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1 Introduction

Nowcasting has come to be commonly viewed as an important and unique forecasting prob-

lem; see, e.g., Banbura, Giannone, and Reichlin (2011) and Banbura, Giannone, Modugno,

and Reichlin (2012). It is important because current-quarter forecasts of GDP growth and

inflation provide useful summaries of recent news on the economy and because these fore-

casts are commonly used as inputs to forecasting models, such as some of the DSGE models

in use at central banks, that are effective in medium-term forecasting but not necessarily

short-term forecasting. As studies such as Faust and Wright (2009, 2012) have emphasized,

initial-quarter forecasts often play a key role in the accuracy of forecasts at subsequent

horizons. Nowcasting is unique in that, to some degree, it involves “simply” adding up

information in data releases for the current quarter. A key challenge is dealing with the

differences in data release dates that cause the available information set to differ over points

in time within the quarter — what Wallis (1986) refers to as the “ragged edge” of data.

The nowcasting approach we will propose in this paper is motivated by not only some

of the previous nowcasting work, reviewed in section 2, but also by three other key findings

in the broader forecasting literature. First, prior work, particularly De Mol, Giannone, and

Reichlin (2008), Banbura, Giannone, and Reichlin (2010) and Carriero, Kapetanios, and

Marcellino (2011), has shown that, with large data sets, estimation with Bayesian shrinkage

is a viable alternative to factor model methods. Second, Clark (2011), Carriero, Clark,

and Marcellino (2012), and D’Agostino, Gambetti, and Giannone (2012) find it useful for

forecasting purposes to incorporate stochastic volatility into VAR models, for both point and

density forecasts. Third, some other prior work has shown that direct multi-step methods

of forecasting can be at least as accurate as iterated methods (e.g., Marcellino, Stock and

Watson (2006)) for multi-step forecasting. At a forecast horizon of h > 1, the direct approach

rests on estimates of a model relating yt+h to information in period t. The iterated approach

involves a model relating yt+1 to information in period t and iterating forward to obtain

2-step forecasts from 1-step, etc. The direct approach can be more accurate than the

iterated approach in the presence of model misspecification and does not require modeling

the behavior of the explanatory variables, thus making univariate modelling sufficient. To

be clear, the model we develop isn’t literally a direct multi-step model, but it is clearly in

the spirit of such a forecasting specification.
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Building on this past work, we develop a new Bayesian Mixed Frequency (BMF) model

with Stochastic Volatility (SV) for point and density nowcasting. Our formulation also

readily allows the regression coefficients to be time-varying. In particular, we produce

current-quarter forecasts of GDP growth with a (possibly large) range of available within-

the-quarter monthly observations of economic indicators, such as employment and industrial

production, and financial indicators, such as stock prices and interest rates. Each time

series of monthly indicators is transformed into three quarterly time series, each containing

observations for, respectively, the first, second or third month of the quarter. Hence, there

can be missing observations at the end of some of these three time series, depending on the

specific month of the quarter we are in. We then include in the model only the constructed

quarterly series without missing observations at the moment in time the forecast is formed.

This approach, which is in the spirit of direct multi-step forecasting, addresses the ragged

edge of the data.

We use Bayesian methods to estimate the resulting model, which expands in size as more

monthly data on the quarter become available. Bayesian estimation facilitates providing

shrinkage on estimates of a model that can be quite large, conveniently generates predictive

densities, and readily allows for stochastic volatility and time-varying parameters.

We provide results on the accuracy of the resulting nowcasts of real-time GDP growth

in the U.S. from 1985 through 2011. While most prior nowcasting research has focused on

the accuracy of point forecasts of GDP growth (with the notable exception of Aastveit, et

al. (2011) and Marcellino, et al. (2012)), we consider both point and density forecasts. It

turns out that in terms of point forecasts our proposal is comparable to alternative mixed

frequency econometric methods and survey forecasts. In addition, it provides reliable density

forecasts, for which the stochastic volatility specification is quite useful, while parameter

time-variation does not seem to matter.

