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1 Introduction

A timely policy question is the size of the government spending multiplier under
the case in which the central bank pegs the nominal rate of interest. The policy
experiment is an increase in government spending, financed with lump sum taxes,
during a period in which the nominal interest rate is held fixed. The analysis is
typically motivated by a ‘liquidity trap ’scenario, but the key assumption is that
the nominal rate during this period is pegged, not necessarily zero. For example,
there are many historical periods in which the central bank accommodated a fiscal
expansion by moderating interest rate movements.

The literature has typically considered two versions of the exit from the policy
expansion. First, a stochastic exit: in each period the continuation probability of the
fiscal expansion is constant so that there is an uncertain final date but a constant
mean duration of T periods. Second, a deterministic exit: the expansion continues
for a known duration of T periods. In both experiments the expected value of the fis-
cal expenditure is the same (from the vantage point of the initial period). Further the
analysis is conducted in a linear model. A priori one would thus anticipate that the
impact multiplier under a deterministic peg would be similar to that under a stochas-
tic peg with the same expected duration. For example, Christiano, Eichenbaum, and
Rebelo (2011) transition without comment from stochastic to deterministic exit as
they move from a labor-only model to a model that includes physical capital.

In contrast, the contribution of this paper is to demonstrate it matters quan-
titatively how the exit from the joint monetary fiscal expansion is modeled. For
example in a labor-only model and an expansion of duration T = 6, the stochastic
exit multiplier is 4.90, while the deterministic exit multiplier is 1.09. As we increase
T, the stochastic exit multiplier approaches an asymptote and becomes unbound-
edly positive, but then reverses to become unboundedly negative. In contrast, the
deterministic exit multiplier is a smooth and modestly increasing function of T. Sim-
ilar results arise in a model with physical capital. Using the parameterization in
Christiano, Eichenbaum, and Rebelo (2011) and with T = 4, the deterministic exit
multiplier is 2.3, while the stochastic exit multiplier is 66.9 (!). Evidently, the manner
of exit from the expansion is of critical importance.

The explanation for our key finding is related to Jensen’s inequality. The deter-
ministic exit fiscal multiplier is a convex function of the duration of the stimulus at
constant interest rates. Intuitively, the fiscal multiplier under a stochastic exit aver-
ages the deterministic multipliers across all possible durations. It then follows from
the strong convexity that this mean multiplier is much larger than the multiplier
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evaluated at the mean.1 Essentially, the stochastic exit multiplier can be strongly
influenced by the low probability event of the monetary-fiscal expansion lasting for
a very long time. In that event, the fiscal multiplier in the linearized model is ex-
tremely large. But the approximtation error from a linearized solution is also large
in this event. In line with findings by Braun and Waki (2010), we document that the
linear stochastic exit multiplier can be very inaccurate when compared to the true
nonlinear multiplier, while the corresponding linear deterministic exit multiplier in
our model environment remains accurate.

We explore the distinction between the two exit strategies by analyzing a hybrid
exit in which there is a stochastic interest rate peg up until a maximum time period
after which exit is immediate. Surprisingly for even large values of this truncation
date, the hybrid multiplier is much closer to the corresponding deterministic multi-
plier than the stochastic multiplier. This suggests that the deterministic multiplier
is a preferred way of thinking about fiscal multipliers under an interest rate peg.

There is a rapidly growing literature on the fiscal multiplier at the zero bound.
The extant literature documents the sensitivity of the multiplier to parameter values
as in Christiano, Eichenbaum, and Rebelo (2011), lump-sum vs. distortionary taxes
as in Drautzenburg and Uhlig (2011), timing of spending vis-a-vis the exit from the
zero lower bound as emphasized by Woodford (2011) and Christiano, Eichenbaum,
and Rebelo (2011), linear vs. nonlinear solution technique as highlighted by Braun
and Waki (2010), and an open versus closed economy setting as in Fujiwara and
Ueda (2012) etc. Our results suggest that there is another important issue for the
size of the multiplier: how to model the exit from the fiscal-monetary expansion.

