ≡ (UD

ti , U
X

ti , U
E

ti , Eti, ǫti), V ≡ (Dti, Xti, Eti, Yti), F ≡ (fD
t , fX

t , fE
t , fY

t ).
9For the sake of exposition I refer interchangeably to ΘY

t and (θ0t , θ
1
t , θ

2
t ).
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The←−= notation communicates that an equation is structural in the following two senses (a) The

equation represents an asymmetric relationship between the variables on the left and right hand

sides of the equation; and (b) All variables at the given level of observation not included on the

right hand side satisfy an exclusion restriction. Note that (b) rules out the possibility for finding

new mediators at the given level of observation (Imai et al. (2010)), as mediators can only be found

at a finer level of observation (A process which, as noted by Holland (1988), always appears to be

possible.). Aliprantis (2015) discusses the definition of structural equation and its implications in

greater detail.

3 Defining Causal Effects

3.1 Defining Causal Effects as Changes from Interventions to a DGP

One definition of causal effects is as a quantitative characterization of the change in the outcome

variable that would result from an intervention to the DGP. Such interventions to the DGP can be

characterized by how they would, or would not, impact covariates, especially unmeasured variables.

In order to be precise about which features of the DGP are manipulated, and which are not, under

specific interventions, I use Pearl (2009)’s do-operator throughout the remainder of the analysis.

Direct effects characterize the change in the outcome variable from a specific type of intervention

to the DGP. Specifically, the controlled direct effect of Dt on Yt, ∆
CDE
t (d′, d), is the change in Yt

that would result from an intervention setting Dt from d to d′ while setting all other variables

entering as arguments in fY to fixed values:

∆CDE

t (d′,d) ≡ E[Yti|do(Dti = d′,Xti = x,Eti = e)]− E[Yti|do(Dti = d,Xti = x,Eti = e)]

= E[fY
t (d′, x, e, ǫti)]− E[fY

t (d, x, e, ǫti)].

Following Pearl (2014a), this definition is made at the population level, with individual-level effects

given by the expressions under the expectation. Expectations are taken over ǫti for ∆
CDE
t (d′, d).

A second useful definition of causal effect is the total effect, which is DGP-specific:

DGP ∆TE

t
(d′,d) ≡ E[Yti|do(Dti = d′)]− E[Yti|do(Dti = d)]

DI
t : ∆TE

t (d′, d) = E
[
fY
t

(
d′, fX

t (UX
ti ), fE

t (UE
ti ), ǫti

) ]
−E

[
fY
t

(
d, fX

t (UX
ti ), fE

t (UE
ti ), ǫti

) ]

DII
t : ∆TE

t (d′, d) = E
[
fY
t

(
d′, fX

t (d′, UX
ti ), fE

t (UE
ti ), ǫti

) ]
−E

[
fY
t

(
d, fX

t (d, UX
ti ), fE

t (UE
ti ), ǫti

) ]

DIII
t : ∆TE

t (d′, d) = E
[
fY
t

(
d′, fX

t (UX
ti ), fE

t (d′, UE
ti ), ǫti

) ]
−E

[
fY
t

(
d, fX

t (UX
ti ), fE

t (d, UE
ti ), ǫti

) ]

DIV
t : ∆TE

t (d′, d) = E
[
fY
t

(
d′, fX

t (d′, UX
ti ), fE

t (d′, UE
ti ), ǫti

) ]
−E

[
fY
t

(
d, fX

t (d, UX
ti ), fE

t (d, UE
ti ), ǫti

) ]

As with the ∆DE
t (d′, d), this definition is also made at the population level, with individual-level

effects given by the expressions under the expectation. Expectations are taken over UX
ti , U

E
ti , and

ǫti for the ∆TE
t (d′, d).10

10I also refer to the Controlled Direct Effect simply as the Direct Effect, or ∆CDE

ti (d′, d) ≡ ∆DE

ti (d′, d), since the
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Defining the vector S ≡ (D,X,E, ǫ) allows us to re-write the outcome equation more compactly

as Yti
←−= Yti(Sti), so that both direct and total effects can be written in terms of the econometric

or graphical definitions given in Heckman (2008) and Pearl (2009) (Definition 3.2.1).

Both ∆DE
t (d′, d) and ∆TE

t (d′, d) are defined in terms of interventions to the DGP. While the

precise manipulation of variables can be described by the do-operator, these interventions can

also be mimicked by instrumental variables. In order to be consistent with the DGP’s structural

equations (ie, Definition 5.4.1 in Pearl (2009)), instrumental variables must be components of the

unmeasured variables Ut that become measured, perhaps due to a researcher’s interest. Thus,

instrumental variables should be added to a DAG as an observed variable (extracted from Ut)

when observed, but left off of the DAG when remaining unmeasured (included in Ut).

For an instrumental variable to mimic the external variation generating a total effect, it must

be an element of UD
ti and UD

ti alone. For an instrumental variable to mimic the variation generating

a direct effect, it must be an element of UD
ti and the U

pa
t of all of the parents pat of Yt. When

using Zt to denote an instrumental variable, I will denote those mimicking total effects by ZT
t and

those mimicking direct effects by ZD
t . I will at times add observed instruments to DAGs, without

explicitly stating that this changes the relevant Ut.

3.2 Defining Causal Effects as Changes from Interventions to a Model

The Rubin Causal Model (Rubin (2005), Angrist et al. (1996)) defines causal effects in terms

of the counterfactual outcome variable that would be observed under interventions to treatment.

These counterfactual outcomes are also known as potential outcomes,

Yti(Dti),

where Yti(d) is the outcome of individual i at time t if treatment were set to Dti = d by an

intervention setting Dti but affecting none of the mediators of the total effect of Dti on Yti (ie,

none of the other parents of Yti). Although potential outcomes are generated by the DGP, they

are defined as features of a modelMt that can describe many DGPs. That is, the average causal

effect in the Rubin Causal Model is defined as

∆RCM

t (d′,d) ≡ E[Yti(d
′)− Yti(d)].

The expectation in ∆RCM
t (d′, d) is taken over individuals in the given population, allowing for any

number of underlying functional forms and distributions. In contrast, the expectation in ∆TE
t (d′, d)

is taken with respect to the single set of functional forms and distributions specified by the DGP.

Aliprantis (2015) shows how interventions to a model rather than the DGP generate causal effects

Controlled Direct Effect is equal to the Natural Direct Effect in the DGPs under consideration. I leave generalization of
this paper’s results to nonlinear systems where ∆CDE

ti (d′, d) 6= ∆NDE

ti (d′, d) for future work, since such generalizations
are non-trivial (Pearl (2012)). Examples of such systems include DGPs similar to those in {DI

t }–{D
IV
t } but with a

non-parametric structural outcome equation, or a parametric outcome equation with interaction terms like Yti
←−= θ0t +

Dtiθ
1
t +Xtiθ

2
t +DtiXtiθ

3
t + Eti + ǫti.
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with distinct DAG representations and distinct uses in inductive inference.

4 Description of the Past: Identification of Causal Effects

In standard mediation or causal inference problems resembling those found in DGPs {DI
t },

{DII
t }, {D

III
t }, or {D

IV
t }, one of the following three regression equations is typically estimated via

OLS, where H,K, and L are statistical error terms:

Yti = α0
t +Dtiα

1
t +Hti, (2)

Yti = β0
t +Dtiβ

1
t +Xtiβ

2
t +Kti, (3)

Yti = γ0t +Dtiγ
1
t +Xt0iγ

2
t + Lti. (4)

Equation 3 can be justified as the classical regression model with a few additional assumptions

(Goldberger (1991), Chapters 15 and 16). And when it is suspected that Dti is an argument in

fX
t , Angrist and Pischke (2009) recommend estimating Equation 2 (p 66) and Duflo et al. (2007)

(p 3949) and Rosenbaum (1984) recommend estimating Equation 4.