As we will detail below, in the schema of Banbura, Giannone, Modugno, and Reichlin

(2012), our proposed model falls in the ‘partial models’ set. Our approach is most closely

related to the U-MIDAS specification of Foroni, et al. (2011), which they estimate with

classical methods and the same number of regressors in each time period, with the actual

regressor set determined by the BIC criterion. Compared to other partial model approaches

or studies, the key innovations of our analysis include the use of Bayesian shrinkage to
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be able to consider a possibly large set of indicators; the allowance for time variation in

coefficients; the inclusion of stochastic volatility; and the analysis of density nowcasts.

Our approach of including different variables corresponding to different months of the

quarter also has some similarities to vector autoregressive (full system) approaches used in

recent studies by Ghysels (2012), Foroni and Marcellino (2012) and McCracken and Sekh-

posyan (2012). For example, in Ghysel’s VAR(p) with mixed frequency data, an equation

for GDP growth in quarter t includes p lags of quarterly GDP and employment in each

of months 1-3 of quarter t − 1, quarter t − 2, etc., up to quarter t − p. Ghysels suggests

using MIDAS-type restrictions to limit the number of parameters. In our case, in which the

model of interest is univariate, we propose using Bayesian shrinkage to limit the potential

effects of parameter estimation error on forecast accuracy. And, again, our approach has

the advantage of making stochastic volatility and time-varying parameters tractable.

The paper is structured as follows. After a brief review of the related literature in Section

2, we proceed by detailing our model and estimation method in section 3, introducing

competing nowcasts in section 4, describing the data in section 5, presenting results in

section 6, and providing some concluding remarks in section 7.

2 A Brief Review of Related Nowcasting Approaches

A number of model-based approaches are commonly used for nowcasting, primarily with

a focus on point forecasts. Banbura, Giannone, Modugno, and Reichlin (2012) distinguish

‘partial model’ methods from approaches thought to be more comprehensive, which might

simply be labeled ‘full system’ methods. In this section, we briefly review some of the key

methods falling in these two categories. In section 3, after detailing our models, we will

describe how our proposed approach relates to these key methods.

Among partial model methods, bridging and MIDAS models are most commonly used.

Bridging models, considered in such studies as Baffigi, Golinelli and Parigi (2004), Diron

(2008) and Bencivelli, Marcellino and Moretti (2012), relate the period t value of the quar-

terly variable of interest, such as GDP growth, to the period t quarterly average of key

monthly indicators.1 The period t average of each monthly indicator is obtained with data

1One common approach is to use bridging equations to forecast components of GDP growth and then

add up forecasts of components to obtain a forecast of GDP growth.
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available within the quarter and forecasts for other months of the quarter (obtained typically

from an autoregressive model for the monthly indicator).

MIDAS-based models, developed in Ghysels, Santa-Clara and Valkanov (2004) for finan-

cial applications and applied in, e.g., Clements and Galvao (2008) and Guerin and Marcellino

(2012) for macroeconomic applications, relate the period t value of the quarterly variable

of interest to a constrained distributed lag of monthly or weekly or even daily data on the

predictors of interest. The resulting model is then estimated by non-linear least squares and

used to forecast the variable of interest from constrained distributed lags of the available

data. Foroni, Marcellino and Schumacher (2012) propose the use of unconstrained dis-

tributed lags of the high frequency indicators. They label the resulting model unrestricted

MIDAS, or U-MIDAS, and show that it generally outperforms MIDAS when the frequency

mismatch between the low frequency target variable and the high frequency indicators is

limited. Rodriguez and Puggioni (2010) discuss Bayesian estimation of unrestricted MIDAS

equations. They also allow for time-varying parameters but not for stochastic volatility, and

consider point but not density forecasts.

Full system methods for nowcasting include factor models and mixed frequency VARs.2

In particular, the factor model of Giannone, Reichlin, and Small (2008) provides a sophis-

ticated method for accommodating the ragged edge of data and using a large information

set to forecast the variable of interest. Their model relates the variable of interest, such

as quarterly GDP growth, to current and possibly lagged values of a set of factors that

summarize the information in a large data set of monthly or even weekly indicators. The

factors are modeled as following a VAR process. By casting the factor model in state space

form with a measurement equation relating monthly data to the factors and a state equation

based on the VAR model for the factors, Giannone, Reichlin, and Small (2008) are able to

use the Kalman Filter to obtain current quarter factor estimates or forecasts that reflect all