The paper begins with the results under a stochastic peg in a labor-only model.
One novelty is to demonstrate the link between the size of the multiplier and the
parameter border between equilibrium determinacy and indeterminacy. Because this
border is an asymptote, we also show that the fiscal multiplier is extremely sensitive
to small changes in either the mean duration or various parameter values. Section
3 considers the complementary policy experiment in which the expansion is for a
deterministic period of time. The key conclusion is that the size of the multiplier
is dramatically affected by this alternative statement of how the policy expansion
is expected to end. Section 4 investigates the hybrid peg. Section 5 provides some
intuition for our main results. Section 6 provides some sensitivity analysis by examing
a model with physical capital, and the nonlinear baseline model. Section 7 concludes.

1We thank Jesper Linde for suggesting to frame our explanation in terms of this convexity
argument.
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2 The model with a stochastic interest rate peg

We examine the familiar DNK model with Calvo (1983) pricing and a linear labor-
only production technology. Our baseline preferences are given by

U (Ct, Nt) ≡
C1−σ
t

1− σ
− ηN

1+υ
t

1 + υ
(1)

The linearized model is given by:

it − Etπt+1 = − σ(ct − Etct+1) (2)

πt = βEtπt+1 + κmct (3)

mct =σct + υyt (4)

yt = (1− s) ct + sgt (5)

where πt, yt, ct, gt, mct, and it, denote inflation, output, consumption, government
spending, marginal cost, and the nominal rate, respectively, all measured as de-
viations from the steady-state. The constant s = G

Yss
is the share of government

spending in the steady state. Substituting (4)-(5) into (3) we have:

πt = βEtπt+1 + κ[σ + υ (1− s)]ct + κυsgt. (6)

The simple DNK model is thus given by (2), (6), and a description of monetary and
fiscal policy. We consider a coordinated policy experiment in which (i) government
spending is set above steady state gt = g > 0, and simultaneously (ii) the central
bank announces an interest rate peg it = 0. Each period there is probability p that
this policy will continue so that the expected duration of the expansion is T = 1

1−p .

With probability (1− p) the expansion ends, at which point fiscal policy returns to
steady state, gt = 0, and monetary policy reverts to a typical Taylor rule:

it = φππt + φyyt. (7)

Under standard assumptions on φπ and φy, there is a unique equilibrium after the
period of the peg. Since there are no state variables nor exogenous shocks during
these subsequent periods, the unique equilibrium after the policy experiment is given
by πt = yt = 0.

The equilibrium is one in which all endogenous variables take on one value during
the experiment and then revert to steady-state when the economy exits the experi-
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ment. This equilibrium is given by:

πt =

[
κυsσ (1− p)

∆

]
gt (8)

ct =
(pκυs

∆

)
gt (9)

yt =

[
sσ [(1− p) (1− βp)− κp]

∆

]
gt (10)

where
∆ ≡ σ (1− p) (1− βp)− κ [σ + υ (1− s)] p. (11)

But there are potentially other equilibria in this model. The general solution to
inflation is given by

πt =

[
κυsσ (1− p)

∆

]
gt + c1e

t
1 + c2e

t
2 (12)

where e1 and e2 are the roots of:

h (q) ≡ βσp2q2 − {κ [σ + υ (1− s)] + σ(1 + β)} pq + σ = 0 (13)

The constants c1 and c2 are potentially free variables as there is no terminal condition.
The equilibrium is unique (c1 = c2 = 0) if and only if both roots of h are outside the
unit circle. The function h is convex, positive at zero, decreasing at zero, and the
product of the roots is 1/(βp2). This implies that both roots are outside the unit circle
if and only if h (1) = ∆ > 0. Hence, under the assumption of ∆ > 0 maintained in
Christiano, Eichenbaum, and Rebelo (2011), there is a unique stationary equilibrium.
But if ∆ < 0, there are multiple stationary equilibria and thus sunspot equilibria.
A similar point has been made before by Eggertsson and Pugsley (2006), see their
assumption 1. In this case, increases in government spending may actually decrease
output. The case of ∆ > 0, is the “normal” case so that increases in government
spending lead to increases in output.