We now investigate whether the parameters obtained from these three OLS regression equations

identify any of the causal effects defined in Section 3. The main result is stated below in Proposition

1, but first we state some notation and maintained assumptions. We denote the current moment

in time t∗ ∈ N, and consider DGPs indexed to three additional points in time:

t0 < t < t∗ < t′.

We interpret t0 as the time at which treatment was assigned, t as the time at which observed

variables were measured, and t′ being some point in time in the future.11 Given the dearth of

attention paid to selection into covariates, here we assume selection into treatment is not a problem

by assuming that treatment is randomly assigned:12

Random Assignment (RA) The variable Dti is randomly allocated in the sample. Specifically,

Dti is an iid random variable that follows the triangle distribution with lower limit −1, upper

limit 1, and mode 0.

11An implicit assumption in static models of causal effects is that dependent variables occur a short but finite time
interval after independent variables (Pearl (1993), Holland (1986)). To be explicit about this assumption, we assume
that at time t−4ǫ ∈ R

+ nature evaluates the arguments of fD
t , applies fD

t to them under the given parameterization
Θt, and sets the value of Dti accordingly, where 0 < ǫ << 1. At time t− 3ǫ, nature then proceeds to do the same for
fE
t . Nature proceeds similarly until ultimately finishing at time t− ǫ by evaluating the arguments of fY

t , applying fY
t

to them under the parameterization Θt, and setting the value of Yti accordingly. The DGP Dt is indexed by t ∈ N

because all of the observed variables in Dt are observed at time t ∈ N, after all Equations have been evaluated by
nature.

12I focus on OLS estimators applied to a randomized treatment because I want to focus on the issues raised by
selection into covariates in isolation from those raised by selection into treatment. I show in Appendix A that the
OLS estimators of α1

t , β
1
t , and γ1

t converge in probability to the analogous 2SLS estimators when there is perfect
compliance between the instrument and treatment. I also provide simulation results in Appendix C showing that the
analysis generalizes immediately to identification schemes using instrumental variables estimators to overcome the
distinct issue of selection into treatment.
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Under these conditions, I show the following:

Proposition 1 (Identification Tradeoff). Define It∗(∆t) as the subset of DGPs in {DI
t }∪ {D

II
t }∪

{DIII
t } ∪ {D

IV
t } for which causal effects of type ∆t are identified at the present time t∗ by one of

the OLS estimators α̂
1,OLS
t , β̂1,OLS

t , or γ̂
1,OLS
t . Then It∗(∆

CDE
t ) ⊂ It∗(∆

TE
t ).

Proof. In Appendix A it is shown that when (Dti,Xti, Eti) are excluded from f ǫ
ti,

α̂
1,OLS
t

p
−→ θ1t +

E [DtXt]

E [DtDt]
θ2t +

E [DtEt]

E [DtDt]
, (5)

β̂
1,OLS
t

p
−→ θ1t +

E[XtXt] E[DtEt] − E[DtXt] E[XtEt]

E[DtDt] E[XtXt] − E[DtXt] E[XtDt]
, and (6)

γ̂
1,OLS
t

p
−→ θ1t +

E[Xt0Xt0 ] E[DtXt] − E[DtXt0 ] E[Xt0Xt]

E[DtDt] E[Xt0Xt0 ] − E[DtXt0 ] E[Xt0Dt]
θ2t (7)

+
E[Xt0Xt0 ] E[DtEt] − E[DtXt0 ] E[Xt0Et]

E[DtDt] E[Xt0Xt0 ] − E[DtXt0 ] E[Xt0Dt]
.

Since Dti has mean zero, the following orthogonality conditions result from RA:

Orthogonality DX-t0 E[DtXt0 ] = 0

Orthogonality DE-t0 E[DtEt0 ] = 0

Remarkably, one of the orthogonality conditions induced by randomization (DX-t0) implies that

α̂
1,OLS
t

p
−→ γ̂

1,OLS
t as N →∞. Thus Equations 5-7 can be rewritten as:

α̂
1,OLS
t

p
−→ γ̂

1,OLS
t

p
−→ θ1t +

E [DtXt]

E [DtDt]
θ2t +

E [DtEt]

E [DtDt]
, and (8)

β̂
1,OLS
t

p
−→ θ1t +

E[XtXt] E[DtEt] − E[DtXt] E[XtEt]

E[DtDt] E[XtXt] − E[DtXt] E[XtDt]
. (9)

Not only does α1,OLS
t convey the change in the outcome Yti for each unit of change in Dti we

observe in the data,

E[Yti|Dti = d+ 1]− E[Yti|Dti = d] = E[fY
ti (Dti, Xti, Eti, ǫti)|Dti = d+ 1]

− E[fY
ti (Dti, Xti, Eti, ǫti)|Dti = d]

= E[θ0t +Dtiθ
1
t +Xtiθ

3
t + Eti + ǫti |Dti = d+ 1] (10)

− E[θ0t +Dtiθ
1
t +Xtiθ

2
t + Eti + ǫti |Dti = d]

= (d+ 1)θ1t + E[Xtiθ
2
t |Dti = d+ 1] + E[Eti |Dti = d+ 1] (11)

− dθ1t − E[Xtiθ
2
t |Dti = d] + E[Eti|Dti = d]

= θ1t +
E [DtXt]

E [DtDt]
θ2t +

E [DtEt]

E [DtDt]
(12)

= plim α̂
1,OLS
t ,

9



but Random Assignment (RA) implies that it also identifies the change in Yti that would result

if we were to counterfactually set treatment Dti one unit higher. Specifically, RA implies that the

average covariate for the subpopulation with Dti observed to be d is equal to the average covariate

when Dti is set to d for the population:13

E[Eti|Dti = d] = E[Eti|do(Dti = d)], and (13)

E[Xti|Dti = d] = E[Xti|do(Dti = d)]. (14)

Equations 13 and 14 are a restatement of the independence assumption in Holland (1986) using the

do operator, and are the link by which conditioning on treatment status identifies the total effect

(justifying Equation 16):

E[Yti|Dti = d+ 1]− E[Yti|Dti = d] = E[fY
ti (Dti,Xti, Eti, ǫti)|Dti = d+ 1]

− E[fY
ti (Dti,Xti, Eti, ǫti)|Dti = d]

= E[θ0t +Dtiθ
1
t +Xtiθ

3
t + Eti + ǫti |Dti = d+ 1] (15)

− E[θ0t +Dtiθ
1
t +Xtiθ

2
t + Eti + ǫti |Dti = d]

= (d+ 1)θ1t + E[Xtiθ
2
t |Dti = d+ 1] + E[Eti |Dti = d+ 1]

− dθ1t − E[Xtiθ
2
t |Dti = d]− E[Eti|Dti = d]

= θ1t + E[Xtiθ
2
t |do(Dti = d+ 1)] + E[Eti|do(Dti = d+ 1)] (16)

− E[Xtiθ
2
t |do(Dti = d)]− E[Eti|do(Dti = d)]

= θ1t + E[fX
t (d+ 1, UX

ti )θ
2
t ] + E[fE

t (d+ 1, UE
ti )]

− E[fX
t (d, UX

ti )θ
2
t ]− E[fE

t (d, UE
ti )]

= E[Yti|do(Dti = d+ 1)]− E[Yti|do(Dti = 0)]. (17)

Since Dti is randomly assigned E[Yti|Dti = d] = E[Yti|Dti = d, Xt0i = x], so that the preceding

arguments resulting in Equations 8, 12, and 17 also prove that

plim γ̂
1,OLS
t = plim α̂

1,OLS
t = E[Yti|do(Dti = d+ 1)] − E[Yti|do(Dti = d)] ≡ E[∆TE

ti (d+ 1, d)].

