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1 Introduction

This paper computes the optimal bank contract in the Goldstein and Pauzner (2005)

environment. Generally, the contract exhibits insurance to the patient depositor against

a project default, and may exhibit risk-sharing. Goldstein and Pauzner (2005)’s claim

about the optimality of the Diamond and Dybvig (1983) contract is only true when the

marginal utility at zero is sufficiently low. Moreover, the optimal bank contract might

not be run-prone. In the original Diamond and Dybvig (1983) environment, the optimal

demand-deposit contract was always run-prone. Goldstein and Pauzner (2005)’s assumption

that this contract is also optimal in their environment, suggests that this is also the case in

their model. However, even under GP’s assumptions on the environment, the more general

optimal contract considered in this paper is not run-prone, unless marginal utility at 1 is

sufficiently high. An example shows that the set of risk-averse utility functions considered

in Goldstein and Pauzner (2005) includes some that are not run-prone.

Goldstein and Pauzner (2005) builds on Diamond and Dybvig (1983)’s seminal paper,

which models banking as a mechanism for providing insurance against liquidity shocks. Ex-

ante identical agents have access to a risk-free, long-term project that pays off only in the

last period. It can be liquidated in the interim, foregoing the long-term return. Agents

may experience an interim liquidity shock, making them value immediate consumption only.

With no banks, only the patient agents benefit from the returns of the long-term project.

Impatient agents liquidate all their holdings to consume interim, foregoing any benefit from

the investment. Banks facilitate risk-sharing among both types. The Diamond and Dybvig

(1983) contract (extended to Goldstein and Pauzner (2005)’s environment) exhibits the fol-

lowing characteristics: there is risk-sharing between the impatient and the patient depositors.

In particular, an impatient depositor’s utility is higher than in autarky. Moreover, the re-

maining proceeds of pooled resources after paying the impatient depositor are invested in the

productive project. Henceforth, this contract will be called the “GP contract.” Implemen-

tation of this contract in the Diamond and Dybvig (1983) environment has two equilibria.
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In the good equilibrium, the patient depositors decide in the interim period to wait till the

last period to withdraw from banks. In the bad one, they panic and run on the bank in the

interim.

Goldstein and Pauzner (2005) add a very important twist to the Diamond and Dybvig

(1983) story. The project is now risky, paying R with probability p(θ) and 0 otherwise. In

the interim, each patient depositor receives a private noisy signal (θi) about the project’s

probability of default. The noise on these signals are then taken to zero. By developing

global games techniques to handle the incentives of the patient depositors, Goldstein and

Pauzner (2005) get a unique equilibrium, with a concurrent equilibrium run probability.

This allows them to endogenize the effects of the run on ex-ante utility, and determine the

optimal interim payment to the impatient depositor given that resulting probability. The

interim payment is lower in the resulting optimal contract. They also analyze the viability of

banks, given that depositors can foresee the run probability, and present a condition under

which banks improve welfare.

Goldstein and Pauzner (2005)’s environment differs from Diamond and Dybvig (1983)’s

in two crucial ways. First, they exclude utility functions satisfying Inada conditions. Second

and more importantly, they assume that there is a range of fundamentals (θ) under which

the project defaults with a positive probability. Goldstein and Pauzner (2005) claim that

the optimal contract in their new environment is the Diamond and Dybvig (1983) contract

discussed before. But unlike the Diamond and Dybvig (1983) environment, where the project

always pays R, their environment includes a risky project that pays zero in default. An

optimal bank contract would insure the risk-averse patient agent against that contingency.

Even under autarky, the patient agent would prefer to insure himself against a project default

by liquidating some of his investment in the interim. This insurance necessarily decreases the

total investments in the risky project. In what remains of this paper, Goldstein and Pauzner

(2005) and Diamond and Dybvig (1983) would be referred to as GP and DD respectively.

A synopsis of this paper’s results follow. The optimal first-best contract is not generally
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a GP contract. When the project is risky, the remaining proceeds of pooled resources

after paying the impatient depositor are not all invested in the productive project. More

liquidation of the long-term project occurs to insure the risk-averse patient depositor against

a project default. The general problem set-up allows the patient depositor to liquidate

part of his investments in the interim to insure himself. Solving the first-best problem is

similar to solving a problem where an optimal transfer of resources from the impatient to

the patient depositor is determined. Then, given that transfer, the patient depositor acts

as if he is in autarky, but with resources boosted by the transfer. Thinking of the first-best

problem in this intuitive way, makes the problem much easier to interpret. Risk-sharing,

a transfer of resources to the impatient depositor, only occurs when marginal utility at 1

exceeds a multiple of marginal utility when the project pays in autarky with no transfer.