The fiscal multiplier during the interest rate peg is given by:

dY

dG
≡
(

1

s

)
dyt
dgt

=

[
σ [(1− p) (1− βp)− κp]

∆

]
(14)

Note that as κ → ∞, the model approaches flexible prices and the multiplier con-
verges to

dY

dG
=

(
1

s

)
dyt
dgt

=
σ

σ + ν(1− s)
≤ 1. (15)
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Hence, in the model with flexible prices, the multiplier cannot exceed unity. A fis-
cal expansion leads to a fall in consumption, an increase in the real rate, and a
complementary decrease in expected inflation. But as emphasized by Christiano,
Eichenbaum, and Rebelo (2011), with sticky prices and a nominal rate peg, the mul-
tiplier can be significantly greater than unity. Assuming ∆ > 0, the fiscal expansion
leads to an increase in consumption, and given the interest rate peg a decline in the
real rate, and a complementary increase in expected inflation.2 Given the presence of
sticky prices, the higher inflation rate is associated with higher levels of output. The
potentially large multipliers with sticky prices and an interest rate peg has nothing
to do with government spending, per se. All shocks are potentially magnified in this
environment.

Figure 1 graphs this sticky price multiplier as function of the expected duration
of the coordinated policy shock, T = 1

1−p . The Figure uses the following baseline
parameter values: β = 0.99, κ = 0.028, ν = 0.5, σ = 2, s = 0.2. As a sensitivity
analysis, we use non-separable preferences given by

U (Ct, Nt) ≡
[Cγ

t (1−Nt)
1−γ]

1−σ − 1

1− σ
(16)

In this case our calibration again follows Christiano, Eichenbaum, and Rebelo (2011)
and we set κ = 0.03 and γ = 0.29. As Figure (1) shows, the fiscal multiplier increases
sharply as a function of the expected duration for both preference specifications.

The multiplier can easily exceed one, and approaches infinity as T increases and
∆ approaches zero. Hence, the borderline case of ∆= 0, coincides with the case of
an asymptotic multiplier and the existence of stationary sunspot equilibria. This
borderline case occurs with a relatively short policy experiment: T = 6.12 quarters.

Because of the asymptote, the multiplier is extremely sensitive to changes in
T , and κ. Considering the baseline case of separable preferences, with the above
calibration, if T = 6, the multiplier is 4.90. But with T = 5, the multiplier is only
1.3. With T = 7, we are in the indeterminacy region and the multiplier is only 0.33.
Holding T fixed at T = 6, very small changes in κ can make a huge difference(κ is
typically estimated between 0.005 and 0.03. For example, if κ = 0.025 (versus 0.028
in the baseline) the multiplier drops from 4.89 to 2; for κ = 0.029, the multiplier is
30. With κ = 0.03 you are already in indeterminacy region and the multiplier is -5.

2The notable exception is the special case when the labor supply is infinitely elastic (i.e., linear
labor, ν = 0). In this case, inflation, consumption, and marginal cost are constant and the multiplier
is always identically equal to one.
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(a) separable preferences as in (1)
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(b) non-separable preferences as in (16)

Figure 1: Fiscal multipliers in the model without physical capital accumulation.

3 A deterministic interest rate peg

In this section we consider a modest change in the policy environment. The policy
experiment is no longer stochastic, continuing with probability p, but is instead
deterministic, ending for sure after T periods. The endogenous variables will of course
not be constant during this pegged experiment, but there is a unique equilibrium
because the end of the experiment coincides with a unique equilibrium, and thus
provides a terminal condition to the model.

It is convenient to express the equilibrium in terms of the path for inflation. The
remaining endogenous variables can then be inferred from (3)-(5). The fundamental
difference equation during the interest rate peg is given by:

βσπt+2 − {κ [σ + υ (1− s)] + σ(1 + β)} πt+1 + σπt + σκυs(gt+1 − gt) = 0 (17)

The equilibrium behavior of inflation is given by

πt = m1e
t
1 +m2e

t
2 (18)

where the e’s are the roots to:

f(q) ≡ βσq2 − {κ [σ + υ (1− s)] + σ(1 + β)} q + σ = 0 (19)

Note that f is convex, f(0) > 0, f(1) < 0, so that we have one root e1 in (0,1), and
one root e2 > 1. The constants m1 and m2 are uniquely determined by the following
two terminal conditions

πT = κυsgt (20)
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πT−1 =
{
κ
[
1 +

υ

σ
(1− s)

]
+ (1 + β)

}
πT (21)

With time-varying inflation and thus output, it is not clear how to define the fiscal
multiplier in this case. But it is easy to show that the largest output effect occurs in
the very first period. Let y1(T ) denote the level of output in the first period with a
peg that lasts T periods, so that the initial multiplier is defined as:

dY

dG
≡
(

1

s

)
dy1 (T )

dgt
. (22)

Figure 1 also graphs this multiplier as a function of T . Remarkably, the size of the
multiplier is quite different. For example, with T = 6, the stochastic exit multiplier
is 4.90, while the deterministic exit multiplier is 1.09. Although it is not a priori
obvious which policy experiment (stochastic peg vs. deterministic peg) is a better
description of reality, the explosive behavior under the stochastic peg seems quite
implausible.3 Further, the extreme sensitivity to parameter values for the stochastic
peg is not evident for the deterministic peg. For example, as we increase κ from κ =
0.028, to κ = 0.029, the deterministic multiplier increases only slightly from 1.0895
to 1.0930.

