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1 Introduction

Not since the Great Depression has the U.S. been confronted with a major financial crisis and at the same

time a deep and persistent economic slowdown. However, just over a decade into the new millennium,

this is the state in which the U.S. finds itself. Economists have responded by revisiting the Great

Depression and the financial panics that afflicted the U.S. from the end of the Civil War to 1914.

The U.S. has a history of deep and long recessions that are not always accompanied by financial

crises. Table 1 shows that the duration of the median NBER recession is 13 months, while an average

recession lasts about 15 months in a sample running from 1890 to 2010. There are 12 NBER-dated

recessions with a length of 14 months or more listed in table 1. Of those recessions, the four most

associated with financial crises started in January 1893, December 1895, August 1929, and December

2007 and lasted 17, 18, 43, and 18 months, respectively.1 The remaining eight recessions that ran for

at least 14 months began in June 1899, September 1902, January 1910, January 1913, January 1920,

May 1923, November 1973, and July 1981.

Questions persist about the sources of the Panics of 1893, 1896, and 1907, the financial crisis at

the start of World War I (1914), the beginning of the Great Depression (1929), and the financial crisis

of 2007–2009.2 Concerns about the U.S. commitment to the gold standard is given prominence as

the source of the Panics of 1893 and 1896; see table 1 of Bordo and Haubrich (2010). There is little

consensus about the source(s) of the Panic of 1907, but a subset of financial intermediaries (i.e., trust

companies) experienced runs in the fall of 1907. This is an example of a (negative) credit supply shock

because the ability of the financial markets to produce inside money was greatly diminished by the

increase in the demand for cash by the depositors of those institutions. The Great Depression and

Great Recession are tied to credit shocks, with links to real estate markets being especially important.

Although casual observation suggests that the U.S. has experienced deep and long recessions without

also suffering financial crises, credit shocks, which seem to precipitate U.S. financial crises, are often

accompanied by recessions with durations longer than the average or the median.

This paper assesses the role of credit shocks in U.S. financial crises and business cycles on

an annual sample running from 1890 to 2010. We contribute to the literature that studies the role

of credit flows in financial crises and business cycles by identifying credit supply shocks separately

from credit demand shocks in Markov-switching Bayesian vector autoregressions (MS-BVARs). This

1The Panic of 1907 is associated with an NBER-dated recession that lasted 13 months.
2Table 1 of Bordo and Haubrich (2010) is a source of greater detail about U.S. financial crises and business cycles
since 1873. Jalil (2012) provides similar information about U.S. financial crises dating back to 1825.
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identification is employed to explore the hypothesis that U.S. financial crisis regimes are recurring

events drawn from the same underlying probability density from which non-crisis regimes are drawn.

An implication is that, in the U.S., crisis and non-crisis regimes are grounded in the same economic

primitives, but preferences, technologies, and market structure interact differently across crisis and

non-crisis regimes, creating disparate data-generating processes (DGPs). The alternative hypothesis is

that a financial crisis is well described as a once-and-for-all structural break.

We explore questions raised by our hypothesis with methods developed by Sims and Zha (2006)

and Sims, Waggoner, and Zha (2008) to estimate MS-BVAR models.3 An MS-BVAR draws from only

one density function (i.e., the likelihood) to estimate probabilities of crisis and non-crisis regimes.

These probabilities provide evidence to judge the hypothesis that the same economic primitives are

responsible for U.S. crises and non-crises business cycle fluctuations. However, the alternative that

U.S. financial crises are isolated events can also be evaluated. The first-order transition matrices of the

MS-BVARs are flexible enough to let the data decide whether crisis regimes that occur, say, early in the

sample reoccur later or are different from those that arise later in the long annual U.S. sample.

Identification of credit supply and demand shocks in the MS-BVARs rests on two elements. First,

the MS-BVARs are estimated on an information set, Zt , consisting of seven variables. We compile time

series on output, the price level, the unemployment rate, inside money, short- and long-term interest

rates, and the ratio of long-term private assets held by financial firms to their holdings of public assets

from 1890 to 2010.4 A motivation to equate credit supply with inside money, rather than broader

credit aggregates, in the MS-BVARs is the reduced-form evidence of King and Plosser (1984). They

report that the correlations of inside money growth with output growth dominate the correlations with

outside money. Inside money is also included in Zt because these short-term liabilities support the

acquisition of private, long-dated risky assets. Similarly, the structural MS-BVAR identifies shocks to

the intertemporal opportunity cost of this liability, the short-term interest rate, with shifts in credit

demand. Hence, changes in inside money demand are tied to identified short-term interest rate shocks.

Limiting Zt to these seven variables also maintains the tractability of the MS-BVAR estimation process.

The MS-BVARs are also identified using a Cholesky decomposition to order the elements of Zt .

Within this recursive structure, a macro (M) block consisting of output, the price level, and the un-

employment rate is placed before a financial (F ) block that includes inside money, short-term and

3The econometric foundations of this class of models are found in Hamilton (1994), Kim (1994), and Kim and
Nelson (1999).

4The data are described in section 3 and in the appendix.
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long-term interest rates, and the financial balance sheet composition ratio. We interpret the recursive

identification as an assembly of restrictions gathered from Keynesian, new classical, and rational ex-

pectations models. For example, ordering output first is consistent with Keynesian and new classical

macro models that have supply shocks driving price fluctuations and movements in labor and financial

markets from impact onward. Whether responses to the identified supply shock match predictions

of Keynesian or new classical models is a question to be settled by the data. Also, embedded in the

MS-BVARs is a Lucas-Sargent Phillips curve-like restriction that the unemployment rate responds to

price shocks at impact. In the F block, we have monetarist-like assumptions that inside money (the

short-term interest rate) responds to shifts in the supply (demand) for credit. Since the short rate

precedes the long rate, the identification relies on the rational expectations term structure prediction

that the long rate is a function of shocks to the short rate. Finally, we place the financial balance sheet

composition ratio last in the ordering to be conservative about the role shock to the composition of

the aggregate balance sheet of U.S. financial firms plays in generating financial crisis regimes.

This paper reports estimated structural MS-BVARs in which the only source of regime switching

is the stochastic volatility (SV) of the regression errors. This paper restricts the MS-BVARs to SV because,

at the very least, financial and economic crises are associated with shocks whose sizes are larger than

those generating non-crisis business cycle fluctuations. Although allowing only SV to define crisis and

non-crisis regimes limits the model space, we include 15 MS-BVARs in the model space to cover a wide

variety of SV parameterizations of the DGPs of crisis and non-crisis regimes.

Estimates of the 15 MS-BVARs support our hypothesis on our long annual 1890–2010 sample.

The estimated MS-BVARs yield regime probabilities along with regime-dependent responses of the

elements of Zt to identified credit supply and demand shocks given SV is the lone source of systematic

differences across crisis and non-crisis regimes. The unconditional regime probabilities show that U.S.

financial and economic crises from earlier and later parts of the sample are generated by the same

regime. This is evidence that U.S. financial and economic crisis and non-crisis regimes are recurring

events drawn from a single underlying probability density from 1890 to 2010.

The next section reviews a selection of the literature that searches for financial risk measures that

matter for aggregate fluctuations. Section 3 describes our long annual sample. We outline the methods

and procedures employed to estimate and conduct inference on MS-BVARs in section 4. Results are

reported in section 5. Section 6 concludes.
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2 A Brief Literature Review

The financial crisis of 2007–2009 has reinvigorated research into the sources of economic and financial

crises. Representative of these efforts is research that seeks to uncover predictors of financial and

economic crises for emerging and advanced economies. Recent examples are, among others, Bussiere

and Fratzscher (2006), Mendoza and Terrones (2008), Reinhart and Rogoff (2009, 2011), Claessens,

Kose, and Terrones (2011), Jordà, Schularick, and Taylor (2011a,b), Gourinchas and Obstfeld (2012),

and Schularick and Taylor (2012). These papers rely on structural breaks in an economy’s underlying

DGP to identify predictors of financial and economic crises at business cycle and longer horizons using

cross-country data.5 A reliable predictor of financial crises, especially those associated with deep and

long recessions, is credit growth, according to these papers.

An alternative tradition studies financial crises using VARs and other empirical tools familiar

to macroeconomists. Examples include, among others, Canova (1991, 1994), Donaldson (1992), Coe

(2002), Eichengreen and Mitchener (2003), Anari, Kolari, and Mason (2005), and Chin and Warusaw-

itharana (2010). These papers identify the shocks and latent factors that contribute to financial and

economic crises using information in the panics of the U.S. National Banking Era (1863–1914), as well

as the 1920–1921 recession and the Great Depression (1929–1933) that are part of the interwar sample

(1920–1940).6

2.1 Recent Research on Financial Crises

Schularick and Taylor (2012) exploit a panel of 14 countries on a long annual sample to evaluate the

impact of financial crises on real economic activity. Their cross-country panel data show that, during

the last 60 years, there was an expansion of loans funded with liabilities other than bank deposits. Prior

5Ahmadi (2009), Helbling, Huidrom, Kose, and Otrok (2011), and Eickmeier and Ng (2011) identify latent vari-
ables that predict financial crises. Ahmadi estimates a factor-VAR that allows for time-varying parameters and
stochastic volatility. His goal is to recover a business cycle factor conditioned on macro variables and interest
rate spreads. Helbling et al. also use a factor-augmented VAR, but the interest is in estimating a common credit
factor in 20 years of quarterly G–7 data. Eickmeier and Ng apply a generalized VAR to recover a common world
credit shock in a large panel of developed and emerging economies during the last 30 years. These papers report
that estimated latent credit factors have large and persistent effects on real international economic activity.

6Ciccarelli, Maddaloni, and Peydró (2010), and Gambetti and Musso (2012) estimate structural VARs to recover
bank loan supply and demand shocks on more recent Euro Area, U.K., and U.S. samples. The former structural
VARs identify the impact of the credit channel (i.e., the balance sheet capacity of banks, firms, and households)
on the monetary transmission mechanism. The credit channel operates on bank, firm, and household balance
sheets and amplifies monetary policy shocks, especially during the 2007–2009 financial crisis, according to
Ciccarelli, Maddaloni, and Peydró. Time-varying parameter VARs with SV and sign restrictions are estimated by
Gambetti and Musso. They report that loan supply shocks have asymmetric effects on output that become more
important during recessions than expansions.

4



to World War II, the sample yields a large positive correlation between credit and monetary aggregates.

These observations motivate Schularick and Taylor to hypothesize that when financial market leverage

rises above an arbitrary threshold defined ex post on output, a financial crisis ensues. Hence, financial

crises follow a period of growth in excess of the real value of bank loans relative to the output growth

threshold. Schularick and Taylor provide empirical results indicating that rapid growth in the real

value of bank loans relative to their output growth threshold has significant predictive power for future

financial crises. A related idea is that excessive growth in this and other credit aggregates signals that

a deep and long recession is in the offing.

Jordà, Schularick, and Taylor (2011a) study the impact of excessive credit growth net of output

on the natural rate of interest and current accounts, using a panel similar to that of Schularick and

Taylor (2012). The years before a financial crisis are associated with a natural rate of interest far below

its steady state, according to Jordà, Schularick, and Taylor (2011a). This paper also finds that the

comovement of credit growth and current account deficits has become stronger in the last 30 years.

Similarly, Jordà, Schularick, and Taylor (2011b) view domestic credit markets as driving business cycle

fluctuations. They argue their estimates support the hypothesis of credit growth net of output growth

being a key predictor of severe, long-lasting recessions. Nonetheless, Schularick and Taylor (2012)

and Jordà, Schularick, and Taylor (2011a,b) do not present an explicit identification of the underlying

shocks to credit flows that they argue predict financial crises and deep, persistent recessions.

Bussiere and Fratzscher (2006), Mendoza and Terrones (2008), Bordo and Haubrich (2010),

Claessens, Kose, and Terrones (2011), and Gourinchas and Obstfeld (2012) use nonparametric and

parametric methods to describe the comovement between financial and macro variables. A common

thread of this research is that financial crises are associated with deep and long-lasting recessions.

Stock market booms and lending in housing markets have been leading indicators of financial crises

across developed economies during the last 50 years according to the analysis of Claessens, Kose, and

Terrones. Mendoza and Terrones add to this list of financial crisis predictors real currency apprecia-

tions and large current account deficits. Similar evidence is found in Bussiere and Fratzscher and in

Gourinchas and Obstfeld. These papers report panel data regressions that control for differences in

crisis and non-crisis states. The regression estimates confirm that excessive credit growth and real

currency appreciations have the power to predict financial crises. Rather than developing a predictive

model, Bordo and Haubrich compare the 2007–2009 crisis to U.S. financial crises during the previous

140 years. They argue that deposit insurance and other regulatory standards limited the impact of the

2007–2009 crisis on outside money, unlike the Great Depression, and instead put stress on short-term
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interbank markets.