2Some prior studies have proposed using factors based on large datasets in underlying modeling approaches

that fall in the partial model category, or combining factor model approaches with others. In particular,

Marcellino and Schumacher (2010) develop a factor-MIDAS approach to incorporate large datasets of high

frequency information into a nowcast model. In their application to nowcasting German GDP, the factor-

MIDAS approach compares well with the Kalman filter-based factor model approach. Kuzin, Marcellino

and Schumacher (2012) propose pooling the nowcasts resulting from a large set of mixed frequency single

indicator models. Finally, Aastveit, et al. (2011) develop a nowcasting system that combines forecasts from

VAR models, bridging equations, and factor models. In contrast to most of the nowcasting literature,

Aastveit, et al. focus on density forecasts.
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available information, taking account of the ragged edge of data.

While much recent full system work has focused on large factor models, some studies

have developed smaller factor models. Mariano and Murasawa (2003) extended the fac-

tor model of Stock and Watson (1989) to handle the ragged edge and mixed frequency

data. Their approach is used to model in a Kalman filter context the demand and supply

components of euro area GDP by Frale, Marcellino, Mazzi and Proietti (2011), with all

the resulting index estimates later combined into euromind, a monthly indicator of euro

area economic conditions. A related approach is proposed by Camacho and Perez-Quiros

(2010). The method is further refined in Marcellino, Porqueddu and Venditti (2012) to allow

for stochastic volatility in the common and idiosyncratic components, and provide density

forecasts.

Still other studies have developed mixed frequency VAR models, introduced by Zadrozny

(1988), for nowcasting. Foroni, Ghysels, and Marcellino (2012) provide an overview of this

method. Most recently, Schorfheide and Song (2012) develop a mixed frequency Bayesian

VAR for forecasting that they find to work well in real-time forecasting.3 For nowcasting

Euro area GDP, Kuzin, Marcellino and Schumacher (2011) find mixed frequency VARs to

be comparable to MIDAS-based approaches.

3 The Bayesian Mixed Frequency Model with Stochastic Volatil-

ity (BMF-SV)

This section details our proposed nowcasting models, starting with the case of constant error

variances and then taking up the cases of stochastic volatility and time-varying regression

coefficients. The section then discusses how our approach relates to others in the literature.

The section concludes by detailing the indicators used in the models and the priors and

algorithms used in estimation.

3Chui, et al. (2011) also develop a mixed frequency BVAR. In addition, Ghysels (2012) and Foroni

and Marcellino (2012) analyze structural mixed frequency VAR models, showing that higher frequency

information can be helpful also in this context.
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3.1 (BMF) Model with constant volatility

Starting with our specifications that treat the error variance of the model as constant over

time, we consider nowcasting the quarterly growth rate of GDP in month m of the current

quarter based on the regression:

yt = X ′m,tβm + vm,t, vm,t ∼ i.i.d.N(0, σ2m), (1)

where the vector Xm,t contains the available predictors at the time the forecast is formed,

t is measured in quarters, and m indicates a month (as detailed below).

The specification of the regressor vector Xm,t is partly a function of the way we sample

the monthly variables. For each monthly variable, we first transform it at the monthly

frequency as necessary to achieve stationarity. At the quarterly frequency, for each monthly

variable, we then define three different variables, by sampling the monthly series separately

for each month of the quarter.

Exactly what variables are included in Xm,t also depends on when in the quarter the

forecast is formed. We consider four different timings for forecasting period t GDP growth:

forecasting at the end of the first week of month 1 of quarter t (m = 1), at the end of the

first week of month 2 of quarter t (m = 2), at the end of the first week of month 3 (m = 3),

and at the end of the first week of month 1 of quarter t + 1 (m = 4). These points in

time are chosen to correspond to the usual timing of the publication of employment data:

employment data for month s are normally published at the end of the first week of month

s+1. At these points in time, the availability of other indicators varies across indicators. As

a consequence, the model specification periodically changes in each month of the quarter,

and this also takes care of the ragged edge of the data.

At each of the four forecast origins we consider for each quarter t, the regressor set

Xm,t is specified to include the subset of variables available for t (details provided below).