Note that the preceding identification result holds due to the functional form of fY
t , regardless of

the specifications of fX
t or fE

t . Thus α̂
1,OLS
t and γ̂

1,OLS
t identify the total effect of treatment on

the outcome variable for any of the DGPs in {DI
t }, {D

II
t }, {D

III
t }, or {D

IV
t }. Stated formally,

It∗(∆
TE
t ) = {DI

t } ∪ {D
II
t } ∪ {D

III
t } ∪ {D

IV
t }. (18)

13Equations 13 and 14 do not ensure that the treated and nontreated groups are equal in all aspects apart
from the treatment status (Heckman (1996)). The related assumptions in the program evaluation hold because
Eti in any of our DGPs is a different random variable than the error terms in the program evaluation literature
(Imbens and Wooldridge (2009), Blundell and Dias (2009), Angrist et al. (1996)). A related discussion can be found
in Heckman and Navarro-Lozano (2004). Eti in the DGPs is also a different random variable than the error terms in
the Conditional Expectation Functions (CEFs) discussed in Goldberger (1991) and Angrist and Pischke (2009).
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In contrast, one can immediately see from Equations 8 and 9 that the orthogonality condi-

tions DX-t0 and DE-t0 resulting from randomization are not sufficient for any of the regression

coefficients in Equations 2-4 to identify the direct effect of treatment θ1t . This point has received con-

siderable attention in the literature (Deaton (2010), Rosenzweig and Wolpin (2000), Keane (2010),

White and Chalak (2013), Heckman (1997), Leamer (2010), Heckman and Smith (1995)).

Consider additional orthogonality conditions at the time of measurement:

Orthogonality DX-t E[DtXt] = 0

Orthogonality DE-t E[DtEt] = 0

Orthogonality XE-t E[XtEt] = 0.

If DE-t and XE-t hold, then β̂
1,OLS
t will converge in probability to the direct effect θ1t . These

conditions will hold for DGPs in {DI
t } or {DII

t }. Similarly, α̂1,OLS
t and β̂

1,OLS
t will converge in

probability to the direct effect θ1t when DX-t and DE-t hold. These conditions will only hold for

DGPs in {DI
t }, for which the direct effect was already identified by β̂

1,OLS
t . Thus the direct effect of

treatment on the outcome variable is only identified by one of the regression coefficients for DGPs

in {DI
t } or {D

II
t }:

It∗(∆
CDE
t ) = {DI

t } ∪ {D
II
t }. (19)

Thus, for the simple class of DGPs representing canonical mediation problems, traditionally

used OLS estimators identify total effects for a broader class of DGPs than they identify direct

effects:

It∗(∆
CDE
t ) ⊂ It∗(∆

TE
t ).

5 Generalization: Prediction with Causal Effects

Suppose that a social scientist has successfully identified a causal effect of one of the DGPs

under consideration. Why would anyone be interested in such information? If we follow Zellner

(2007) to distinguish between two key steps of science being (1) Description of the past, and (2)

Generalization/Prediction of future (or as of yet unobserved) experience, social scientists’ interest

in causal effects is typically justified in terms of their use for Prediction.14

The problem of induction might be summarized as follows: Because future experience is outside

the support of the data, any prediction is based on assumptions about how the DGP evolves

over time. That is, the researcher at time t∗ must assume the DGP at time t′ will be Dt∗,t′ in

order to make a prediction about the random variable Vt′ or the parameter Θt′ . Recalling that

t0 < t < t∗ < t′, I will use the subscript t∗,t′ to denote predictions at time t∗ about features of the

14Zellner himself follows Karl Pearson, Harold Jeffreys, and others in this distinction. See Footnote 1 for prominent
researchers citing Prediction as a justification for interest in causal effects.
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future DGP. This includes functional forms, parameterizations, and random variables:

fV
t∗,t′ ∈ Dt∗,t′ , Θt∗,t′ ∈ Dt∗,t′ , or Vt∗,t′ ∈ Dt∗,t′

Evidence from the past like causal effects△TE
t (d+1, d) or△DE

t (d+1, d) can be used to construct

predictions about the effects from future interventions, △TE
t∗,t′(d + 1, d). These predictions will be

accurate (ie, △TE
t∗,t′(d + 1, d) = △TE

t′ (d + 1, d)), under restrictions about the evolution of the DGP

between times t and t′. The first restriction we impose, for all constructions of predictions, is that

the DGPs under consideration exhibit a certain level of temporal stability:

Stability of the DGP (S-DGP): Dt′ ∈ {D
I
t } ∪ {D

II
t } ∪ {D

III
t } ∪ {D

IV
t }

Considering the following two ways of constructing predictions:

Prediction 1 △TE
t∗,t′(d+ 1, d) = E[Yt∗,t′ |do(d+ 1)]− E[Yt∗,t′ |do(d)]

Prediction 2 △TE
t∗,t′(d+ 1, d) = △TE

t (d+ 1, d)

allows us to state the following proposition:

Proposition. Define Pt∗,t′(p) as the subset of DGPs at time t′ satisfying S-DGP for which

Prediction p made at time t∗ could possibly be accurate, or for which it would be possible that

∆t∗,t′(d+ 1, d) = ∆t′(d+ 1, d). Then

Pt∗,t′(2) ⊂ Pt∗,t′(1).

Since Prediction 1 uses direct effects from past data, and Prediction 2 uses total effects from

past data, we could restate this Proposition as

Proposition 2 (Prediction Tradeoff). Define Pt∗,t′(∆t) as the subset of DGPs at time t′ satisfying

S-DGP for which causal effects of type ∆t(d + 1, d) can be used under constructions Prediction 1

or Prediction 2 at the present time t∗ to make predictions that could possibly be accurate. Then

Pt∗,t′(∆
TE
t ) ⊂ Pt∗,t′(∆

DE
t ).