Reinhart and Rogoff (2009) gauge the extent to which measures of financial risk anticipate sub-

stantial economic downturns using several centuries of cross-country data. They argue that the memory

of crises is fleeting in history across countries and through the centuries. The argument is that when

a crisis is in the making, advocates appear who claim “this time is different.”7 Implicit in this claim is

that the new state of the world produces fundamentals to support asset prices that were not available

earlier. Ex post, these episodes are not systematically different from previous states of the world, ac-

cording to Reinhart and Rogoff.8 They argue, as a result, that movements in financial aggregates yield

warning signals for current and future real activity that can alert policymakers to a potential crisis.

Krishnamurthy and Vissing-Jorgensen (2012) have a different model of the risk factors that

alter the demand for financial securities. These risk factors are tied to the impact that shifts in the

supplies of securities with different characteristics have on asset returns as viewed by Krishnamurthy

and Vissing-Jorgensen (KVJ). For example, investors may prize public securities as safe havens along

with the liquidity these assets possess.9 We take from KVJ that there is information about the demand

for risky assets in the composition of private and public assets on the balance sheets of financial firms.

2.2 Identifying Financial Shocks Using Financial Crises

Donaldson (1992) and Canova (1994) examine U.S. data from the Civil War to the Great Depression to

discern the impact of financial crises on the U.S. economy. Donaldson uses regression and nonpara-

metric estimators of business cycle comovement to generate evidence about whether banking panics in

the U.S. are “systematic events” produced by the same probability distribution from which typical busi-

7Parent (2012) offers a useful critique of the “this time is different” thesis.
8An example highlighting the role expectations play in financial booms and busts is given by Brunnermeier (2009).
He discusses the part that beliefs that houses would always appreciate in value had in the 2007–2009 financial
crisis. These beliefs increased counter-party risk because of the reliance of the shadow banking system on short-
term interbank funds to support investment bank holdings of residential mortgage-backed securities (RMBS),
which were heavily comprised of subprime mortgage loans. When house prices ceased rising in 2006, lenders in
the interbank market reassessed their beliefs that these prices could not fall. After these beliefs were revised,
investment banks faced difficulties funding their RMBS holdings. Gorton and Ordoñez (2012) construct a theory
to explain these observations. The theory predicts that when lenders find it costly to evaluate long-term assets
they are considering as collateral, they will withdraw funding from interbank markets.

9KVJ build an asset pricing model in which a demand for safety and liquidity to hold Treasury securities instead
of private securities generates risk premia. The asset pricing model motivates yield spread regressions that
include the U.S. Treasury debt-to-GDP ratio. Regressions are run on annual samples from 1926 to 2008 to
construct estimates of Treasury safety and liquidity risk premia. These estimates are interpreted by KVJ as a
46-basis-point liquidity premium that investors received for holding AAA-corporate bonds rather than 10-year
Treasury bonds. KVJ also report that Treasury bills earn a discount of 26 basis points because of the safety
these securities offer compared to short-term private assets.
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ness cycle fluctuations are drawn, or “special events” drawn from an entirely different distribution.10

He concludes that the start dates of banking panics are unforecastable, but that there are states of the

world in which banking panics are more likely.11 Canova reaches a similar conclusion when he reports

that seasonality and financial variables have the power to predict financial crisis in-sample, but real

activity variables do not. Only measures of financial volatility have out-of-sample forecasting power in

this paper.

Canova (1991) takes another approach to examining the impact of U.S. financial crises in monthly

data from 1891 to 1937. Currency supply and demand shocks are identified using BVARs on pre- and

post-World War I samples. The samples are split on the World War I episode because it coincides with

the founding of the Fed.12 Prior to World War I, the U.S. had no institution responsible for supplying

liquidity in the face of a financial crisis. Hence, the supply of currency was not especially elastic in

response to external shocks in the U.S. prior to World War I. The Fed was created, in part, to supply an

elastic currency in times when the U.S. is buffeted by external shocks. The BVAR estimates reveal that

the U.S. economy responded differently to international currency shocks in the pre- and post-World

War I samples. In the early sample, the lack of an elastic currency and seasonal shifts in currency

demand magnify the impact of international currency shocks on real economic activity in the U.S. The

creation of the Fed lessens the impact of these shocks in the estimates Canova reports. He argues that

his empirical results show that the founding of the Fed altered the sources of financial shocks in the

post-World War I sample, but this did not put an end to U.S. financial crises. These results also suggest

that changes in the design of financial and economic institutions create variation in the data useful

for identifying the sources and causes of financial shocks. This variation in the data is also useful for

estimating shifts between crisis and non-crisis regimes.

A similar approach is also applied by Coe (2002), Eichengreen and Mitchener (2003), Anari, Kolari,

and Mason (2005), Chin and Warusawitharana (2010), and Diebolt, Parent, and Trabelsi (2010), among

others, to study the Great Depression. They provide a mixed picture of the role financial shocks had in

the Great Depression. Coe (2002) engages MS methods to recover the probability that the U.S. financial

system was in a crisis state during the 1920s and 1930s. These probabilities have predictive power

for output in the regressions that he reports. Eichengreen and Mitchener (2003) regress output growth

on credit growth using a cross-country sample from the late 1920s and early 1930s. Their regressions

10These events are detailed in full by Gorton (1988), Calomiris and Gorton (1991), and Wicker (2000, 2005).
11An alternative view is found in Jalil (2012). He gives evidence that banking panics had negative effects on U.S.

output and that these effects were persistent in more than 100 years of data before the Great Depression.
12Silber (2007) discusses the impact that the World War I episode had on the evolution of U.S. financial markets.
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reveal that a pre-1929 credit boom contributed to the Great Depression. The remaining papers use

structural VARs to identify and gauge the impact of financial shocks on real economic activity and

inflation. The link between financial shocks and the Great Depression is weak according to Anari,

Kolari, and Mason and Chin and Warusawitharana, but Diebolt, Parent, and Trabelsi present results

supporting the view that the origins of the Great Depression are financial.

This paper is closest in spirit to Canova (1991, 1994) and Donaldson (1992). Our identification of

credit supply and demand shocks is similar in approach to the way Canova (1991) identifies currency

supply and demand shocks.13 However, we estimate BVARs in which the volatility of the identified

shocks is stochastic and conditional on the MS regime. Donaldson (1992) and Canova (1994) are inter-

ested in whether the same factors that drive non-crisis business cycle fluctuations also drive economic

and financial crises. We estimate MS-BVAR models to evaluate a similar hypothesis.

3 The Data

This section describes the sample data on which the MS-BVARs are estimated. By beginning in 1890,

the sample covers the pre-Fed National Banking Era, the early Fed, the Great Depression, the 1935–1981

“quiet period” defined by Gorton (2010), and the past 40 years of U.S. financial market deregulation.

The macroeconomic events include the NBER-dated peaks and troughs listed in table 1, along with the

world wars and other conflicts in which the U.S. engaged during the 1890–2010 sample.

The information set Zt consists of U.S. per capita real GDP (yt), the implicit GDP deflator (Pt),

the unemployment rate (urt), per capita inside money (MI,t), a short-term nominal interest rate (RS,t),

a long-term nominal interest rate (RL,t), and the ratio of nominal long-term private assets to nominal

public debt held on financial firms’ balance sheets (rFBS,t). These seven variables define Zt , which is

grounded on a long annual 1890–2010 sample, T = 121. The appendix contains more details about the

construction of the data.

3.1 Macro Aggregates

TheM block containsyt , Pt , andurt . We employ real per capita GDP to measureyt . The corresponding

Pt is the implicit GDP deflator (i.e., the ratio of nominal to real GDP). The log of real per capita GDP and

the log of the implicit GDP deflator are multiplied by 100. The source of real GDP, its price deflator,

13Canova (1991) analyzes the power that external factors have to magnify currency supply and demand shocks
in pre-World War I and interwar samples. We put aside open economy issues for later work.
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and U.S. population is Johnston and Williamson (2011). The unemployment rate brings labor market

information into the MS-BVAR models. Carter, Gartner, Haines, Olmsted, Sutch, and Wright (2006)

collect a long annual sample of unemployment rate observations from Weir (1992).

3.2 Monetary Aggregates

We equate the stock of short-term liabilities issued by financial firms to per capita inside money, MI,t .

These liabilities are constructed as M2 net of the monetary base. The former monetary aggregate is

found for the early part of the sample in Balke and Gordon (1986). The Board of Governors of the

Federal Reserve System is the source for the later part of the sample. Balke and Gordon also provide

monetary base data that are spliced to the adjusted monetary base of the Federal Reserve Bank of St.

Louis to obtain observations through 2010. The quarterly and monthly M2 and monetary base data are

temporally aggregated into the annual frequency and then divided by population to obtain per capita

inside money, MI,t . Hence, this measure of MI,t equates an increase in M2 net of the monetary base

with financial firms issuing more loans and short-term liabilities, for example, to purchase long-term

assets for their balance sheets. We also take the log of MI,t and multiply it by 100.

3.3 Interest Rates

A 1-year interest rate series plays the role of the intertemporal price of short-term funds in financial

markets, RS,t . This rate is a synthetic series because the contract that fills the role of a short-term risk-

less asset has evolved in U.S. financial markets since 1890. The asset is identified with stock exchange

loans, prime bankers’ acceptances, short-term Treasury securities, and 3-month Treasury bills from

1890 to 2010. We obtain return data on these assets from Banking and Monetary Statistics, 1914–1941,

Board of Governors of the Federal Reserve System (1976a), and the FRED online database.

Shiller (2005) is the source of the long-term interest rate, RL,t . He ties municipal bond yields

from 1890 to 1920 to yields on long-term government securities from 1921 to 1952 that are found in

Homer and Sylla (2005). Shiller uses the yield on 10-year U.S. Treasury bonds, which runs from 1953

to 2010 for our sample, to complete his long-term interest rate series.

3.4 Financial Balance Sheet Composition Ratio

The financial balance sheet composition ratio divides total long-term private assets held by U.S. financial

firms by their ownership of public short- and long-term debt. The universe of these firms includes

9



commercial banks, saving banks and thrifts, and investment banks. Data on the asset holdings of these

firms are constructed using various sources: the Board of Governors, the Federal Deposit Insurance

Corporation (FDIC), the United States League of Savings Associations, the United States Savings and

Loan League, and Compustat. The Board of Governors and the FDIC provide data on commercial banks.

Information on the contents of savings and loan balance sheets is published by the FDIC, the United

States League of Savings Associations, and the United States Savings and Loan League. Compustat has

data on U.S. investment banks.

The long-term private assets of financial firms exclude cash broadly construed, Treasury securi-

ties and agency debt, as well as state, local, and other municipal debt obligations. We equate the private

assets owned by U.S. financial firms to their holdings of securities that are “claims on private entities.”

These same firms’ ownership of cash, Treasury securities, agency debt, state and local, and other mu-

nicipal debt holdings is labeled “public debt” or “claims on public entities.” The ratio of private assets

to public debt is our measure of the risk composition of the asset side of the aggregate balance sheet

of U.S. financial firms.

The financial balance sheet composition variable is novel. Since financial risk is measured as the

ratio of private assets held by U.S. financial firms to their ownership of public debt, movements in this

ratio reflect changes in the composition of assets on the aggregate U.S. financial balance sheet. This

ratio avoids identification issues caused by conflating financial and real shocks because the financial

balance sheet composition ratio does not, say, net output growth from credit growth.

3.5 Summarizing the Information Set Zt

In summary, theM block consists ofyt , Pt , andurt , whileMI,t , RS,t , RL,t , and rFBS,t define theF block.

Given three of the seven variables are logged and multiplied by 100, the information set becomes

Zt =
[
100 lnyt 100 lnPt urt 100 lnMI,t RS,t RL,t rFBS,t

]′
.

We discuss below the reasons for placing theM block prior to the F block.

3.6 The Data in Historical Context

The data are plotted in figures 1 and 2. The top panel of figure 1 presents the log levels of yt , Pt , and

MI,t multiplied by 100 for the complete 1890–2010 sample. The growth rates of yt , ∆ lnyt , and urt are
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shown in the middle panel of figure 1 for the period from 1891 to 2010. These macro aggregates have

been less volatile since 1948. From 1891 to 1947, the standard deviations of ∆ lnyt and urt are 6.81

and 4.50, while these statistics fall to 3.02 and 1.76 in the second half of the sample. Output growth

shows large negative annual growth rates around the Panic of 1907 (−13.4 percent), the depth of the

Great Depression in 1931 (−14.6 percent), and the end of World War II in 1945 (−12.6 percent). The

unemployment rate is dominated by the 1931–1935 episode. During this period, urt equals 15.6, 22.9,

20.9, 16.2, and 14.4 percent, respectively.