It is in this sense that our proposed approach is very much in the spirit of direct multi-

step forecasting. Under a direct approach, for forecasting some variable in the future as of

period t, one puts on the right hand side of the regression model the variables available in

period t. Our model is similar in that we define the set of explanatory variables at each

moment in time to consist only of the variables for which period t observations are available.

We should stress that this approach does not involve bridging methods. Bridging methods
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require forecasting monthly observations of monthly variables for any months of quarter t for

which data are not yet available. We do not use such forecasts. Rather, we only put on the

right hand side of the regression model the actual monthly observations that are available

for the quarter, in the form of different quarterly variables associated with the different

months of the quarter. In this sense, what we do is similar to the blocking approach in the

engineering literature, see, e.g., Chen, et al. (2012).

Our nowcasting models of the form of the above equation (1) also include a constant

and one lag of GDP growth. In most cases, this means the models include GDP growth in

period t − 1. However, in the case of models for forecasting at the end of the first week of

month 1 of quarter t, the value of GDP growth in period t − 1 is not actually available in

real time. In this case, the model includes GDP growth in period t − 2. This is consistent

with our general direct multi-step specification of the forecasting models. Finally, while

the preceding discussion has focused on current quarter values of the monthly variables, for

most of the models we also consider versions in which the period t − 1 (previous quarter)

values of every variable is included as a predictor.

The largest model we consider includes over 50 explanatory variables in Xm,t (reflecting

9 different monthly indicators in this largest model, 2-3 quarterly series (corresponding to

different months of the quarter) for each of them, and both current and one period lagged

values of the quarterly variables). Accordingly, with simple OLS estimation, parameter esti-

mation error would have large adverse effects on forecast accuracy. Our Bayesian approach

to estimation incorporates shrinkage to help limit the effects of parameter estimation error

on forecast accuracy. We ran some checks with some of our basic models to verify the im-

portance of this shrinkage to nowcast accuracy. These checks showed that models without

shrinkage yielded RMSEs 14 to 26 percent higher and average log scores 9 to 21 percent

lower than the same models estimated with shrinkage (specifically, with the prior settings

described below).4

4More specifically, in these checks we compared the results for our specifications with just coincident

indicators against results for the same models estimated with extremely loose (essentially OLS-replicating)

priors on the regression coefficients, using λ1 = λ2 = 1000.
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3.2 (BMF-SV) Model with stochastic volatility

In the stochastic volatility (SV) case, our proposed forecasting model takes the form

yt = X ′m,tβm + vm,t

vm,t = λ0.5m,tεm,t, εm,t ∼ i.i.d.N(0, 1) (2)

log(λm,t) = log(λm,t−1) + νm,t, νm,t ∼ i.i.d.N(0, φm),

with m = 1, 2, 3, 4. Following the approach pioneered in Cogley and Sargent (2005) and

Primiceri (2005), the log of the conditional variance of the error term in equation (2) follows

a random walk process. In a vector autoregressive context, studies such as Clark (2011),

Carriero, Clark, and Marcellino (2012), and D’Agostino, Gambetti, and Giannone (2012)

have found that this type of stochastic volatility formulation improves the accuracy of both

point and density forecasts. Apart from the modification of the volatility process, the model

takes the same form given in the preceding subsection, in terms of timing and variables

included in Xm,t.
5

3.3 (BMF-TVP and BMF-TVP-SV) Models with time-varying parame-

ters

Some previous forecasting analyses (e.g., Rodriguez and Puggioni (2010) and D’Agostino,

Gambetti, and Giannone (2012)) have found time-varying parameters (TVP) to improve

forecast accuracy. One of the advantages of our BMF and BMF-SV models is that they

can be readily extended to allow the regression coefficient vector βm to be time varying. In

these cases, the coefficient vector becomes βm,t, which follows a random walk process:

βm,t = βm,t−1 + nm,t, nm,t ∼ i.i.d.N(0, Qm).

We consider below the efficacy of TVP for nowcasting using a few of our available variable

combinations.

