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1 The Transparency-Confidentiality Tradeoff

This paper has several goals: First, we elucidate the tradeoffs between transparency and confidentiality in
the context of financial supervision. Second, we explore how developments in cryptography, statistical data
privacy, and secure computation provide conceptual tools to formulate confidentiality requirements precisely,
and technologies to enforce them, while still revealing useful information (see Section 4 for definitions of
technical terms). Our main thesis is that a careful application of these new techniques can alleviate some
of the tension between transparency and confidentiality in important practical cases for financial regulators.
Finally, we identify directions for future research necessary to make these tools more applicable to the context
of financial regulation.

There is a natural tension between transparency and confidentiality inherent in financial activity. Exces-
sive or uneven disclosure can discourage financial activity, but well-chosen summary statistics can serve as
public goods if widely disseminated.1 For example, although market-makers and others intentionally conceal
individual transaction amounts and portfolio positions to protect proprietary strategies or avoid trading
losses, transaction prices in most markets are widely available to help guide investment decisions toward an
optimal aggregate allocation of capital.

We begin with the premise that regulators can assist in this context by requiring the standardization and
dissemination of information to improve decision-making in the aggregate. The challenge is in calibrating
policies to maximize transparency as a public good, while respecting existing institutions and commitments,
enforcing laws and regulations, and minimizing the potential for damaging side effects on financial activity,
supervisory relationships, and financial innovation. Finding a suitable balance among the competing objec-
tives of financial firms, their customers, supervisory agencies, and the general public thus requires a careful
configuration of rules, processes, and technologies. Either excessive transparency or excessive confidentiality
can be harmful, depending on the particular situation. As Fung et al. [83] emphasize in their recent survey,
the implementation details of transparency policies matter by making a difference in how data are collected
and presented, in addition to the question of what information is shared, and with whom. This paper dis-
cusses processes and technologies for reducing information asymmetries across organizational boundaries,
focusing on regulator-mandated disclosures, especially those resulting in formally restricted supervisory in-
formation. There is a devil in the details, both in identifying the goals for information sharing, as well as
for crafting processes and choosing technologies to assist in the implementation.

To illustrate the potential (and limitations) of the new technologies in a supervisory context, we propose
three specific case studies:

• Publication of Aggregated Sensitive Data: Financial regulators, including a number of Federal Reserve
Banks, have recently introduced public indexes of financial conditions; see Office of Financial Research
[169, pp. 38-45]; Oet et al. [168]. These measures condense a complex financial system into single
numbers that can be tracked through time. Because these signals can affect significant financial
decisions, there are costs or losses associated with both false positives and false negatives. In some
cases, expanding the set of data inputs for the index calculation can improve the accuracy of the
index; see Oet et al. [166]. Unfortunately, these enhancements can be blocked by legal restrictions
due to licensing agreements, privacy laws, and confidentiality of supervisory data. However, it may be
possible to design cryptographic implementations to “sanitize” the signal, such that we can guarantee
that it is impossible (within specific tolerances) to reverse-engineer the confidential inputs from the
published index.

• Retail Loan Information to Support Research: Regulators have begun to collect highly granular
datasets on retail loan exposures, including home mortgages and credit cards; e.g., Consumer Fi-
nancial Protection Bureau [40], Qi [177]. There is a significant research component to the work that
these agencies are performing; the datasets contain millions of records of granular detail on financial
relationships and behavior. Supervisory analysis would benefit greatly if the data could be shared

1Specifically, a published signal is a public good if it is both non-rivalrous (my “consuming” the signal does not
leave any less of it for you) and non-excludable (the act of publication implies that access is unlimited).
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with the broader research community, but this is not immediately possible due to privacy restrictions.
However, only the aggregate patterns are typically of interest to financial researchers, rather than
borrower-level details. It may be possible to randomize the data in ways that preserve aggregate
patterns, while disguising individual details, and to use techniques of differential privacy to calculate
the corresponding guarantees and tolerances.

• International Sharing: The recent financial crisis was an impetus to expanded international regulatory
data sharing, exemplified by the Data Gaps Initiative of the Group of Twenty (G-20) ([74], [77]).
Some of these recommendations consider sharing data about individual institutions with international
supervisory colleges, including Recommendation #8 on sharing data on linkages between individual
firms, and Recommendation #9 to create a common template for data reporting. These recommen-
dations recognize that sharing introduces important confidentiality concerns. One obvious concern is
the limited cross-border authority and jurisdiction to govern disputes and misunderstandings once the
data have left home. Techniques of secure multiparty computation may allow for international signals
and statistics to be calculated in a distributed fashion so that the underlying granular data never need
to be centralized or shared.2

We emphasize that the new computational techniques, although useful, are not a panacea. They are
practical technologies with the potential to improve outcomes in particular cases. Successful implementation
requires careful consideration of the details of: (a) “Who are the parties involved in sharing?” (b) “What
is to be computed—or what information should be shared?” and (c) “What is to be protected—or what
should not be shared?”

The paper proceeds in four sections. The next section reviews the literature on the economics of infor-
mation for general lessons on the potential benefits and pitfalls of transparency. We pay special attention
to financial disclosure policies and information asymmetries in the financial sector. Section 3 examines the
particular experience of financial regulators with information sharing, and the various confidentiality and
privacy concerns that have arisen. Section 4 reviews potentially relevant tools and concepts from the fields
of cryptography and statistical data privacy for a better understanding of how those technologies might be
applied, and what further research is necessary, in the specific context of financial supervision. We close
in Section 5 with three illustrative proposals for possible applications of the tools to concrete supervisory
challenges.

The general conclusion is that information sharing among financial regulators and transparency to the
broader public can produce significant concrete benefits. Techniques for secure computation can assist in
this process by reliably filtering the information that should and should not be disclosed. This filtration
represents a middle ground between the traditional choice of full publication and full confidentiality.

2 Costs and Benefits of Full Transparency

Most discussions of supervisory disclosure assume a choice between the two extremes: regulators will either
keep information tightly confidential or make it fully public. This stark dichotomy is due in part to difficulties
supervisors face in guaranteeing that sharing of data will be “limited,” coupled with an asymmetric loss
function (for both firms and regulators) that assigns extra weight to favoritism or inequity in disclosure. For
example, the General Accounting Office [90, p. 21] identifies as an obstacle to practical data sharing among
regulators the potential for liability in the case of disclosure of sensitive regulatory information, personally
identifiable information (PII), and unverified prejudicial information, such as consumer complaints.

At the same time, there may be social-welfare benefits from additional supervisory disclosures or data
sharing. Publication of signals that reduce information asymmetries (while protecting vital trade secrets of
individual participants) may improve the allocation of risks and investible capital. By all accounts, more
extensive sharing among the relevant financial regulators would have improved overall situational awareness

2These techniques are highlighted in a recent paper by Abbe et al. [1].
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and policy responsiveness in the crucible of the Lehman crisis in 2008.3 More speculatively, publication of
the daily aggregate open interest in the over-the-counter market (OTC) for credit default swaps (CDSs)
might have motivated market discipline to deflate the subprime securitization bubble sooner than the “run
on the repo” in August 2007.4 Both of these examples—exposing aggregates while concealing firm-specific
details, and sharing facts or calculations among a limited set of privileged policymakers—represent a middle
ground between fully public disclosures and closely guarded supervisory secrets. The case studies introduced
above and discussed below (Section 5) are similarly intended to negotiate these intermediate possibilities, by
applying promising new techniques from the field of computational privacy. On the other hand, we emphasize
that additional transparency is not automatically beneficial; welfare-enhancing disclosures require careful
consideration of what is revealed to whom, and under what conditions.

2.1 Asymmetric Information and Disclosure Regulations

The informational and governance “terrain” of financial markets differs from that of intermediary firms. Mar-
kets commit financial resources and risk-bearing capacity in contractual relationships between participants;
intermediaries localize financial decisions within the firms themselves. The primary transparency channel
in most financial markets is the post-trade transparency of transaction prices. In contrast, financial firms
are circumscribed by legal, commercial, and technical boundaries, and financial commitments are managed
by internal governance processes. The primary transparency vehicle for individual firms is the publication
of standard quarterly or annual accounting statements. This institutional context matters for regulatory
disclosure, because the primary regulators for various industry segments are limited by different legislative
mandates and constraints, as well as the accumulated precedent of rulemakings and guidance.

A tenet of the industrial organization literature is that, over the long term, institutional structures and
information structures are jointly and endogenously determined. The locus of financial activity—within firms
versus between firms—depends on transaction costs and information problems. In particular, information
asymmetries, agency problems, and other knowledge gaps, such as unforeseeable contingencies, imply that
contracts cannot be complete. By construction, arm’s-length transactions create idiosyncratic information
sets, which tend naturally to diverge across participants. Such imperfections can provoke enforcement
disputes and ex-post bargaining problems that discourage contracting. In Akerlof’s seminal model [4] of
adverse selection, only “lemons” are offered in the used-car market because sellers cannot credibly warrant
a vehicle’s true accident history and mechanical reliability without a costly inspection. At the extreme, the
danger of adverse selection drives away transactions altogether: in the no-trade theorem of Milgrom and
Stokey [153], a Pareto-efficient starting allocation implies that any offer to trade at the ex-ante equilibrium
price must be evidence of asymmetric information, which a risk-averse counterparty should therefore refuse.
Roughly re-stated, if everyone knows that the only motivation for trading is to pursue a buy-low/sell-high
strategy—e.g., to exploit counterparties by underpaying for assets—then no one will enter the market at all.

In contrast to financial markets, intermediary firms internalize decisions to allocate financial resources.
Only the “last-mile” interactions with end users such as depositors and borrowers involve formal contractual
commitments, while the broader portfolio allocation decisions are internalized. This approach facilitates the

3The Financial Crisis Inquiry Commission [72, p. 329] states that, “regulators did not know nearly enough
about over-the-counter derivatives activities at Lehman and other investment banks, which were major OTC deriva-
tives dealers.” In her testimony to the House Financial Services Committee in April 2010, Chairman Schapiro of
the Securities and Exchange Commission (SEC) cited four major initiatives the SEC was undertaking in response
to the Lehman failure, three of which focus on improving information systems and sharing: (a) improvements to
broker-dealer reporting and monitoring; (b) improved coordination. (i.e., “full information sharing”); (c) improved
examination, oversight and enforcement; and (d) further improvements to rules and requirements; [183].

4Although it does not speculate on the counterfactual possibility of publishing CDS market aggregates before
the crisis, the Financial Crisis Inquiry Commission [72, p. 352] concludes that, “The OTC derivatives market’s lack
of transparency and of effective price discovery exacerbated the collateral disputes of AIG and Goldman Sachs and
similar disputes between other derivatives counterparties. AIG engaged in regulatory arbitrage by setting up a major
business in this unregulated product, locating much of the business in London, and selecting a weak federal regulator,
the Office of Thrift Supervision (OTS).”
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responsiveness of portfolio management by avoiding costly re-contracting ([203], [191]), but the efficiencies of
integrating services and decisions within a financial intermediary must be traded off against the efficiencies
of specialized providers and the concomitant costs of transacting. Over time, the balance point has shifted
as innovations in derivatives valuation have vastly expanded the markets for hedging instruments, reducing
the hazard of ex-post re-contracting for many transactions. The decrease in contracting costs has been
compounded by a general drop in the cost of managing information, as advances in electronic messaging,
computation, and storage have increased the operational capacity for transaction flows. The long-run trend
reveals a clear and steady shift away from intermediated activity and into the transacted sector. The
upshot is a significant increase in data and information to be structured, stored, and shared among market
participants, in the form of quotes, transaction confirmations, contractual details, payment messages, etc.
This trend implies a general shift to market prices and away from internal firm governance as a coordination
mechanism for financial activity.

From a supervisory perspective, this shift implies new data-collection and sharing challenges. The
migration into new markets will typically reduce supervisory scrutiny; much of the recent growth occurred in
“shadow” banking sectors that do not fit neatly into traditional monitoring routines. The activities creating
the greatest incentives for such regulatory arbitrage are likely those that should most concern supervisors.
There is a long-standing debate regarding parochial competition in laxity between regulators.5 Regardless of
whether supervisors consciously pursue such competition, interagency coordination, including data sharing,
should reduce incentives for “forum shopping” by entities seeking to evade regulatory interference.

In theory, the transparency of prices typical of financial markets should ultimately resolve most asymme-
tries: the efficient markets hypothesis (EMH, [68]) asserts that observed prices will “fully reflect” all available
information, while the First Welfare Theorem asserts that equilibrium under complete Arrow-Debreu mar-
kets will be Pareto-optimal [87]. If both assertions were always true, questions of information sharing would
be largely moot. Indeed, Feldman and Schmidt [71, p. 7–8] point out that market prices have some ad-
vantages even over supervisors’ traditional access to the full internal books and records of banks, including
the fact that prices are timely, forward-looking, and aggregate the perspectives of numerous participants
with financial incentives for accuracy; they argue that regulators can leverage these characteristics to induce
market discipline of regulated institutions. Securities regulators have similarly leveraged rating agencies to
add transparency to securities exposed to credit risk.