The bottom panel of figure 1 contains the growth rates of Pt , ∆ lnPt , and MI,t , ∆ lnMI,t , from

1891 to 2010. The volatility of ∆ lnPt and ∆ lnMI,t is also greater in the first part of the sample, 5.81

and 8.21, compared to 2.55 and 3.23 in the 1948–2010 subsample. Inflation shows peaks during World

War I of 12 to 20 percent, at the end of World War II of more than 10 percent (1945 and 1946), at the

time of the first oil price shock in 1973–1974 of 8.5 to 9.0 percent, and in the 1978–1980 period of

8.0 to 9.0 percent. The smallest values of ∆ lnMI,t range from −9.6 to −21.4 percent at the depth of

the Great Depression, while the peaks occur during the world wars at 16 to 24 percent. Note also that

∆ lnPt and ∆ lnMI,t exhibit substantial comovement from the Panic of 1907 to 1938.

Figure 2 depicts RS,t , RL,t , and rrisk,t from 1890 to 2010. Several phenomena stand out in this

chart. First, RS,t is only a bit more volatile than RL,t over the entire sample, 2.59 to 2.40. Next, there are

periods, 1899–1907, 1912–1914, 1928–1929, 1973–1974, and 1978–1980, during which RS,t is greater

than RL,t . Since 1981, the opposite is true for every year except 2006, 2009, and 2010. At the end of

the sample, RS,t falls to 15 basis points or less. The only other episode during which RS,t is near the

zero lower bound occurs from 1933 to 1941, when it is less than 30 basis points. Another observation

of interest is that in the middle of the sample, from 1933 to 1997, rFBS,t is less than RL,t . The inequality

is flipped (mostly) at the beginning and at the end of the sample.

4 An MS-BVAR Model

Our motivation for estimating MS-BVAR models rests on the idea that economic and financial crises

represent DGPs or regimes of the world that differ from those of non-crisis business cycle fluctuations.14

The crisis and non-crisis regimes, although different, are built on the same economic primitives and

drawn from the same probability density function, the likelihood, of an MS-BVAR. The estimated MS-

BVARs yield the responses of Zt to credit supply and credit demand shocks, among others. Besides

14Primiceri (2005) and Cogley and Sargent (2005) develop a different regime-change model estimator.
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FEVDs, the estimates include the marginal data densities, the regime transition probabilities, the (first-

order) Markov transition matrix of the regimes, the impact coefficient matrix, and the SV factor loadings

of the MS-BVAR models. This is the evidence we use to assess the impact of identified credit supply

and demand shocks on the U.S. economy conditional on regime switching. We lean heavily on Sims and

Zha (2006) and Sims, Waggoner, and Zha (2008) to generate this evidence.

4.1 Model Specification

Sims, Waggoner, and Zha (2008) provide tools to estimate and conduct inference on MS-BVAR models

of lag length k. They study the MS-BVAR(k) model

Z′tA0

(
St
)
=

k∑
j=1

Z′t−jAj
(
St
)
+ C

(
St
)
+ ε′tΓ−1

(
St
)
, t = 1, . . . , T , (1)

where Zt isn(= 7)×1, A0 is ann×n non-singular matrix, St is the h dimensional vector of regimes that

are independent first-order Markov chains, h is in the finite set of integersH, eachAj is ann×nmatrix,

C is the vector of n intercept terms, εt is the vector of n unobserved shocks, and Γ is an n×n diagonal

matrix of factor loadings scaling the SVs of the elements of εt .15 Key distributional assumptions made

by Sims, Waggoner, and Zha (SWZ) include those on the densities of the MS-BVAR disturbances

P
(
εt
∣∣∣Zt−1, St , ω, Θ) = N (

εt
∣∣∣0n×1, In

)
, (2)

and on the information set

P
(
Zt
∣∣∣Zt−1, St , ω, Θ) = N (

Zt
∣∣∣µZ(St), ΣZ(St)), (3)

where Zt =
[
Z′1 Z

′
2 . . . , Z

′
t

]′
, St =

[
S′0 S

′
1 . . . , S

′
t

]′
, ω is the vector of probabilities attached to the

Markov chains,

Θ = [
A0(1) A0(2) . . . A0(h) A(1) A(2) . . . A(h) C(1) C(2) . . . C(h) Γ(1) Γ(2) . . . Γ(h)]′,

A(·)=
[
A1(·) A2(·) . . . Ak(·)

]
, µZ(·)=

[
A(·) C(·)

]
A−1

0 (·)
[
Zt 1

]′
, and ΣZ(·)= [A0(·) Γ(·)2A′0(·)]−1

.

15Sims, Waggoner, and Zha require the number of regimes h within St to be finite and not a function of time t.
This assumption is required only for regimes of date t, St , to matter for Zt given its own history, which in turn
is necessary to construct the likelihood of an MS-BVAR(k).
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We limit MS to the diagonal matrix Γ(St) that scales the volatility of the BVAR shock innovations,

εt . The impact matrix A0, the coefficient matrices A1, A2, . . . , A(k), and the intercept vector C are

unchanged across regimes, which restricts the MS-BVAR dynamics to be constant across regimes.16

These restrictions yield the MS-BVAR(k)

Z′tA0 =
k∑
j=1

Z′t−jAj + C + ε′tΓ−1
(
St
)
, (4)

estimated for this paper, where Θ is modified to
[
A0 A1 . . . Ak C Γ(1) Γ(2) . . . Γ(h)]′.17

SWZ restrict the (first-order) Markov transition matrices. These matrices are the laws of motion

of the Markov chains in which the regime probabilities reside. The restrictions placed on the transition

matrix Q permit switching only between adjacent regimes, and this switching is symmetric. The result

is

Q =



%1 0.5(1− %2) 0 0 . . . 0 0

1− %1 %2 0.5(1− %3) 0 . . . 0 0

0 0.5(1− %2) %3 1− %4 . . . 0 0
...

...
...

...
...

...

0 0 0 0 . . . %h−1 1− %h
0 0 0 0 . . . 0.5(1− %h−1) %h


. (5)

Estimation of the MS-BVAR generates values for the transition probabilities %1, %2, . . . , %h. The map

that relates the vector of Markov-chain probabilities ω to the transition matrix Q is

q·,j = M·,jω·,j , (6)

where q·,j is the jth column ofQ andM is a matrix of zeros and ones whose dimension is a function of

the number of Markov chains and the regimes within each chain. The matrix M transforms the vector

of probabilitiesω into the probability of remaining within a regime. Priors are placed on the duration

(in years) of remaining within a regime that maps to the probabilities ω.

16A motivation is that the MS-BVAR(k) model can become too heavily parameterized to be estimated without
restrictions given the dimension of Zt , n, and the lag length k. Given n = 7, let k = 2 and suppose that all the
slope coefficients are permitted to shift in all the regimes of a MS-BVAR. In this case, the number of coefficients
per regime equals 98, which would strain the information content of a sample whose length T is 121.

17The signs of the As are normalized using a rule of Waggoner and Zha (2003b).
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The matrixQ given in (5) allows for a rich set of transition probability dynamics. Suppose h = 3.

In this case, the regimes could spend the early part of the sample, say, in regime 1 before transitioning

to regime 2 during the middle part of the sample and moving to regime 3 toward the end of the

sample. Or the MS-BVAR, priors, and data could generate estimates that repeatedly move between

regimes during the sample. The latter set of transition probabilities would support the hypothesis that

crises are events that occur in the early, middle, and later parts of the sample.

The likelihood of the MS-BVAR model (4) is built onZT and assumptions (2), (3), (5), and (6). These

data and assumptions are raw materials for the tools that SWZ develop to estimate the log likelihood

lnP
(
ZT
∣∣∣ω, Θ) = T∑

t=1

ln

 ∑
st∈H

P
(
Zt
∣∣∣Zt−1, St , ω, Θ)P(St∣∣∣Zt−1, ω, Θ)

 , (7)

where P
(
St
∣∣∣Zt−1, ω, Θ) is the density used to sample the probability that St is in regime ` given St−1

= j. This sampling procedure employs a backward recursion that SWZ discuss in detail. SWZ propose

Gibbs sampling methods to construct the log likelihood (7) along with the conditional densities of Θ,

P
(Θ∣∣∣Zt−1, St , ω

)
, andω, P

(
ω
∣∣∣Zt−1, St , Θ).18 Note that the vector of regimes ST is integrated out of

the log likelihood (7).

Evaluation of the MS-BVAR model (4) relies on the joint posterior distribution of Θ and ω. This

posterior is calculated in the MS-BVAR model (4) using Bayes’ rule, which gives

P
(
ω, Θ∣∣∣ZT) ∝ P

(
ZT
∣∣∣ω, Θ)P(ω, Θ), (8)

where P
(
ω, Θ) denotes the priors of ω and Θ. The data decide which version(s) of the MS-BVAR(k)

model (4) fit best using ratios of the posterior (8). These ratios, or posterior odds, are computed for

versions of the MS-BVAR(k) model (4) that differ by the number of regimes h embedded in Γ(St).
4.2 Priors

We follow Sims and Zha (2006) and SWZ by endowing A (=
[
A1 . . . , Ak

]
) with a mean zero prior

distribution in the spirit of Sims and Zha (1998). Sims and Zha (1998) decompose their prior into six

scalar parameters. The decomposition is λ =
[
λ0 λ1 λ2 λ3 λ4 λ5

]
. These parameters control the

tightness of the random walk prior on the own first lag in a regression, the tightness of the random

18These methods rest on the analysis SWZ provide in their appendix A.

14



walk on other lags in a regression, the tightness on the intercept of the random walk prior, tightness

of the prior that smooths distributed lags of a regression, the random walk prior applied to the sum of

own coefficients in a regression, and the cointegration prior implying stationary relationships among

the elements of Zt . Our prior is λ =
[
2.5 1 1 0.5 0.75 1.25

]
, which is weighted to greater persistence

and is relatively agnostic about cointegration. Thus, the intent of our prior is to move the MS-BVAR(k)

in the direction of random walk behavior given annual U.S. data from 1890 to 2010. Otherwise, our

prior rests on advice found in Sims, Waggoner, and Zha (2008).19 For example, our duration prior,

which sets the average time of remaining in regime j given the current regime is j, is restricted to no

more than six years and no less than two years.

Tightening in the direction of the random walk prior reduces Γ−1(·), which contains the factor

loadings that scale the SV of εt . This increases persistence in A. The underlying notion is that the

random walk prior is, in the view of SWZ, independent of beliefs about the unconditional variance of Zt .

Thus, a normal prior is placed onA (whether or not there is MS), while the squared diagonal elements

of Γ(·) are drawn from the gamma distribution; see also Robertson and Tallman (2001).20 A Dirichlet

prior is imposed on the transition probabilities ofω by SWZ. This prior controls the (average) duration

of remaining in regime ` at date t conditional on being in that regime at date t−1. Another part of our

prior is that we set k = 2, given T = 121 for the annual sample.

4.3 Identification

Identification of credit supply and demand shocks relies on a recursive Cholesky ordering and sample

information.21 We order Zt =
[
100 lnyt 100 lnPt urt 100 lnMI,t RS,t RL,t rFBS,t

]′
. Credit

supply and demand shocks are identified, in part, by placing theM block, which consists of yt , Pt , and

urt , prior to the elements of the F block, MI,t , RS,t , RL,t , and rFBS,t . The M block captures dynamic

aggregate relationships. For example, a Lucas-Sargent Phillips curve results by placing Pt before urt

and a dynamic Okun’s law by having yt respond to a urt shock with a lag.

19The same prior is applied when estimating the MS-BVAR model (1). In this case, Sims and Zha (2006) and SWZ
impose prior restrictions to limit the dimension of the time variation of the slope coefficients, the As, and the

intercepts, C. The restrictions are A(st) = D(st) + DA0(st), where A(st) ≡
[
A1(st) A2(st) . . . Ak(st) C(st)

]′
,

D=
[
In 0n×1

]′
, andD(st) is conformable with A(st) andDA(st). A mean zero prior distribution is bestowed

on D(st) by Sims and Zha (2006) and SWZ, which matches the random walk prior of Sims and Zha (1998).
20An implication is that the elements of Γ have independent priors. Thus, Γ is not a direct function ofA. Rather,

the coefficients of a MS-BVAR model are computed simultaneously when estimating the log likelihood (7).
21Recursive Cholesky orderings are consistent with the restrictions SWZ place on time variation in MS-BVARs; see

also Waggoner and Zha (2003a).
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The F block contains information useful for recovering the credit supply and demand shocks.