It is important to note that there is a clear and direct link between risk-sharing and the

contract being run-prone. When we have risk-sharing, the contract is run-prone. When

we do not, the contract is not run-prone. An example, satisfying GP’s assumptions on the

utility function, shows an optimal contract that is not run-prone. Next, it is shown that

when marginal utility at zero is low enough, then the remaining resources after paying the

impatient agents are invested in the project. In this case, the planner does not find it optimal

to insure the patient depositor. It is here that GP’s contract is actually optimal. But in

general, utility functions with low marginal utility at zero are unintuitive, and contrary to

the spirit of the Inada conditions. The Inada conditions are assumed in DD’s paper. It is

enough that marginal utility at zero is high enough to violate the exact upper bound of the

condition in Section 4, for GP’s contract to violate optimality. This is not saying that it has

to go to infinity at zero.

Banks are then introduced, where they compete among each other, netting zero. They

maximize the depositor’s ex-ante utility subject to the resource constraint considered in the

first-best contract, and two incentive constraints specifying that no type would be better

off mimicking the other type. When the first-best contract is not run-prone, it satisfies the
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incentive constraints, and is the optimal contract offered by banks. When the first-best

contract is run-prone, it sometimes satisfies the incentive constraints and is the optimal

bank contract. However, it sometimes does not. When the first-best contract is run-prone

and does not satisfy the incentive constraints, I show that more resources are transferred to

the patient depositor. This raises his consumption in both states of the world: when the

project defaults and when it does not. Even though the impatient depositor’s consumption

goes down in the optimal bank contract, but it is still necessarily more than 1 (there still

is risk-sharing in bank’s contract). Hence, the optimal bank contract is still run-prone. To

sum up, when the first-best contract is run-prone, so is the optimal bank contract. When it

is not run-prone, then the optimal bank contract is not either.

In the special case when the utility is exponential, I analyze how the optimal bank

contract depends on the perceived probability of default. In recessions and weak recoveries,

this perceived probability of default goes up. Because of the increased risk he faces, the

patient depositor’s insurance goes up. Both the impatient depositor’s consumption, and the

investments in the project, go down. The model predicts that banks hold more liquid assets

in recessions and in weak recoveries than in booms, foregoing investments in risky projects

(decreasing bank lending). This is supported by data that shows that U.S. banks have been

carrying an exploding amounts of cash and safe assets relative to pre-recession levels.

The remainder of the paper is organized as follows. Section 2 computes the first-best

contract. Section 3 presents the condition when risk-sharing is optimal. Section 4 analyzes

when the GP contract is optimal. Section 5 presents the optimal bank contract. Section

6 discusses the relationship between the optimal contract and the perceived probability of

default. Section 7 concludes with future research to pursue.
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2 The Economy with No Private Signals and No Public

Signals

The set-up follows GP’s. Time is discrete, with three periods: 0, 1, 2. There is one

good, and a continuum of agents [0, 1], each endowed with 1 unit of the good in period 0.

Agents are either patient or impatient and learn their type at the beginning of period 1.

With probability λ, an agent is impatient; with 1 − λ, he is patient. An impatient agent

only values consumption in period 1 (with a utility function u(c1)); a patient agent views

consumption in periods 1 and 2 as perfect substitutes (with a utility function u(c1 + c2)).

The utility function u(.) is increasing, concave, and twice continuously differentiable, with

coefficient of relative risk aversion greater than 1 for c ≥ 1.

2.1 The Technology

Agents have access to a productive but risky technology. For each unit of input in period

0, the technology generates one unit of output if liquidated in period 1 and R units of output

in period 2 with probability p(θ) and 0 with 1 − p(θ). θ is the state of the economy drawn

from a uniform distribution [0, 1] and is unknown to agents before period 2. p(.) is strictly

increasing in θ indicating that a higher value of θ is viewed as a higher chance of the project

paying back. Assumptions on the technology are made in the relevant sections of this paper.

2.2 First-Best Contract

2.2.1 Autarky

In autarky, an impatient agent consumes one unit of the good. A patient agent decides

to liquidate part of his investments in the project to insure himself against a project default.