4 A hybrid interest rate peg

As a form of sensitivity analysis, we consider in this section a stochastic peg as in
section 2, but with a certain maximum truncation date as in section 3, i.e., there
is a constant probability of exit up until time T , after which date exit is certain.
As with the deterministic peg, the certain maximum exit date implies that there is
equilibrium determinacy for all values of T . We set the continuation probability to
p = 5/6. When the truncation date is small, this implies an anticipated duration
of somewhat less than 6 periods. The fundamental difference equation during the
interest rate peg is given by:

p2βσπt+2 − p {κ [σ + υ (1− s)] + σ (1 + β)} πt+1 + σπt + σκυs
(
pgt+1 − gt

)
= 0

(23)

The two terminal conditions are given by (20) and

πT−1 = p
{
κ
[
1 +

υ

σ
(1− s)

]
+ (1 + β)

}
πT + κυs (1− p) gt (24)

3A deterministic peg can deliver large multipliers if there are endogenous states such as lagged
inflation. In this case there can again be asymptotes and large multipliers for modest values of T .
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Fiscal multiplier

T period truncation separable as in (1) (p=5/6) non-separable as in (16) (p=4/5)

6 1.05 1.33
50 1.64 2.83
100 2.22 3.36
500 4.33 3.59

1,000 4.82 3.59
10,000 4.90 3.59

Infinity (stochastic exit) 4.90 3.59

Table 1: Fiscal multiplier in the hybrid model

For our benchmark parameter values, Table 1 reports the value of the multiplier for
this hybrid peg as a function of T .

As a point of comparison, the deterministic peg with T = 6 has a multiplier of
1.09, while the stochastic peg with duration of T = 6, has a multiplier of 4.90. Table
1 suggests the peculiarity of the original stochastic peg. If the peg is stochastic up
to period 50 (over 12 years!), after which it is truncated, the fiscal multiplier is only
1.64, quite close to the deterministic peg. Even for a truncation of 100 periods, the
multiplier is 2.22, less than half of the pure stochastic counterpart.

5 Explaining the differences

What is the intuition for these striking differences between stochastic, deterministic
exit and hybrid exit multipliers of equal mean duration? Essentially, our explanation
rests on a Jensen inequality argument that we develop below. First we argue that
the stochastic exit multiplier averages the deterministic exit multipliers across all
possible durations. Second, we show that this deterministic exit multiplier is a convex
function of the duration. It then follows from convexity and Jensen’s inequality that
this mean multiplier is much larger than the multiplier evaluated at the mean.

Initial output under a deterministic peg of exactly j > 1 periods, yd0(j), can be
written from the Euler equation as

yd0(j) = sg0 +
1− s
σ

j−1∑
k=1

πk(j) (25)
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Figure 2: Deterministic and approximated stochastic exit multipliers

Thus, the growth of the fiscal multiplier as we extend the duration is proportional
to the initial expected inflation rate.

yd0(j)− yd0(j − 1) =
1− s
σ

π1(j) (26)

One can show that π1(j) increases exponentially in the duration j so that the fiscal
multiplier is a convex function of the duration. Under a stochastic peg, households
attach probability (1−p)pj−1 to the event that the peg lasts exactly j periods. Hence
initial output under a stochastic peg, ys0, is given by

ys0 =
∞∑
j=1

(1− p)pj−1yd0(j) (27)

Figure 2(a) plots the multiplier in the benchmark model with separable prefer-
ences for durations d = 1, 2, ..., 30, which clearly shows the convexity. Convexity has
been pointed out before by Erceg and Linde (2010), but without connecting it to the
difference between stochastic and deterministic exit. Figure (2(b)) plots an average
of the deterministic exit multipliers, each weighted by (1− p)pj−1. The infinite sum
in (27) is truncated at K for the numerical implementation. Clearly, for high enough
truncation point K, the weighted sum of deterministic exit multipliers converges to
the stochastic exit multiplier.