A dynamic demand function for short-term liabilities in the financial markets is implied by MI,t and

RS,t given yt and Pt . The F block also recovers information about the term structure from RL,t and

RS,t . Shocks to the latter rate impinge on the former rate at impact, but the converse is ruled out by our

identification. This is consistent with a rational expectations model of the term structure. The long-

term rate also provides information about the opportunity cost of holding riskier long-term assets.

The riskiness of these assets is captured by rFBS,t . The risk variable injects information about the

composition of the aggregate balance sheet of U.S. financial firms into the F block. This information

aids in driving the relative demand for risky long-term private assets conditional on MI,t , which is the

source of funds that support an increase in rFBS,t . Since the recursive ordering places the risk proxy

last, the identification ties shocks to MI , and RS,t to funding long-term securities.

4.4 Model Space

Our study of the impact of credit supply and demand shocks limits MS to the SV scaling matrix Γ(St) of

regression error vector εt . Table 2 presents the parameterizations of 15 MS-BVAR(2) models given this

restriction on MS in the BVAR models. The 15 MS-BVAR models have either one or two Markov chains

associated with h = 2, 3, or 4 SV regimes. When there is one Markov chain in these three MS-BVAR

models, it is common to theM block and the F block. Thus, there are h × 7 elements in Γ(St) with its

dimensionality rising with the number of SV regimes. We label the MS-BVARs with 2, 3, or 4 SV regimes

models 1, 2, and 3, respectively. Next, separate the chains for the M and F blocks, but assume that

the F block always has hF = 3 SV regimes.22 This produces three more MS-BVAR models, with theM

block taking on hM = 2, 3, or 4 regimes. The remaining nine models are created by adding MI,t and

RS,t one at a time and then adding MI,t and RS,t at the same time to the M block. This yields Markov

chains generating 2, 3, and 4 SV regimes on theM block that includes eitherMI,t , RS,t , orMI,t and RS,t .

AddingMI,t , RS,t , orMI,t and RS,t to theM block also increases the dimension of Γ(St). Consider

MS-BVAR models 7, 8, and 9. In these models, the value of the SV scaling parameter ΓMI is driven by

the regime of theM block conditional on the F block regime. The implication is that ΓMI (i|`) is inM

block regime i, i = 1, . . . , hM, given the F block is in regime `, ` = 1, 2, 3. Thus, including MI in the

M and F blocks imposes hM × 3 SV regimes on ΓMI (St) in models 7, 8, and 9. However, the remaining

SV scaling parameters, Γj(St), j = y , P , and ur , of the M block have hM different values only across

22When we tried to estimate MS-BVARs with hM = 2, 3, or 4 regimes conditional on hF = 4 SV regimes, the results
were always poorly approximated MDDs.
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the hM × 3 SV regimes.

We condition 12 of the 15 MS-BVAR models on separate Markov chains for theM and F blocks.

Conditional on the priors and data, this gives the MS-BVAR models the flexibility to estimate SV regimes

for theM and F blocks that differ systematically in economic and calendar time. That is, the MS-BVAR

models can find crisis and non-crisis SV regimes that either repeat throughout the 1890–2010 sample

or occur only in the early or later parts of the sample. This enriches the model space enough to cover

a large array of DGPs, but the 15 MS-BVARs can still be estimated in a reasonable amount of time.

4.5 Estimation and Inference Methods

The MS-BVAR(2) models are estimated using a multi-step procedure. The procedure to estimate a model

space and infer which of its members is or are most favored by the data involves

1. setting the random walk, smoothness, cointegration, and duration priors on the MS-BVAR(2),

2. constructing the posterior mode of the MS-BVAR(2) model using optimization methods robustifed

for the possibility of multiple peaks in the likelihood and a potentially flat posterior,23

3. equating the posterior mode of the MS-BVAR(2) model with initial conditions of A0, A1, A2, C,

and Γ(1), . . . , Γ(h) of the MS-BVAR(2) to start up a Markov chain-Monte Carlo (MCMC) simulator

that is run to produce 10 millions steps,

4. constructing the posterior of an MS-BVAR(2) by generating 10 million draws from the proposals

created by the MCMC simulator,

5. choosing among the competing MS-BVAR(2) models by calculating posterior odds ratios using

log marginal data densities computed on the posterior distributions of the previous step, and

6. rerunning the MS-BVAR(2) model(s) most favored by the data to obtain the regime probabilities,

%1, . . . , %h, regime-dependent residuals, and regime-dependent FEVDs.24

Estimation and inference rely on the code described in SWZ that was integrated into the unstable

version of Dynare; see Adjemian, Bastani, Juillard, Maih, Mihoubi, Prerndia, Ratto, and Villemot (2012).

The next section engages this code and these procedures to generate estimates of 15 MS-BVAR(2)s and

conduct inference on these models.
23Dynare’s MS-BVAR code employs an optimizer adapted from the csminwel software developed by Chris Sims.

The optimization problem is broken into blocks that iterate back and forth between solving for Θ conditional
on ω and for ω given Θ until a convergence criterion is met.

24When the MS-BVARs were estimated, the Dynare code did not provide a means to restart a model at the posterior
mode. Given the computational costs of generating a complete set of results for each model, we generated MDDs
in a first estimation round only. The most favored model was reestimated, verifying that this model retains its
most favored status, to produce a complete set of results.
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5 Results

5.1 A Fixed Coefficient-Homoskedastic BVAR(2)

This section reports estimates of a fixed coefficient-homoskedastic BVAR(2) on Zt to establish a baseline

against which to judge the MS-BVAR models.25 The estimates are grounded in the restriction Γ(St) =
Γ across all potential regimes. Figure 3 plots IRFs generated from the estimated fixed coefficient-

homoskedastic BVAR(2). Median IRFs are plotted in black and error bands are shaded gray. Table 3

presents FEVDs.

The median IRFs of figure 3 display a priori expected shapes as well as shapes that are not

intuitively appealing. For example, the first row of figure 3 shows that a shock to y produces an

own hump-shaped response decaying fully around four years; raises P permanently; creates a negative

hump-shaped response in ur that also dies out in about four years; permanently increases MI , while

holding its real balances to a proportionate change; yields a hump-shaped response in RS peaking at

two years before returning to steady state within four years; and has little effect onRL but raises rFBS for

about four years. The responses of P and ur to the supply shock are consistent with Keynesian models

in which frictions drive prices up and inhibit the labor market from returning quickly to steady state.

An increase in MI in response to a y shock suggests that the supply of inside money accommodates

(income) demand shifts, as Leeper, Sims, and Zha (1996) find for outside money. Financial markets

react to y shocks by producing more short-term liabilities and long-term private assets relative to

public debt, according to the estimated fixed coefficient-homoskedastic BVAR(2).

A Lucas-Sargent Phillips curve-like relation is depicted in the second row of figure 3. Given a

shock to P , ur falls at impact. This shock raises P for at least 16 years. The reactions of MI and rFBS

to a P shock are of interest because the former is higher at short horizons before returning to steady

state, while the latter rises at longer horizons. Hence, the fixed coefficient-homoskedastic BVAR(2)

estimates that a P shock generates more MI in the medium run, which is transformed into long-term

private assets compared to public debt.

The identified credit supply shock is consistent a priori with new classical theory as articulated

by King and Plosser (1984). With respect to anMI shock, y (ur ) exhibits a small (negative) hump-shaped

25We estimate five additional fixed coefficient-homoskedastic BVAR(2) models. These models include the first
five elements of Zt , adding RL, adding RL and a long-term private interest rate, and replacing rFBS in Zt with
a measure of aggregate financial leverage, the first principal component of rFBS , the long-term private interest
rate, and the measure of aggregate financial leverage. These BVARs yield results that are qualitatively similar
to ones generated by the BVAR estimated on Zt . These results are available on request.
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response peaking at two years, RS and RL are modestly lower in the short run, and P is permanently

higher in the fourth row of figure 3. These reactions to an MI shock suggest long-run inside monetary

neutrality because P rises proportionally.

The fifth row of figure 3 shows that a shock to RS generates a money demand-like response in y

and ur . These variables indicate that there is a contraction in real activity in reaction to a positive RS

shock. The responses of RL and RS to this shock show that the term spread shrinks at short horizons

before returning to its steady state in the long run. In the short run, rFBS also rises given an RS shock.

Hence, the tighter term spread is consistent with smaller risk premia, which suggests that U.S. financial

firms take more risk by holding a larger share of their balance sheets in long-term private assets.

The remaining shocks generate few economically interesting responses, with one exception.

These are the dynamic responses of RL and RS to an rFBS shock in the bottom row of figure 3. The

latter IRF is permanently lower, which, given the short-run response of RS to an rFBS shock, indicates

that a larger term spread is required for U.S. financial firms to hold a larger share of their balance

sheets in long-term private assets relative to public debt.

Nonetheless, the fixed coefficient-homoskedastic BVAR(2) produces two IRFs at odds with con-

ventional economic theory. One is the response of y to a ur shock in the third row of figure 3. This

IRF rises from impact to the longer horizons, which is inconsistent with a dynamic Okun’s Law-like

relation. The other is that the fixed coefficient-homoskedastic BVAR(2) produces the price puzzle in

which a shock to RS generates a permanent increase in P , as depicted in the fifth row of figure 3.

The FEVDs are consistent with prior views of the shocks that are major contributors to aggregate

fluctuations. Shocks to y and ur explain most of the variation in y and ur . Variation in P is tied to

its own shock. The shock to MI is responsible for not more than half of its movements, and the bulk

of the rest is explained by income shocks. Fluctuations in RS and rFBS are driven by own shocks, while

the FEVDs of RL exhibit term structure behavior as its own shock and the shock to RS dominate.

5.2 The Fit of the MS-BVAR(2) Models

The fit of the MS-BVAR models is evaluated using log marginal data densities, which are listed in table

4.26 Table 4 displays the symbol ∗ for the log marginal data densities of models 6, 9, 12, 14, and 15

instead of numerical values. The asterisk indicates that the MCMC simulators of these models yield

26We generate log marginal data densities using the step function option for the density proposal.
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badly approximated log marginal data densities.27 Except for model 14, these models place four SV

regimes in the M block. Model 14 makes the SV regimes of the errors of the MI and RS regressions

common across theM and F blocks.

The log marginal data densities of table 4 possess information to judge the fit of the fixed

coefficient-homoskedastic BVAR and MS-BVARs to the data. The information comes in the form of

odds ratios, which signal that the MS-BVAR(2)s are all preferred by the data to the fixed coefficient-

homoskedastic BVAR(2). Hence, the MS-BVAR models provide evidence that there is regime switching

in the SV of Zt on the long annual 1890–2010 sample.

Among the MS-BVAR(2)s, model 8 achieves the best fit to the data, according to the log marginal

data densities of table 4. This model imposes three distinct MS chains on the SV of the M block and

three more on the SV F block, but these blocks hold the SV regimes of the errors of the MI regression

in common. The implication is that each of the nine conditional transition probabilities defined by the

MS chains on the M and F blocks is associated with a different estimate of the volatility scaling on

the error of theMI regression, Γ̂MI (·). The evidence is that the data have a strong preference for model

8 when compared to the other MS-BVARs predicated on three SV regimes (models 3, 5 and 11), to the

MS-BVARs that rely on two SV regimes (models 1, 4, 7, 10, and 13), or to the single-chain four SV regime

MS-BVAR of model 4. Although model 4 produces the second largest log marginal data density, the

distance from this log marginal data density to the log marginal data density of model 8 gives an odds

ratio strongly in favor of the latter model.28

5.3 Estimates of the MS-BVAR(2) Model 8

Table 5 presents estimates of the transition matrix Q for the M block, which includes MI and the F

block, impact matrix Â0, and regime-dependent diagonals of the SV scaling matrices Γ̂(·) of model 8.

The estimated transition matrix for theM block shows that its regimes 1 and 2 are persistent and that

the probability of moving between these regimes is less than 5 percent. Regime 3 is less persistent,

which implies a nearly 20 percent probability of moving from regime 3 to regime 2 in theM block with

MI . Similar transition dynamics arise for the F block. However, this estimated transition matrix gives

low probabilities of leaving either regimes 1 or 3 given the F block is already in either regime. There

27There are MS-BVAR specification and data combinations that can yield a regime with a transition probability
equal to zero for all dates t. In private communication, Dan Waggoner and Tao Zha taught us not to trust the
reported marginal data density in this degenerate case. This is true for any model we attempted to estimate
with separate MS chains for theM and F blocks and four SV regimes on either block.