Unfortunately, both the EMH and the assumptions of complete markets are violated in a variety of
significant and well known ways, with the upshot that prices alone are inadequate for eliminating information
asymmetries. Most basically, prices are a direct measure of activity in financial markets, but only an indirect
measure of activity within financial firms. For example, the Merton [150] model implies that equity values
should be increasing in both the mean and volatility of asset returns, so that stock prices can be an ambiguous
signal of bank asset quality, especially as leverage increases. The corporate veil is informational as well as
legal, and can create opaqueness around financial activities and exposures. Fama [67, 409-410] concedes that
the strong form of the EMH is prima facie dubious. This opacity can have consequences. Dang et al. [45]
and Gorton [97] argue that extreme asymmetries—whether real or perceived—can drive the widespread exit
from markets for opaque securities. We emphasize that asymmetry alone can be problematic, separate from
any determination of actual portfolio quality. Peristiani et al. [173] note that publication of supervisory
stress test results in 2009 helped alleviate a significant asymmetry caused by the opacity of large bank asset
portfolios; the intensity of the crisis began to abate in the wake of that announcement.

Second, because information is costly to acquire, the learning process induces an equilibrium level of
inaccuracy in prices. The anticipated trading profits due to informational advantages are a powerful mo-
tivator for research that increases the aggregate level of knowledge over time [100]. For example, search
costs can overwhelm the arbitrage mechanism, even for very straightforward comparisons. Hortaçsu and
Syverson [109] and Elton et al. [63] show empirically that seemingly identical S&P 500 index mutual funds
exhibit a wide range of fees. Theoretically, the economic rents enabled by search frictions lead to overentry
and excessive diversity in product markets [6]. At the individual level, they lead to adverse selection gains

5For example, Meyer [151, p. 21] states, “Nothing could be more disastrous than competition between the State
and national banking groups based upon competition in laxity.”
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and losses. In the context of regulatory transparency policies, Fung et al. [83, ch. 4] emphasize the crucial
practical importance of the comprehensibility of disclosures and their compatibility with decision-making:
disclosed information should be readily available to end users at the right place and the right time. Even
when search is successful, learning can take time, creating temporary divergences between current prices and
the efficient ideal [134].

Third, markets may be incomplete in the sense that there are not enough prices to form sufficient statistic
for all of the informational dimensions of interest. By construction, the migration of financial activity from
intermediaries to markets creates traded prices where they did not exist before. Those new prices are either
redundant or informative, suggesting again that the system operates at an informational margin and that
there are always some dimensions of interest that the price vector is not capturing. More significantly,
certain key dimensions defy measurement even after a problem has been clearly identified. These Knightian
uncertainties include complexity ([42], [7]) and regime shifts [36].

2.2 Fine-tuning Information Disclosure

If firms are opaque and the market prices of their equity and liabilities provide imperfect signals, one obvious
solution is simply to publish more facts. Following Justice Brandeis’s dictum, “sunlight is said to be the
best of disinfectants; electric light the most efficient policeman,” [34, p. 92] the Securities and Exchange
Commission (SEC) initiated public disclosure of standard accounting reports under the Securities Acts of
1933 and 1934 to reduce informational asymmetries in the markets. Fung et al. [83, p. 39] highlight SEC
disclosure as a successful example of so-called “targeted transparency” policies, which are characterized
by a clearly specified: (1) policy purpose, (2) discloser population, (3) scope of information, (4) reporting
vehicle, and (5) enforcement mechanism. While the SEC’s disclosure rules focus on publicly traded firms,
regulatory disclosure of financial statements for financial intermediaries is much broader: bank Call Reports,
Thrift Financial Reports (TFRs, discontinued in March, 2012), and bank holding company (BHC) Y-9
reports cover the vast majority of depository institutions, including firms that are not publicly traded. For
national banks, annual public reporting, via the Office of the Comptroller of the Currency (OCC), of basic,
standardized accounting statements goes back to the National Bank Act in 1863. Despite all of this public
disclosure, the challenges of opacity and incentives for moral hazard in banking remain.

Both the feasibility and desirability of full transparency are more nuanced in reality. At the most basic
level, firms may simply not comply with disclosure rules, as evidenced by the Enron case [17]. Assuming ef-
fective compliance, practical trade-offs still exist, and the reality of disclosure practice typically occupies the
middle ground. SEC disclosure regulations identify a finite set of standard public reports, while recognizing
the need for disclosers to maintain a private set of trade secrets, strategic plans, and other confidential infor-
mation. Under 240.10b-5 of the Securities Act of 1934 and Regulation FD (Fair Disclosure, [185]) the focus
is on symmetric disclosure. For example, FD prohibits selective sharing of material nonpublic information as
tantamount to illegal insider trading. “Public broadcast” addresses cross-sectional asymmetries, but leaves
room for certain forms of intertemporal discretion in information release. For example, Kothari et al. [131]
show that, on average, managers tend to delay the release of bad news compared to good news. Especially
notable are the formal mechanisms by which investors intentionally ignore information. For example, to help
in navigating conflicts, the SEC has created “trading plan” and “blind trust” exemptions to Rule 10b5-1
that allow investors to pre-commit to auditable processes that exclude information from investment decisions
[186].

As with corporate disclosure, the practicalities of information sharing in financial markets are intricate.
There can be significant trade-offs between liquidity and transparency, and institutional compromises have
emerged to balance them. For example, many markets provide for the routing of quotes and orders through
brokers to provide anonymity to the counterparties to protect against adverse selection. Payne [172, p. 316]
describes the trade-off in the context of the spot foreign exchange market:

... discussion should focus on the implications of differences between electronically brokered
trading and direct trading ... The former offers trading opportunities that are pre-trade anony-
mous but which are broadcast to the rest of the market. The latter offers trading opportunities
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that are nonanonymous but which remain private to the two counterparties. In our eyes, then,
both avenues for trade have an advantage—the pre-trade anonymity of electronic brokers versus
the post-trade opacity of direct trading.

Without protection from pre-trade transparency, dealers would often be less willing to take on large
positions. Similar considerations are central to the development of so-called dark pool markets [114]. We
emphasize, however, that heedless restrictions on pre-trade transparency will likely be counterproductive.
Hendershott and Jones [105] cite the natural experiment of the Island electronic communication network
(ECN), which in 2002 chose to “unpublish” its automated limit order book in response to new SEC rules
under Regulation ATS (Automated Trading Systems). The result of this blanket moratorium on pre-trade
transparency was a marked reduction in price discovery and market share for the Island ECN, together with
an increase in trading costs.

Conversely, Boehmer et al. [29] find that publication of the full limit-order book at the New York Stock
Exchange (NYSE), introduced as “NYSE OpenBook” in 2002, reduced the advantages of the NYSE special-
ists and improved market liquidity. Bessembinder et al. [19] find similar evidence of liquidity improvements
in the OTC market for corporate bonds following introduction of the SEC-mandated Trade Reporting and
Compliance Engine (TRACE) in 2002. TRACE boosts post-trade transparency by requiring publication of
transaction details within 15 minutes. These improvements include a “liquidity externality” that spills over
to markets for non-TRACE-eligible bonds. Reductions in rent extraction in bond markets may simply have
pushed informed traders over into the closely related CDS market, however. Avellaneda and Cont [8] argue
that large CDS dealers are especially vulnerable to information asymmetries; as long as the system relies on
their inventory capacity as the primary buffer for aggregate liquidity, there should remain some “upstairs”
venue protected from post-trade transparency.

Financial markets also produce cases in which information is intentionally discarded to reduce asymme-
tries. In the diamond markets, for example, the De Beers cartel uses its market power to enforce a set of
discrete quality grades for diamonds [152], thereby truncating the private gains to bargain-hunting via mi-
nuscule sorting and grading of individual stones. Kenney and Klein [124] argue that this imposed constraint
can add value, since “oversearching” might otherwise create a negative externality akin to Gresham’s Law,
driving away good diamonds like Akerlof’s non-lemons. Holmström [107] sees a range of similar examples
in the financial realm, including money market funds and money itself (both of which typically exchange
at par), credit ratings, and tranched securitizations. This is essentially the same as the “generalization”
method of bucketing to mask data via k-anonymity (see Section 4.2.4 below). In a financial context, the key
is that the projection of the information set into a discrete set of quality categories can reduce asymmetries,
so that private information becomes less relevant and overall market liquidity improves.

2.3 Information Sharing and Regulation

Information sharing is concerned with taking facts known to one party and making them also known to
others, reducing information asymmetries in an obvious way. Social and strategic issues can cause the sum
of individual informational sets to differ from the shared whole. For example, facts that are self-evident to
individual participants can have different implications if those same facts are common knowledge. As in the
parable of the emperor’s new clothes, affirming publicly what each agent individually already knows to be
true can alter behavior. The classic brain-teaser in this regard is the so-called Conway Paradox or “muddy
faces” puzzle.6 In these models, it is important to clarify: what is true; what is known individually by
agent i to be true; and what agent i knows about what agent j knows to be true. An event is said to be
self-evident to agent i if the truth of the event per se corresponds precisely to i’s knowledge of the event. As
a highly simplistic example, consider three events that might describe a particular bank: (1) prospering (or
“investment grade”), (2) scraping by (or “junk”), and (3) in default. The fact (i.e., event) that the bank is

6The paradox has been retold repeatedly with a variety of settings, including muddy children, tactful ladies with
smudged make-up, party hats of different colors, and cannibals with unfaithful wives. See Geanakoplos [86, 85] for
an excellent introduction. For a good survey of models of asymmetric information in finance, including common
knowledge issues, see Brunnermeier [35].
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prospering may be self-evident to a supervisor who has just completed a full on-site examination and seen
diligent accounting, competent managers, strong revenues and cash position, etc. On the other hand, a bank
bondholder who knows only that coupon payments continue to arrive on time cannot distinguish between
investment grade and junk; the true event (prospering) is not self-evident to her.

Knowledge becomes “common” when it is mutually self-evident: i.e., it is necessary that the participants
individually know it, but also that everyone knows—recursively—that everyone else knows too. Another
“paradox” illustrates how the transition from simultaneous knowledge to common knowledge can solve prob-
lems of coordinated action. In the “two generals problem,” a pincer movement will succeed if both generals
attack together, but if either army attacks alone it is doomed. Neither general is willing to act without abso-
lute certainty of coordination, but they have no way to know for sure that their orders or acknowledgments
are getting through to the other. Inductively, no accumulation of acknowledged acknowledgments can guar-
antee that the final messenger gets through. In the end, both are paralyzed by uncertainty of coordination:
common knowledge—and therefore absolute certainty—is theoretically unachievable. The communications
failure here is obviously partly due to the restrictive assumptions on messaging.7

These stylized examples have lessons for information sharing with and among regulators. For example,
ratings agencies work to fill the information gap faced by bondholders without the resources to perform
their own audit. Ratings can generate common knowledge by publicly announcing their ratings. However,
in the noisy signal environment typical of financial markets, credibility of the signal is important. When the
Federal Reserve announced the results of Supervisory Capital Assessment Program (SCAP) at the depths
of the financial crisis in 2009, most market signals were highly suspect. The Fed’s established credibility,
combined with a highly visible stress-testing exercise, were critical in communicating common understanding
and acceptance of bank solvency.8 The economic notion of credible certification is closely related to the
concept of a “trusted party” in secure multiparty computation, described below (Section 4.2) and reflected
in the use cases on sensitive data (Section 5.1) and international sharing (Section 5.3). Regulators’ lack of
an immediate profit motive gives them an advantage in acting as a trusted or credible intermediary.

Nonetheless, an important threat to credibility is capture, the possibility that the signaling agencies
will gradually align their behavior to benefit the firms they cover [133, 43, 118]. This threat drives a
demand for costly signals and certification services, such as external audits, supervisory examinations, and
warranties. Certifiers, in turn, invest in costly reputation-building, which can create natural monopolies for
honest certification services [192]. As an alternative (or supplement) to trusted reporters, centralization of
information can be critical to communication if it helps build common knowledge. The Financial Stability
Oversight Council (FSOC) created by the Dodd-Frank Act works not merely by fostering bilateral channels
between regulators, but by facilitating mutual communication, whereby facts and issues are aired in a
plenary venue. The Office of Financial Research (OFR) is similarly tasked with centralizing information and
standardizing it to facilitate interoperability and communication. On the other hand, Wagner [199] argues
that agencies that fail to filter the inflow can be inundated with too much information, creating an alternate
pathway to regulatory capture as supervisors turn to industry experts to help navigate the deluge. This
information overload remains a long-run challenge for information sharing.

2.4 Lessons from the Economics of Information

This brief review of the economics of information, regulation, and disclosure yields five broad conclusions.
First, the industrial organization of the financial services industry is intimately bound up with problems of
information. Because the regulatory system is adapted to the institutional structure of firms and markets, the
datasets available for sharing among individual regulatory agencies are idiosyncratic and constrained. Second,
transparency can often create value by alleviating coordination problems. Financial information typically

7The problem is also known as “coordinated attack problem;” [65, 86]. The two-phase commit protocol of database
theory resolves the pseudo-paradox by introducing a “commit coordinator” to centralize information, along with a
willingness to continue messaging indefinitely until the commit occurs [99, p. 466].