Why does the stochastic exit multiplier become unboundedly large as the ex-
pected duration reaches some finite threshold value? Our intuition builds again on
the insight that the stochastic exit multiplier is a weighed average of the determin-
istic exit multipliers. There are two forces at work. As the duration increases, the
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deterministic exit fiscal multiplier grows exponentially. But the weights attached
to each finite duration multiplier decay exponentially. As we outline below, there
always exists a critical value p̄ < 1 such that the decay of the weights becomes ar-
bitrarily close to the growth of the finite duration multiplier. Hence, the stochastic
exit multiplier asymptotes. Importantly, the stochastic exit model has a determinate
equilibrium as p approaches p̄ from below.

To see this, we can run time backwards from the end of the fiscal expansion by
inverting expression (18), and thus express the initial inflation rate as a function
of T . This initial inflation rate is exploding in T since 1/e1 > 1. For large T , we
can ignore other terms involving the stable root so that this initial inflation rate
is roughly proportional to (1/e1)T . The stochastic multiplier with mean duration
1/(1− p) periods is then roughly proportional to Θ, defined as

Θ = (1− p)
∞∑
k=1

(
p

e1

)k
= (1− p) p

e1 − p
(28)

The root e1 is the stable root of (19) and thus independent of p. One can show
that the stochastic model has a unique stationary equilibrium if and only if p < e1.
There are two implications as p approaches e1 from below. First, the stochastic-exit
multiplier becomes arbitrarily large. Second, the hybrid multiplier converges to the
stochastic multiplier very slowly as the truncation point is increased.

6 Sensitivity

We document sensitivity with respect to two aspects: Adding capital and solving a
nonlinear model.

6.1 Capital

Capital accumulation is an important aspect for the fiscal multiplier. If fiscal policy
raises inflation expectations and thus lowers real interest rates due to the peg for
nominal rates, this now crowds in not only private consumption but also private
investment. Since investment is typically more interest sensitive than consumption,
this increases the constant rate fiscal multiplier. As Christiano, Eichenbaum, and
Rebelo (2011) and others have shown, the multiplier can be significantly larger than
unity with a deterministic peg in a model with capital. We revisit the model with
capital accumulation and contrast this with a stochastic peg.
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We follow Christiano, Eichenbaum, and Rebelo (2011), and use the preference
specification given by (16). The model is then given by the following linearized
equilibrium conditions.

πt =κmct + βπt+1 (29)

ct + υnt =mct + α(kt−1 − nt) (30)

it − πt+1 = [γ(1− σ)− 1](ct − ct+1)− (1− γ)(1− σ)υ(nt − nt+1) (31)

it − πt+1 = (1− ε)((1− α)(nt+1 − kt) +mct+1)

+ εσI(kt+1 − (2− δ)kt)− σI(kt − (2− δ)kt−1) (32)

αkt−1 + (1− α)nt =
C

Y
ct +

I

Y δ
(kt − (1− δ)kt−1) +

G

Y
gt (33)

Here, υ ≡ N̄
1−N̄ . Physical capital is denoted by kt with depreciation rate δ. The

constant ε is given by β(1 − δ). We use a capital adjustment cost specification
used in Christiano, Eichenbaum, and Rebelo (2011), see their equation (40) with
coefficient σI . The calibration is the same as before, except δ = 0.02, γ = 0.29,
σI = 17, and α = 0.345.

Because of the presence of an endogenous state variable we cannot obtain an
analytical solution for the stochastic exit fiscal multiplier as in section 2. Instead,
we employ a two stage procedure. In matrix form, the system in (29)-(33) can be
expressed as

0 = AEtYt+1 +BYt + CYt−1 +D. (34)

Here, the matrix D captures terms involving the constant value of government spend-
ing prior to the exit. In the first stage, we close the above model with a Taylor rule
that is in place after the exit and compute its solution via standard methods. The
post exit decision rules for the vector of endogenous variables Yt can be expressed
in matrix form as Yt = FYt−1. In a second step, we consider the model prior to the
exit that we close with it = 0. That system can be written as

0 = pAYt+1 + [(1− p)AF +B]Yt + CYt−1 +D, (35)

and solved via standard methods.
Figure (3) compares the multipliers under a deterministic peg with that from a

stochastic peg with equal mean duration. Note that the stochastic peg in the baseline
calibration results in indeterminacy when the continuation probability exceeds p =
0.75 (corresponding to mean duration of T = 4).