Denote an impatient agent’s consumption by c1; and a patient agent’s guaranteed consump-

tion by c2 and his investment in the project by i2. The patient agent solves the following
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problem:

Maxc2,i2Eθ[p(θ)]u(c2 + i2R) + (1− Eθ[p(θ)])u(c2) s.t. i2 + c2 = 1 and 0 ≤ c2 ≤ 1.

The FOC follow: u′(R−c2(R−1))
u′(c2)

= 1−Eθ[p(θ)]
Eθ[p(θ)](R−1)

. Denote caut2 a solution to the preceding equa-

tion. Existence and uniqueness of this solution is guaranteed by continuity and concavity of

the utility function which translate into the expected utility function.

If Eθ[p(θ)]R ≤ 1, then caut2 = 1. If the project does not pay better in expected terms than

consuming the endowment, then the patient agent does not invest in the project, and con-

sumes his endowment getting the same utility as the impatient agent. To make the problem

interesting, I assume that Eθ[p(θ)]R > 1 implying that caut2 < 1, the patient agent invests

some of his endowment in the risky project. I also assume that u′(0) > Eθ[p(θ)](R−1)
1−Eθ[p(θ)]

u′(R),

this is intuitive in the spirit of Inada conditions. It just says that marginal utility at 0 is

high enough to guarantee that caut2 > 0. Violation of a similar condition is linked to the

optimality of the GP contract in Section 4. In autarky, an agent’s ex-ante expected utility

will be: λu(1) + (1− λ)[(1− Eθ[p(θ)])u(caut2 ) + Eθ[p(θ)]u(R− caut2 (R− 1))].

2.2.2 Uninformed Planner’s Problem

In this section, I follow GP’s assumption that the planner can not observe the true θ and

only uses the prior on default. At this stage, we can just assume that there are no signals

about the state of the economy. Following is the planner’s problem:

Maxc1,c2λu(c1) + (1− λ){Eθ[p(θ)]u(c2 + i2R) + (1− Eθ[p(θ)])u(c2)}

s.t.

(1− λ)i2 = 1− λc1 − (1− λ)c2

and c1 ≥ 0, c2 ≥ 0, i2 ≥ 0.

I first note that there are no participation constraints in the above problem. The solution

to the planners problem improves on the ex-ante autarkic allocation because the optimal

autarkic allocation is feasible. To clarify, as is standard, I assume that the depositors write

enforceable contracts with the planner ex-ante. It is possible that ex-post a depositor might
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find himself doing worse than autarky and might entertain the idea of reneging on the

contract, but contract enforceability prevents that. The following conditions govern the

planner’s allocation:

u′(c1)

u′( R
1−λ − c2(R− 1)− Rλ

1−λc1)
= REθ[p(θ)] (1)

and

u′(c2)

u′( R
1−λ − c2(R− 1)− Rλ

1−λc1)
=
Eθ[p(θ)](R− 1)

1− Eθ[p(θ)]
(2)

From Equation 1 and Equation 2 we get that:

u′(c1)

u′(c2)
=
R(1− Eθ[p(θ)])

R− 1
(3)

Denote the solution to the problem above by cFB1 and cFB2 . Let iFB2 =
1−λcFB1 −(1−λ)cFB2

1−λ .

Note that Eθ[p(θ)]R > 1 implies that Eθ[p(θ)](R−1)
1−Eθ[p(θ)]

> REθ[p(θ)] > 1 and R(1−Eθ[p(θ)])
R−1 < 1.

I start with a simple lemma that determines the relationship between cFB1 and cFB2 .

Lemma 1. The consumptions in the interim period can not be zero for both types. That is,

cFB1 = 0 and cFB2 = 0 is impossible. This implies that cFB1 > cFB2 ≥ 0.

Proof. Assume cFB2 = 0 and cFB1 = 0, then u′(0) ≤ REθ[p(θ)]u
′( R

1−λ) and u′(0) ≤
Eθ[p(θ)](R−1)
1−Eθ[p(θ)]

u′( R
1−λ). But u′(0) > u′(1) ≥ Ru′(R) > REθ[p(θ)]u

′(R) > REθ[p(θ)]u
′( R

1−λ).

The middle weak inequality follows from the fact that the coefficient of relative risk

aversion is more than 1 for c ≥ 1 which implies that cu′(c) is decreasing. Therefore,

u′(0) ≤ REθ[p(θ)]u
′( R

1−λ) can not hold and cFB1 > 0. If cFB2 = 0, then cFB1 > cFB2 . When

cFB2 > 0, Equation 3 implies that u′(cFB1 ) < u′(cFB2 ) and cFB1 > cFB2 .