8In contrast, when the rating agency S&P downgraded U.S. Treasury debt in 2011, Treasury yields actually
dropped [193], implying that traders did not accept the prima facie interpretation of a credit downgrade. On the
effectiveness of the SCAP, see also Pianalto [174].
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exhibits the non-rival characteristic of a public good, and can be made non-excludable via publication; this
suggests that we should expect it to be under-produced in a competitive equilibrium, and that there may
be a role for welfare-enhancing intervention by regulators. Third, a primary channel by which information
revelation enhances coordination is by reducing information asymmetries, which can enhance liquidity—or
drive it out of markets in extreme cases. Fourth, successful disclosure regimes require careful attention
to the particulars of the case: who is disclosing what to whom, and why. Simplistic “reveal everything”
disclosures have the potential to backfire by discouraging market participation or overwhelming recipients
with superfluous detail. Fifth, fully common knowledge can generate benefits beyond those created by
simple symmetric information. In particular, information sharing among regulators should facilitate mutually
beneficial coordination.

3 Relationships Involving the Sharing of Data

The fundamental tension described above (Section 2) between transparency and confidentiality has concrete
practical manifestations in the form of laws, rules and policies. Financial supervisors rely heavily on infor-
mation, including data proprietary to supervised firms. This reliance creates a need for confidentiality to
preserve the reputation and competitiveness of the supervised firm and the integrity of the financial super-
visor. At the same time, the economic and accountability benefits of disclosure create a need for openness.
For example, Pianalto [174] argues that increased transparency of regulatory policy can aid coordination
between regulated entities and their supervisors, while enhancing the credibility of the latter. Secrecy about
regulatory plans can foster an atmosphere of policy uncertainty in which participants assume the worst and
tensions of mutual distrust are reinforced. Note that the arguments presented in this paper in most cases
do not require the presence of a central macroprudential authority; most of these techniques are available to
individual microprudential supervisors.

3.1 Restricted Supervisory Information (RSI) and Data

In the U.S., the dominant tool in balancing the demands of transparency and confidentiality is the Freedom
of Information Act (FOIA). The FOIA combines a presumption of disclosure with a set of nine specific
exemptions that allow financial regulators (and other agencies) to maintain confidentiality when appropriate.9

The exemption most relevant for financial supervision is 552(b)(8), which specifically exempts information
“contained in or related to examination, operating, or condition reports prepared by, on behalf of, or for the
use of an agency responsible for the regulation or supervision of financial institutions.” [47].

The FOIA is only one of many federal laws that relate to the disclosure (or non-disclosure) of information
between financial market participants, supervisors, and the public at large.10 For example, the Privacy Act
of 1974 and related legislation introduced a formal category of “personally identifiable information” (PII)
with particular safeguarding requirements (Government Accountability Office [98]; McCallister et al. [144]).
The Privacy Act protections were supplemented in 2002 with the passage of the Confidential Information
Protection and Statistical Efficiency Act (CIPSEA).11 The CIPSEA designates three federal “statistical
agencies” for special treatment: the Bureau of the Census, the Bureau of Labor Statistics, and the Bureau
of Economic Analysis. The CIPSEA protects PII (and other information) collected by these agencies for

9The FOIA law appears at 5 USC 552, with the specific exemptions listed at 552(b); [91]. The White House
recently re-emphasized the “presumption of disclosure” under FOIA in a memorandum to Executive Departments
and Agencies ([202]), following a post-2001 slowdown in FOIA releases; [176].

10The legal and bureaucratic landscape is intricate; a non-comprehensive sampling of major laws appears in Ap-
pendix A. Moreover, each financial regulator implements its own rules, policies, and procedures to manage the
interactions between the legislative rules and their practical information challenges. The upshot is a complex array
of largely regulator-specific rulesets for handling sensitive information. An agency-by-agency sampling of formal
categories (see Appendix B) gives a sense of the scale and scope of the challenge.

11CIPSEA appears as Title V of the E-Government Act of 2002; see Appendix A; and Office of Management and
Budget [170].
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exclusively statistical purposes from unauthorized use, disclosure, or access, and permits them to share infor-
mation with each other.12 The CIPSEA and related guidance provide a valuable example of a coherent legal
framework for collection, maintenance, sharing, and reporting of private information, including procedures
for designating third-party collection “agents” and outside researchers who may handle the data. Although
some of the CIPSEA provisions extend to “non-statistical agencies,” such as financial supervisors, most do
not.

The supervisory and statistical agencies responsible for publishing aggregate statistics and supporting
scientific research have established procedures for disclosure control.13 For example, in releasing the triennial
Survey of Consumer Finances (SCF), based on detailed and voluntary household-level questionnaires on
income and savings behavior, the Federal Reserve undertakes a formal disclosure review that includes,
among other things, suppression (i.e., deletion) of key fields, data “blurring” (i.e., noise addition), and
data bucketing.14 As linkage attacks have become more sophisticated and linkable data more ubiquitous,
the SCF disclosure reviews have tended to impose additional constraints; see, for example, Fries [82] and
Kennickell and Lane [125] and the references therein. Another instructive example is census microdata. In
managing disclosures, the U.S. Census Bureau (a CIPSEA statistical agency) empanels a Disclosure Review
Board to approve published data “products.” Formal procedures include rounding, noise addition, field
suppression, synthetic data, and topcoding (i.e., rounding of extreme outliers to threshold percentile values);
[208, 49, 197, 145]. Many of these techniques are also built into the Advanced Query System underlying the
Bureau’s online tool, “American FactFinder” [104]. As with the SCF, the increasing sophistication of linkage
attacks has had an effect. For example, the Census Bureau no longer requests social security numbers as
part of its Survey of Income and Program Participation, because respondents have gradually learned not to
provide this datum [146].

Financial supervisors have a particular focus on confidential financial information collected from regulated
entities through the supervisory process and formal reports. The various agencies use different terminology
and frameworks to manage this information (see Appendix B). To avoid ambiguity, we coin a new umbrella
term, “restricted supervisory information” (RSI), to encompass any financial supervisory data or information
held by federal agencies and subject to any of these (or other) policies, rules, or laws that proscribe their
disclosure to the general public.15 Less formally, supervisors gather RSI directly from regulated firms.
In a banking context, for example, this gathering includes financial data (account balances, investments,
counterparty exposures, executive compensation, etc.) and nonfinancial information (minutes of board
meetings, strategic plans, risk reports, incentive compensation terms, etc.). In addition, RSI from a bank
examination often comprises information related to firms’ customers. Loan and portfolio reviews might draw
in customers’ social security numbers and other PII, balance sheet and income information, and even business
plans. Finally, supervisors themselves will also generate RSI, based on information gathered through the
supervisory process (examination reports, financial analysis, assessments of firm management, and possible
supervisory strategies, etc.). By design, this derived information provides important nonpublic insights into
the firm.

Even within a supervisory agency, strong “need-to-know” rules typically restrict employees’ access. For
example, the Federal Reserve, with its multiple responsibilities for monetary policy, financial stability, and
banking supervision, limits access to RSI to employees directly involved in the supervision. Legally, the
RSI is property of the Federal Reserve. Upon employment, supervisory employees commit in writing to
safeguard RSI, and breaches may result in employment termination. A separating employee continues to be
restricted from sharing RSI post-separation. Beyond the immediate requirement to safeguard the financial

12Tuttle and Willimack [197, p. 14] point out that, “In the United States, which has a decentralized statistical
system, confidential data cannot be shared across statistical agencies without legal authority.”

13For a general overview of computational disclosure control, see Sweeney [194].
14The National Opinion Research Center (NORC) at the University of Chicago conducts the SCF on behalf of

the Fed. Any NORC staff members who touch the data are legally bound (per a felony offense) to confidentiality
throughout their lifetimes [159].

15For an itemization of regulations defining RSI, see Appendix B. In the following, we emphasize Federal Reserve
CSI as a practical example of RSI, but most of the discussion should extend in a straightforward way to RSI in
general, although the particulars of implementation will necessarily differ.
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Figure 1: Some representative (non-comprehensive) examples of formal information-sharing among broadly defined
financial user groups. The important role for transparency is reflected in the fact that the public receives information
from all three other groups.

soundness and reputations of both participants and regulators (echoing the incentives for credibility described
in Section 2.3), a primary goal of all of these restrictions is to foster a trusted relationship between firms and
their supervisors, so that a reliable communications channel exists when it is most needed (foreshadowing
the issue of trust, emphasized in Section 4.1).

3.2 Interagency Sharing of Information

Despite the many safeguards for RSI within particular supervisory agencies, there is frequently also a need
to share information with other financial regulators. As the supervision and enforcement infrastructure has
evolved over time, significant overlaps have emerged in the authority of the various supervisory agencies.
For example, financial holding companies are a special class of large bank holding companies with diversified
operations, and therefore multiple regulators, including potentially the full alphabet soup: Fed, Federal
Deposit Insurance Corporation (FDIC), Office of the Comptroller of the Currency, SEC, and Commodity
Futures Trading Commission (CFTC). Moreover, as emphasized above (Section 2.3), there can be important
benefits to interagency coordination, a fact highlighted by the creation of the Federal Financial Institutions
Examination Council in 1978, or more recently (2010) of the FSOC and OFR. To minimize regulatory
burden, supervisors typically enter into memorandums of understanding to permit interagency information
sharing. Generally, these agreements focus on agency-produced information, such as examination reports
and review findings, which may include direct information regarding the supervised firm and its customers.

Figure 1 gives a sense of the scope of formal information-sharing among financial supervisors, industry
participants, and the general public. The particular examples highlighted are far from a comprehensive
listing. Indeed, just two of the many federal supervisors alone list scores of information collections for banks
and bank holding companies [28]; and for public companies, investment advisors and broker-dealers [187].
Although current information-sharing channels are extensive, the effect of our use-cases would be to expand
the repertory even further, from domestic supervisory agencies to the public (Section 5.1); from domestic
agencies to the public and the research community (5.2); and from domestic to international agencies (5.3).

In addition to information sharing agreements, banking regulatory agencies have also entered into agree-
ments, whereby representatives of the agencies jointly engage in the review of a particular aspect of the
financial firm, or in the review of the financial firm overall. Information that is collected directly from the
supervised firm is shared among the agency representatives who take part in the joint review. Although
this information is shared among the participating supervisors, these supervisors may produce separate re-
ports of examination and other agency-originated RSI, based on the information gathered directly from the
supervised firm. In some instances, joint reports of examination and other supervisory memorandums are
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produced by the agencies involved.
On the other hand, the rules can also work to complicate interagency coordination. The Gramm-

Leach-Bliley Financial Modernization Act of 1999 required the Federal Reserve Board, “to the fullest extent
possible,” to defer to the examination reports of so-called “functional regulators” (e.g., the SEC) for non-
depository subsidiaries of large financial holding companies [22, 26]. Although this deference might reduce
the burden of duplicative examinations, it also creates a crucial dependency between supervisory agencies.
The removal of the “second set of eyes” from direct inspection of the regulated entity magnified the need for
interagency information sharing.16

In response to the financial crisis of 2007-08, Congress passed the Wall Street Reform and Consumer
Protection Act (Dodd-Frank Act) in 2010, with a key goal of promoting financial stability. As part of the
Dodd-Frank Act, Congress created the FSOC to address the identified gaps in the entity-based supervision of
financial firms.17 In support of the FSOC, the Dodd-Frank Act also created the OFR under the Department
of the Treasury. A key purpose for the OFR is to support the FSOC by collecting data on its behalf. The
OFR has the authority to “share data and information ... with the Council [FSOC], member agencies,
and the Bureau of Economic Analysis.”18 The responsibilities of the OFR Data Center include publication
of certain reference databases, along with formats and standards for reporting data to the Office, while
taking care not to publish any confidential data in the process. The OFR Data Center is also responsible to
protect any data it collects against unauthorized disclosure.19 In keeping with this mission and authority,
the OFR strategic goals include providing “the public with key data and analysis, while protecting sensitive
information” (Office of Financial Research [169, p. 127]). The OFR must balance the common-knowledge
benefits (Section 2.3) of information accessibility against needs of information confidentiality—a balance not
always easily achieved.

Given the global interconnectedness of large financial firms, the value of relevant, cross-industry financial
information is international. Various initiatives are attempting to address this gap, such as the the Finan-
cial Stability Board’s (FSB) Data Gaps Initiative ([77]) and the separate Enhanced Disclosure Task Force
(EDTF) ([73]). The EDTF was charged with “improving the quality, comparability, and transparency of
risk disclosures, while reducing redundant information and streamlining the process for bringing relevant
disclosures to the market quickly.” A unique aspect of the EDTF is the objective not merely to enhance
the disclosure of raw data, but also the disclosure of business models, liquidity positions, and calculations of
risk weightings of assets and other risk measures. The transparency goals of the EDTF are a good practical
example of the pursuit of positive externalities through expanded disclosure, described in section 2. The
public-good benefits are compounded as academics, researchers, nonprofit organizations, and others conduct
research and analysis from varied perspectives. On the other hand, the potential for adversarial misuse of
shared information—by competitive rivals, hackers, terrorists, etc.—looms larger in an international con-
text. Our third use-case (Section 5.3) emphasizes this point, and suggests ways to use secure multiparty
computation to balance the competing risks and benefits in this context.