28A Bayes factor of 31.19 (= exp(3.44)) translates, at least, into strong evidence for model 8; see Jeffreys (1998).
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is also a 10 percent probability of being in regime 2 and transitioning to either regime 1 or regime 3.

The estimated fixed coefficient impact matrix Â0 is found in the middle of table 5. The estimated

own shock responses for P , ur , MI , RS , RL, and rFBS are larger than the estimates of responses to

other shocks. The only possible exception is that MI exhibits nearly as large a reaction at impact to y

and ur shocks as its own shock.

The bottom panel of table 5 lists the estimated regime dependent diagonals of the SV scaling

matrices Γ̂(·). Note that the SWZ code standardizes the elements of Γ̂(·) to regime 1 of the M block

withMI conditional on regime 1 of the F block, SM,MI = 1|SF = 1. Otherwise, these estimates indicate

that Γ̂(·) on the shock innovations, εt , of the y , P , ur , MI , RS , and RL regressions arise in regime 3,

whether in the M or F blocks. Since the volatility scaling on the shock innovations is Γ−1(·), relative

to the regime combination SM,MI = 1|SF = 1, the loadings on εy,t , εP,t , εur,t , εMI ,t , εRS ,t , and εRL,t

when SM,MI = 3|SF = 3 are larger by factors of 36, 200, 14, 1000, 4, and 21, respectively. The largest

estimated Γ̂FBS(·)s reside in regime 2 of the F block regardless of the regime of the M block. This

Γ̂FBS is about 91 times larger compared to its value of unity when sM,MI = 1|sF = 1. Applying these

scalings to the IRFs of the fixed coefficient-homoskedastic BVAR(2) gives a good approximation to IRFs

produced by the MS-BVAR model 8. That is, the shape of the IRFs of figure 3 is unchanged, but the

height of the IRFs varies roughly with the inverse of the estimates of Γ(St).29

The shock volatilities of MI , Γ̂MI (·)s differ across the nine conditional regimes of the MS-BVAR

of model 8. The estimates of the shock volatilities of MI range from 0.172 (in SM,MI = 2|SF = 1) to

1.466 (for SM,MI = 2|SF = 3) in regimes 1 and 2 of the M block. Regime 3 of the M block holds

the smallest estimates of the shock volatilities of MI . Thus, in this regime, shocks to MI generate the

greatest volatility across the regimes of the F block. This suggests that the long annual 1890–2010

sample favors model 8 (conditional on the priors) because it allows greater variability in the responses

of Zt to the nine conditional shock innovation volatilities εMI ,t Γ̂MI (·)−1.

5.4 Regime Probabilities

The estimated MS-BVAR models produce probabilities of regime j, j = 1, . . . , h, at date t. We plot

probabilities for MS-BVAR model 2, a single MS chain of three SV regimes, in figure 4. Figure 5 presents

probabilities for MS-BVAR model 3, which is a single MS chain of four SV regimes. The MS-BVAR model

8 generates probabilities that are found in figures 6 and 7 for MS chains of M and F blocks, both of

29The ergodic IRFs of the MS-BVAR model 8 are qualitatively and quantitatively similar to those of table 2. These
results are available on request.
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which contain MI .

Figure 4 shows that model 2 is consistent with the hypothesis that crisis and non-crisis regimes

represent different economic outcomes but are drawn from the same probability density. Regime 1 of

model 2 is plotted in the top panel of figure 4. We interpret this regime that runs from 1957 to 1974,

1977 to 2006, and 2009 to 2010, as the era of the modern Fed and the Great Moderation episodes.30

The bottom panel of figure 4 displays regime 3, which contains most of the first half of the sample.

This regime includes the panics of the National Banking Era from 1890 to 1914, the economic boom

of the 1920s, the recovery from the Great Depression, and the inflation episode of the late 1940s that

led to an independent Fed in 1951. A distinguishing feature of the earlier regime 1 and later regime 3

is the stark differences in the design of the U.S. financial system.

The middle panel of figure 4 contains regime 2, which is distinct from regimes 1 and 3 in several

ways. Regime 2 consists of World War I, the Great Depression, World War II, and the 1957–1958, 1973–

1975, and 2007–2009 recessions. The only recessions in regime 1 to match the severity of these are the

1957–1958 and 1981–1982 recessions. Regimes 1 and 3 also contain several armed conflicts in which

the U.S. engaged, but none match the economic and financial impact of the world wars of the 20th

century. However, the key difference between these regimes and regime 2 is that this regime reoccurs

in the early, middle, and late parts of the 1890–2010 sample. This supports the hypothesis that U.S.

financial crisis regimes are events that are repeatedly drawn from the same underlying probability

density from which non-crisis regimes are drawn.

Figure 5 displays the four SV regime probabilities of model 3. The top (bottom) window of

figure 5 presents the date t probability of the odd (even) numbered regimes. Regime 1 covers the late

Martin and Burns chairmanships of the Fed, which are 1959–1968 and 1973–1978, respectively. The

early chairmanships of Martin and Burns, along with those of Volcker, Greenspan, and Bernanke, are

found in regime 2, but it excludes the 2007–2009 Great Recession. Regime 4 contains three seemingly

different regulatory regimes: the National Banking Era from 1890 to 1913, the early Fed of the 1920s,

and the 1935–1954 period, which includes the Great Depression financial market reforms and the

transition to an independent Fed. However, figure 5 shows that the value added of model 3 stems from

its regime 3 grouping together the recessions of 1913 to 1921, the Great Depression of 1930–1933,

the 1957–1958 recession, and the 2007–2009 Great Recession. Since regime 3 repeats throughout the

1890–2010 sample, model 3 is consistent with the hypothesis that U.S. financial and economic crises

30Nason and Smith (2008) date a moderation in output growth, consumption growth, and inflation to 1946 by
comparing the 1946–1983 period to the 1915–1945 period.
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have been generated by the same underlying economic primitives during the last 120 years.

Model 8 produces regime probability estimates that refine the narrative of U.S. crisis and non-

crisis business cycle fluctuations. These probability estimates are displayed in figures 6 and 7. Figure

6 depicts the regime probabilities associated with the M block with MI , while figure 7 does the same

for the regime probabilities of the F block.

The U.S. crisis and non-crisis narrative is altered by model 8 in several ways. First, model 8, our

priors, and the data place the world wars and the Great Depression in regime 1 of theM block when it

includesMI . The top panel of figure 6 plots the regime 1 probabilities. Given these regime probabilities

approach 100 percent from 1915 to 1921, 1930 to 1934, and 1941 to 1946, model 8 estimates that

economic crises in the M block, when it includes MI , coincide with realizations of ∆yt , ∆ lnPt , and

∆ lnMI,t (urt) that are more than 2 standard deviations below (above) the associated sample means.31

Thus, model 8 ties economic crises to regime 1 because it yields estimates of Γy(·), ΓP(·), Γur (·), and

ΓMI (·) that are large relative to the estimates associated with regimes 2 and 3. Next, the middle panel

of figure 7 displays the crises regime probabilities generated by model 8, the priors, and the data for

the F block. This is regime 2 of the F block and contains World War I, World War II, and the Vietnam

and Iraq wars. Hence, model 8 generates support for the hypothesis that the events defining U.S. crisis

and non-crisis regimes recur throughout the 1890–2010 sample.

The recurring regime probabilities of the M block that also includes MI appear in the middle

panel of figure 6. This is regime 2 of theM block containingMI . These probabilities show that regime 2

of theM block withMI covers the National Banking Era, the economic boom of the 1920s, the recovery

from the Great Depression, the inflation episode of the late 1940s, the first half of Chairman Martin’s

stewardship of the Fed, the Great Inflation of the 1970s, the stop-go monetary policy of the 1970s, the

Volcker disinflation, and subsequent recovery of the early 1980s, which cover more than 50 percent

of the sample. Thus, model 8 produces evidence that regime 2 of the M block including MI , which

contains neither the Great Depression nor the Great Recession, is recurring.

There are several other notable refinements of the regime probabilities produced by model 8.

Among these are that the Great Depression is found in regime 3 of the F block. This regime also

31The means (standard deviations) of ∆ lnyt , ∆ lnPt , urt , and ∆ lnMI,t are 1.77 (5.08), 2.63 (4.43), 6.29 (3.35), and
6.14 percent (6.00). For 1930, 1931, 1932, 1933, 1934, 2008, 2009, and 2010, the realizations of ∆ lnyt are, in

percent,
[
−10.08, −7.48, −14.65, −1.89, 9.70, −1.26, −4.41, 2.14

]
. The same observations of ∆ lnPt , urt , and∆ lnMI,t are

[
−3.75, −10.95, −12.42, −2.76, 5.44, 2.18, 1.06, 1.15

]
,
[
8.94, 15.65, 22.89, 20.90, 16.20, 5.80,

9.30, 9.60
]
, and

[
−2.16, −9.55, −21.44, −15.75, 6.96, 5.43, −2.53, −0.66

]
, also in percent. These statistics and

observations suggest that real and nominal macroeconomic volatility was several orders of magnitude greater
during the Great Depression compared to the Great Recession.
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includes the National Banking Era, the interwar period, the transition to an independent Fed, and the

Martin chairmanship of the Fed. Note that model 8 gives most of the latter part of the 1890–2010

sample to regime 3 of theM block together with MI and regime 1 of the F block. However, the latter

regime excludes the 2003-2009 period, which contains the Iraq war and a financial boom-bust cycle,

while the Great Inflation of the 1970s and the Volcker disinflation are absent from the former regime.

The regime probabilities of figures 4 to 7 help explain the preference of the data for model 8.

Although the data appreciate the extra SV regime of model 3 compared to model 2, which is used to

separate economic crises from financial and other crises, the MS-BVAR of model 8 is a better fit for the

data (given the priors). The reason is that model 8 parameterizes distinct M and F block SV regimes

but includesMI in both regimes. This makes the 3M block withMI regimes and the 3 F block regimes

inputs into the Γ̂MI (·) that scale the SV of εMI ,t . We interpret the preference of the data for model 8

as evidence that identifying nine credit supply shock SV regimes is useful for estimating separate and

recurring crisis from non-crisis regimes.

5.5 Regime-Dependent Residual Estimates

Figure 8 contains estimates of the scaled residuals, ε̂′t Γ̂−1(·), generated by the MS-BVAR model 8. Scaled

residuals of the M block, ε̂y,t Γ̂−1
y (·), ε̂P,t Γ̂−1

P (·), and ε̂ur,t Γ̂−1
ur (·), appear in the top window of figure 8.

Spread across the middle and bottom windows of figure 8 are residuals of the F block, ε̂MI ,t Γ̂−1
MI (·),

ε̂RS ,t Γ̂−1
RS (·), ε̂RL,t Γ̂−1

RL (·), and ε̂rFBS ,t Γ̂−1
rFBS (·).

The top window of figure 8 shows scaled residuals of the M block that display two bursts of

volatility. The first volatility episode in theM block-scaled residuals begins in 1915 and ends by 1923.

The onset of the Great Depression in 1930 sees the second volatility burst in ε̂y,t Γ̂−1
y (·), ε̂P,t Γ̂−1

P (·), and

ε̂ur,t Γ̂−1
ur (·) that ends only in 1951 at about the same time the Treasury-Fed accord was signed. These

volatility episodes coincide with the SV probabilities of regime 1 and (part of) regime 2 of theM block

that appear in the top two windows of figure 6.

The volatility of ε̂MI ,t Γ̂−1
RS (·), ε̂RS ,t Γ̂−1

RL (·), and ε̂RL,t Γ̂−1
MI (·), as appears in the middle window of figure

8, lines up with the estimated SV regime probabilities of figure 7. For example, the scaled residual of

MI is more volatile in the first half of the sample, from 1891 to 1947, than in the second. This volatility

history occurs during the SV regime probabilities in the bottom windows of figure 7 that include the

National Banking Era, World War I, the interwar period including the Great Depression, and World War

II. The scaled residuals of RS and RL have greater volatility starting in the 1970s. These volatility
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episodes are consistent with the F block SV regime probabilities of the top window of figure 7. That

is, ε̂RS ,t Γ̂−1
RS (·) and ε̂RL,t Γ̂−1

RL (·) exhibit heightened volatility during the era of financial deregulation and

innovation from the 1970s to the end of the sample.

The residuals of the scaled shock innovation of rFBS,t , ε̂rFBS ,t Γ̂−1
rFBS (·), is presented in the bottom

panel of figure 8 because of its large volatility burst between 2007 and 2009. However, figure 8 also

displays bouts of volatility in ε̂rFBS ,t Γ̂−1
rFBS (·) during World War I, World War II, and from 1998 to 2005.