Lemma 1 restricts how we can get bank-runs in the first-best. This is expanded on

in the next section. Moreover, it shows that the impatient depositor would not envy the

patient depositors consumption in the first-best. This is helpful for analyzing the incentive

constraints in the optimal bank contract.
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3 When is Risk-Sharing Optimal?

In the more general problem considered in this paper, risk-sharing could either mean

a transfer from the patient type to the impatient one or viceversa. I will use a somewhat

restricted meaning here. There is risk-sharing when the planner finds it optimal to transfer

extra resources to the impatient depositor, that is when cFB1 > 1. In GP’s world, where the

patient depositor is not insured against a project default, the assumption on relative risk

aversion guaranteed that there is always risk-sharing. That is not the case here. Risk-sharing

is important because of its intimate link to bank-runs. For bank-runs to occur either cFB1

or cFB2 should be higher than 1, the liquidation value of a unit of the project. Lemma 1

already showed that cFB1 > cFB2 . Because of the resource constraint, cFB2 can not be greater

than 1. This leaves us with risk-sharing as the only possibility for bank-runs. Unlike in GP’s

contract with no patient depositor insurance, the optimal contract is not always run-prone.

In this section, I will interpret the planner’s problem as determining an optimal transfer

from the impatient depositor to the patient depositor. Given that transfer, the patient

depositor determines his consumption optimally as if he is in autarky. It is important to

note the simple fact that this transfer is the only link between the two types of the depositor

in this setting. To get the risk-sharing condition, I will first solve an autarky problem with

transfer, and then find the condition on the transfer that makes it optimally less than 0.

Lemma 2 shows that risk-sharing can occur outside GP’s computed contract. Lemma 3

shows what happens to consumptions of the patient depositor in autarky as the transfer to

him increases his available resources. Proposition 1 and Corollary 1 determine the condition

on utility function for risk-sharing to occur.

Lets begin with the obvious.

Lemma 2. cFB2 = 0 implies risk-sharing. However, risk-sharing does not imply that cFB2 = 0.

Proof. By relative risk aversion coefficient greater than 1 assumption, we have that u′(1) >

Ru′(R) > Rpu′(R). Hence Equation 1 means that the marginal benefit of increasing con-
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sumption (c1) at 1 is greater than the cost when cFB2 = 0. Proof of second part of lemma is

by example: Let u(c) = 1− 1
ec

and R = 2, Eθ[p(θ)] = 0.7, λ = 0.1 then 0 < caut2 = 0.576 < 1

and cFB1 = 1.078, cFB2 = 0.568.

To prepare the way for the risk-sharing condition, consider the following autarky problem

with a transfer ε of resources to the patient depositor. The patient depositor solves the

following:

Maxc2Eθ[p(θ)]u(c2 +R(1 + ε− c2)) + (1− Eθ[p(θ)])u(c2) s.t. 0 ≤ c2 ≤ 1 + ε

FOC yields:

u′(R(1 + ε)− cε2(R− 1))

u′(cε2)
=

1− Eθ[p(θ)]
Eθ[p(θ)](R− 1)

. (4)

From now on, we focus on transfers that give interior solutions. For any two transfers ε and

ε′, we have that:
u′(R(1+ε′)−cε′2 (R−1))

u′(cε
′

2 )
=

u′(R(1+ε)−cε2(R−1))
u′(cε2)

= 1−Eθ[p(θ)]
Eθ[p(θ)](R−1)

This means

u′(R(1 + ε)− cε2(R− 1))

u′(R(1 + ε′)− cε′2 (R− 1))
=
u′(cε2)

u′(cε
′
2 )

(5)

Lemma 3. Raising the transfer, raises the patient depositor’s consumption in both states of

the world: in a project default, and when it pays. If ε > ε′ then cε2 > cε
′
2 and R(1 + ε) −

cε2(R− 1) > R(1 + ε′)− cε′2 (R− 1).

Proof. By contradiction. Assume ε > ε′ but cε2 ≤ cε
′
2 . Then

u′(cε2)

u′(cε
′

2 )
≥ 1. By Equation

5, we have that:
u′(R(1+ε)−cε2(R−1))
u′(R(1+ε′)−cε′2 (R−1))

=
u′(cε2)

u′(cε
′

2 )
≥ 1. Therefore, R(1 + ε′) − cε

′
2 (R − 1) ≥

R(1+ε)−cε2(R−1) =⇒ R(ε′−ε) ≥ (R−1)(cε
′
2−cε2) =⇒ cε

′
2 < cε2. Hence, ε > ε′ =⇒ cε2 > cε

′
2 .