3.3 Broadening Scope of Supervision

The historical evolution of bank examination provides an instructive example of the economic forces at
work.20 As noted above (Section 2.1), technological changes—especially the ability to structure contracts
with a more complete specification of contingencies—have tended to encourage the migration of financial
activity away from traditional intermediaries like banks. Many of those same changes have also tended
to accelerate the pace of financial innovation, forcing a general move toward offsite monitoring and more

16Similar rules restricted the FDIC’s ability to examine Federal Reserve member banks prior to 1950 [201, pp.
29–30].

17Dodd-Frank Act, section 112(a)(1).
18Dodd-Frank Act, section 153(b)(1).
19Dodd-Frank Act, section 154(b)(2).
20See White [201] for a more comprehensive history of bank examination in the U.S. Elliott et al. [62] consider the

history of financial stability regulation. See Komai and Richardson [130] for a brief history of financial regulation
more generally.
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frequent examinations, including continuous on-site supervision for the largest firms. These trends have
combined with more detailed and comprehensive reporting requirements to increase the overall volume of
RSI to manage.

Reporting demands have grown yet again since the crisis of 2007-08. A central lesson from that episode
was the potential for risk exposures in a large and innovative financial system to “shape-shift” and migrate
in ways that may not be immediately apparent. The widespread shift of residential mortgages, including
subprime loans, out of bank and thrift portfolios and into the “originate-and-sell” securitization chain moved
large volumes of credit risk into new supervisory territory, with ramifications that were not fully understood.

Post-crisis reforms have sharply augmented the amount of RSI, as well as the mandate for interagency
information sharing. A significant lesson embodied in the Dodd-Frank Act, for example through the creation
FSOC and OFR, is that a strictly microprudential (entity-based) approach to supervision is not enough to
ensure the stability of the financial system. Berner [18, p. 7] asserts that “we policymakers should ... make
our first priority the expansion of data sharing among ourselves. The costs and obstacles are significant,
but the benefits dwarf the impediments.” Supervisors must also identify and monitor risk exposures shared
among multiple firms or created by their interconnection and interaction. As a result, RSI from an individual
firm may now also include information regarding its financial counterparties, increasing the volume and
complexity of collecting and managing RSI.

4 Cryptographic Tools for Balancing Transparency and Confiden-
tiality

In this section we describe two classes of cryptographic tools: secure multiparty computation (sometimes
called secure function evaluation, SFE) and techniques for reasoning about and achieving individual privacy
in statistical data releases. To understand what types of problems these tools address, it helps to recall some
more familiar concepts from computer security. Public understanding of cryptography typically centers on
the most widely-used cryptographic tools: encryption and signatures. Used correctly, these provide a secure
channel between two parties, assuring each of them that messages received on the channel are authentic (they
really come from the stated sender) and secret (no one except the intended recipient can learn anything about
the message except perhaps its length). Secure channels are widely used and critical to storing, processing,
and transmitting confidential information.

Secure channels are a tool for access control, which refers to a wide range of techniques for controlling
the set of people or organizations able to read, modify, or distribute particular information. A relatively
familiar example is the classification system for national security information [165]. Technologies to enforce
access control and establish secure channels are not the focus of this survey. The manifold challenges facing
any implementation of such technologies are not specific to the financial setting and are thoroughly covered
elsewhere (see, e.g., [24, 95, 122] for textbook treatments). However, it helps to understand abstractly what
these tools provide. They apply in settings where bright lines separate those who should be able to access
specific data from those who should not. In contrast, the remainder of this section covers tools for reasoning
about settings where no such bright lines can be drawn, and more subtle distinctions need to be made.

Over the past 25 years, the cryptography community has developed several tools that balance trans-
parency and confidentiality. Both SFE and statistical data privacy stand out as relevant to financial data.
These two classes of tools handle different types of concerns. Multiparty computation handles questions of
how to release well defined output calculations without pooling input data in a single location; it effectively
addresses questions of information collection and storage. In contrast, work on statistical privacy addresses
questions of inferences that are possible based on released information (to the public or among regulators),
possibly in combination with other sources of information.

The difference between these tools may be best understood through the metaphor of an incorruptible
trusted party, to whom players can secretly send information and who will securely perform computations
for them and reveal only the final results. Multiparty computation protocols emulate such a trusted party—
for example, allowing regulatory agencies to compute aggregate statistics jointly without pooling data. In
contrast, statistical privacy aims to understand and limit what confidential information is leaked by the
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final output (aggregate statistics, for example). It is perhaps surprising that any information at all can be
leaked by aggregate statistics, but it can; we discuss several examples in Section 4.2.3. Those examples also
highlight problems with personally identifiable information (PII), which plays an unfortunately prominent
role in current regulations.

Of course, the problem of protecting sensitive information is not new. Supervisors and statistical agencies
have developed a number of robust techniques (see Section 3.1 for some examples). However, in some cases,
recent research calls into question the appropriateness of current methodology. We describe multiparty
computation and statistical privacy in Sections 4.1 and 4.2, respectively. Since the literature on the latter is
largely specific to individuals’ privacy, we discuss how it may be applied to financial privacy in Section 4.3.

4.1 Secure (Multi-Party) Computation

The standard technical tools for access control, previously mentioned, enforce binary, all-or-nothing infor-
mation disclosure rules; an actor either has access to a particular document (or message), or does not.21

However, many situations require the disclosure of information that can be derived from confidential data,
while requiring that everything else about these data remain secret. In many such cases, access control tools
are too coarse for the task.

To take a concrete example, consider the case of a one-sided or single auction. (The exact details of the
goods, preferences, and auction mechanism are irrelevant for the current discussion.) We have a collection
of bidders and a seller. The bidders all agree to the rules of the auction, and want to make sure that the
auction is carried out correctly, e.g., the seller should not be able to preferentially choose one of the bidders
to win the item (unless that bidder is the legitimate winner). The bidders may also be concerned about their
privacy; they may not want to reveal anything about their bids to other bidders or even to the seller. Of
course, some information leakage is unavoidable—the seller must learn the amount paid, and probably also
the identity of the winning bidder. The bidders understand that this is inevitable, but don’t want to leak
anything besides this. We will return to this issue. The points to note here are (1) the setting is symmetric
among the bidders, so it would be inappropriate to classify any of the bidders as being “good” or “bad”;
rather, each bidder can be viewed as having interests in opposition to those of the other bidders, and (2) even
if there is complete trust that all parties will run the auction honestly, bidders might still prefer their bids
to be kept private lest that information be used to their disadvantage in future auctions or negotiations.

4.1.1 Trusted Parties and the Ideal/Real Paradigm

In considering complex scenarios, it helps to imagine an ideal in which the players all agree on an incorruptible
“trusted party.” This party is trusted to (1) carry out any desired computation correctly, and (2) maintain
confidentiality of any data it has access to in the course of the computation. As an example, consider a double
auction market with a Walrasian auctioneer who assembles supply and demand schedules from individual
buyers and sellers to compute and announce only the cleared transactions and the market-clearing price.
We underscore a strict confidentiality rule on individual supply and demand schedules to highlight the data
privacy issues. Economically, this mechanism prevents trades from occurring away from the equilibrium
price, thus avoiding a broad class of strategic behavior and helping to ensure a Pareto-efficient outcome.22

If one assumes that the auctioneer is trustworthy then, almost tautologically, the auction will be carried
out correctly, so that the auction mechanism leaks only the cleared trades and the equilibrium price, and
nothing else.

More abstractly, fix a set of n parties P1, ..., Pn holding inputs x1, ..., xn, respectively. Imagine that these
parties have agreed upon some collection of functions f1, ..., fn that they would like to compute over their

21In practice, they are supplemented with more nuanced, human-applied rules such as need-to-know requirements,
e.g. Obama [165, sec. 4.1]. However, if classification procedures grant access to an item, it is typically access to
peruse the item in its entirety.

22Walras famously developed his model around the actual workings of the Paris Bourse; [23]. Verrecchia [198]
discusses related issues of disclosure and reductions in informational asymmetries. For further discussion of the
equilibrium properties of the auctioneer, see Rubinstein and Wolinsky [182] or Tesfatsion [196].
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data, with party Pi being given the result fi(x1, ..., xn) and learning nothing else.23 Furthermore, no one
external to the protocol (e.g., an eavesdropper) should learn anything either. It is immediate that this can
be done if the parties have access to a trusted party; each party Pi sends an input xi to the trusted party
(we assume this is done over an ideal channel, so that no one can look at or tamper with this value). The
trusted party computes y1 = f1(x1, ..., xn), ..., yn = fn(x1, ..., xn) and sends yi to Pi.

Note that this solution not only provides security against individual cheaters, but also ensures security,
even if several parties are colluding throughout the entire execution. If parties in some set S collude, then
the parties in that set learn the union of what they each learn individually, but nothing more. Given this
formulation—specifically, with the constraints given that we want party Pi to learn fi(x1, ..., xn) exactly—
the solution using a trusted party is the best one could hope for, and we will therefore take this as our “ideal
world.” In the real world, in contrast, there may not exist any trusted parties that all the players agree
upon.

Protocols for secure computation provide a way for P1, ..., Pn to achieve the security guarantees of the
ideal world without the involvement of any external entities. Indeed, the definition of secure computation
involves an explicit comparison between the real-world execution of the protocol (in which the parties ex-
change messages amongst themselves) and the ideal world just described. Roughly speaking, a protocol is
“secure” if the actions of any colluding parties in the real world can be emulated by those same parties in
the ideal world. (Alternately, we may think of the protocol as providing a “virtual” trusted party that is
guaranteed to follow its specified program and reveal only what it is explicitly instructed to compute and
output.) As a corollary, any attacks that are impossible to carry out in the ideal world are impossible to
carry out in the real world either.

This model is powerful, but not a panacea. The model’s usefulness depends on the extent to which
the task at hand can be completely specified, since the trusted party must follow a well-defined algorithm.
Furthermore, the ideal model does not always capture all security concerns; see Section 4.1.4 for a discussion
of some attacks that are possible, even in the ideal world.

4.1.2 Examples of Secure Computation

Almost any cryptographic problem can be cast as one of secure computation (even if that may sometimes be
overkill for the problem at hand). For example, one could cast the problem of private communication from
P1 to P2 as the problem of computing the function f2(x1) = x1. Here, party P2 has no input and party P1

gets no output. A trusted party computing this function would effectively take a message from P1 and hand
it to P2. While this is not very useful as far as constructing efficient encryption schemes, it does provide a
conceptually useful way to think about the guarantees that encryption provides.

The double auction setting described earlier is a more interesting example. There, the function to be
computed is, for participant i (buyer or seller), the cleared transactions (including the transaction price
and counterparty) that this bidder will participate in. Alternately, the auctioneer might simply announce a
clearing price and let partipants who wish to transact at that price announce their intentions. The auction
example is not hypothetical; a Danish sugar beet auction is run using secure computation to replace the
auctioneer (see Section 4.1.5).

As another example, consider the case (discussed in Section 2.2) of brokers who provide a layer of
anonymity to protect the identity of dealers in certain markets, such as foreign exchange. The “participants”
here are the set of all potential dealers (in practice, this set is not large; dealers must have pre-existing
contractual arrangements to be part of the market, even anonymously). The role of the “trusted party” here
is played jointly by the brokers, who find appropriate pairs of participants to transact based on requested
trades and desired prices, without informing other participants of the trade, and without revealing anything
about unsuccessful orders (that cannot be inferred from a given institution’s successful trades). Implementing
this functionality through secure computation would provide anonymity to dealers without the need to trust
brokers’ discretion.

23We remark for completeness that the output computed by these functions can be probabilistic, in which case the
results can also be correlated.
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A final example comes from Abbe et al. [1], who propose using secure computation to calculate aggregate
statistics that support supervisory monitoring of threats to systemic stability without exposing the full
portfolio details of individual institutions. There, the parties are a supervisor and a set of institutions. The
institutions input portfolio and transaction details, while the supervisor inputs specific summary functions to
be computed. Using secure computation, the institutions can limit the exposure of confidential information,
while allowing the supervisor to select the summaries to use in a given circumstance.

4.1.3 Key Assumptions and Main Feasibility Results for Secure Computation

We do not discuss in any detail how protocols for secure computation are designed. For a tutorial, see
Lindell and Pinkas [138]. We focus here on understanding how to use such protocols and the conditions
under which such protocols exist. The preceding discussion implicitly covers how to use such protocols to
solve a particular problem: solve the problem under the assumption that a trusted party is available, and
then replace the trusted party with a secure-computation protocol run among the parties themselves. In
this section, we outline the basic (theoretical) feasibility results for secure computation. In the next section,
we summarize the state-of-the-art with regard to practical implementations.

Modern security definitions all proceed by comparing the real-world execution of some protocol to an
ideal-world execution, as previously described. Reiterating, a given protocol is secure if the actions of a
group of colluding parties in the real world can be emulated by those same parties in the ideal world. To
obtain a formal definition, then, we need a model of the real and ideal worlds, and we must define what it
means to emulate a real-world execution in the ideal world. Such details are beyond the scope of this paper;
the interested reader may refer to, e.g., Goldreich [93] for details.