3.4 Relationship of our BMF approach to other nowcasting approaches

As noted in the introduction, our proposed modeling approach falls in the ‘partial models’

set. It is most similar to the univariate UMIDAS method of Foroni, et al. (2011). Relative to

5We have also considered a stationary specification for the evolution of log volatility, an AR(1) model

with a coefficient of 0.9. Overall, this model performed worse than the random walk specification.
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other partial model approaches, the innovations in our approach include the use of Bayesian

shrinkage, the allowance for time variation in coefficients, and the inclusion of stochastic

volatility. Bayesian shrinkage permits us to include a potentially large set of indicators,

which some evidence (e.g., De Mol, Giannone, and Reichlin (2008)) suggests should permit

our model to achieve forecast accuracy comparable to factor models (full system methods).

The use of direct-type estimation means we do not need to model explicitly the conditioning

variables. Moreover, with the univariate forecasting equation of our approach, we are able to

allow for stochastic volatility and time-varying regression coefficients, two possibly important

features to improve the nowcasting performance, particularly for density forecasting, mostly

neglected so far in this literature. Accordingly, while we recognize the merits of full-system

factor model methods emphasized in Banbura, Giannone, Modugno, and Reichlin (2012), our

proposed approach offers simplicity, avoids the need for modeling of conditioning variables,

and makes time-varying parameters and stochastic volatility easily tractable.

3.5 Indicators used in BMF and BMF-SV models

In applying our proposed models to nowcasting GDP growth, we consider various combi-

nations of monthly indicators, using coincident, leading, and financial indicators. We chose

these particular indicators to be broadly representative of major economic and financial

indicators, with some eye to timeliness.

The monthly indicators we use are as follows (Section 5 will provide data details):

• Coincident: payroll employment (∆ log); industrial production (∆ log); real retail

sales (∆ log); housing starts (log); and the ISM index (overall) for manufacturing.

• Leading: the ISM index for supplier delivery times; the ISM index for orders; aver-

age weekly hours of production and supervisory workers (∆ log); and new claims for

unemployment insurance.

• Financial: stock prices as measured by the S&P 500 index (∆ log); the 10-year Trea-

sury bond yield; and the 3-month Treasury bill rate.

Table 1 details the model specifications (and variable timing) we use, based on the usual

publication schedules of the indicators.
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We did not engage in a broad search for best indicators or endeavor to make comparisons

of these indicators to others found to work well in some studies. Of course, there are a range

of others that could be worth considering. For example, if one were producing forecasts in

the middle of the month (rather than early in the month as we do), the Federal Reserve

Bank of Philadelphia’s business survey would be worth considering (as in such studies as

Giannone, Reichlin, and Small (2008)).6 Moreover, in future research, it might also be worth

considering indicators reported at a weekly or daily frequency. While our method can easily

handle these higher frequencies, we focus our application on monthly indicators, in light

of the finding by Banbura, et al. (2012) that higher frequency information does not seem

to be especially useful for nowcasting U.S. GDP growth (except perhaps in a continuous

monitoring context).

3.6 Priors

We estimate the models with constant volatility using a normal-diffuse prior. As detailed

in sources such as Kadiyala and Karlsson (1997), this prior combines a normal distribution

for the prior on the regression coefficients with a diffuse prior on the error variance of

the regression. For the models with stochastic volatility, we use independent priors for the

coefficients (normal distribution) and volatility components (details below). Since the choice

of the prior is not dependent on m, in spelling out the prior we drop the index m from the

model parameters for notational simplicity.

In all cases, for the coefficient vector β, we use a prior distribution that is normal, with

mean 0 (for all coefficients) and variance that takes a diagonal, Minnesota-style form. The

prior variance is Minnesota style in the sense that shrinkage increases with the lag (with

the quarter, not with the month within the quarter), and in the sense that we impose more

shrinkage on the monthly predictors than on lags of GDP growth (for the basic coincident

indicator model, loosening up the cross-variable shrinkage didn’t improve results). The

shrinkage is controlled by three hyperparameters (in all cases, a smaller number means more

shrinkage): λ1, which controls the overall rate of shrinkage; λ2, which controls the rate of

shrinkage on variables relative to GDP; and λ3, which determines the rate of shrinkage

6We ran a few checks (with our early-month model timing) to see if replacing the ISM with the Philadelphia

Fed’s business survey would improve forecast accuracy. Using the business survey yielded results either similar

to or not quite as good as those obtained with the ISM.
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associated with longer lags.