For second part, again proof by contradiction. Assume ε > ε′ but R(1 + ε)− cε2(R− 1) ≤

R(1 + ε′)− cε′2 (R− 1). This means: u′(cε
′
2 ) > u′(cε2) and u′(R(1 + ε)− cε2(R− 1)) ≥ u′(R(1 +

ε′)− cε′2 (R− 1)). Therefore,
u′(cε

′
2 )

u′(R(1+ε′)−cε′2 (R−1))
≥ u′(cε

′
2 )

u′(R(1+ε)−cε2(R−1))
>

u′(cε2)

u′(R(1+ε)−cε2(R−1))
.

By Lemma 3, ε > 0 =⇒ cε2 > caut2 and R(1 − ε) − cε2(R − 1) > R − caut2 (R − 1). When

ε < 0, we have both that cε2 < caut2 and R(1− ε)− cε2(R− 1) < R− caut2 (R− 1).

The meaning of this is clear, as resources get transferred away from a patient depositor, he
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decreases his consumptions in both states of the world: when the project defaults and when

it does not. As more resources are transferred away, his consumption in both states drops

even more. And viceversa.

Comparing Equation 4 with Equation 2 shows that for any fixed c1, we can interpret

Equation 2 as a solution to a problem with a transfer ε = λ(1−c1)
1−λ . This transfer is decreasing

in c1. It is positive for c1 < 1, negative for c1 > 1, and zero at c1 = 1. We know from the

autarky problem with transfers that increasing the transfer, increases R(1 + ε)− cε2(R− 1),

decreasing REθ[p(θ)]u
′(R(1 + ε)− cε2(R− 1)).

Here is a procedure to find the optimal cFB1 . Start at any point c1, compute the transfer

ε = λ(1−c1)
1−λ , and then compute REθ[p(θ)]u

′(R(1 + ε)− cε2(R− 1)) from the autarky problem

with transfer. If u′(c1) > REθ[p(θ)]u
′(R(1 + ε) − cε2(R − 1)), then increase c1, decreasing

the LHS, decreasing the transfer, and increasing the RHS, until equality is got. Similarly if

u′(c1) < REθ[p(θ)]u
′(R(1 + ε)− cε2(R− 1)), then decrease c1, increasing the LHS, increasing

the transfer and decreasing the RHS, until equality is got. This gives us a good insight into

the condition for risk-sharing.

Proposition 1. If u′(1) > REθ[p(θ)]u
′(caut2 + R(1 − caut2 )) then risk-sharing between the

patient depositor and the impatient depositor occurs (i.e. cFB1 > 1).

Proof. Let u′(1) > REθ[p(θ)]u
′(caut2 +R(1−caut2 )), but cFB1 ≤ 1. We will apply the procedure

above. At c1 = 1, ε = 0, and optimal cε2 = caut2 . Let ε′ =
λ(1−cFB1 )

1−λ , when cFB1 ≤ 1 we

have ε′ ≥ 0 = ε. By Lemma 3, we have that cε
′
2 ≥ cε2 = caut2 and R(1 + ε′) − cε′2 (R − 1) ≥

R(1+ε)−cε2(R−1) = R−caut2 (R−1). Now, u′(cFB1 ) ≥ u′(1) > REθ[p(θ)]u
′(caut2 +R(1−caut2 )) ≥

REθ[p(θ)]u
′(R(1+ε′)−cε′2 (R−1))) = REθ[p(θ)]u

′(R
1−λcFB1

1−λ −c
FB
2 (R−1)). But then optimality

condition can not hold.

Corollary 1. If u′(1) < REθ[p(θ)]u
′(caut2 + R(1 − caut2 )) then cFB1 < 1. When u′(1) =

REθ[p(θ)]u
′(caut2 +R(1− caut2 )) then cFB1 = 1.

It is worth noting that under Log utility, the planner can not improve on autarky.
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3.1 Are there Utility Functions Satisfying GP’s Conditions but

not Run-Prone?