We have already described the ideal world in detail in Section 4.1.1, and this is the model we will use for
the ideal world unless stated otherwise. This model provides the strongest formulation of the ideal world,
and so protocols proven secure with respect to this ideal world satisfy the strongest set of security properties.
Nevertheless, there may be good reasons to consider weaker ideal-world models, e.g., for better efficiency
or because the strongest notion of security is unattainable. One example is security-with-abort, where the
trusted party computes the function(s) correctly and privately as before, but can then be prevented by a
misbehaving player from sending output to some subset of the parties. An “abort” of this type corresponds,
in the real world, to malicious participants who stop participating in a protocol after they have learned their
outputs but before “honest” players learn theirs. Deviations of this type are relatively benign and can often
be handled via mechanisms external to the protocol.

As for the real-world execution of the protocol, there are several issues to consider:

• Corruption threshold: Perhaps the most basic question is whether there is any assumed bound on
the number of parties who might collude in an attempt to disrupt the protocol and/or learn more
than they should. This involves some assumptions—outside the cryptographic model—regarding the
lengths to which parties will go in their attempts to subvert the protocol.

• Assumptions on behavior: A second question, often decided before the previous one, is whether it is
assumed that all parties run the protocol honestly (but may then try to learn more than they are
allowed by looking at the record of the protocol communication), or whether no such assumption is
made and protection is afforded against arbitrary behavior. The first is called the semi-honest or
honest-but-curious model, while the second is called the malicious model. The assumption of semi-
honest behavior may be a reasonable in many scenarios. For example, a protocol may be executed
among parties who basically trust each other (e.g., government entities) but are prevented from leaking
information for reasons of classification, policy, or law. In other cases, it may be infeasible to modify
the protocol being run due to software audits or other mechanisms.

• Computational resources of the parties: An issue that we have ignored until this point is what as-
sumptions, if any, are made about the computational resources of the parties. A full discussion is out
of scope here, but we note a key dichotomy, namely that security of some protocols is information-
theoretic and does not make any assumptions on the computational power of the parties, whereas
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other protocols achieve computational security based on the assumptions that (1) certain mathemati-
cal problems are “hard” to solve, and (2) that the parties have (known) bounds on their computational
power. In practice, computational security typically works well, and the only question is to determine
reasonable bounds on parties’ computational power.24

• Network and other assumptions: The usual network model is that every party can send messages
to any other party, i.e., there are point-to-point links between each pair of parties. In addition,
it is usually (implicitly) assumed that each pair of parties shares any necessary cryptographic keys
needed to encrypt and authenticate their communication. This is the network model we assume unless
stated otherwise. Sometimes other network models may apply. An example might be one with only
partial connectivity between parties (say, smartphones that all talk to a cloud provider, but cannot
communicate directly with each other). A stronger model might be to assume the existence of a
broadcast channel, which allows everyone to hear the messages sent by some party, or a public-key
infrastructure (PKI) in which each party knows everyone else’s public key.

Let n denote the number of parties running a protocol. The main feasibility results, for computation of
arbitrary collections of functions, are:

• When cheating parties are assumed to be semi-honest, it is possible to obtain information-theoretic
security against arbitrary collusion of any t < n/2 of the parties [16, 37].

• When cheating parties may be malicious, information-theoretic security against arbitrary collusion
of up to t < n/3 of the parties is possible [16, 37]. If a broadcast channel is available, this can be
extended to t < n/2 [178].

• The bounds above are all tight, even if only computational security is required. Specifically, security
against n/3 malicious, colluding parties is not possible without broadcast or some means of implement-
ing broadcast, and security against n/2 parties is not possible even if broadcast is given.25 However,
see next.

• The above discussion refers to the strongest ideal-world model we have been considering. We can
recover feasibility if we consider the weaker notion of security-with-abort. Here, computational security
is possible against malicious collusion of any t < n of the parties [206, 94].

We remark that this covers the interesting special case of two-party computation in which two parties
wish to compute some function over their inputs, while each protecting sensitive data from the other.

For most applications of secure computation, protocols for this last setting (computational security-with-
abort) make the most sense, because they require no assumptions on the number of honest participants.
Indeed, state-of-the-art protocols generally provide this type of security (see Section 4.1.5).

4.1.4 What Secure Computation Does Not Provide

It helps to clarify what secure computation does not provide. By construction, secure computation cannot
provide security guarantees that are not present in the ideal-world computation involving a trusted party.
In particular, then:

• Secure computation does not prevent attacks based on a party lying about its input. For example,
if the parties are implementing a first-price auction, then nothing forces a party to report its true
valuation of the object as its input, and all the same game-theoretic considerations that are present
in the ideal world remain when a secure protocol is used. As another example, if several firms are
pooling information about their customers’ purchasing habits, nothing prevents one party from using
fake customer information if that will provide an advantage (for example, by giving erroneous results

24Indeed, even protocols with information-theoretic security require (in practice) messages sent as part of the
protocol to be encrypted using an encryption scheme that is only computationally secure.

25It is known that a PKI suffices to realize a broadcast channel, with computational security.
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to the other parties). There may be ways to enforce the use of correct inputs (or verify inputs), but
they would require an external source of information allowing the protocol to verify the inputs.

• Secure computation reveals to each party its prescribed output along with anything that can be deduced
from that output (in conjunction with that party’s input). A simple example might be a first-price
auction in which only the winner, but not the winning bid, is announced. In that case everyone learns
the winner, and the winner additionally learns an upper-bound on everyone else’s bid. An important
first step to using secure computation is thus to decide what leakage is acceptable in the first place
(i.e., even in an ideal world involving a trusted party). See Section 4.2 for further discussions along
this line.

• The above concerns may be magnified in the event of collusion. If several parties collude they may
jointly set their inputs any way they like in an effort to maximize their advantage, and can attempt to
deduce information from the union of their outputs. It is easy to find examples in which each party’s
output individually reveals nothing sensitive, but the collection of two or more parties’ outputs does.

• Secure computation requires that the trusted party’s desired behavior be precisely specified as a
computer program. However, there are many situations where the processing to be done on the secret
data requires considerable human judgment (for example, on the part of an auditor); such situations
require a more subtle use of secure computation (having the trusted party perform only part of the
task, for example).

4.1.5 Specific Instantiations and Current State-of-the-Art

Over the past decade, secure computation has moved from the realm of computer science theory to actual
implementation. For example, Danish farmers deployed secure computation in 2008 to find the market
clearing price for contracts on sugar-beet production via a double auction [31, 32, 33]. Reminiscent of the
Walrasian auctioneer described above, each buyer (typically a sugar producer) or seller (typically a sugar
beet farmer) specifies the quantity he is willing to buy (resp., sell) as a function of the price. Based on
these individual supply and demand schedules, the “auctioneer”—implemented by a secure-computation
protocol to protect individual bidder information—computes the market-clearing price. This particular
implementation utilizes a three-party protocol with parties representing: (1) the only sugar-beet processing
company in Demark, with whom the contracts were executed; (2) an association representing the sugar-beet
farmers; and (3) the research organization who developed the secure protocol.

In another, more recent implementation, Bogdanov et al. [30] describe a working system that aggregates
unaudited semiannual financial statistics for Estonian firms to support reporting by the Ministry of Economic
Affairs and Communications.

The state of the art in implementation is advancing quickly, with a flurry of recent activity (e.g., [184,
143, 137, 15, 116, 140, 129, 115, 160, 175, 106, 139, 141, 189, 110, 132, 44, 161, 111, 14, 80, 81, 96, 154]).
As of this writing, a rule of thumb is that current implementations of secure computations between two
parties over a fast network in the “semi-honest” model are roughly a factor of 104 slower than the time taken
to compute the trusted party’s function directly (without secure computation) on similar hardware [188];
a computation that takes normally takes milliseconds on a desktop would take tens of seconds via secure
computation. This means that secure computation is already practical for simple, infrequent calculations
(such as those involved in most regulatory data sharing). This slowdown is likely to decrease as protocol
design improves.

4.2 Statistical Data Privacy

Many cryptographic tools provide the functionality of a trusted party (see Section 4.1) that transmits, stores,
and processes information on behalf of participants in a protocol. These are powerful tools for situations
in which bright lines separate the sets of participants to whom different pieces of information should be
available. In many such settings, however, it is not clear what should be revealed to whom; one must first
understand when revealed information might allow an attacker to infer sensitive information. Techniques
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of statistical data privacy emphasize the latter problem. Such questions of privacy and confidentiality are
often orthogonal to the implementation of a trusted party. In the language of the previous sections the key
question becomes “What should the trusted party compute?” and “What facts should remain concealed?,”
or, “What might be unintentionally revealed by seemingly innocuous published information?”

One highly prominent and relevant setting for economic research and regulations is individual privacy in
statistical releases. Collections of personal and sensitive data, previously the purview only of statistical agen-
cies, have become ubiquitous. Increasing volumes of personal and sensitive data are collected and archived
by health networks, government agencies, search engines, social networking websites, and other organiza-
tions. Much research has explored releases such as this in several scientific fields: databases, data mining,
machine learning, and cryptography among others. The broad question is, how can we glean the benefits of
research based on these datasets without compromising the privacy of individuals whose information they
contain? The challenges are complex and typically context-dependent, and there is no consensus yet on an
unambiguous “right way” to approach these problems.

Several high-profile failures of supposed anonymization schemes demonstrate that simply removing ob-
vious identifying information, such as names and addresses, is not sufficient. For example, in 2006, AOL,
an Internet service provider, released a corpus of web search queries to aid research on search engine opti-
mization. User names were removed from the dataset and replaced by random identifiers. Nevertheless, the
ability to link the searches of any given user made it easy to reidentify users from the search logs [12]. Even
seemingly aggregate statistics may pose subtle challenges. Consider a university that reveals the average
salaries of each of its departments every month. If in some month the only change in a department’s staff is
the hiring of Professor X (and if the total number of staff in the department is known), then comparing the
average salaries before and after X’s hiring would reveal the new professor’s starting salary. The security of
the method used to collect salaries and compute their average is irrelevant ; the problem is inherent in the
release.

Financial data collections raise confidentiality issues, such as the protection of institutional trade secrets,
that go beyond concerns with individual privacy and PII. We focus here on individual privacy in statistical
databases because this approach offers lessons for the management and use of financial data, and because it
is currently the only setting in which substantial theoretical and practical results are available.

4.2.1 Current Practice

Many government agencies collect personal information and release data products based on that information.
There are two basic models for making data available for analysis: the “data center” model, which makes
a restricted facility available (on-site or online) to selected researchers whose results are manually inspected
before they are allowed out of the facility; and the public release model, in which “data products” (typically
either summary statistics or fine-grained microdata) are published for unrestricted use by the public. We
focus on the public release model in this paper.

Existing methodology for protecting individual privacy in those releases varies tremendously across
agencies, and a survey of current practice would be well beyond the scope of this work. Techniques for
making releases private include, (1) “perturbation,” in which data points are changed, perhaps by the
addition of some noise or the swapping of entries in a table, (2) “generalization,” in which individual values
are replaced with a label representing a set of values; for example, exact ages could be replaced with a
five-year range such as 30–35, and (3) the release of summary statistics that involve computation across
multiple records. Releases are often made available to the public online (e.g., the Census Bureau’s American
Factfinder [104]). A high-level description of practices at U.S. federal agencies can be found in “Statistical
Working Paper 22” [69]; see Zayatz [208] for further discussion specific to the Census Bureau.

The procedures for deciding whether a given release is sufficiently private are complex, and rely on
case-by-case analysis and judgment by experts. Zarate and Zayatz [207] provide examples of successful
disclosure review procedures (see also [69]). The main operating principle is to prevent reidentification,
that is, the matching of particular records in a release to real-world individuals. The process of modifying
the data is thus often called “anonymization.” Because reindentification is often done by matching records
based on specific information (age, address, etc.), current regulations rely heavily on protecting “personally
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Figure 2: The trusted agency model. In one-shot protocols (mechanisms), the users send no queries, and there is
simply one message from the server to users.

identifiable information” (PII).
As we discuss in Sections 4.2.3 and 4.2.4, the explosion of data available about individuals has made

anonymization and PII extremely problematic. Although the disclosure control methodologies embodied in
current practice and regulation have thus far successfully prevented privacy breaches based on government
data publication, these methodologies rely on inherently fragile concepts, such as anonymity and PII, and—
except in a few cases [207]—require individual human review of potential releases. In particular, the difficulty
in defining PII makes it hard, if not impossible, to enforce.

4.2.2 A Trusted Agency Abstraction

To make the discussion more precise, we focus on a simple, stylized model of interaction, illustrated in Figure
2. Individuals give their data to a trusted, central agency (such as the Census Bureau, or a financial data
vendor), which processes the data x = (x1, ..., xn) and makes the results available to (possibly malicious)
end users. The role of the trusted agency here is essentially the same as that of the trusted party described
above in Section 4.1: the trusted party/agency reliably coordinates communication among participants in
the system without permitting information leakages or disclosures other than those agreed by the parties in
advance. Such agreed disclosures may be quite complex, for example, allowing arbitrary questions within
a given, constrained class of queries.26 In an interactive protocol, users ask questions and get replies. In a
noninteractive protocol, the agency processes the data and publishes a single digest A(x) once and for all.