12



Proof. Prediction 1 is accurate under the following assumptions about the researcher’s ability to

forecast features of the future DGP Dt′ :

Structural Equations (SEs) fY
t∗,t′ = fY

t′ fX
t∗,t′ = fX

t′ fE
t∗,t′ = fE

t′

Parameterizations (Ps) ΘY
t∗,t′ = ΘY

t′ ΘX
t∗,t′ = ΘX

t′ ΘE
t∗,t′ = ΘE

t′

Unmeasured Variables (UVs) µt∗,t′(U) = µt′(U)

Assuming without loss of generality that Dt′ ∈ {D
IV
t }. Assumptions S-DGP, SEs, Ps, UVs

imply that Prediction 1 is accurate as follows:

△TE
t∗,t′(d+ 1, d) = E[Yt∗,t′ |do(d + 1)]− E[Yt∗,t′ |do(d)] (Prediction 1)

= E

[
fY
t∗,t′

(
d+ 1, fX

t∗,t′(d+ 1, UX
t∗,t′i), fE

t∗,t′(d+ 1, UE
t∗ ,t′i), ǫt∗,t′i; ΘY

t∗,t′

) ]
(Def/)

− E

[
fY
t∗,t′

(
d, fX

t∗,t′(d, U
X
t∗ ,t′i), fE

t∗,t′(d, U
E
t∗ ,t′i), ǫt∗,t′i; ΘY

t∗,t′

) ]
(Dt′ ∈ {D

IV
t })

= (d+ 1) θ1t∗,t′ + E[fX
t∗,t′(d+ 1, UX

t∗,t′i)]θ
2
t∗,t′ + E[fE

t∗,t′(d+ 1, UE
t∗ ,t′i)] (S-DGP)

− d θ1t∗,t′ + E[fX
t∗,t′(d, U

X
t∗ ,t′i)]θ

2
t∗,t′ + E[fE

t∗,t′(d, U
E
t∗ ,t′i))]

= (d+ 1) θ1t∗,t′ + E[fX

t
′ (d+ 1, UX

t∗,t′i)]θ
2
t∗,t′ + E[fE

t
′ (d+ 1, UE

t∗ ,t′i)] (SEs)

− d θ1t∗,t′ + E[fX

t
′ (d, UX

t∗,t′i)]θ
2
t∗,t′ + E[fE

t
′ (d, UE

t∗ ,t′i))]

= (d+ 1)θ1

t′
+ E[fX

t′ (d+ 1, UX
t∗,t′i)]θ

2

t′
+ E[fE

t′ (d+ 1, UE
t∗,t′i)] (Ps)

− dθ1

t′
+ E[fX

t′ (d, U
X
t∗ ,t′i)]θ

2

t′
+ E[fE

t′ (d, U
E
t∗,t′i))]

= (d+ 1) θ1t′ + E[fX
t′ (d+ 1,UX

t
′
i
)]θ2t′ + E[fE

t′ (d+ 1,UE

t
′
i
)] (UVs)

− d θ1t′ + E[fX
t′ (d,U

X

t
′
i
)]θ2t′ + E[fE

t′ (d,U
E

t
′
i
))]

= △TE
t′ (d+ 1, d). (Definition/Dt′ ∈ {D

IV
t } + S-DGP)

Identification of the direct effect at time t in the past (θ̂1t = θ1t ) gives credibility to assumption Ps

with respect to ΘY
t∗,t′ given one stability assumption:

Stability of Direct Effect (S-DE) θ1t = θ1t′

To prove that these assumptions are necessary, and not only sufficient, suppose by way of

contradiction that any of SEs, Ps, or UVs were not true, and the above equations will deliver a

contradiction of the prediction’s accuracy.
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Prediction 2 is accurate under the following assumptions about the stability of the DGP:

Stability of Structural Equations (S-SEs) fY
t = fY

t′ fX
t = fX

t′ fE
t = fE

t′

Stability of Parameterizations (S-Ps) ΘY
t = ΘY

t′ ΘX
t = ΘX

t′ ΘE
t = ΘE

t′

Stability of Unmeasured Variables (S-UVs) µt(U) = µt′(U)

Assumptions S-DGP, S-SEs, S-Ps, S-UVs imply that Prediction 2 is accurate as follows:

△TE
t∗,t′(d+ 1, d) = △TE

t (d+ 1, d) (Prediction 2)

= E

[
fY
t

(
d+ 1, fX

t (d+ 1, UX
ti ), fE

t (d+ 1, UE
ti ), ǫti; ΘY

t

) ]
(Definition)

− E

[
fY
t

(
d, fX

t (d, UX
ti ), fE

t (d, UE
ti ), ǫti; ΘY

t

) ]

= E

[
fY

t′

(
d+ 1, fX

t′
(d+ 1, UX

ti ), fE

t′
(d+ 1, UE

ti ), ǫti; ΘY
t

) ]
(S-SEs)

− E

[
fY

t
′

(
d, fX

t
′ (d, UX

ti ), fE

t
′ (d, UE

ti ), ǫti; ΘY
t

) ]

= E

[
fY
t′

(
d+ 1, fX

t′ (d+ 1, UX
ti ), fE

t′ (d+ 1, UE
ti ), ǫti; ΘY

t′

) ]
(S-Ps)

− E

[
fY
t′

(
d, fX

t′ (d, U
X
ti ), fE

t′ (d, U
E
ti ), ǫti; ΘY

t
′

) ]

= E

[
fY
t′

(
d+ 1, fX

t′ (d+ 1,UX

t′i
), fE

t′ (d+ 1,UE

t′i
), ǫt′i; ΘY

t′

) ]
(S-UVs)

− E

[
fY
t′

(
d, fX

t′ (d,U
X

t
′
i
), fE

t′ (d,U
E

t
′
i
), ǫt′i; ΘY

t′

) ]

= △TE
t′ (d+ 1, d). (Definition)

Note that the first line, △TE
t∗,t′(d+ 1, d) = △TE

t (d+ 1, d), implies that

E

[
fY
t∗,t′

(
d+ 1, fX

t∗,t′(d+ 1, UX
t∗,t′i), fE

t∗,t′(d+ 1, UE
t∗ ,t′i), ǫt∗,t′i; ΘY

t∗,t′

) ]

− E

[
fY
t∗,t′

(
d, fX

t∗,t′(d, U
X
t∗ ,t′i), fE

t∗,t′(d, U
E
t∗ ,t′i), ǫt∗,t′i; ΘY

t∗,t′

) ]

=E

[
fY
t

(
d+ 1, fX

t (d+ 1, UX
ti ), fE

t (d+ 1, UE
ti ), ǫti; ΘY

t

) ]

− E

[
fY
t

(
d, fX

t (d, UX
ti ), fE

t (d, UE
ti ), ǫti; ΘY

t

) ]
,
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which under the stability assumptions S-SEs, S-Ps, and S-UVs implies the original forecastability

assumptions SEs, Ps, and UVs.15 To prove that Prediction 2’s assumptions are necessary like

Prediction 1’s, and not only sufficient, suppose analogously by way of contradiction that any of

S-SEs, S-Ps, or S-UVs were not true, and the above equations will deliver a contradiction of the

prediction’s accuracy.

The set of DGPs at future time t′ for which assumptions S-DGP, S-DE, SEs, Ps, and UVs could

possibly be true is

Pt∗,t′(∆
DE
t ) =

{
Dt′

∣∣∣∣ θ1t′ = θ1t , Dt′ ∈ {D
I
t } ∪ {D

II
t } ∪ {D

III
t } ∪ {D

IV
t }

}
.

The set of DGPs at future time t′ for which assumptions S-DGP, S-SEs, S-Ps, and S-UVs could

possibly be true is

Pt∗,t′(∆
TE
t ) =

{
Dt′

∣∣∣∣ ΘY
t′ = ΘY

t ,Θ
X
t′ = ΘX

t ,ΘE
t′ = ΘE

t ; fY
t′ = fY

t , fX
t′ = fX

t , fE
t′ = fE

t ; µt′(U) = µt(U);

Dt′ ∈ {D
I
t } ∪ {D

II
t } ∪ {D

III
t } ∪ {D

IV
t }

}
.

Thus, it is clearly the case that

Pt∗,t′(∆
TE
t ) ⊂ Pt∗,t′(∆

DE
t ).