Under the baseline calibration with γ = 0.29, the multiplier under a stochas-
tic exit is substantially larger than its deterministic exit counterpart. For T = 4
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(b) γ = 1

Figure 3: Fiscal multipliers in the model with physical capital accumulation

the deterministic exit multiplier is 2.3 vs. 66.87 for the stochastic exit. The large
stochastic-exit multiplier arises because we are on the indterminacy boundary. We
can once again consider the hybrid model and increase the truncation point. As
expected, when the stochastic exit multiplier is substantially larger than its deter-
ministic exit counterpart, it is driven considerably by stimulus in the very distant
future and the hybrid multiplier converges to the stochastic counterpart very slowly.
In this regard, capital accumulation does not affect our main result.

Fiscal multiplier

T period truncation γ = 0.29 γ = 1

5 2.06 1.2
50 14.43 2.41
100 22.37 2.46
500 52.83 2.47

1,000 63.55 2.47
5,000 66.87 2.47

Infinity (stochastic exit) 66.87 2.47

Table 2: Fiscal multiplier in the hybrid model with p = 3/4
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The baseline calibration used in Figure 3(a) suggests that the fiscal multiplier
under a stochastic exit can be an order of magnitude bigger than deterministic exit
multiplier for modest durations of around 4 quarters. However, this finding may
be sensitive to the particular parameterization. We therefore conduct sensitivity
analysis. Conditioning on a mean duration of the monetary-fiscal expansion of 4
quarters, we draw parameters from a narrow range of a priori reasonable values of
the models structural parameters.4 For each draw, we compute the ratio of the fiscal
multiplier under a stochastic exit to the multiplier under a deterministic exit. The
median ratio is 3.3 with a standard deviation of 7.3. After removing outliers in the
right tail, Figure 4 shows the plot of the kernel density of this ratio.

Clearly, the extremely large discrepancy between the stochastic and deterministic
exit multiplier evident in Figure 3(a) for T = 4 is an outlier. Nevertheless, across a
wide range of reasonable parameters, the stochastic exit multiplier is substantially
bigger than its deterministic exit counterpart.

We have also explored fiscal multipliers in the medium-scale model of Smets and
Wouters (2007) using the same computational approach as outlined for the capital
model above. Our key result also holds in this model, stochastic exit multipliers
are larger than the corresponding deterministic exit multipliers. An additional twist
is brought about by the presence of strong endogenous propagation mechanisms
via habit, price and wage indexation and investment adjustment costs specified in

4κ ∈ [0.01, 0.05], α ∈ [0.3, 0.4], σ ∈ [1, 3], γ ∈ [0.1, 0.9], σI ∈ [10, 20], N ∈ [0.3, 0.5], and
τ ∈ [1.5, 2]. Parameters are uniformly distributed in these ranges. We draw until we have 10,000
parameters sets that deliver a determinate equilibrium under a stochastic exit with p = 3/4.
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growth rates. As is discussed in detail in a companion paper, such endogenous
propagation mechanisms can result in extremely large multipliers in response to
any stimulus at constant interest rates even under a deterministic exit assumption,
see Carlstrom, Fuerst, and Paustian (2012). In particular, multipliers appear to
”asymptote” once the duration approaches a critical value T d under deterministic
exit. However, multipliers in the stochastic exit model also asymptote and do so
at smaller critical mean duration T s < T d. Furthermore, the stochastic exit model
becomes indeterminate for T > T s. Confining the comparison to the determinacy
region in the stochastic exit world, we have found stochastic exit multipliers to be
larger than the deterministic exit multipliers in the Smets and Wouters model.