This simplified model also highlights why the problem addressed in this section is fundamentally different
from SFE discussed in Section 4; [94]. The techniques of SFE eliminate the need for a trusted party by
distributing computations among a set of computers without revealing anything except the desired outcome.
However, this model does not study whether the desired outcome is itself safe to reveal. Statistical data
privacy and secure multiparty computation (i.e., SFE) are thus complementary technologies that should
benefit from being used in concert. We return to these issues in the international data sharing example in
Section 5.3.

A variant of this model is the randomized response, also called the local model, because it does not
rely on a central trusted party (ideal or real) for secrecy. In this model, an individual’s private information
xi is never directly processed; instead, a suitably randomized version R(xi) is stored (and can even be
transmitted directly to users). Thus, the outcome of the mechanism is A(x) = (R(x1), ..., R(xn)), in which
R is a randomized algorithm agreed as part of the protocol. This model originated in 1960s to help surveyors
gather accurate answers to sensitive questions [200], but it is a popular model for privacy as well, particularly
in the context of online surveys (see [3] and many follow-up works, notably [64]). Although these examples
involve randomization of data at the point of survey reponse (e.g., to a CIPSEA agency, as described in

26Obviously, if completely arbitrary queries are allowed, then no privacy is possible. Similarly, allowing arbitrarily
long sequences of questions from certain restricted query classes may be too revealing; this is the essence of the
familiar parlor game of “20 Questions.”
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Section 3.1), agencies also frequently use randomization techniques at the point of disclosure of information
to the general public. Randomization is part of a broader class of tools—including various flavors of rounding,
bucketing, and top-/bottom-coding—that separately alter individual data points to disclosure, while trying
to minimize any bias that the alteration might introduce.

4.2.3 Linkage and Reconstruction Attacks, and the “Myth” of PII

Over the last decade, a number of publicized breaches of privacy due to the release of supposedly anonymized
information highlighted the difficulty of “anonymizing” data. Almost all of the attacks were based on some
kind of external knowledge (also called backround knowledge, side information, or auxiliary information
available to an attacker).

Many such attacks work by linking records in a supposedly anonymized dataset with identified records
available elsewhere. One study [195] identified the governor of Massachusetts in a medical database anonymized
in this simple-minded manner. A New York Times article [12] exposed a searcher in supposedly anonymized
search data released by the Internet service provider AOL. Users of the film rental service Netflix were identi-
fied from similarly anonymized movie ratings data [155]. The provided data were combined with information
available in other public databases to answer a million dollar challenge by Netflix in a fraudulent manner.
In all three cases, there was no break into the database by hackers; the organization holding the database
violated privacy by incorrectly assuming that it was publishing only safe information.27

More recently, similar techniques have been used to deduce information about individuals from suppos-
edly anonymized releases in a wide range of contexts: (1) to link individuals to nodes in deidentified social
networks [9, 156], (2) to reidentify accounts on a photo sharing website [158], (3) to reconstruct the topology
of a computer network from anonymized network traffic data [41, 179], (4) to link mobile location traces to
social network accounts [190], and (5) to identify participants in clinical genetic studies [108, 101].

These attacks demonstrate the extreme difficulty of distinguishing between “identifying” and “nonin-
dentifying” information. A large number of seemingly innocuous pieces of information, taken together, may
provide a unique fingerprint that can be used to link a particular record to some other data source. It is
important to note that the privacy laws discussed above (Section 3) typically constrain the handling only of
the information that a given organization itself controls, regardless of the type(s) or amount of background
knowledge that might be available elsewhere.

In this sense, almost everything is personally identifiable information. For example, none of the infor-
mation in the AOL Web search queries of Ms. Arnold (the victim of the privacy breaches described in [12])
would be classified as PII according to the Health Information Portability and Accountability Act; yet it was
quite easy to identify her from them. Black-and-white classifications of any information as “anonymous”
or “identifying” should thus be treated with circumspection, if not downright skepticism. For a longer
discussion of this issue, see the essay of Narayanan and Shmatikov [157].

The attacks described above hinge on releases that reveal the exact information of some subset of
records. It is tempting to conclude that the problem stems from the release of highly granular, individual-
level information (such as a list of a user’s film ratings). However, even coarse-grained, seemingly high-level
information can reveal individual attributes. For example,

• “Global” results that single out individuals - In some cases, the results of global processing of a dataset
can themselves encode individual information. An obvious example is a release that describes the
outliers in a dataset. A more subtle example is a support vector machine (SVM), a particular method
for designing linear binary classifiers. The output of a SVM is typically described by a set of data

27In a less sophisticated case dealing specifically with banks, Flood [79, p. 31] attempted to reverse-engineer the
specific identities of 15 large banks reported by the FDIC to have high supervisory CAMEL ratings. (The CAMEL
rating is an acronym—later expanded to “CAMELS”—for a composite index of bank quality on an integer scale of
1 to 5; lower numbers are better. A bank’s rating is assigned by examiners and is RSI.) He succeeded with a high
degree of accuracy by linking the published aggregates with (public) balance sheet and income statement data and
with basic institutional facts about the calculation of risk-based deposit insurance premia.
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Figure 3: The half-plane classifier returned by a support vector machine. Circled data points are the “support
vectors” used to describe the dual form of the solution.

points, listed “in the clear,” that define the hyperplane corresponding to the classifier (see Figure 3).
Thus, an apparently very global computation reveals exact data about a particular set of individuals.

• Multiple related releases - As mentioned earlier, the average salary of a department before and after a
particular professor is hired reveals the salary of the new hire. This type of issue arises especially easily
with longitudinal data (i.e., data for a fixed set of respondents measured and released over time), but
also comes up with independently constructed releases about related groups (e.g., hospitals that serve
overlapping populations).

• Reconstruction attacks - Another class of attacks uses multiple seemingly unrelated global releases to
reconstruct sensitive data. The idea is that every release about a dataset, even a noisy one, introduces
a constraint on the set of possible actual datasets. When combined, a large number of constraints may
(nearly) uniquely determine the dataset. This phenomenon has been analyzed extensively [48, 55, 61,
58, 120, 46] for releases that induce linear constraints. Moreover, many natural statistical releases
(such as regression coefficients) can be used to derive linear constraints [121].

For a simple example of a reconstruction attack, consider a dataset x in which each person’s data
consists of a single bit xi (say, whether or not person i defaulted on a mortgage). The dataset is
thus a vector x1, ..., xn ∈ 0, 1n. Suppose we want to release a summary of the data that allows one
to reconstruct, for any subset S in{1, ..., n}, the approximate number of 1s in positions in S (that is,
#{i ∈ S : xi = 1} =

∑
i∈S xi).

For each subset S, the corresponding count C(S, x) can be thought of as a linear constraint on x (it is
the inner product of x with a vector which has 1s in the positions corresponding to x and 0s elsewhere).
If the exact values of many of these counts are released, then one can reconstruct x simply by solving
the corresponding linear system of equations. Reconstructing the entire secret vector x is possible
(roughly) once n counts have been released.28 Even if the counts are not released exactly, but with
some error introduced intentionally, one can exploit the significant literature on solving noisy systems
of linear equations to recover a very good approximation to x.

Reconstruction attacks highlight that there is no free lunch when releasing statistics about sensitive
data: answering too many queries too accurately allows one to reconstruct the data. Publishers of
aggregate data must thus choose to release some summaries at the expense of others. In particular, it
is often not possible to generate data products containing “all” of the relevant information.

28More precisely, one needs n counts for which the corresponding vectors are linearly independent. Linear inde-
pendence is typical, though. Random queries, for example, satisfy linear independence with overwhelmingly high
probability.

23



4.2.4 Initial Attempts to Pin Down “Privacy”: k-Anonymity and Query Auditing

Attacks such as those outlined earlier motivated the development of sanitization techniques to prevent the
attacks. Some attempts, such as the well-known notion of k-anonymity [195], restricted the form of the
output with the goal of preventing specific types of linkage attacks. Later notions, exemplified here by
differential privacy, restrict the process that generates the output, and provide rigorous guarantees that
any algorithm satisfying the definition would provably protect a well defined notion of “privacy” under well
specified assumptions. (We restrict our discussion here to specific examples from the academic literature;
many of these have parallels in official statistical practice.)

It is instructive to consider first the initial efforts to pin down a class of reasonable sanitization algorithms.
An example is k-anonymity [195], which requires that values in a published table be generalized so that every
row appears at least k times in the dataset (think of k here as a small value, say 5). Generalization involves
replacing specific values with more general categories. For example, we might replace an exact age (say,
35) with a 10-year range (30-39). (In an interesting coincidence, this type of discretization was also used
to reduce information asymmetries in the diamond market—see Section 2.2.) k-Anonymity is designed to
prevent a particular type of linkage attack; the idea is that any record from another database will match
either no records at all or at least k records.

As a general approach to privacy, however, k-anonymity and its variants pose several challenges.

• Revealing low-entropy values - If all records in a group have the same value of some particular field
(say, gender) then that value is revealed exactly.

• Sensitivity to side information - Suppose that mortgage loan information is released and aggregated
into geographic units consisting at least k loans. If an attacker already knows about the k − 1 other
loans in the group (say, the loans on a particular block), the attacker can deduce quite a bit about
the remaining loan.

• Composition - Even for large k, independently anonymized releases of datasets concerning the same
individual may be combined to learn exact information [84]. For example, suppose two hospitals
independently release information about overlapping populations and that Alice visited both hospitals
for the same condition. Alice’s employer could easily learn a list of k possible conditions from each of
the releases. The intersection of the two lists will typically contain far fewer than k conditions.

• Choice of generalization algorithm - More subtly, the definition places no restrictions on the algorithm
used to group data points. The grouping algorithm could unintentionally reveal a lot by the choice of
elements that were clustered together. For example, see [204].

A wide range of approaches proposed in the database literature (many based on “auditing” queries to
look for bad interactions between queries) suffer from similar challenges. To give a flavor of what may go
wrong, note that auditing systems may reveal information about the data, not only through the answers to
the queries they allow, but also through the decisions to deny queries, if those decisions are based on an
inspection of the data. For a survey of the literature, see Adam and Wortmann [2] and, for a discussion of
some of the difficulties, see Kenthapadi et al. [126].

These foregoing issues surrounding the problematic notions of PII and anonymity have motivated the
search for more mathematically rigorous and potentially automatable methods. In the remainder of this
section, we discuss ideas from the academic literature that offer a very different approach.

4.2.5 Rigorous Foundations: The Case of Differential Privacy

The preceding discussion reveals several salient lessons:

• Side information is difficult to reason about, and it is impossible to know exactly what side information
might be available in the future.

• One must reason about the process (or algorithm) that generates outputs, not only the form of the
outputs themselves.
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• “Sanitization” is not a black-and-white concept. The reconstruction attacks show that any sufficiently
rich collection of sanitized statistics, even highly aggregate, can be used to reconstruct sensitive data.

The challenges faced by approaches like k-anonymity and auditing motivated researchers to seek more
principled approaches to the problem. One successful approach, which we discuss in detail here, is differential
privacy [60, 50], which arose from a line of work in cryptography and theoretical computer science [48, 55, 25].
Differential privacy places conditions on the algorithm A run by the agency to generate output (either as
a one-shot publication or an answers to queries). This approach is not a specific algorithm or technique —
indeed, there can be many differentially private algorithms for a particular type of release.

The basic idea of differential privacy is to require that the output of an algorithm A that processes a
dataset x = (x1, ..., xn) be nearly “the same” regardless of whether any particular entry xi is included. More
precisely, we think of the process A that releases the data as randomized. The randomization might come,
for example, from noise addition or subsampling. Differential privacy requires that for any given dataset x
and individual i, the distributions on the outputs of A(x) and A(x′) be close, where x′ is a version of x from
which person i’s data has been removed.

Intuitively, this requirement implies that any conclusions an adversary draws from seeing the output
A(x) do not depend heavily on any one individual’s data. An important subtlety here is that while much
might be learned about an individual, whatever is learned would be the same whether or not that person’s
data were used. Moreover, this result holds no matter what an attacker knows ahead of time. In this sense,
this result provides a meaningful guarantee in the presence of arbitrary side information.

Privacy guarantees can be subtle to interpret. For example, if Alice’s employer, Bob, knows ahead
of time that she smokes, then a study on the relationship between smoking and cancer might lead Bob
to conclude that Alice is at a higher risk of lung cancer than he previously thought. In that sense, Bob
learns significant information about her. But Bob learns this whether or not Alice participated in the study.
Differential privacy disentangles the inferences Bob draws from learning about the population as a whole
from the inferences he draws that are specific to a particular individual.

Formalizing differential privacy is delicate; we provide some basic definitions here to make the discussion
more concrete.29 Suppose each individual contributes a value xi ∈ D to the database, where D is some
possibly complicated set (e.g., xi could be the individual’s tax returns, voice print, census answers, e-mail
usage, etc). For every database x ⊆ D, the (randomized) privacy mechanism A defines a random variable
A(x) on the output space. We say two datasets x, y ⊆ D are neighbors if they differ only in a single
individual’s data, that is, |x4y| = 1 where x4y denotes the symmetric difference of the sets x and y. The
mechanism A is private if neighboring datasets induce nearby distributions on outputs:

Definition 1 (ε-differential privacy [60, 50]). A randomized algorithm A is ε-differentially private if for all
neighboring pairs x, y ⊆ D, and for all sets S of possible outputs,

Pr(A(x) ∈ S) ≤ eε × Pr(A(y) ∈ S) .