This section shows a utility function that satisfy increasing relative risk aversion greater

than 1 for c ≥ 1 and u′(1) < Rpu′(caut2 +R(1− caut2 )). Therefore, the optimal contract might

be bank run-proof in equilibrium. Unlike in Diamond and Dybvig (1983) and in the contract

computed in Goldstein and Pauzner (2005), relative risk aversion coefficient greater than 1

for c ≥ 1 does not guarantee the contract is run-prone.

Consider the family of constant relative risk aversion coefficient (CRAA) utility functions:

u(c) = c1−β−1
1−β . u′(c) = c−β > 0 and u′′(c) = −βc−β−1 < 0. RRA = β. Consider the following

composite utility function: u(c) = − c−2−1
2

i.e. with β = 3 ∀c < 1, and u(c) = − c−0.5−1
0.5

i.e.

with β = 1.5 ∀c ≥ 1. At 1, utility function is continuous and has a continuous derivative,

with u(1) = 0 and u′(1) = 1. caut2 solves the FOC: p(R−1)(R−c(R−1))−1.5− (1−p)c−3 = 0

For R = 2 and p = .51, we get that: caut2 = 0.9911233. Hence, Rpu′(caut2 + R(1 − caut2 )) =

Rp
(R−caut2 (R−1))1.5 = 1.00657 > u′(1) = 1.

This showed that there are risk-averse utility functions that satisfy GP’s assumptions,

but with first-best contracts that are not run-prone.

4 When is GP’s Contract Optimal?

GP’s contract is optimal when the marginal utility at zero is bounded above. The fol-

lowing lemma presents a sufficient condition for GP contract to be optimal when there is

risk-sharing. It shows, in the case of risk-sharing considered by GP, one upper-bound on

marginal utility at zero under which GP’s contract is optimal.

Lemma 4. Assume there is risk-sharing with the impatient depositor (cFB1 ≥ 1). If u′(0) ≤
Eθ[p(θ)](R−1)
1−Eθ[p(θ)]

u′(R) then cFB2 = 0.

Proof. When there is risk-sharing, R
1−λcFB1

1−λ ≤ R. Hence, u′(R
1−λcFB1

1−λ ) ≥ u′(R). We have,
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u′(0) ≤ Eθ[p(θ)](R−1)
1−Eθ[p(θ)]

u′(R) ≤ Eθ[p(θ)](R−1)
1−Eθ[p(θ)]

u′(R
1−λcFB1

1−λ ). The foc of the planner’s problem shows

that the marginal benefit of increasing patient depositor’s consumption cFB1 , at c2 = 0 is less

than the marginal cost. Therefore, cFB2 = 0.

The following upper bound works in both cases when there is risk-sharing and when there

is none.

Proposition 2. Let c∗ be the c that solves: u′(c) = Eθ[p(θ)]Ru
′(R 1−λc

1−λ ). Note that c∗ is the

cFB1 computed by GP.

u′(0) ≤ Eθ[p(θ)](R−1)
1−Eθ[p(θ)]

u′(R 1−λc∗
1−λ ) if and only if cFB2 = 0.

Proof. Straightforward from planner problem’s first order conditions.

5 Bank’s Contract

Banks face competition and offer the contract that maximizes the depositors expected

utility, subject to incentive constraints that guarantee that no depositor has an incentive

to misreport his type. If the first-best contract satisfies the incentive constraints, then the

bank offers the first-best contract. When it does not, the optimal bank contract provides

less consumption for the impatient depositor than the first-best. But the bank contract still

offers risk-sharing, since resources are still transferred to the impatient depositor, raising

his consumption above 1. The patient depositor’s consumption on the other hand, is more

than the first-best in both states of the world. He is also indifferent between saying he is

the patient or the impatient type. Moreover, when the first-best contract is not run-prone,

then it satisfies the incentive constraints and is the optimal bank’s contract. When it is

run-prone, I show that the optimal bank’s contract is as well.

In the current context, unlike most of the literature, a bank-run does not just mean that

the patient depositors visit the bank in period 1 to withdraw funds. This is because the

consumption of the patient depositor c∗2 might be given out in period 1. A bank-run means
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that the patient masquerade as the impatient. The patient depositor visits the bank in period

1, but instead of asking for c∗2, he asks for c∗1 and foregoes the last period project return.

Therefore, observing how many depositors line up in the queue in the first period does not

tell us that there is a run. A run depends on the actual withdrawals that the depositors

are making. This draws a small distinction between this paper and other papers that argue

that observing a long line infront of a bank, provides information to patient depositors that

a run is in order.