6.2 Nonlinear solution

As emphasized by Braun and Waki (2010), the large inflation responses associated
with large fiscal multipliers suggest that the linear approximation may be inaccurate.
As a form of sensitivity analysis, we thus consider the underlying nonlinear system.
We consider Rotemberg quadratic costs of price adjustment with adjustment cost
parameter φ. For the case of a stochastic exit, the model is given by the following
equations representing market clearing for the final good, the Phillips curve and the
Euler equation for bond holdings:

C +G =Y

(
1− φ

2
(Π− 1)2

)
(36)

(ε− 1)τ = + εY ϕCσ − φ(Π− 1)Π + pβDφ(Π− 1)Π (37)

C−σ = pβDC−σ
RL

Π
+ (1− p)βDC̄−σR

L

Π̄
(38)

Here D > 1 is an exogenous discount factor shock that persists with probability p
and RL = 1 is the value of the nominal interest rate at the lower bound. The discount
shock is often employed as the rationale for the interest rate peg, ie., the discount
rate shock pushes the nominal rate to zero. In the linearized models considered
above, the discount shock has no effect on the fiscal multiplier. But this may not be
the case in the nonlinear model as the discount shock pushes the economy far from
the steady state before the fiscal expansion is considered. Upon exit, the economy
reverts to the zero net-inflation steady state, whose values are denoted with a bar.
We assume a sales-subsidy τ that makes the steady state efficient. The parameter ε
is the price elasticity of demand and ϕ is the curvature of labor supply. Equilibrium
is given by values for {Y,C,Π} that solve (36) - (38) for given steady state values
{Ȳ , C̄, Π̄} and exogenous values for G. We set ϕ = 0.5, ε = 11 and set φ such that
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linearizing this model about a zero inflation steady state gives the same slope of the
Phillips curve as in our previous analysis.

This stochastic-exit model can have multiple solutions, but as in Christiano and
Eichenbaum (2012), some are not E-stable and we discard these. We also solve the
deterministic exit model nonlinearly. Backing up from the last period, the deter-
ministic model has two solutions with identical private consumption values, but low
or high inflation. Conditional on choosing the low inflation equilibrium in the last
period, the previous period problem again has two solutions of the same type. Re-
peatedly conditioning on the low inflation equilibrium, we compute the initial period
fiscal multiplier. 5

stochastic exit deterministic exit
linear nonlinear linear nonlinear

model without discount factor shock

T = 3 1.04 1.04 1.02 1.02
T = 4 1.11 1.11 1.03 1.03
T = 5 1.30 1.31 1.06 1.06
T = 6 4.90 3.75∗ 1.09 1.09

model with discount factor shock

T = 3 1.04 1.04 1.02 1.02
T = 4 1.11 1.10 1.03 1.03
T = 5 1.30 1.18 1.06 1.06
T = 6 4.90 1.24 1.09 1.08

Table 3: Fiscal multipliers: linear vs. nonlinear solution. Asterisks denotes that
for the non-linear stochastic exit model without discount factor shock we consider
T = 5.85, because for higher T there is no solution.

Table 3 summarizes our results. Since the size of the discount factor shock affects
the fiscal multiplier in the nonlinear model (unlike in the linear world), we need to
take a stand on the size of the shock. We consider two cases. For D = 1 there
is no discount factor shock and the interest rate is held constant at steady state
exogenously. When D = 1.02, the economy reaches the zero lower bound and the

5Conditional on the high inflation equilibrium in the last period, the previous period problem
has no solution, so this conditioning is natural.

15



interest rate is held fixed at that bound endogenously. As noted earlier, the fiscal
multiplier in the linear economy is unaffected by the value for D. We consider an
increase in government spending of 1% about a steady state share in GDP of 0.2.
The government spending multiplier reported below is defined in terms of changes in
consumption plus government spending, i.e. changes in output purely due to changes
in costs of price adjustment costs are ignored. 6

Turning to the case without a discount factor shock, we find that the stochastic
exit multiplier is larger than the deterministic exit multiplier of equal mean dura-
tion also in the nonlinear model. Furthermore, the linear approximation gives very
accurate fiscal multipliers for all durations considered in the table. However, we
are unable to find a solution for the nonlinear stochastic exit model for T > 5.85,
while the linear approximation results in very large multipliers in the range between
T = 5.85 and the slightly larger indeterminacy border.