The parameter ε can be thought of as a measure of information leakage. It is a measure of how far apart
the distributions of A(x) and A(y) can be when x and y differ in only one person’s data. (The exact choice
of distance measure is important for the definition to be meaningful—see [60] for a discussion). In typical
applications, ε is less than 1 (say 0.1 or 0.01). A variant of the definition, called (ε, δ)-differential privacy
[59], includes an additive error term δ (in addition to the multiplicative error ε); the difference between these
definitions is not important here.

Differential privacy satisfies a number of useful properties, such as composition: if t different ε-differentially
private algorithms A1, A2, ..., At are run on overlapping datasets, then their joint output is (at most) tε-
differentially private [59]. Thus, if many different organizations release information about the same indi-
vidual, then privacy guarantees will degrade gracefully (unlike k-anonymity, discussed previously, in which
one can lose anonymity completely with just two releases). Note that some degradation is necessary if the

29The reader not interested in understanding the technical details may skip the remainder of this section without
losing the general thread.

25



algorithms provide useful statistical summaries. The reconstruction attacks described earlier demonstrate
that one cannot answer too many queries too accurately without revealing the dataset entirely.

The types of guarantees provided by differential privacy in the presence of side information are discussed
at length in the literature. Kasiviswanathan and Smith [119] provide a Bayesian formulation of the guarantee.
Dwork and Naor [54], Kifer and Machanavajjhala [127] show that any useful algorithm must allow inferences
about individuals in the presence of side information (as the smoking and cancer example earlier illustrates);
the “relative” guarantee provided by differential privacy is, in many settings, a reasonable compromise.

4.2.6 Some Applications

Differentially private algorithms cannot provide perfect accuracy for most summaries. The definition requires
that the algorithms introduce enough uncertainty to cover the change caused by the insertion or removal of
an individual. Moreover, as the reconstruction attacks show, it is not possible to design a single, one-shot
release algorithm that can answer any possible set of queries. Nonetheless, differentially private algorithms
have been designed for a wide range of statistical and machine learning tasks, as have algorithms that produce
“synthetic” data supporting a large set of specified queries.

The literature on differentially private algorithms is too vast to survey here. A number of surveys in
the last few years give an account of ongoing developments in the design of differentially private algorithms
[51, 52, 57, 180]. Even these surveys are only partial; the state of the art is evolving quickly. The overarching
theme is that aggregate statistics that are “insensitive” to changes in individuals’ data can be released fairly
accurately, while satisfying differential privacy. In contrast, statistics that depend heavily on individuals
(for example, a listing of data points that are outliers according to some measure) cannot be revealed while
satisfying differential privacy. A consequence is that one must often design new, more robust algorithms
for common analytical tasks. Techniques for designing these algorithms include noise addition and random
subsampling, as well as much more sophisticated sampling algorithms. For an introduction, see the survey
of Dwork and Roth [56].

A recent line of work has investigated the connections between economic theory and differential privacy.
Although none of these works directly addresses issues with regulatory data, they provide strong connections
between privacy and game-theoretic microeconomic questions. For example, several works use differential
privacy to design incentive-compatible mechanisms for auction and allocation problems, starting with Mc-
Sherry and Talwar [149] (see also [205, 38, 163, 164, 112]). A different line of work uses differential privacy
for equilibrium selection [123]. These works have in common a “game-theoretic” interpretation of differen-
tial privacy, namely, if individuals can choose the values to report as their input to a differentially-private
mechanism, they have very little to gain (the amount depends on the parameter ε) by lying. It is thus an
(approximate) equilibrium for all players to report their true values. This idea is also at the heart of a line
of work on pricing privacy by asking participants to pay (or be rewarded) differently depending on ε (see,
e.g., [92, 135, 181, 78] as well as the survey of Pai and Roth [171]).

In addition to a large number of works on methodology and algorithm design, a number of papers
have investigated specific applications, such as plotting spatial data [142, 39] (the latter provides an in-
teractive demonstration), frequent item set mining [20], network trace analysis [147], and recommendation
systems [148].

As the “smoking and cancer” example highlights, differential privacy does not prevent inferences that
come from learning global information (i.e., information not specific to an individual, such as the relationship
between smoking and lung cancer). This problem is in some sense unavoidable. Any information that allows
the analyst to learn something about the world will, in some circumstances, change the inferences made
about individuals [54, 127]. However, this issue has important implications for financial data; for example,
aggregate statistics about individual transactions might reveal sensitive information about a firm’s trading
strategy or position. We discuss this problem further below.

A number of variations on, and generalizations of, differential privacy have appeared in the literature [128,
21, 88, 89, 102]. The most relevant here is the Pufferfish framework of Kifer and Machanavajjhala [128],
which generalizes differential privacy by allowing one to specify the type of information to be kept secret,
and the assumptions one is willing to make about available auxiliary information. Given these assumptions,
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one gets a specific notion of privacy (which a given release algorithm may or may not satisfy). There is no
automatic way to generate algorithms that satisfy the definition and provide useful results; a case-by-case
analysis is still required. Also, as mentioned above, quantifying the available auxiliary information is delicate,
at best.

4.3 Confidentiality Guarantees for Financial Data

How should the notions of the preceding section apply to financial data? There are, crudely, two main
concerns with regulatory data: individual privacy and institutional confidentiality. As mentioned earlier, the
literature on statistical data privacy focuses on individual privacy. The notions developed in that context
(such as differential privacy) are useful when the principal concern is privacy of individual investors (such as
for the release of datasets on home loans, as in Section 5.2). Institutional confidentiality is more complicated.
A release that hides individual investors’ information might still reveal confidential information about a firm
(trading desk portfolios, for example); firm-level trade secrets might not be sensitive to changes in individuals’
data.

A simple way to approach the issue is to think about what types of changes to the datasets should
not be visible to an outsider viewing the released information. (In the language of differential privacy,
which datasets do we take to be neighbors?) The set of allowed changes corresponds roughly to the type of
information hidden [128]. We suggest here two variations on differential privacy that could be appropriate
for addressing firm-level confidentiality concerns:

1. Firm-level privacy – This would require that the removal or modification of any single firm’s data
not affect the release significantly. It might be possible to provide this type of privacy for extremely
coarse statistics, such as financial stress indexes (Section 5.1). However, in general, there are large
firms whose removal would significantly alter market statistics, that is, they have no crowd big enough
to hide in.

2. Limited-precision, firm-level privacy – When some firms are too big to hide, the following more re-
stricted notion might make sense: two datasets are considered neighbors if they differ in the reallocation
of up to T dollars of one firm’s portfolio. As before, we would require that neighboring datasets be
hard to distinguish.

Any firm whose total portfolio value falls below T would be completely hidden in such a release
(that is, such a firm would not affect the output distribution), whereas larger firms would protected,
roughly, up to precision T (positions with value below T would be hidden, those above T would be
visible). The question of an a priori appropriate value for T would be a policy decision, but a rough
rule could be the size of the 100th largest bank, or something similar. The value of T would depend
on the specific release; a key issue would be to calibrate T to provide an “optimal” transparency-
confidentiality tradeoff. An open question is whether such a threshold would in fact provide the
benefits of confidentiality (e.g., protecting trade secrets).

5 Three Use Cases

In this section, we offer three specific usage scenarios as illustrations of how the new privacy techniques
might be applied to specific challenges for financial regulation and disclosure.

5.1 Publication of Aggregated Sensitive Data

5.1.1 Background

Since the recent crisis, a number of financial regulators have initiated the publication of indexes of financial
conditions. Prominent examples include the four new financial stress indexes now published by various
Federal Reserve Banks [169, 38–45], an index for Canada [113], and indexes that the IMF has constructed
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for various countries. All these measures aim to condense the state of an enormously complex financial
system into a single number that can be tracked through time. We will refer to any such aggregate as a
financial conditions index (FCI).

Regulators compute FCIs based on several types of information:

• public data, without any restriction on use or disclosure (e.g., gross domestic product),

• licensed data, governed by intellectual property rights and contractual provisions of an agreement with
a data vendor (e.g., prices and quotes acquired from a data vendor),

• individual private data, restricted by government privacy laws (e.g., PII on a personal loan application
or contract), and

• confidential data, restricted by government laws or rules on confidential business information (e.g.,
RSI such as details of trading desk portfolios).

Current FCIs are based on only public data; legal restrictions forbid direct disclosure of each of these
other types of information.30

However, indexes that incorporate confidential data can be much more accurate. For example, Oet et al.
[167, 168] compared an index based on both public and confidential data (Systemic Assessment of Financial
Environment, SAFE) with an analogous index based only on publicly available data (Cleveland Financial
Stess Index, CFSI). Their analysis indicates that the confidentially augmented SAFE index would have been
a significantly more accurate indicator at the height of the recent financial crisis (see Oet et al. [166, Figure
4]).

5.1.2 Usage Scenario

The Federal Reserve Bank of Cleveland’s SAFE and CSFI illustrate two extremes: compute an “unencum-
bered” FCI based on fully public data that can be released, but has relatively low statistical accuracy,
or compute a “confidential” FCI that incorporates confidential data and is more accurate, but cannot be
released.

We propose computing a “sanitized” index that is based on both public data and confidential information—
and hence, more accurate than the unencumbered FCI—yet comes with rigorous privacy guarantees for the
confidential data. The most relevant concerns here are institutional confidentiality, and we conjecture that
reasonably accurate indexes are possible satisfying firm-level differential privacy (Section 4.3). The mag-
nitude of the effect of specific large institutions on the data is hard to judge without a careful review of
the exact computations used (minor changes, such as the normalization of certain quantities by firm size or
the removal of outliers have a pronounced effect on the “sensitivity” of the index to specific firms). Further
understanding of this issue remains an important open question: “To what extent would limited-precision
firm-level privacy suffice to capture concerns about institutional confidentiality?”

5.2 Retail Loan Information to Support Research

5.2.1 Background

Regulators collect highly granular datasets on retail loan exposures, including home mortgages and credit
cards.31 The datasets are large by econometric standards, containing tens of millions of records, and high-
dimensional, carrying detailed information about accounts and borrowers. Supervisory analysis would benefit

30It is typically possible to negotiate permissions for public release of snippets or derived depictions and aggregations
of licensed data, but much less flexibility is available for PII and RSI.

31For example, the Federal Housing Finance Agency and Consumer Financial Protection Bureau plan to assemble
and refine collaboratively a National Mortgage Database to support both policymaking and research [40]. To support
bank stress testing under its Comprehensive Capital Analysis and Review process, the Federal Reserve assembles
loan-level detail on first-lien home mortgages and home-equity lines of credit [27]. The Office of the Comptroller of
the Currency maintains a Consumer Credit Database of retail borrower information [177].
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greatly if the data could be shared with the broader research community. However, sharing the raw data is
problematic. The information in the datasets is extremely sensitive, and vast amounts of “side information”
about the datasets are available through public records, raising the possibility of reidentification and sensitive
inferences, even if the data are anonymized. At the same time, most issues of supervisory concern do not
involve individual borrowers per se. The datasets’ value lies in aggregate patterns, such as geographic and
demographic trends in product usage, or expected default and delinquency behavior.

5.2.2 Usage Scenario

The main confidentiality issue with data of this type is individual borrowers’ privacy, and so the tools
developed for statistical data privacy can be used here. Because so much side information about housing
loans is available through public records, it is definitely not sufficient to remove obvious identifiers from the
data. In this application, methods with strong privacy guarantees (differential privacy or related notions)
seem the best fit, at least for any datasets that will be accessible to a wide range of researchers.32

Applying such methods generally requires understanding the classes of computations researchers will
want to apply. As mentioned in the discussion of reconstruction attacks, it is provably impossible to preserve
all statistical features of a dataset, while providing privacy. A good set of candidate statistical features to
preserve is the set of correlations (interactions) among small sets of attributes (see Barak et al. [11], Hardt
et al. [103] for examples of such releases), as well as linear relationships (necessary for linear and logistic
regression models). Releases of retail loan data present a challenging test for the state of the art in statistical
data privacy.

Finally, it is worth investigating whether there are any additional institution-level privacy concerns that
may arise.

5.3 International sharing

5.3.1 Background

In April 2009, during the depths of the recent financial crisis, the Group of Twenty (G-20) launched a “Data
Gaps Initiative” to identify and close supervisory information gaps system-wide.33 In the words of its 2009
report [74, p. 4], “the recent crisis has reaffirmed an old lesson—good data and good analysis are the lifeblood
of effective surveillance and policy responses at both the national and international levels.” The initial report
contains 20 recommendations, including two specifically on sharing data about individual institutions with
international groups of supervisors, called colleges ([77, Recommendations 8 and 9, p. 7–8]).34 The FSB
has already begun centralizing and sharing data, relying on highly restrictive access controls and physical
security protocols to maintain confidentiality.

The recommendations also highlight the confidentiality concerns raised by sharing data internationally.
Concerns that exist domestically are exacerbated with international sharing, because of limited cross-border
authority to enforce agreements and govern disputes and misunderstandings. For example, privacy laws vary
from one country to the next; a disclosure that is innocuous in one jurisdiction might be illegal in another.