The optimal bank contract solves the following problem.

Maxc1,c2λu(c1) + (1− λ){Eθ[p(θ)]u(c2 + i2R) + (1− Eθ[p(θ)])u(c2)} s.t.

(1− λ)i2 = 1− λc1 − (1− λ)c2

u(c1) ≥ u(c2)

Eθ[p(θ)])u(c2 + i2R) + (1− Eθ[p(θ)])u(c2) ≥ u(c1)

and c1 ≥ 0, c2 ≥ 0, i2 ≥ 0.

Denote the optimal bank contract by the pair (c∗1, c
∗
2). Let i∗2 =

1−λc∗1−(1−λ)c∗2
1−λ .

Proposition 3. If u′(1) ≤ REθ[p(θ)]u
′(caut2 +R(1− caut2 )) then the optimal bank contract is

the first-best contract, (c∗1, c
∗
2) = (cFB1 , cFB2 ). Moreover, implementation exhibits the unique

efficient equilibrium and there are no runs.

Proof. By Corollary 1, u′(1) ≤ REθ[p(θ)]u
′(caut2 + R(1 − caut2 )) means that cFB1 ≤ 1. This

means that resources are transferred to the patient depositor and hence he would not want

to act as if he is impatient. Lemma 1 allows us to say cFB2 < cFB1 ≤ 1. This implies that the

impatient depositor would not want to act as if he is patient. To see that there are no runs

is easy. cFB2 < cFB1 ≤ 1 makes clear that even when all depositors demand payment in first

period, the bank would not fail.

When the first-best contract is run-proof, it satisfies the incentive constraints, and is

the bank’s contract. Therefore, it is enough to look at the first-best contract to realize if

the bank’s optimal contract is run-proof. How about when the first-best contract is not
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run-proof?

Proposition 4. Assume u′(1) > REθ[p(θ)]u
′(caut2 + R(1− caut2 )). If the first-best allocation

satisfies the incentive constraints, then the first-best contract is the optimal bank contract.

When it does not, then the optimal bank contract is a (c∗1, c
∗
2) such that: 1 < c∗1 < cFB1 ,

c∗2 > cFB2 and c∗2 +Ri∗2 > cFB2 +RiFB2 and

Eθ[p(θ)])u(c∗2+R
1−λc∗1−(1−λ)c∗2

1−λ )+(1−Eθ[p(θ)])u(c∗2) = u(c∗1). Implementation of this contract

has two equilibria: the efficient equilibrium and another run equilibrium.

Proof. When the first-best contract does not satisfy the incentive constraints, by Lemma

1 it is definitely the patient depositor preferring to be impatient. That can only happen

when resources are taken away from him (risk-sharing). The only way to raise his expected

utility is by taking less resources away from him. Lemma 3 showed that this raises both his

consumptions.

All that remains to be shown is that c∗1 > 1, and noting that this means the contract is

run-prone. Here is a useful way to understand what the optimal bank contract is. Start at

first-best contract. In moving to the constrained optimum, the optimal contract decreases

the consumption of the impatient depositor (c1) and increases the patient depositor’s con-

sumption in both states of the world. This process continues, until the violated constraint

is satisfied with equality. It is definitely the case that c∗1 ≥ 1, since at autarky the incentive

constraints are definitely satisfied. Assume it is exactly 1. The autarky problem of the

patient depositor should definitely give him a strictly higher utility than u(1) and hence the

incentive constraint is slack, which can not be. c∗1 > 1 has two important implications, first

that the impatient depositor would not want to act as a patient depositor after we decrease

the impatient depositors consumption to get to optimality. Second, even though the im-

patient depositors consumption has been decreased, but the optimal bank contract is still

run-prone.

Proposition 4 shows that to determine if the optimal bank contract is run-prone, it is
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enough to look at the first-best contract. When the first-best contract is run-prone, then so

is the bank’s contract.

6 Discussion of Bank’s Contract

The optimal bank contract shows that even though banks themselves are risk neutral,

but depositor risk-aversion with coefficient of relative risk aversion greater than 1, coupled

with high marginal utility at zero forces banks to scale back bank lending (this is interpreted

as risky project in the model). The contract restricts what the bank can do. Do we see this

in reality? c∗2 > 0 can be interpreted in a couple of interesting ways. What bank assets could

serve as c∗2, protecting depositors against a spike in loan defaults? Two interpretations are

presented here. First, c∗2 could be the cash and safe assets that the banks generally hold.