6 Implications for the Literature

6.1 One Example: The Effect of Education Spending on Test Scores

Proposition 2 showed that for a class of DGPs resembling standard mediation problems, accurate

prediction with total effects requires strong stability restrictions on the DGP. In contrast, accurate

prediction with direct effects is possible for DGPs that change over time. The temporal stability

required of the DGP to predict with total effects is more likely to be violated in social systems than

in physical or biological systems.

A causal effect discussed in Freedman (1987) can help to illustrate: If we spend another million

dollars on schools, how much will that affect test scores? This might be seen as an ill-posed problem:

It matters how the money is spent! One can imagine many different mechanisms through which test

scores might be affected, and these mechanisms need not be stable over time (Fruehwirth (2014),

Carrell et al. (2013)).

Consider one such mechanism: The quantity supplied of teachers with content knowledge at a

15Also note that this first line asserts an analogue to direct transportability (Pearl and Bareinboim (2014)).
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A change in labor demand between times t and t′

and the resulting realizations of Dt and Dt′

E = Content Knowledge of Teachers

X = Pedagogical Techniques of Teachers

D = Education Spending

Y = Test Scores
bc
Et

b
Dt

b

ZT
t

b Yt

b
Xt

bc
Et′

b
Dt′

b

ZT
t′

b Yt′

b
Xt′

t t∗ t′ time

Figure 2: An example in which predictions of the future effect of Dt′ on Yt′ (ie, of changes to Yt′

from the intervention ZT
t′ ) will be biased when constructed at current time t∗ using total effects

identified from past data collected at time t

given salary. Figure 2 shows an example DGP in which math test scores Y are determined in part

by education spending D at time t (Dt), along with its successor DGP determining Y at time t′ > t

(Dt′). Even if a researcher at the current moment in time (t∗) knew the value of the total effect

identified from data in the past (at time t), the DGP might change in many ways between times

t and t′, rendering predictions with total effects inaccurate. In the example shown in Figure 2, a

change in labor demand in the broader economy makes the previously responsive quantity supplied

of teachers with mathematics knowledge unchanged over teachers’ salary range.

6.2 Another Example: Returns to Schooling

A large literature is devoted to estimating the causal effects of educational attainment. The key

reason for this focus is that policy makers and citizens might intervene to the DGP to encourage

or discourage students from finishing high school and/or college. If we knew the changes from an

intervention manipulating educational attainment D, it would help us to decide how much to spend

as a society to implement that intervention.

Identifying causal effects of educational attainment is complicated by selection into treatment

in response to the unobserved covariate ability (Card (2001), Belzil (2007)). Although overcom-

ing selection into treatment is a non-trivial task (Angrist and Krueger (1991), Aliprantis (2012),

Barua and Lang (2009)), suppose for the moment that social scientists had found empirical meth-

ods overcoming the unobserved nature of ability, and had identified the returns to schooling based

on samples in which attainment were randomly assigned.
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Would the total effects of education on earnings identified in past data be useful for predicting

how wages would change in the future under interventions to increase educational attainment?

Marginal Treatment Effects (MTEs) and Local Average Treatment Effects (LATEs) of educa-

tional attainment estimated in the literature like in Carneiro et al. (2011), Oreopoulos (2006a),

and Oreopoulos (2006b) are non-parametric parameters, so it is not clear that Propositions 1 and 2

apply to them. Nevertheless, many mediators, or covariates like Xt or Et, could themselves respond

to the assignment of treatment. MTEs and LATEs of educational attainment may reflect the direct

effect of educational attainment, but due to selection into covariates may also reflect direct effects

from many causal variables like:

Table 1: Covariates Whose Behavior Determines the Total Effect

Evidence of Selection into Covariate Evidence of Effect of
Covariate in Response to Ed Attainment Covariate on Wages

On-the-Job Training Altonji and Blank (1999) Brown (1989)

Job Training Program – Lee (2009)

Self-Employment Blanchflower (2000) Hamilton (2000)

Vocational Education Bishop and Mane (2004) Meer (2007)

Criminal Behavior Jacob and Lefgren (2003) Nagin and Waldfogel (1998)

Arrest Grogger (1995) Bushway (2004)

Incarceration Lochner and Moretti (2004) Kling (2006), Western et al. (2001)

Fertility McCrary and Royer (2011) Simonsen and Skipper (2006)

Household Formation Nielsen and Svarer (2009) Gemici (2011)

Geographic Location Costa and Kahn (2000) Baum-Snow and Pavan (2013), Black et al. (2009)

Military Service Small and Rosenbaum (2008) Angrist (1990)

Health (smoking) Currie and Moretti (2003) Auld (2005)

Working While in School – Light (2001)

Neighborhood Quality – Rosenbaum (1995), Aliprantis and Richter (2013)

This example helps to illustrate why total effects can be so weakly invariant in social settings.

If the process generating the covariate were to change over time for any of these covariates, the

total effects of attainment estimated in the literature would give biased predictions. Figure 3

displays DAGs of the total effects of educational attainment on wages at times t and t′. Suppose

that at time t companies only provided on-the-job training to employees with certain levels of

educational attainment. If this policy were to change between times t and t′ so that at time t′

companies provided training to all employees, regardless of their educational attainment level, then

total effects would change.16

Accurate prediction with total effects requires there are not changes over time to the DGP

related to any of the direct effects contributing to the total effect. It is difficult to imagine that the

social processes related to each of the above mediators do not change in important ways over time.

16Similar examples can be found in Cartwright and Hardie (2012), who distinguish the evidence necessary to make
accurate statements about the past from the evidence necessary to make accurate statements about the future. This
can also be thought of as an example of how super exogeneity assumptions need not follow from weak exogeneity
(Engle et al. (1983), Hendry and Richard (1982)).
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A change in the direct effect of educational attainment on on-the-job training

between times t and t′ and the resulting realizations of Dt and Dt′

M1 = On-the-Job Training

M2 = Job Training Program

M3 = Self-Employment

M4 = Vocational Education

M5 = Criminal Behavior

M6 = Arrest

M7 = Incarceration

M8 = Fertility

M9 = Household Formation

M10 = Geographic Location

M11 = Military Service

M12 = Health (smoking)

M13 = Working While in School

M14 = Neighborhood Quality

Y = Wages

b

ZT
t

b
Dt

bc
M1t

bc
M2t

...

...

bc
M13t

bc
M14t

b
Yt

b

ZT
t′

b
Dt′

bc
M1t′

bc
M2t′

...

...

bc
M13t′

bc
M14t′

b
Yt′

t t∗ t′ time

Figure 3: An example in which predictions of the future effect of Dt′ on Yt′ (ie, of changes to Yt′ from the intervention ZT
t′ ) will be biased

when constructed at current time t∗ using total effects identified from past data (ie, from data collected at time t)
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7 Conclusion

This paper studied a simple dynamic extension to the canonical static treatment effect frame-

work. Treatment always influences the outcome variable in combination with other variables, which

I refer to as covariates. I showed that for a class of DGPs representing a standard mediation prob-

lem, there is a tradeoff between how easy it is to identify a causal effect in past data and its

usefulness for predicting the future. This tradeoff arises because covariates can respond even to a

randomized treatment, and the behavior of covariates can change over time. I used the effects of

education spending on test scores and of schooling on wages as examples to discuss why human

agency is likely to change the behavior of covariates over time in many social systems.
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A Derivation of OLS and 2SLS Estimators

A.1 Notation for Matrix Algebra

For the sake of exposition, assume for these derivations that the constant term in the structural

outcome equation θ0 = 0, and that the regressions are specified without constants. Additionally for

the sake of exposition, recall that at the given level of measurement ǫti ∼ iid f ǫ
ti, where f

ǫ
ti is simply

the distribution of a random variable with finite variance, and no observable variables enter as

argument of f ǫ
ti at the given level of measurement. Since ǫti is mean zero, has finite variance, and is

independent of all observable variables, we can ignore it when taking expectations and constructing

estimators. The ensuing analysis therefore considers DGPs omitting this variable.