32Access to the raw data for a smaller set of researchers might be enabled through on-site research facilities of the
type used by the Census Bureau or the Internal Revenue Service.

33Specifically, the G-20 Finance Ministers and Central Bank Governors Working Group on Reinforcing International
Co-operation and Promoting Integrity in Financial Markets called on the International Monetary Fund (IMF) and the
FSB to explore information gaps and propose responses [74]. The IMF and FSB staff have produced approximately
annual progress reports: [75], [76], [77].

34Basel Committee on Banking Supervision [13, p. 1] defines supervisory colleges as “multilateral working groups
of relevant supervisors that are formed for the collective purpose of enhancing effective consolidated supervision
of an international banking group on an ongoing basis.” Principle 3 states, “College members should make their
best efforts to share appropriate information with respect to the principal risks and risk-management practices of
the banking group. Mutual trust and relationships are key for effective information sharing. Nonetheless, formal
confidentiality agreements, such as contained in Memoranda of Understanding (MoUs), among college members
facilitate this process.” See also Alford [5].
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Similarly, rules can change. Sharing might occur willing initially, but become a source of regret after changes
in access or disclosure rules.

5.3.2 Usage Scenario

This use case raises two separate issues: First, “How can these summaries be computed to avoid losing
sovereign control over confidential information?” Second, “What is revealed about specific financial institu-
tions by the (minimal) summaries that colleges of regulators need to make informed decisions?”

The first issue can be addressed using multiparty computation (Section 4.1). As suggested by Abbe
et al. [1], different agencies can jointly simulate a trusted party that will perform a particular computation
(for example, Herfindahl-Hirschman Indexes, HHIs) without actually pooling their data in one place. (The
particular protocol suggested by Abbe et al. [1] is no longer the state of the art, either in terms of efficiency or
security. For a discussion of the (quickly evolving) state of the art, see [136].) Instead, only the final results
(HHIs) are revealed. Local national supervisors would retain their current, typically extensive, authorities
to access and examine the books and records of local institutions. Among other things, this protocol would
leave them with the necessary capabilities and authorities in the event that the college’s aggregate signal
triggers a detailed local investigation.

The second issue concerns institutional confidentiality. As with financial stress indexes (Section 5.1),
a concept along the lines of firm-level privacy makes sense. To take a concrete example, suppose that for
each country pair and financial product category, the supervisory college should see monthly HHIs of cross-
sectional concentrations (see below). An increasing HHI in a given cross-border market, coupled with similar
exposure concentrations visible at the level of the college, might be evidence of growing imbalances worthy
of closer scrutiny. We conjecture that HHIs can be computed with limited-precision, firm-level privacy
guarantees. Work on differentially private statistical analysis supports that conjecture.

Finally, we expand on this example to describe a potential concrete computation: Consider the set of
general collateral repurchase (GC repo) agreements. Each GC repo agreement represents a contract between
two financial institutions and will have a notional amount measurable in U.S. dollars (USD).35 Some subset
of these GC repo contracts will cross borders (e.g., ABC Bank in New York contracts with XYZ bank in
London). Define a given institution’s market share in a particular cross-border GC repo market as the
fraction of the notional values of contracts crossing the particular border and involving that institution. The
HHI at any point in time is then the sum across firms of the squares of their market shares at that time. A
higher HHI means greater concentration in the particular cross-border market.

For modest concentrations of exposure, a slightly modified version of this procedure will presumably not
reveal sensitive aspects of individual firms’ portfolios. Quantifying this statement is delicate, since this is an
example in which firm-level differential privacy is impossible (it would not allow distinguishing between a
setting in which one firm occupies a large fraction of the market and settings in which no single firm has a
large share). In contrast, limited-precision differential privacy would be possible to provide, using, e.g., the
smooth sensitivity framework or its variants [162, 53]. Whether the calculated confidence level is acceptable
is a policy decision.36 Given such a triggering signal, local national supervisors could pursue an attribution
analysis and deeper investigation of the situation.37

35For GC repo, the notional amount would typically be identical to the principal balance being lent. Contracts
denominated in other currencies can be converted to a USD notional using current exchange rates.

36Indeed, a HHI that reveals when a single institution has embedded an enormous position might even be regarded
as a desirable policy outcome, as it might create endogenous market discipline. We emphasize that this example is
chosen to illustrate the privacy protocol, not to suggest that it is the best measure of cross-border imbalances. The
latter question is and should remain an active area for ongoing research. Other possible system-wide risk measures
include aggregate leverage or aggregate margin-to-equity ratios [1, 74, 75].

37
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6 Summary

The structure of information in financial markets creates incentives with pervasive effects on financial insti-
tutions and their relationships. Information asymmetries, incomplete contracts, and other inefficiencies can
discourage market liquidity. In consequence, financial activity can be driven out of existence, or (more hope-
fully) into integrated firms where it is managed by corporate governance instead of contract enforcement.
These same forces apply to supervisory institutions, which must balance the opposing demands of exami-
nation and disclosure. Examination can expose personally private data and strategic business information
to examiners who must hold it in confidence to protect their supervisory relationship with the regulated
entities, as well as to protect the interests of the firms and their customers. Disclosure works to reduce in-
formation asymmetries, empowering investors and fostering market discipline by better informing bond- and
stockholders of commitments and risk exposures. This confidence/disclosure dichotomy tends to push su-
pervisory information policies to one extreme or the other. We argue that in a number of intermediate cases,
limited information sharing would be welfare-improving, improving inter-supervisor coordination, enhancing
market discipline, and better informing investors, while still protecting important confidential and personal
information. Indeed, we describe three illustrative usage scenarios where we believe beneficial intermediate
solutions are available. These case studies all rely on recent tools in the fields of secure computation and
statistical data privacy.

We acknowledge that we omit important aspects of the privacy problem from scope. For example, a
religiously observant person might discuss faith if asked, but a mortgage loan officer in the U.S. is forbidden
by the Equal Credit Opportunity Act from posing that question. The same borrower is likely quite reticent
about sharing financial data, yet willingly submits to an intrusive financial investigation to get the loan.
Financial economics provides an explanation for the latter behavior as a mechanism to alleviate asymmetries,
but neither financial economics nor computer science is well positioned to address the former prohibition.
That is better handled as an upshot of other historical, political, and social factors (see Bagby [10]). We
take such rules as given and treat them as exogenous constraints on the problem.

We close with some general observations about data privacy and secure computation and suggest some
areas for further research. Secure computation is widely agreed on as the formalism for addressing concerns
that could be handled by an ideal trusted party. By providing a virtual trusted party beyond the control
of any coalition of protocol participants, secure computation can avoid the need for a large pooled data
repository. This solution mitigates several concerns that arise with the sharing of regulatory data. Most
simply, a large pool is more exposed to security breaches. More subtly, legal restrictions may forbid a
regulator from explicitly sharing data with another organization. Strategic considerations may similarly
discourage such sharing. For example, legal protections accorded at the time of sharing may be altered by
subsequent court decisions or legislative developments, such as the passage of the FOIA. At the same time,
secure computation protocols present technical challenges. They are complex and not yet standardized in
their implementation. Secure computation also presents a conceptual difficulty; the parties must agree on
the computation (or set of computations) to be performed. For tasks like regulatory oversight, in which a
human regulator’s intuition may play a role in selecting what to inspect, specifying a computation may be
challenging.

In contrast, no single formalism for reasoning about which computations to perform addresses all con-
cerns. That is, we must still handle specific questions of data privacy—what to release and what to conceal—
on a case-by-case basis. There are two main concerns with releasing financial data: individual privacy and
institutional confidentiality. Individual privacy is best handled by formalisms along the lines of differen-
tial privacy. For most types of financial data, no single individual affects aggregate behavior significantly;
given sufficient data, one can produce accurate statistical summaries. For example, for a public-use product
generated from historical mortgage data, the principal concern is borrowers’ confidentiality. Institutional
confidentiality is more complicated. First, the cross-sectional dispersion in firm sizes makes it nearly im-
possible to hide all attributes of interest, while still preserving any reasonable statistical accuracy. Some
institutions are so large—especially those we find most interesting—that there is no “crowd” for them to
hide in. Second, as discussed in Section 2, certain aggregate statistics are public goods with the potential
to improve coordination among firms, regulators, and investors. The most important example is the long-
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standing publication of market prices to guide the invisible hand; other aggregates that are candidates for
public disclosure are financial conditions indexes that may incorporate sensitive data. Although the public
benefit of disclosure may outweigh the private harm, we argue that data privacy may frequently achieve
much of the benefit of the aggregate signal, while still protecting sensitive facts. Rigorously formulating the
public benefits of disclosure, and the way they trade off with confidentiality, remains important an research
question.
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A Some Major Laws Affecting Interagency Information Sharing

• Freedom of Information Act (5 U.S.C. 552)

• Privacy Act of 1974 (5 U.S.C. 552a)

• Right to Financial Privacy Act of 1978 (12 U.S.C. 3401)

• Home Mortgage Disclosure Act (12 U.S.C. 2801 et seq.)

• Dodd-Frank Act of 2010 (esp.: 12 USC 5321; 12 USC 5342)

– Creates under Title I: Office of Financial Research

– Creates under Title I: Financial Stability Oversight Council

• Gramm-Leach-Bliley Act of 1999 (esp.: 12 USC 5321; 12 USC 5342)

• Consumer Financial Protection Act of 2010, (12 U.S.C. 5481 et seq.)

• Bank Secrecy Act (31 USC 5311-5332)

• Trade Secrets Act (18 U.S.C. 1905; 18 U.S.C. 641)

• E-Government Act of 2002 (44 U.S.C. 101)

– Includes as Title V: Confidential Information Protection and Statistical Efficiency Act of 2002

• Federal Information Security Management Act of 2002 (FISMA)

• Federal Records Act (44 U.S.C. 3101)

• Paperwork Reduction Act (44 U.S.C. 3510)
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B Some Regulations Defining Sensitive Financial Regulatory In-
formation

Text of these regulations is available in the Code of Federal Regulations (CFR), available online at: http:

//www.law.cornell.edu/cfr/text/. Individual sections of the CFR are typically available via appropriate
refinement of the URL; for example, 12 CFR 792.11 is available at http://www.law.cornell.edu/cfr/

text/12/792.11.

• Federal Reserve: 12 CFR 261.2(c)(1) defines “confidential supervisory information” (CSI). 12 CFR
268.205(a)(2)(i-iii) applies to alien employees and identifies three internal security classifications related
specifically to CSI:

– Restricted-Controlled FR: extremely sensitive information such as, “financial institution super-
visory ratings and nonpublic advance information regarding bank mergers or failures.”

– Restricted FR: highly sensitive information such as, “single supervisory ratings (e.g., CAMELS,
BOPEC, etc.), Federal Reserve examination and inspection reports and workpapers, Interagency
Country Exposure Review Committee (ICERC) country exposure determinations, and shared
national credit data or listings”

– Internal FR: sensitive information such as, “foreign banking organization country studies and
Federal Reserve risk assessments.”

It also defines three internal security classifications related to the implementation of monetary policy
through the Federal Open Market Committee (FOMC):

– Class I FOMC: extremely sensitive information such as, “the ‘Bluebook,’ drafts of meeting
minutes, unreleased meeting transcripts, documents reflecting the preparation of semi-annual
forecasts and related testimony, and certain sensitive internal memorandums and reports.”

– Class II FOMC: highly sensitive information such as, “Part I of the ‘Greenbook,’ reports of the
Manager on domestic and foreign open market operations, and other materials on economic and
financial developments”

– Class III FOMC: sensitive information such as, “Part II of the Greenbook.”

• CFPB: 12 CFR 1070.2(i)(1) and 12 CFR 1070.2(h). The latter is for Confidential Investigative Infor-
mation (CII).

• OCC and OTS: 12 CFR 4.32(b). The OCC uses the term “Non-public OCC information” in lieu of
CSI.

• FDIC: 12 CFR 309.5(g). The FDIC uses the concept of “exempt records” in lieu of CSI.

• FHFA: 12 CFR 1214 [proposed]. The FHFA has recently proposed a definition of “confidential super-
visory information” that would apply to information prepared or received by the FHFA from Fannie
Mae or Freddie Mac, the Federal Home Loan Banks, or the Office of Finance; [70]

• NCUA: 12 CFR 792.11(a). The NCUA uses the concept of “exempt records” in lieu of CSI.

• SEC: 17 CFR 230.122 and 17 CFR 200.83 and 17 CFR 230.406. The SEC conducts both examinations
and investigations, the details of which generally may not be disclosed. However, information filed
with the SEC outside of examinations and investigations may in general be further disclosed (e.g.,
under a FOIA request). Filers may request “confidential treatment” by following specific procedures.

• CFTC: 17 CFR 145.0. The CFTC distinguishes between “public records” and “nonpublic records,”
where the latter are simply any records not explicitly made public. Criteria under which the CFTC
may decline to reveal nonpublic records are listed in 17 CFR 145.5. In addition, under 17 CFR 145.9,
entities reporting to the CFTC may petition for “confidential treatment” of their submissions.
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