At each forecast origin, the prior standard deviation associated with the coefficient on

variable xi,j,t−l of Xm,t, where i denotes the indicator (employment, etc.), j denotes the

month within which the quarter at which the indicator has been sampled, and l denotes the

lag in quarters, is specified as follows:

sdi,j,t−l =
σGDP
σi,j

λ1λ2
lλ3

. (3)

For coefficients on lag l of GDP, the prior standard deviation is

sdl =
λ1
lλ3

. (4)

Finally, for the intercept, the prior is uninformative:

sdint = 1000σGDP . (5)

In setting these components of the prior, for σGDP and σi,j we use standard deviations from

AR(4) models for GDP growth and xi,j,t estimated with the available sample of data.

In all of our results, the hyperparameters are set at values that may be considered very

common in Minnesota-type priors (see, e.g., Litterman (1986)): λ1 = 0.2, λ2 = 0.2, and λ3 =

1. We have run some limited checks (for a few models) to see what hyperparameter settings

would be optimal in a real-time RMSE-minimizing sense. To simplify the optimization, we

focused on just λ2. In effect, the parameter λ1 can be seen as pinning down the rate of

shrinkage for the lags of GDP growth in the model, while, given λ1, λ2 pins down the rate

of shrinkage on the coefficients of the monthly indicators. Specifically, after simply fixing

λ1 at a conventional value of 0.2, we specified a wide grid of values for λ2, and generated

time series of forecasts for each corresponding model estimate (for a limited set of models).

We then looked at choosing λ2 in pseudo-real time to minimize the RMSE of past forecasts,

using 5- or 10-year windows. Using the model with both coincident and leading indicators

and both current quarter and past quarter values of the indicators in the model, at the

first evaluation point, in late 1989, the optimal λ2 was 0.2. As forecasting moves forward

in time, the optimal setting drifted up a bit and then down a bit, before ending the sample

at values as high as 1. For simplicity, in all of the results in the paper, we leave λ2 at 0.2

through all of our analysis. It is possible that the more computationally intensive approach

of optimizing shrinkage at each forecast origin could improve forecast accuracy, but in a
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VAR context, Carriero, Clark, and Marcellino (2011) find the payoff to optimization over

fixed, conventional shrinkage to be small.

In the prior for the volatility-related components of the model, our approach is similar to

that used in such studies as Clark (2011), Cogley and Sargent (2005), and Primiceri (2005).

For the prior on φ, we use a mean of 0.035 and 5 degrees of freedom. For the period 0 value

of volatility of each equation i, we use a prior of

µ
λ

= log λ̂0,OLS , Ωλ = 4. (6)

To obtain log λ̂0,OLS , we use a training sample of 40 observations preceding the estimation

sample to fit an AR(4) model to GDP growth.

Finally, in the model specifications that include time-varying parameters, rather than a

prior mean and variance on the constant coefficient vector, we need a mean and variance

for the period 0 value of the coefficient vector and a prior on the variance-covariance matrix

of innovations to coefficients. The mean and variance for the period 0 coefficient vector

are set to, respectively, the prior mean and four times the variance used in the constant

parameter case (described above). For the prior on Qm = var(nm,t), we follow Cogley and

Sargent (2005), among others, in using an inverse Wishart distribution. We set the degrees

of freedom at dim(Xm,t) + 1 and the scale matrix equal to (6.25 × 10−5) times the prior

variance matrix used in the constant parameter case.7

3.7 Estimation algorithms

The model with constant volatility is estimated with a Gibbs sampler, using the approach

for the Normal-diffuse prior and posterior detailed in such studies as Kadiyala and Karlsson

(1997). At any given forecast origin, estimation is quite fast, because the forecasting model

is a single equation.8

The model with stochastic volatility is estimated with a Metropolis-within-Gibbs algo-

rithm, used in such studies as Clark (2011) and Carriero, Clark, and Marcellino (2012). The

7We obtained very similar results with a somewhat tighter prior.
8Modifying the prior to make it normal-inverse gamma would permit the use of analytical formula for the

posterior mean and variance of the coefficient vector.
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posterior mean and variance of the coefficient vector are given by

µ̄β = Ω̄β

{
T∑
t=1

λ−1t Xm,tyt + Ω−1β µ
β

}
(7)

Ω̄−1β = Ω−1β +
T∑
t=1

λ−1t Xm,tX
′
m,t, (8)

where we again omit the m index from the parameters for notational simplicity.