When a discount factor shock is present we again find that the stochastic exit
multiplier is larger than its deterministic exit counterpart. However, the difference
between the two is now much less pronounced. The underlying reason is that the
system is displaced from the point around which the model is linearly approximated.
We would therefore expect the local linear approximation to perform worse. This
approximation error kicks in much more strongly for the stochastic exit model at
modest expected durations. The reason is closely related to our intuition for why
the stochastic exit multiplier is so big in the first place. It is strongly influenced by
the low probability event of the expansion lasting a very long time. In this event, the
linear multiplier is extremely large and the linear approximation is particularly bad.
Our intuition highlighted that the linear deterministic exit multiplier is a convex
function of the duration and the linear stochastic exit multiplier averages across
these durations. However, the deterministic exit multiplier in the nonlinear model
is no longer convex over all durations. For instance, in the baseline model with a
discount factor shock, this multiplier rises to 1.66 for a duration of T = 23, but
then falls for longer durations. At T = 50 the nonlinear multiplier is only 1.23. For
comparison, the linear multipliers at these two durations are 5.56 and 585!

6The presence of a discount factor shock generally results in a fall inflation which generates
adjustment costs that are part of aggregate demand. To the extent that government spending
mitigates this fall in inflation, it reduces price adjustment costs which in itself reduces output.
From a welfare perspective, there is nothing detrimental per-se about reducing price adjustment
costs and our definition of the fiscal multiplier reflects this.
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7 Conclusion

This paper has shown that the size of the fiscal multiplier under an interest rate peg
depends crucially on the probability distribution of the exit date, holding constant
the mean duration of the peg. Larger multipliers occur when the distribution of
possible exit dates has wide support as in a stochastic exit model. This implies that
the simple modeling choice of endowing agents with a known exit date from the fiscal
monetary regime can result in much smaller multipliers than stochastic exit assump-
tions of same durations. This paper has also shown that the stochastic exit multiplier
computed via a local linear approximation around the zero inflation steady state is
much more prone to approximation error at modest mean durations. Approximation
errors for the corresponding deterministic exit model are much smaller.

Which modeling approach should be employed? When studying the effects of
fiscal policy in certain historical episodes, the interest rate is typically fixed because
particular shocks push it to the zero lower bound. It is hard to assess what people
expect about the probability distribution of these shocks. But we think it is a-
priori unreasonable to attach a non-zero probability to the central bank keeping the
interest rate pegged for say, 25 years, after a one-time exogenous event. Our results
on the hybrid multiplier then imply that the deterministic multiplier is a much more
reasonable estimate of the true multiplier than the pure stochastic multiplier. Hence
we conclude that for policy analyses of this type the deterministic approach should be
preferred. In line with this view, Christiano, Eichenbaum, and Rebelo (2011) employ
the deterministic exit assumption when aiming to quantify the fiscal multiplier in a
medium scale macro model designed to fit macro data.

References

Braun, R. A., and Y. Waki (2010): “On the Size of the Fiscal Multiplier When
the Nominal Interest Rate is Zero,” unpublished, University of Tokyo.

Carlstrom, C. T., T. S. Fuerst, and M. Paustian (2012): “Inflation and
output in New Keynesian models with a transient interest rate peg,” Bank of
England Working Paper No 459.

Christiano, L., and M. Eichenbaum (2012): “Notes on Linear Approximation,
Equilibrium Multiplicity and E-Learnability in the Analysis of the Zero Lower
Bound,” unpublished manuscript, Northwestern University.

Christiano, L. J., M. Eichenbaum, and S. Rebelo (2011): “When is the

17



government spending multiplier large?,” Journal of Political Economy, 119, 78–
121.

Corsetti, G., A. Meier, and G. Mueller (2012): “Fiscal stimulus with spend-
ing reversals,” Review of Economic Studies, forthcoming.

Drautzenburg, T., and H. Uhlig (2011): “Fiscal Stimulus and Distortionary
Taxation,” NBER Working Paper No 17111.

Eggertsson, G., and B. Pugsley (2006): “The Mistake of 1937: A General
Equilibrium Analysis,” Monetary and Economic Studies, 24, 1–58.

Erceg, C. J., and J. Linde (2010): “Is there a Fiscal Free Lunch in a Liquidity
Trap?,” Board of Governors of the Federal Reserve System, International Finance
Discussion Papers No 1003.

Fujiwara, I., and K. Ueda (2012): “The Fiscal Multiplier and Spillover in a
Global Liquidity Trap,” CAMA Working Paper 17/2012.

Smets, F., and R. Wouters (2007): “Shocks and Frictions in US Business Cycles:
a Bayesian DSGE Approach,” American Economic Review, 97, 586–606.

Woodford, M. (2011): “Simple Analytics of the Government Expenditure Multi-
plier,” American Economic Journal: Macroeconomics, 3, 1–35.

18