Although these are episodes with much less volatility than is observed for the scaled shock innovation

of rFBS,t during the financial crisis of 2007–2009, these events line up with the war and financial crisis

F block SV regime probabilities in the middle window of figure 7.

5.6 Regime-Dependent FEVDs

We employ model 8 to generate regime-dependent FEVDs. The FEVDs appear in tables 6 to 10 at

horizons of 1, 2, 4, 8, and 20 years. Tables 6, 7, 8, 9, and 10 present FEVDs of the joint regime

SM,MI = 1|SF = 2, SM,MI = 2|SF = 3, SM,MI = 3|SF = 1, SM,MI = 3|SF = 2, and SM,MI = 3|SF = 3,

respectively. The joint regime SM,MI = 1|SF = 2 consists of the World War I and World War II years,

which run from 1915 to 1920 and from 1941 to 1944. Most of the first half of the sample is found

in the joint regime SM,MI = 2|SF = 3, which covers the years 1891–1914, 1922–1929, 1935–1940, and

1947–1956. The joint regime SM,MI = 3|SF = 1 contains the years 1969–1973, 1982–2003, 2009, and

2010, which is most of the last third of the sample. The 2004–2008 period, which is the joint regime

SM,MI = 3|SF = 2, covers the recent financial crisis as well as the years before it. The latter part of the

Martin Fed is represented by the joint regime SM,MI = 3|SF = 3 because it runs from 1959 to 1966.

Table 6 contains the FEVDs of the joint regime SM,MI = 1|SF = 2. These FEVDs, which differ from

the FEVDs found in table 3 for the fixed coefficient-homoskedastic BVAR, show that own shocks explain

movements in y , P ,MI , and RS from 1- to 4-year horizons. At the same horizons, fluctuations in ur are

split between own and y shocks. About 30 percent of the movements in MI are explained by the rFBS

shock at these horizons, while at longer horizons its own shock and the RS shock contribute between

35 to 40 percent of this variation. This contrasts with the FEVDs of y , P , and ur that are dominated

by the rFBS shock at longer horizons. Own shocks are responsible for most of the movements in RS

and rFBS with one exception. More than 60 percent of the variation in RS is attributed to the rFBS

shock at the 20-year horizon, while at the 1-year horizon the RS shock drives almost 60 percent of the

movements in RL. Its FEVD is a mix of its own shock and the RS shock from 2- to 8-year horizons, but
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the rFBS shock explains 60 percent of the variation at the longest horizon. Thus, table 6 gives evidence

that the rFBS shock explains a third or more of fluctuations in Zt during the regime that covers the

major conflicts of the 20th century.

The FEVDs of the joint regime SM,MI = 2 and SF = 3 are shown in table 7. This table contains

FEVDs that are similar to the FEVDs found in table 3, which is not surprising given this regime covers

much of the first half of the sample. The only qualitative differences are that for the joint regime that

covers most of the first half of the sample (i) about 30 percent of the variation in MI is attributed to

the ur shock at the longer horizons and another 25 percent to the RS shock at the 20-year horizon,

and (ii) most of the fluctuations in RL are contributed by its own shock.

The joint regime SM,MI = 3|SF = 1 yields FEVDs that drive fluctuations in RS and rFBS with

shocks to y and MI . These FEVDs appear in table 8 and reveal that the y shock explains from 30 to

50 percent of the variation in RS and rFBS , while the MI shock is responsible for about 20 percent of

these movements on average. For movements in RL, its own shock and the MI shock explain 20 to 40

percent of the variation at the 1- to 2-year horizons, which is more than the 10 to 30 percent seen at

the 3- to 8-year horizons. At longer horizons, shocks to y , P , and MI contribute more than half of the

fluctuations in RL. Thus, table 8 indicates that, during the Great Moderation and a period of financial

innovation and deregulation,M block and MI shocks contributed to fluctuations in RS , RL, and rFBS .

The impact ofM block variables on F block variables is weaker according to the FEVDs of table

9. This table, which contains FEVDs for the joint regime SM,MI = 3|SF = 2 of the financial boom-bust of

2004–2008, drives movements in RS with y and P shocks at lower horizons. At longer horizons, own

shock matters more, but the rFBS shock contributes almost half of the variation in RS at the 20-year

horizon. Fluctuations in RL are tied to P , RS , and rFBS shocks from 2- to 8- year horizons, while at the

longest horizon the latter shock is responsible for 60 percent of this variation. Along with the FEVDs

of table 8, these results support the view that M block variables can explain movements in F block

variables but not in all regimes.32

Inside money dominates the FEVDs of Zt created by the MS-BVAR model 8 for the joint regime

SM,MI = 3|SF = 3, according to table 10. This table shows that fluctuations in y , P , u, RS , RL, and rFBS

are dominated by shocks to MI in the regime SM,MI = 3|SF = 3. These FEVDs are tied to an estimate

of 0.001 of the factor loading scaling the SV of the MI regression innovation, εMI ,t . We interpret this

as evidence that a monetary variable dominates U.S. aggregate fluctuations from 1959 to 1966, which

coincides with the latter part of William McChesney Martin’s chairmanship of the Fed.

32Otherwise, the FEVDs of tables 8 and 9 resemble the FEVDs of table 3.
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6 Conclusion

This paper studies the role of credit supply and demand shocks in U.S. financial crises and non-crisis

business cycle fluctuations on an annual sample that begins in 1890 and ends in 2010. We identify credit

supply and demand shocks in MS-BVAR models with inside money and its intertemporal price. Changes

in financial and business cycle regimes are limited to stochastic volatility in the regression errors of

the MS-BVARs. The MS-BVARs are employed to evaluate the hypothesis that financial and business

cycle regimes recur throughout the long annual U.S. sample. The hypothesis is consistent with crisis

and non-crisis regimes being generated by the same preferences, technologies, and market structure.

However, different data-generating processes are implied by these economic primitives because the

scaling of shock innovations differs across crisis and non-crisis regimes.

We estimate MS-BVARs that yield evidence backing the hypothesis that U.S. financial crisis regimes

recur throughout the 1890–2010 sample. For example, the best-fitting MS-BVAR produces a regime for

macro aggregates that includes episodes as disparate as the boom of the 1920s, the Great Inflation of

the 1970s, and the Volcker disinflation. The world wars of the 20th century and the Vietnam and Iraq

wars are placed within a financial crisis regime by this MS-BVAR.

The same MS-BVAR model contributes regime-dependent residuals and FEVDs revealing that the

identified credit supply and demand shocks are economically meaningful. The identified shock inno-

vations exhibit bursts of volatility that coincide with important episodes in U.S. financial and economic

history. The best-fitting MS-BVAR is also responsible for FEVDs that are similar to ones produced by

a fixed coefficient-homoskedastic BVAR in one regime, but in other regimes the FEVDs reveal the im-

portance of inside money shocks and shocks to the composition of the aggregate balance sheet of U.S.

financial firms for explaining aggregate fluctuations. Thus, the FEVDs show that the SV regimes of MS-

BVAR model 8 reveal economically meaningful aggregate fluctuations in regimes that are not possible

in the fixed-coefficient-homoskesdatic BVAR.

This paper reports that the estimated MS-BVARs attribute central roles to inside money and

stochastic volatility in explaining aggregate fluctuations. When inside money matters, interest rate

rules may not serve as useful guides to monetary and macroprudential policies. However, our results

depend on stochastic volatility being the lone source of Markov-switching in the BVARs. Although this

class of models is a useful starting point, estimating BVARs with intercept and slope coefficient regime

switching is potentially important. Given estimates of these BVARs, it is possible to ask whether it

is “good luck–bad luck” or private and public policy decisions that drive an economy out of a non-

27



crisis regime and into a crisis. We leave these questions for future research, but for researchers and

policymakers these issues are likely to become more important rather than less.
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Data Appendix

Real GDP, Implicit GDP Deflator, and Population: Johnston and Williamson (2011) provide annual
observations on U.S. per capita real GDP, the implicit GDP price deflator, and population from 1790 to
2010 at http://www.measuringworth.org/usgdp/. We extract these time series, but only for our sample
of 1890 to 2010.

Unemployment Rate: We obtain annual unemployment rate data from Carter, Gartner, Haines, Olm-
sted, Sutch, and Wright (2006) and from the FRED database maintained by the Federal Reserve Bank of
St. Louis. The former source is the Historical Statistics of the United States: Millennial Edition, which is
available online at http://www.cambridge.org/us/americanhistory/hsus/default.htm and the latter at
http://research.stlouisfed.org/fred2/. Its tables Ba475–476 contain annual unemployment rate series
from 1890 to 1990; see also Weir (1992, pp., 341–343). We select the unemployment rate that equals
the unemployed as a percentage of the civilian labor force. The post-1990 data are the FRED series
UNRATE, which we temporally aggregate from monthly to annual observations. These two series are
spliced together to produce an unemployment rate series from 1890 to 2010.

M2: Balke and Gordon (1986) list quarterly aggregate M2 data that begin in 1890 and end in 1958.
We temporally aggregate these data to calculate an annual average monetary aggregate. The Board
of Governors of the Federal Reserve System produces monthly M2 numbers from 1959 to 2010, from
which we calculate annual averages. Splicing the subsamples at 1958–1959 generates an 1896–2010
sample of M2.

Monetary Base: A monetary base series is found in Balke and Gordon (1986) from 1875Q1 to 1922Q4.
The Federal Reserve Bank of St. Louis provides an adjusted monetary base series that starts in 1918M01;
see http://research.stlouisfed.org/fred2/series/BASE?cid=124. We extract observations from 1923M01
to 2010M12. These data are temporally aggregated and spliced together at 1923 to produce an annual
monetary base series for the 1890–2010 sample.

Inside Money: We subtract the monetary base from M2 and divide by the population to obtain our mea-
sure of per capita inside money. We consider an increase in M2 that is distinct from the monetary base
as indicating that financial firms are expanding their short-term liabilities to support the acquisition
of private assets.

Short-term Interest Rate: This is a 1-year annualized interest rate on short-term assets. Since the notion
of a (near) riskless short-term asset has changed as U.S. financial markets have evolved, a continuous
1-year interest rate series representing the cost to financial market participants of obtaining another
dollar of funds does not exist from 1890 to 2010. We splice together several existing times series to
create one. From 1890 to 1917, the time series is the rate on stock exchange time loans with a maturity
of 90 days. This short-term loan market was often the source of funds for banks seeking to support
their balance sheets at the margin. We use two observations of the prime bankers’ acceptance rate for
1918 and 1919. These data are obtained from the Board of Governors of the Federal Reserve System
(1976a, Section 12, pp. 448–449); see http://fraser.stlouisfed.org/publication/?pid=38. The interest
rate on Treasury debt with a maturity of 3- to 6-months augments these data from 1920 through 1933;
Board of Governors of the Federal Reserve System (1976a, p. 460). Subsequently, we convert the
3-month Treasury bill rate (TB3MS in the FRED database) from monthly to an annual data series by
temporal averaging. Listing these observations sequentially gives a 1-year annualized interest rate on
short-term assets from 1890 to 2010.

Long-term Interest Rate: The long-term interest rate is constructed by Shiller (2005). Shiller cites
Homer and Sylla (2005) as his source for the long-term interest rate from 1871 to 1952. These rates are
yields on New England municipal bonds from 1890 to 1900 (p. 284, table 38), the average of high-grade
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municipal bonds from 1901 to 1920 (p. 342, table 46) and the yield average of long-term government
bonds from 1921 to 1952 (p. 351 and p. 375, tables 48 and 51). After 1952, Shiller sets this interest rate
equal to the yield on the 10-year U.S. Treasury bond. Our long-term interest rate consists of the 1890–
2010 observations that Shiller provides; see http://www.econ.yale.edu/∼shiller/data/chapt26.xls. We
also need a long-term interest rate on private assets. The need is satisfied by the long-term consistent
interest rate of Officer (2011).