Remember that Dt represents the N × 1 vector of observations of Dti. We also have N obser-

vations of X at both the time of assignment and the time of measurement, which were labeled as

Xt0 and X t. Define the following N × 2 vectors

W t0 ≡ [Dt,Xt0 ] , J t0 ≡ [Zt,X t0 ]

W t ≡ [Dt,Xt] , and J t ≡ [Zt,Xt] .

Defining the N × 1 and 2× 1 vectors

Y t ≡




Yt1

...

YtN


 , Et ≡




Et1

...

EtN


 , θt ≡

[
θ1t

θ2t

]
,

it is possible to write the structural potential outcome Equation ?? in Section 3,

Yti
←−= Dtiθ

1
t +Xtiθ

2
t + Eti, (1)

as

Y t
←−= W tθt +Et.

Recall the regression Equations 2-4:

Y t = Dtα
1
t +H t (5)

Y t = W tβt +Kt (6)

Y t = W t0γt +Lt (7)

26



A.2 Derivation of OLS Estimators

A little matrix algebra shows that:

α̂
1,OLS
t = (D′

tDt)
−1[D′

tY t]

= (D′

tDt)
−1[D′

t(Dtθ
1
t +Xtθ

2
t +Et)]

= θ1t +
D′

tXt

D′

tDt

θ2t +
D′

tEt

D′

tDt

.

Rewriting a ratio of the dot products of two N × 1 vectors A and B as

A′B

B′B
=

1
N

∑N
i=1AiBi

1
N

∑N
i=1BiBi

(20)

the Weak Law of Large Numbers implies that as N goes to infinity,

α̂
1,OLS
t

p
−→ θ1t +

E [DtXt]

E [DtDt]
θ2t +

E [DtEt]

E [DtDt]

as long as the above means are all finite.

Similarly,

β̂
OLS

t = (W ′

tW t)
−1[W ′

tY t]

= (W ′

tW t)
−1[W ′

t(W tθt +Et)]

= θt + (W ′

tW t)
−1[W ′

tEt]

= θt +

[
D′

tDt D′

tX t

X ′

tDt X ′

tXt

]
−1




[
Dt1 · · · DtN

Xt1 · · · XtN

]



Et1

...

EtN







= θt +
1

(D′

tDt)(X
′

tXt)− (D′

tXt)(X
′

tDt)

[
X ′

tXt −D′

tXt

−X ′

tDt D′

tDt

][
D′

tEt

X ′

tEt

]

=




θ1t

θ2t


+




(X
′

tXt)(D
′

tEt)−(D
′

tXt)(X
′

tEt)

(D
′

tDt)(X
′

tXt)−(D
′

tXt)(X
′

tDt)

−(X
′

tDt)(D
′

tEt)+(D
′

tDt)(X
′

tEt)

(D
′

tDt)(X
′

tXt)−(D
′

tXt)(X
′

tDt)


 .

Recalling Equation 20, as N goes to infinity

β̂
1,OLS
t

p
−→ θ1t +

E[XtXt] E[DtEt] − E[DtXt] E[XtEt]

E[DtDt] E[XtXt] − E[DtXt] E[XtDt]
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if the above means are finite.

And finally,

γ̂OLS
t = (W ′

t0
W t0)

−1[W ′

t0
Y t]

= (W ′

t0
W t0)

−1[W ′

t0
(W tθt +Et)]

=
1

(D′

tDt)(X ′

t0
Xt0 )− (D′

tXt0)(X
′

t0
Dt)

[

X
′

t0
Xt0 −D

′

tXt0

−X
′

t0
Dt D

′

tDt

][

D
′

tDtθ
1
t
+D

′

tXtθ
2
t
+D

′

tEt

X
′

t0
Dtθ

1
t
+X

′

t0
Xtθ

2
t
+X

′

t0
Et

]

=




(X
′

t0
Xt0

)(D
′

t
Dt)θ

1

t
+(X

′

t0
Xt0

)(D
′

t
Xt)θ

2

t
+(X

′

t0
Xt0

)(D
′

t
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

−

(D
′

t
Xt0

)(X
′

t0
Dt)θ

1

t
+(D

′

t
Xt0

)(X
′

t0
Xt)θ

2

t
+(D

′

t
Xt0

)(X
′

t0
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

−(X
′

t0
Dt)(D

′

t
Dt)θ

1

t
−(X

′

t0
Dt)(D

′

t
Xt)θ

2

t
−(X

′

t0
Dt)(D

′

t
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

+
(D

′

t
Dt)(X

′

t0
Dt)θ

1

t
+(D

′

t
Dt)(X

′

t0
Xt)θ

2

t
+(D

′

t
Dt)(X

′

t0
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)




=




θ1
t
+

(X
′

t0
Xt0

)(D
′

t
Xt)−(D

′

t
Xt0

)(X
′

t0
Xt)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

θ2
t
+

(X
′

t0
Xt0

)(D
′

t
Et)−(D

′

t
Xt0

)(X
′

t0
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

−(X
′

t0
Dt)(D

′

t
Dt)+(D

′

t
Dt)(X

′

t0
Dt)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

θ1
t
+

−(X
′

t0
Dt)(D

′

t
Xt)+(D

′

t
Dt)(X

′

t0
Xt)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

A
Dt)

θ2
t
+

−(X
′

t0
Dt)(D

′

t
Et)+(D

′

t
Dt)(X

′

t0
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)


 ,

so

γ̂
1,OLS
t

p
−→ θ1t +

E[Xt0Xt0 ] E[DtXt] − E[DtXt0 ] E[Xt0Xt]

E[DtDt] E[Xt0Xt0 ] − E[DtXt0 ] E[Xt0Dt]
θ2t

+
E[Xt0Xt0 ] E[DtEt] − E[DtXt0 ] E[Xt0Et]

E[DtDt] E[Xt0Xt0 ] − E[DtXt0 ] E[Xt0Dt]
.

A.3 Derivation of 2SLS Estimators

Similarly, we can perform some matrix algebra to see that

α̂
1,2SLS
t = (Z ′

tDt)
−1[Z ′

tY t]

= (Z ′

tDt)
−1[Z ′

t(Dtθ
1
t +Xtθ

2
t +Et)]

= θ1t +
Z ′

tXt

Z ′

tDt

θ2t +
Z ′

tEt

Z ′

tDt

, (21)
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β̂
2SLS

t =

[
(W ′

tJ t)(J
′

tJ t)
−1(J ′

tW t)

]
−1[

(W ′

tJ t)(J
′

tJ t)
−1(J ′

tY t)

]

=

[
(W ′

tJ t)(J
′

tJ t)
−1(J ′

tW t)

]
−1[

(W ′

tJ t)(J
′

tJ t)
−1(J ′

tW tθt)

]
(22)

+

[
(W ′

tJ t)(J
′

tJ t)
−1(J ′

tW t)

]
−1[

(W ′

tJ t)(J
′

tJ t)
−1(J ′

tEt)

]

= θt +

[
(W ′

tJ t)(J
′

tJ t)
−1(J ′

tW t)

]
−1[

(W ′

tJ t)(J
′

tJ t)
−1(J ′

tEt)

]
,

and

γ̂2SLS
t =

[
(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
W t0)

]
−1[

(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
Y t)

]

=

[
(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
W t0)

]
−1[

(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
W tθt)

]
(23)

+

[
(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
W t0)

]
−1[

(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
EM )

]
.