These are held for two reasons, to accommodate “normal” withdrawals, but can also act as

a promise of some return if risky bank loan defaults spike. Second, c∗2 could be interpreted

as the reserve requirements that a bank has to hold by law. These are a fraction of deposits

that has to be invested in very safe, secure assets. It is interesting to note that these reserve

requirements have failed to mitigate bank-runs in the pre-federal reserve world. This is

also supported by the model presented here. Under some conditions, we do see a run-prone

contract, even with the existence of enough liquidity to cover the liquidity needs of impatient

depositors (c∗1), and the insurance needs of patient ones (c∗2). It is interesting to see how

the optimal contract responds to changes in the perceived default probability of the projects

1− Eθ[p(θ)]. The next subsection does that.

6.1 Contract as a Function of Expected Probability of Paying

To get concrete results, I work out how the optimal contract changes with Eθ[p(θ)] in the

case when u(c) = 1− e−c. Maximizing the planner’s problem, assuming an interior solution

and solving the foc yields: cFB1 = 1 − (1 − λ)Log(Eθ[p(θ)]R) + (R−1)(1−λ)
R

Log(Eθ[p(θ)](R−1)
1−Eθ[p(θ)]

)
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and cFB2 = 1 + λLog(Eθ[p(θ)]R) − λ(R−1)+1
R

Log(Eθ[p(θ)](R−1)
1−Eθ[p(θ)]

). This gives us that iFB2 =

1
R

(Log[ Eθ[p(θ)]
1−Eθ[p(θ)]

] + Log[R− 1]).

The following table shows the derivative of optimal quantities of interest w.r.t. Eθ[p(θ)].

Derivative Value Sign Interpretation

d
dEθ[p(θ)]

cFB1
(1−λ)
R

REθ[p(θ)]−1
Eθ[p(θ)](1−Eθ[p(θ)])

Positive Increases with Eθ[p(θ)]

d
dEθ[p(θ)]

cFB2 − λ(REθ[p(θ)]−1)+1
REθ[p(θ)](1−Eθ[p(θ)])

Negative Decreases with Eθ[p(θ)]

d
dEθ[p(θ)]

iFB2
1

REθ[p(θ)](1−Eθ[p(θ)])
Positive Increases with Eθ[p(θ)]

d
dEθ[p(θ)]

xFB2
R−1−λ(REθ[p(θ)]−1)
(1−Eθ[p(θ)])Eθ[p(θ)]R

Positive Increases with Eθ[p(θ)]

0.60 0.65 0.70 0.75 0.80
p

1.05

1.10

1.15

c1FB
Impatient Depositor's Consumption

As Eθ[p(θ)] goes up, the project becomes less risky. cFB2 , the patient depositor’s insurance,

goes down since he faces less risk now. Both cFB1 , the impatient depositor’s consumption,

and iFB2 , the investments in the project, go up. Since cFB2 goes down, while both cFB1 and

iFB2 go up, it is interesting to see which force dominates in determining the direction of

consumption of the patient depositors when the project pays: xFB2 = R
1−λcFB1

1−λ − c
FB
2 (R− 1).

This consumption increases with Eθ[p(θ)]. Hence, bank lending (iFB2 ) and risk-sharing (cFB1 )

increase in a cyclical manner, when projects have a higher chance of paying and Eθ[p(θ)] is
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Consumption When the Project Pays
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high. While (cFB2 ) is counter-cyclical. Plots of these consumptions as a function of Eθ[p(θ)]

are provided.

To understand the effect on total liquidity held by the bank, we first note that as Eθ[p(θ)]

increases, cFB2 goes down, but cFB1 goes up. So are banks required to hold more liquidity or

less liquidity as perceived probability of default (1 − Eθ[p(θ)]) increases? Liquidity here is

defined to be L = λcFB1 +(1−λ)cFB2 . In the current environment, L = 1− 1−λ
R
Log[Eθ[p(θ)](R−1)

1−Eθ[p(θ)]
].

This is obviously declining in Eθ[p(θ)] The following graph shows that required bank liquidity

goes up in recessions, and declines in booms.

0.60 0.65 0.70 0.75 0.80
p

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Λc1FB+H1-ΛLc2FB
Liquidity

7 Further Research

The author is currently working on using the results of this paper and the Goldstein and

Pauzner (2005) results on the use of global games techniques in this environment, to find

the effect on the probability of bank-runs and the effects of bank contracts on welfare.
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