Private and Public Asset Holdings of Financial Firms: The 1890–1895 observations are from Carter,
Gartner, Haines, Olmsted, Sutch, and Wright (2006), Historical Statistics of the United States, Millenium
Edition. For state bank data, we use series Cj150 for total assets, series Cj151 for loans and discounts,
series Cj152 for investments in government (and other securities), Cj152 for cash and cash items, and
series Cj157 for state bank capital. Data on national banks are obtained from series Cj204–Cj207, and
Cj211 for total assets, loans and discounts, investments in government (and other securities), cash
and cash items, and national bank capital, respectively. From All Bank Statistics, Board of Governors
of the Federal Reserve System (1976b), we take the data on the private and public asset holdings of
all commercial banks and thrifts from 1896 to 1955. These data separate out government securities
from the aggregate securities holdings of banks. We use observations from 1896 to 1917 to estimate
a model that predicts the proportion of “other” securities that were mixed with government securities
and backcast to generate synthetic observations from 1890 to 1895 using the model. The predicted
proportion of securities other than government are 0.1624, 0.1977, 0.2322, 0.2649, 0.2967, and 0.327
for these years. We also accumulated the Federal Deposit Insurance Corporation (FDIC) figures on the
ownership of these assets for 1934–2010 for all member banks, which did not include savings banks
and thrifts in the aggregate statistics until 1984. The Savings and Loan Sourcebook, United States
League of Savings Associations (1957–1978), and Savings and Loan Fact Book, United States Savings
and Loan League (1979–1984), are the sources of balance sheet data for savings and loan institutions
from 1956 through 1983. Compustat provides investment bank asset holdings starting in 1959. These
data are aggregated across the universe of investment banks in the Compustat files and added to the
private and public debt holdings of commercial banks, savings banks, thrifts, and investment banks.

Financial Balance Sheet Composition Ratio of Private to Public Asset Holdings of Financial Firms: We
subtract the estimated government securities and cash holdings of U.S. financial firms from estimates of
the private assets on their aggregate balance sheet to arrive at the financial balance sheet composition
ratio.

Leverage Ratio of the Assets of Financial Firms to Their Capital: The estimate of total private asset
holdings of U.S. financial firms is divided by the estimated capital of those firms.
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Table 1: NBER Business Cycle Dates, 1890–2010

Length of an NBER Recession in Months

Median = 13, Mean = 14.8, STD = 7.7

Reference Dates Duration in Months

Peak Trough Contraction Expansion

1890M07 1891M05 10 27
1893M01 1894M06 17 20
1895M12 1897M06 18 18
1899M06 1900M12 18 24
1902M09 1904M08 23 21
1907M05 1908M06 13 33
1910M01 1912M01 24 19
1913M01 1914M12 23 12
1918M08 1919M03 7 44
1920M01 1921M07 18 10
1923M05 1924M07 14 22
1926M10 1927M11 13 27
1929M08 1933M03 43 21
1937M05 1938M06 13 50
1945M02 1945M10 8 80
1948M11 1949M10 11 37
1953M07 1954M05 10 45
1957M08 1958M04 8 39
1960M04 1961M02 10 24
1969M12 1970M11 11 106
1973M11 1975M03 16 36
1980M01 1980M07 6 58
1981M07 1982M11 16 12
1990M07 1991M03 8 92
2001M03 2001M11 8 120
2007M12 2009M06 18 73

The NBER business cycle dates are found at http://www.nber.org/cycles/cyclesmain.html.
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Table 2: Space of MS-BVAR(2) Models

Dimension of MS Chains and Regimes per Chain

on the Stochastic Volatility Scaling Matrix Γ(·)
Model

Number Parameterizations of Γ
1

{Γ(1
) Γ(2

)}
2

{Γ(1
) Γ(2

) Γ(3
)}

3
{Γ(1

) Γ(2
) Γ(3

) Γ(4
)}

4
{ΓM(1

) ΓM(2
) ΓF(1

) ΓF(2
) ΓF(3

)}
5

{ΓM(1
) ΓM(2

) ΓM(3
) ΓF(1

) ΓF(2
) ΓF(3

)}
6

{ΓM(1
)
. . . ΓM(4

) ΓF(1
) ΓF(2

) ΓF(3
)}

7
{ΓM(MI ,1) ΓM(MI ,2) ΓF(1

) ΓF(2
) ΓF(3

)}
8

{ΓM(MI ,1) . . . ΓM(MI ,3) ΓF(1
) ΓF(2

) ΓF(3
)}

9
{ΓM(MI ,1) . . . ΓM(MI ,4) ΓF(1

) ΓF(2
) ΓF(3

)}
10

{ΓM(RS ,1) ΓM(RS ,2) ΓF(1
) ΓF(2

) ΓF(3
)}

11
{ΓM(RS ,1) . . . ΓM(RS ,3) ΓF(1

) ΓF(2
) ΓF(3

)}
12

{ΓM(RS ,1) . . . ΓM(RS ,4) ΓF(1
) ΓF(2

) ΓF(3
)}

13
{ΓM(MI , RS ,1) ΓM(MI , RS ,2) ΓF(1

) ΓF(2
) ΓF(3

)}
14

{ΓM(MI , RS ,1) . . . ΓM(MI , RS ,3) ΓF(1
) ΓF(2

) ΓF(3
)}

15
{ΓM(MI , RS ,1) . . . ΓM(MI , RS ,4) ΓF(1

) ΓF(2
) ΓF(3

)}
When regime j is common to the M and F blocks, the SV scaling matrix is denoted Γ(j).
Otherwise, the number of regimes in the M and F blocks of the SV scaling matrices are jM
and jF , as in ΓM(jM) and ΓF(jF). The notation ΓM(x, j) places x =MI , RS , or both into theM
block of the SV scaling matrix.
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Table 3: FEVDs of Fixed Coefficient-Homoskedastic BVAR(2)

Shock
Year y P ur MI RS RL rFBS

y 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.97 0.00 0.00 0.01 0.02 0.00 0.00

4 0.89 0.00 0.02 0.03 0.05 0.00 0.00

8 0.70 0.02 0.15 0.03 0.06 0.01 0.03

20 0.41 0.08 0.33 0.02 0.06 0.03 0.07

P 1 0.05 0.94 0.00 0.00 0.00 0.00 0.00

2 0.09 0.90 0.00 0.01 0.00 0.00 0.00

4 0.13 0.83 0.00 0.03 0.00 0.00 0.00

8 0.14 0.78 0.00 0.05 0.03 0.00 0.00

20 0.16 0.59 0.01 0.08 0.14 0.01 0.01

ur 1 0.61 0.12 0.28 0.00 0.00 0.00 0.00

2 0.62 0.11 0.26 0.01 0.00 0.00 0.01

4 0.60 0.10 0.23 0.03 0.03 0.00 0.01

8 0.58 0.09 0.22 0.03 0.06 0.00 0.01

20 0.57 0.09 0.21 0.03 0.06 0.00 0.02

MI 1 0.41 0.09 0.00 0.49 0.00 0.00 0.00

2 0.45 0.11 0.00 0.43 0.00 0.00 0.00

4 0.45 0.12 0.00 0.42 0.00 0.00 0.00

8 0.42 0.11 0.01 0.45 0.01 0.00 0.00

20 0.37 0.06 0.03 0.46 0.05 0.00 0.02

RS 1 0.05 0.04 0.02 0.08 0.81 0.00 0.00

2 0.09 0.05 0.02 0.06 0.79 0.00 0.00

4 0.13 0.06 0.02 0.04 0.74 0.00 0.00

8 0.13 0.07 0.02 0.03 0.73 0.01 0.02

20 0.10 0.06 0.02 0.03 0.69 0.01 0.10

RL 1 0.00 0.01 0.01 0.02 0.20 0.76 0.00

2 0.01 0.04 0.00 0.04 0.45 0.46 0.00

4 0.02 0.06 0.00 0.03 0.60 0.28 0.02

8 0.03 0.06 0.00 0.02 0.67 0.17 0.04

20 0.02 0.04 0.00 0.02 0.65 0.11 0.14

rFBS 1 0.02 0.00 0.00 0.00 0.11 0.01 0.84

2 0.03 0.00 0.00 0.00 0.13 0.00 0.82

4 0.06 0.00 0.01 0.00 0.10 0.01 0.81

8 0.09 0.03 0.01 0.00 0.08 0.02 0.77

20 0.09 0.13 0.01 0.00 0.10 0.02 0.63
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Table 4: Measures of Fit of Competing MS-BVAR(2) Models

ln Marginal Data Densities

Fixed Coefficient-Homoskedastic BVAR(2): −1713.60

Number of

Stochastic Volatility Regimes

2 3 4

Model Number 1 2 3
A Single Markov Switching Chain −1589.94 −1549.55 −1492.41

Two Markov Switching Chains
3 Regimes on F : MI , RS , RL, rFBS,t

Model Number 4 5 6
Regimes onM: y , P , ur −1520.64 −1502.34 ∗

Model Number 7 8 9
Regimes on MI andM −1505.78 −1488.97 ∗

Model Number 10 11 12
Regimes on RS,t andM −1518.65 −1499.24 ∗

Model Number 13 14 15
Regimes on MI,t, RS,t, andM −1506.56 ∗ ∗

Markov-switching occurs only on forecast innovation shock volatilities (SVs). The sample period
is 1890 to 2010, T = 121. The ln marginal data densities are computed using procedures
described in Sims, Waggoner, and Zha (2008) and grounded in 10 million MCMC steps and 10
million draws from the posterior of the relevant MS-BVAR(2) model. The symbol ∗ indicates
convergence problems for the MCMC simulator of a MS-BVAR(2) model that shows up as a
poorly approximated ln marginal data density.
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Table 5: Estimates of MS-BVAR(2) Model 8

First-Order Markov Transition Matrices

Q̂ : M Block and MI Q̂ : F Block

0.975 0.046 0.000 0.956 0.102 0.000

0.025 0.908 0.192 0.044 0.797 0.027

0.000 0.046 0.808 0.000 0.102 0.973

Impact Matrix Â0

y P ur MI RS RL rFBS

0.625 0.203 0.675 −0.590 0.110 0.087 −0.218

0.000 −1.579 0.327 −0.196 0.120 0.039 −0.088

0.000 0.000 2.320 −0.752 −0.147 0.178 −0.225

0.000 0.000 0.000 0.711 −0.152 −0.059 0.062

0.000 0.000 0.000 0.000 −1.406 0.683 −0.426

0.000 0.000 0.000 0.000 0.000 −4.201 −0.552

0.000 0.000 0.000 0.000 0.000 0.000 6.932

Diagonals of SV Matrices Γ̂(St)
y P ur MI RS RL rFBS

sM,MI = 1 | sF = 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

sM,MI = 1 | sF = 2 1.000 1.000 1.000 0.536 0.335 1.872 0.011

sM,MI = 1 | sF = 3 1.000 1.000 1.000 0.780 0.266 0.048 0.323

sM,MI = 2 | sF = 1 0.167 0.074 0.266 0.172 1.000 1.000 1.000

sM,MI = 2 | sF = 2 0.167 0.074 0.266 0.685 0.335 1.872 0.011

sM,MI = 2 | sF = 3 0.167 0.074 0.266 1.466 0.266 0.048 0.323

sM,MI = 3 | sF = 1 0.028 0.005 0.071 0.027 1.000 1.000 1.000

sM,MI = 3 | sF = 2 0.028 0.005 0.071 0.010 0.335 1.872 0.011

sM,MI = 3 | sF = 3 0.028 0.005 0.071 0.001 0.266 0.048 0.323
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Table 6: FEVDs of Regime SM,MI = 1 | SF = 2 of MS-BVAR(2) Model 8

Shock
Year y P ur MI RS RL rFBS

y 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.70 0.01 0.01 0.03 0.06 0.00 0.20

4 0.54 0.02 0.06 0.07 0.12 0.00 0.19

8 0.20 0.02 0.12 0.04 0.05 0.00 0.58

20 0.03 0.00 0.06 0.01 0.01 0.00 0.88

P 1 0.10 0.90 0.00 0.00 0.00 0.00 0.00

2 0.11 0.82 0.00 0.01 0.06 0.00 0.00

4 0.16 0.72 0.00 0.05 0.06 0.00 0.00

8 0.20 0.58 0.00 0.12 0.05 0.00 0.05

20 0.05 0.13 0.00 0.05 0.05 0.00 0.71

ur 1 0.56 0.02 0.42 0.00 0.00 0.00 0.00

2 0.34 0.01 0.23 0.01 0.00 0.00 0.41

4 0.21 0.00 0.13 0.03 0.07 0.00 0.56

8 0.17 0.01 0.10 0.03 0.14 0.00 0.55

20 0.07 0.00 0.04 0.01 0.07 0.00 0.80

MI 1 0.25 0.00 0.06 0.69 0.00 0.00 0.00

2 0.16 0.00 0.07 0.57 0.00 0.00 0.20

4 0.10 0.00 0.09 0.52 0.00 0.00 0.28

8 0.07 0.00 0.13 0.49 0.10 0.00 0.21

20 0.04 0.00 0.14 0.39 0.36 0.00 0.08

RS 1 0.01 0.00 0.01 0.02 0.97 0.00 0.00

2 0.01 0.00 0.00 0.01 0.96 0.00 0.00

4 0.02 0.00 0.00 0.01 0.95 0.00 0.01

8 0.02 0.00 0.00 0.01 0.87 0.00 0.09

20 0.01 0.00 0.00 0.00 0.35 0.00 0.63

RL 1 0.00 0.00 0.00 0.03 0.59 0.37 0.00

2 0.00 0.00 0.00 0.02 0.51 0.13 0.33

4 0.01 0.00 0.00 0.01 0.50 0.07 0.40

8 0.01 0.00 0.00 0.01 0.48 0.04 0.46

20 0.00 0.00 0.00 0.00 0.24 0.01 0.74

rFBS 1 0.00 0.00 0.00 0.00 0.00 0.00 0.99

2 0.00 0.00 0.00 0.00 0.00 0.00 1.00

4 0.00 0.00 0.00 0.00 0.00 0.00 1.00

8 0.00 0.00 0.00 0.00 0.00 0.00 1.00

20 0.00 0.00 0.00 0.00 0.00 0.00 1.00
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Table 7: FEVDs of Regime SM,MI = 2 | SF = 3 of MS-BVAR(2) Model 8