Assuming for the sake of exposition that there is perfect compliance, so that Dt = Zt, we can

replace J t = W t. In this case, each of these 2SLS estimators reduces to their OLS counterpart, as:

α̂
1,2SLS
t = θ1t +

Z ′

tXt

Z ′

tDt

θ2t +
Z ′

tEt

Z ′

tDt

= θ1t +
D′

tX t

D′

tDt

θ2t +
D′

tEt

D′

tDt

= α̂
1,OLS
t ,

β̂
2SLS

t = θt +

[
(W ′

tJ t)(J
′

tJ t)
−1(J ′

tW t)

]
−1[

(W ′

tJ t)(J
′

tJ t)
−1(J ′

tEt)

]
,

= θt + (W ′

tW t)
−1(W ′

tEt)

=




θ1t

θ2t


+




(X
′

tXt)(D
′

tEt)−(D
′

MXt)(X
′

tEt)

(D
′

tDt)(X
′

tXt)−(D
′

tXt)(X
′

tDt)

−(X
′

MDt)(D
′

tEt)+(D
′

tDt)(X
′

tEt)

(D
′

MDt)(X
′

tXt)−(D
′

tXt)(X
′

tDt)




= β̂
OLS

t ,

and
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γ̂2SLS
t =

[
(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
W t0)

]
−1[

(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
WMθt)

]

+

[
(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
W t0)

]
−1[

(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
Et)

]

=

[
(W ′

t0
W t0)(W

′

t0
W t0)

−1(W ′

t0
W t0)

]
−1[

(W ′

t0
W t0)(W

′

t0
W t0)

−1(W ′

t0
W tθt)

]

+

[
(W ′

t0
W t0)(W

′

t0
W t0)

−1(W ′

t0
W t0)

]
−1[

(W ′

t0
W t0)(W

′

t0
W t0)

−1(W ′

t0
Et)

]

=




θ1
t
+

(X
′

t0
Xt0

)(D
′

t
Xt)−(D

′

t
Xt0

)(X
′

t0
Xt)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

θ2
t
+

(X
′

t0
Xt0

)(D
′

t
Et)−(D

′

M
Xt0

)(X
′

t0
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

−(X
′

t0
DM )(D

′

t
Dt)+(D

′

t
Dt)(X

′

t0
Dt)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

θ1
t
+

−(X
′

t0
Dt)(D

′

t
Xt)+(D

′

t
Dt)(X

′

t0
Xt)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

θ2
t
+

−(X
′

t0
Dt)(D

′

t
Et)+(D

′

M
Dt)(X

′

t0
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dti)




= γ̂OLS
t .
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B Monte Carlo Evidence on Identification

Table 2 presents Monte Carlo results showing the performance of the OLS estimators from

Equations 2-4 when estimated on 100,000 simulated data points generated by parameterized DGPs

from {DI
t } − {D

IV
t }, and Figure 5 displays causal effects from these DGPs. The precise param-

eterizations of the DGPs are as follows: The structural outcome equation is the same across all

simulated DGPs:

Yti
←−= θ0t +Dtiθ

1
t +Xtiθ

2
t + Eti

←−= 2.0 +Dti · 1.0 +Xti · 1.0 + Eti.

As well, in all simulated DGPs treatment is randomized with

Dti
←−= 0.5ZT

ti + 0.5UD
ti where (2*)

ZT
ti ∼ iidU [−1, 1] and

UD
ti ∼ iidU [−1, 1],

stated equivalently as Dti being an iid random variable that follows the triangle distribution with

lower limit −1, upper limit 1, and mode 0.

In DI
t the remaining selection equations are such that:

Xti ∼ U [−1
2 ,

1
2 ], and Eti ∼ U [−1

2 ,
1
2 ]. (DGP I)

Let UX
ti ∼ iidU [0, 1]. In DII

t all features of the model are the same as in DI
t except that observed

covariates are selected in response to treatment:

Xti
←−=




1−Dti if UX

ti ≤ 0.5

Ati otherwise, where Ati ∼ U [−1
2 ,

1
2 ]

(DGP II)

Similarly, DIII
t is the same as DI

t except that now unobserved covariates are selected in response to

treatment. Letting UE
ti ∼ iidU [0, 1], the unobserved factors are determined in response to treatment

as:

Eti
←−=




1−Dti if UE

ti ≤ 0.75

Bti otherwise, where Bti ∼ iidU [−1
2 ,

1
2 ]

(DGP III)

Finally, DIV
t is the same as DI

t except that observed covariates are selected in response to treatment

as in DGP DII
t and unobserved covariates are selected in response to treatment as in DIII

t .
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Table 2: Estimation Results on Data Simulated from Data Generating Processes with Various Selection Rules

A DGP Dt is Fully Specified by:
-The Potential Outcome Equation

-Selection Equations fD
t , fX

t , fP
t , fM

t , and fE
t

DGP DI
t DGP DII

t DGP DIII
t DGP DIV

t

Potential Outcomes: Yti
←−= θ0t + θ1tDti + θ2tXti + Eti

Selection Rule fX
t : Xti ∼ U [− 1

2
, 1
2
] Xti

←−= fX
t (Dti) Xti ∼ U [− 1

2
, 1
2
] Xti

←−= fX
t (Dti)

Selection Rule fE
t : Eti ∼ U [− 1

2
, 1
2
] Eti ∼ U [− 1

2
, 1
2
] Eti

←−= fE
t (Dti) Eti

←−= fE
t (Dti)

Causal Effects
DE: θ1t 1.00 1.00 1.00 1.00

Randomized Dt, f
D
t : TE: E[Yti(Dti=1) 1.00 0.50 0.25 –0.25

−Yti(Dti=0)]
Dti
←−= 0.5ZT

ti + 0.5UD
ti

Estimate

ZT
ti , U

D
ti ∼ iidU [−1, 1] α̂

1,OLS
t (

p
−→ α̂

1,2SLS
t ) 1.00 0.49 0.25 –0.23

β̂
1,OLS
t (

p
−→ β̂

1,2SLS
t ) 1.00 1.00 0.25 0.26

γ̂
1,OLS
t (

p
−→ γ̂

1,2SLS
t ) 1.00 0.49 0.25 –0.23

Selection into Covariates
E[Xti|Dti > 0] 0.00 0.33 0.00 0.34
E[Xti|Dti < 0] 0.00 0.67 0.00 0.66

E[Eti|Dti > 0] 0.00 0.00 0.50 0.50
E[Eti|Dti < 0] 0.00 0.00 1.00 1.00

Note: The specified DGPs were used to generate 100,000 observations. The precise functions fX
t and fE

t used in each simulated DGP are specified in Section
4 in the text.
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B.1 Identification: One Parameter’s Bias is Another Parameter’s Identification

DGPs DII
t -DIV

t illustrate that one parameter’s bias is another parameter’s identification, due

to the fact that the exclusion restriction identifying direct effects is distinct from the exclusion

restriction identifying total effects.