Shock
Year y P ur MI RS RL rFBS

y 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.95 0.02 0.01 0.01 0.02 0.00 0.00

4 0.82 0.07 0.06 0.02 0.03 0.00 0.00

8 0.58 0.09 0.22 0.02 0.03 0.06 0.01

20 0.22 0.08 0.34 0.01 0.02 0.29 0.04

P 1 0.05 0.95 0.00 0.00 0.00 0.00 0.00

2 0.06 0.93 0.00 0.00 0.01 0.00 0.00

4 0.10 0.89 0.00 0.01 0.01 0.00 0.00

8 0.13 0.83 0.00 0.02 0.01 0.01 0.00

20 0.14 0.76 0.01 0.03 0.03 0.02 0.01

ur 1 0.64 0.05 0.31 0.00 0.00 0.00 0.00

2 0.67 0.02 0.29 0.00 0.00 0.01 0.00

4 0.64 0.03 0.25 0.01 0.04 0.01 0.01

8 0.59 0.04 0.23 0.02 0.09 0.01 0.01

20 0.56 0.04 0.21 0.02 0.10 0.03 0.03

MI 1 0.59 0.01 0.08 0.32 0.00 0.00 0.00

2 0.48 0.01 0.13 0.35 0.00 0.03 0.00

4 0.36 0.01 0.21 0.39 0.01 0.03 0.01

8 0.24 0.01 0.29 0.36 0.08 0.01 0.00

20 0.13 0.01 0.31 0.27 0.24 0.04 0.00

RS 1 0.03 0.02 0.02 0.02 0.92 0.00 0.00

2 0.06 0.02 0.01 0.01 0.89 0.00 0.00

4 0.09 0.01 0.01 0.01 0.86 0.03 0.00

8 0.10 0.01 0.01 0.01 0.81 0.06 0.00

20 0.07 0.01 0.01 0.01 0.74 0.13 0.04

RL 1 0.00 0.00 0.00 0.00 0.04 0.95 0.00

2 0.00 0.00 0.00 0.00 0.09 0.89 0.00

4 0.01 0.01 0.00 0.00 0.15 0.83 0.00

8 0.02 0.01 0.00 0.00 0.22 0.75 0.01

20 0.02 0.01 0.00 0.00 0.32 0.63 0.03

rFBS 1 0.09 0.01 0.00 0.01 0.12 0.06 0.72

2 0.14 0.01 0.00 0.00 0.06 0.03 0.76

4 0.18 0.01 0.00 0.01 0.02 0.03 0.74

8 0.20 0.01 0.00 0.02 0.02 0.05 0.70

20 0.21 0.03 0.00 0.02 0.02 0.06 0.66
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Table 8: FEVDs of Regime SM,MI = 3 | SF = 1 of MS-BVAR(2) Model 8

Shock
Year y P ur MI RS RL rFBS

y 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.92 0.04 0.00 0.03 0.00 0.00 0.00

4 0.74 0.15 0.03 0.08 0.00 0.00 0.00

8 0.55 0.22 0.13 0.10 0.00 0.00 0.00

20 0.31 0.29 0.32 0.07 0.00 0.00 0.00

P 1 0.02 0.98 0.00 0.00 0.00 0.00 0.00

2 0.03 0.97 0.00 0.00 0.00 0.00 0.00

4 0.04 0.95 0.00 0.01 0.00 0.00 0.00

8 0.06 0.91 0.00 0.03 0.00 0.00 0.00

20 0.07 0.87 0.00 0.06 0.00 0.00 0.00

ur 1 0.67 0.12 0.21 0.00 0.00 0.00 0.00

2 0.72 0.07 0.20 0.02 0.00 0.00 0.00

4 0.67 0.08 0.16 0.08 0.00 0.00 0.00

8 0.62 0.11 0.15 0.11 0.00 0.00 0.00

20 0.62 0.11 0.15 0.11 0.01 0.00 0.00

MI 1 0.28 0.01 0.02 0.68 0.00 0.00 0.00

2 0.22 0.01 0.04 0.73 0.00 0.00 0.00

4 0.16 0.01 0.06 0.77 0.00 0.00 0.00

8 0.12 0.01 0.09 0.78 0.00 0.00 0.00

20 0.09 0.01 0.13 0.77 0.01 0.00 0.00

RS 1 0.14 0.24 0.05 0.35 0.21 0.00 0.00

2 0.30 0.21 0.04 0.26 0.20 0.00 0.00

4 0.44 0.16 0.04 0.18 0.18 0.00 0.00

8 0.48 0.15 0.03 0.15 0.18 0.00 0.00

20 0.43 0.15 0.03 0.18 0.19 0.01 0.01

RL 1 0.06 0.10 0.00 0.43 0.08 0.33 0.00

2 0.06 0.26 0.00 0.38 0.11 0.19 0.00

4 0.13 0.34 0.00 0.29 0.11 0.12 0.00

8 0.24 0.33 0.00 0.20 0.13 0.09 0.00

20 0.28 0.24 0.00 0.17 0.20 0.07 0.02

rFBS 1 0.41 0.15 0.00 0.21 0.02 0.00 0.20

2 0.58 0.13 0.00 0.08 0.01 0.00 0.19

4 0.65 0.07 0.00 0.12 0.00 0.00 0.15

8 0.61 0.06 0.00 0.21 0.00 0.00 0.12

20 0.51 0.19 0.00 0.21 0.00 0.00 0.09
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Table 9: FEVDs of Regime SM,MI = 3 | SF = 2 of MS-BVAR(2) Model 8

Shock
Year y P ur MI RS RL rFBS

y 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.93 0.04 0.00 0.01 0.00 0.00 0.01

4 0.77 0.15 0.03 0.03 0.00 0.00 0.01

8 0.56 0.23 0.13 0.03 0.00 0.00 0.04

20 0.25 0.23 0.25 0.02 0.00 0.00 0.24

P 1 0.02 0.98 0.00 0.00 0.00 0.00 0.00

2 0.03 0.97 0.00 0.00 0.00 0.00 0.00

4 0.04 0.95 0.00 0.00 0.00 0.00 0.00

8 0.06 0.93 0.00 0.01 0.00 0.00 0.00

20 0.07 0.88 0.00 0.02 0.00 0.00 0.03

ur 1 0.67 0.12 0.21 0.00 0.00 0.00 0.00

2 0.71 0.06 0.19 0.01 0.00 0.00 0.02

4 0.67 0.08 0.16 0.03 0.01 0.00 0.05

8 0.63 0.12 0.15 0.04 0.01 0.00 0.06

20 0.55 0.10 0.13 0.03 0.01 0.00 0.17

MI 1 0.51 0.03 0.04 0.42 0.00 0.00 0.00

2 0.42 0.02 0.07 0.47 0.00 0.00 0.02

4 0.32 0.02 0.12 0.52 0.00 0.00 0.03

8 0.23 0.03 0.18 0.53 0.01 0.00 0.02

20 0.17 0.02 0.25 0.51 0.04 0.00 0.01

RS 1 0.11 0.20 0.04 0.10 0.55 0.00 0.00

2 0.24 0.17 0.03 0.07 0.49 0.00 0.00

4 0.34 0.13 0.03 0.05 0.45 0.00 0.00

8 0.35 0.11 0.02 0.04 0.42 0.00 0.05

20 0.18 0.06 0.01 0.03 0.26 0.00 0.46

RL 1 0.09 0.15 0.00 0.21 0.34 0.21 0.00

2 0.06 0.24 0.00 0.12 0.31 0.08 0.20

4 0.10 0.27 0.00 0.08 0.28 0.04 0.22

8 0.16 0.22 0.00 0.05 0.28 0.03 0.27

20 0.09 0.08 0.00 0.02 0.20 0.01 0.60

rFBS 1 0.02 0.01 0.00 0.00 0.00 0.00 0.96

2 0.03 0.01 0.00 0.00 0.00 0.00 0.96

4 0.05 0.01 0.00 0.00 0.00 0.00 0.95

8 0.05 0.01 0.00 0.01 0.00 0.00 0.94

20 0.06 0.02 0.00 0.01 0.00 0.00 0.91
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Table 10: FEVDs of Regime SM,MI = 3 | SF = 3 of MS-BVAR(2) Model 8

Shock
Year y P ur MI RS RL rFBS

y 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.51 0.02 0.00 0.47 0.00 0.00 0.00

4 0.23 0.05 0.01 0.71 0.00 0.00 0.00

8 0.16 0.06 0.04 0.74 0.00 0.00 0.00

20 0.11 0.10 0.11 0.66 0.00 0.02 0.00

P 1 0.02 0.98 0.00 0.00 0.00 0.00 0.00

2 0.02 0.93 0.00 0.04 0.00 0.00 0.00

4 0.03 0.74 0.00 0.23 0.00 0.00 0.00

8 0.03 0.50 0.00 0.47 0.00 0.00 0.00

20 0.03 0.34 0.00 0.63 0.00 0.00 0.00

ur 1 0.67 0.12 0.21 0.00 0.00 0.00 0.00

2 0.48 0.04 0.13 0.35 0.00 0.00 0.00

4 0.22 0.03 0.05 0.70 0.06 0.00 0.00

8 0.16 0.03 0.04 0.76 0.12 0.00 0.00

20 0.16 0.03 0.04 0.76 0.13 0.01 0.00

MI 1 0.02 0.00 0.00 0.98 0.00 0.00 0.00

2 0.01 0.00 0.00 0.99 0.00 0.00 0.00

4 0.01 0.00 0.00 0.99 0.00 0.00 0.00

8 0.01 0.00 0.00 0.99 0.00 0.00 0.00

20 0.00 0.00 0.01 0.99 0.00 0.00 0.00

RS 1 0.01 0.02 0.00 0.88 0.08 0.00 0.00

2 0.04 0.02 0.00 0.85 0.09 0.00 0.00

4 0.07 0.03 0.01 0.79 0.11 0.00 0.00

8 0.09 0.03 0.01 0.74 0.13 0.01 0.00

20 0.07 0.02 0.00 0.77 0.11 0.02 0.01

RL 1 0.00 0.01 0.00 0.62 0.02 0.36 0.00

2 0.00 0.02 0.00 0.69 0.03 0.26 0.00

4 0.01 0.03 0.00 0.70 0.04 0.22 0.00

8 0.03 0.04 0.00 0.66 0.06 0.21 0.00

20 0.04 0.03 0.00 0.61 0.10 0.20 0.01

rFBS 1 0.06 0.02 0.00 0.82 0.01 0.01 0.08

2 0.17 0.04 0.00 0.62 0.01 0.01 0.16

4 0.15 0.02 0.00 0.72 0.00 0.00 0.10

8 0.09 0.01 0.00 0.84 0.00 0.00 0.05

20 0.08 0.03 0.00 0.85 0.00 0.00 0.04
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Figure 1: Levels and Growth Rates of U.S. Macro Aggregates, 1890–2010
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Figure 2: U.S. Short Rate, Long Rate, and Risk Ratio, 1890–2010
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Figure 3: IRFs of Fixed Coefficient-Homoskedastic BVAR(2)
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Figure 4: 3 SV Regime Probabilities: Estimates of MS-BVAR(2) Model 2, 1891-2010
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Figure 5: 4 SV Regime Probabilities: Estimates of MS-BVAR(2) Model 3, 1891-2010
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Figure 6: 3 SV Regime Probabilities of theM Block:

Estimates of MS-BVAR(2) Model 8, 1891-2010
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Figure 7: 3 SV Regime Probabilities of the F Block:

Estimates of MS-BVAR(2) Model 8, 1891-2010
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Figure 8: Regime-Dependent Residual Estimates of MS-BVAR Model 8
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