In DGP DII
t what represents bias for the researcher trying to identify the total effect repre-

sents identification of the direct effect. Should the researcher control for the observed covariates

determined in response to treatment and estimate Equation 3, β̂
1,OLS
t will be a biased estima-

tor of the average total effect E[△TE
t ] (Wooldridge (2005), Heckman and Navarro-Lozano (2004)).

Chalak and White (2011) refer to this as “included variable bias.” At the same time, though, these

need not be “bad controls:” β̂
1,OLS
t will identify the direct causal effect △DE

t = θ1t .

In DGPs DIII
t and DIV

t what represents bias for the researcher trying to identify the direct effect

represents identification of the total effect. In light of DGPs DIII
t and DIV

t , previous criticisms of

the experimentalist approach can be seen as discussions of identification using DGPs with random

variation in treatment that impacts outcomes through covariates. One of Heckman (1997)’s con-

cerns about the total effects identified in Angrist (1990) is that they cannot distinguish between

the direct effect of treatment and the direct effect of unobserved covariates selected in response

to the quasi-randomly assigned treatment. The concerns raised in Rosenzweig and Wolpin (2000)

and Keane (2010) about total effects identified by the quasi-random assignment of treatment gen-

erated by natural experiments are likewise related to selection into covariates, creating a difference

between the total effect and direct effect identified by IV estimators. Finally, the distinction be-

tween exogeneity and orthogonality made in Deaton (2010) can be seen as a distinction between

orthogonality conditions made at two points in time, the time of assignment (t0) and the time of

measurement (t). Deaton’s concern is that even if orthogonality conditions hold for a given DGP

at time t0, the later ones at t necessary for identification can be violated due to selection into co-

variates.17 Further discussion of the cases when conditioning and setting/fixing variables coincide

can be found in Heckman and Pinto (2014).

17A similar point about DGPs in which the direct effect is not identified is made in White and Chalak (2013).
Further discussions on the limitations of effects identified by randomized treatments are provided in Leamer (2010)
and Heckman and Smith (1995).
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C Extension to DGPs with an Unobserved Confounder

Table 3 presents Monte Carlo results showing the performance of the OLS estimators from

Equations 2-4 as well as their 2SLS analogues when DGPs DI
t -D

IV
t also exhibit selection into

treatment. These DGPs are characterized by the following structural equations:

EP
ti
←−= fP (UP

ti ; ΘP ) (24)

Dti
←−= fD(ZT

ti , E
P
ti , U

D
ti ; ΘD) (25)

Xti
←−= fX(Dti, E

P
ti , U

X
ti ; ΘX) (26)

EM
ti
←−= fM(Dti,Xti, U

M
ti ; ΘM ) (27)

Eti
←−= fE(EP

ti , E
M
ti ; ΘE) (28)

Yti
←−= θ0t +Dtiθ

1
t +Xtiθ

2
t + Eti. (29)

In terms of specification, the potential outcome equation is still the same across all DGPs:

Yti
←−= 2.0 +Dti · 1.0 +Xti · 1.0 + Eti.

The difference is that now, in all simulated DGPs treatment is selected according to

Dti
←−= 0.5ZT

ti + 0.25UD
ti + 0.25EP

ti

where both ZT
ti , U

D
ti ∼ iidU [−1, 1]. EP

ti represents a permanent component of the unobserved

covariate and EM
ti represents a malleable component of the unobserved covariate as follows:

Eti
←−= 0.25EP

ti + 0.75EM
ti .

In DGP DI
t both EP

ti , E
M
ti ∼ iidU [−1

2 ,
1
2 ] and the remaining selection equation is specified to

be:

Xti ∼ U [−1
2 ,

1
2 ].

In DGP DII
t all features of the model are the same as in DGP DII

t except that observed

covariates are selected in response to treatment:

Xti
←−=




1−Dti if UX

ti ≤ 0.5

Ati otherwise, where Ati ∼ U [−1
2 ,

1
2 ]

where UX
ti ∼ iidU [0, 1].

Similarly, DGP DIII
t is the same as DGP DI

t except that now unobserved covariates are selected
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in response to treatment as

EM
ti
←−=




1−Dti if UE

ti ≤ 0.75;

Bti ∼ U [−1
2 ,

1
2 ] if UE

ti > 0.75,

with UE
ti ∼ U [0, 1].

Finally, DGP DIV
t is the same as DGP DI

t except that observed covariates are selected in re-

sponse to treatment as in DGP DII
t and unobserved covariates are selected in response to treatment

as in DGP DIII
t .
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Figure 6: Directed Acyclic Graphs of Four Data Generating Processes from {Dt} Including the
Total Effect Intervention ZT

t
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Table 3: Estimation Results on Data Simulated from Data Generating Processes with Selection into Treatment

A DGP Dt is Fully Specified by:
-The Potential Outcome Equation

-Selection Equations fD, fX , and fE

DGP DI
t DGP DII

t DGP DIII
t DGP DIV

t

Potential Outcomes: Yti
←−= θ0t + θ1tDti + θ2tXti + Eti

Selection Rule fX
t : Xti ∼ U [− 1

2
, 1
2
] Xti

←−= fX
t (Dti) Xti ∼ U [− 1

2
, 1
2
] Xti

←−= fX
t (Dti)

Selection Rule fE
t : EM

ti ∼ U [− 1
2
, 1
2
] EM

ti ∼ U [− 1
2
, 1
2
] EM

ti
←−= fE

t (Dti) EM

ti
←−= fE

t (Dti)

Causal Effects
Selection into E: D1: θ1t 1.00 1.00 1.00 1.00

D2: E[Yti(Dti=1) 1.00 0.50 0.44 –0.06
EP

ti is Permanent, EM
ti is Malleable −Yti(Dti=0)]

Eti
←−= 0.25EP

ti + 0.75EM
ti Estimate

α̂
1,OLS
t 1.04 0.54 0.49 –0.02

EP
ti ∼ iidU [− 1

2 ,
1
2 ] β̂

1,OLS
t 1.05 1.05 0.49 0.49

γ̂
1,OLS
t 1.04 0.54 0.49 –0.02

EM
ti
←−= 1−Dti if U

E
ti ≤ 0.75

α̂
1,2SLS
t 0.99 0.49 0.44 –0.06

EM
ti ∼ iidU [− 1

2 ,
1
2 ] if U

E
ti > 0.75 β̂

1,2SLS
t 1.00 1.00 0.45 0.44

γ̂
1,2SLS
t 0.99 0.49 0.44 –0.06

UE
ti ∼ U [0, 1]

Exclusion Restrictions
D1: E[ZT

ti Eti] 0.00 0.00 –0.09 –0.09
D2: CORR(Yti, Z

T
ti)|Dti, E

P
ti 0.00 0.00 0.00 0.00

Selection into D:
Selection into Covariates

Dti
←−= 0.5ZT

ti + 0.25UD
ti + 0.25EP

ti E[Xti|Dti > 0] 0.00 0.36 0.00 0.36
E[Xti|Dti < 0] 0.00 0.64 0.00 0.64

ZT
ti , U

D
ti ∼ iidU [−1, 1]

E[Eti|Dti > 0] 0.01 0.01 0.42 0.42
E[Eti|Dti < 0] –0.01 –0.01 0.71 0.71

Note: The specified DGPs were used to generate 100,000 observations for the previous and current time periods. The precise functions fX
t and fE

t used in
each simulated DGP are specified in the text.
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