For the models with TVP, we replace the step of the Gibbs sampler that draws the

coefficients from a conditional posterior that is normal with a step that uses the Kalman

filter and the backward smoothing and simulation algorithm of Durbin and Koopman (2002)

to draw time series of the vector of coefficients. Our approach to drawing the time series of

coefficients βm,t is the same as that described in sources such as Cogley and Sargent (2005),

except that we use the backward smoother of Durbin and Koopman (2002) instead of the

Carter and Kohn (1994) smoother. For these models, we also add a Gibbs sampler step to

draw Qm from an inverse Wishart distribution, as described in Cogley and Sargent (2005).

In all cases, we estimate the forecasting models with a recursive scheme: the estimation

sample expands as forecasting moves forward in time. For a subset of our models, we have

also examined forecast accuracy obtained with a rolling estimation scheme. In general, these

results showed a rolling approach to be dominated by the recursive approach used in the

paper. Given a model specification (in terms of variables and volatility), in most cases using

a recursive scheme yielded point and density forecasts more accurate than those obtained

using a rolling scheme. However, in the sample ending in 2008, for models with constant

volatility, using a rolling scheme for estimation tended to yield average scores modestly

higher than those obtained using a recursive scheme for estimation. Still, using stochastic

volatility yielded much larger gains in average scores.9

In all cases, we obtain forecast distributions by sampling as appropriate from the poste-

rior distribution. For example, in the case of the BMF-SV model and for a given horizon,

for each set of draws of parameters, we: (1) simulate volatility for the quarter being fore-

cast using the random walk structure of log volatility; (2) draw shocks to the variable with

9For the accuracy of density forecasts, one key to success is capturing in a timely way the fall in volatility

associated with the Great Moderation and the rise in volatility associated with the most recent severe

recession. For models treating volatility as constant, the rolling sample approach adapts more to the Great

Moderation than does a recursive sample approach. However, the rolling sample approach doesn’t adapt to

the Great Moderation or the crisis nearly as well as does stochastic volatility.
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variance equal to the draw of volatility; and (3) use the structure of the model to obtain

a draw of the future value (i.e., forecast) of the variable. We then form point forecasts as

means of the draws of simulated forecasts and density forecasts from the simulated distri-

bution of forecasts. Conditional on the model, the posterior distribution reflects all sources

of uncertainty (latent states, parameters, and shocks over forecast interval).

To conclude, note that, throughout the analysis, we will focus on current-quarter fore-

casts (corresponding to 1-step ahead forecasts for most of our models). Our method can

easily be extended to longer forecast horizons, and we have generated results for horizons

of 2 and 4 quarters ahead, but we found very little evidence of predictability at these longer

horizons, in line with the nowcasting literature.

4 Competing Nowcasts

We now detail some alternative nowcasts to which we compare those resulting from our BMF

and BMF-SV models. We include nowcasts generated by simple AR models, MIDAS-based

models, and surveys. AR models are typically tough benchmarks in forecast competitions.

MIDAS models are specifically designed to handle mixed frequency data. And survey-based

nowcasts pool many predictions, each based on timely information.

4.1 AR models

In our forecast evaluation, in light of evidence in other studies of the difficulty of beating

simple AR models for GDP growth, we include forecasts from AR(2) models. The models

take the same basic forms given in (1) and (2), with Xm,t defined to include just a constant

and two lags of GDP growth. In keeping with our real-time setup, we generate four different

AR-based forecasts of GDP growth in each quarter t, based on the data available in real

time as of the end of the first week of month 1 of quarter t, at the end of the first week of

month 2 of quarter t, at the end of the first week of month 3, and at the end of the first

week of month 1 of quarter t + 1. The models based on month 2, month 3, and month

1 of quarter t + 1 are all conventional AR(2) specifications relating GDP in quarter t to

GDP in quarters t− 1 and t− 2. For a given quarter, these model estimates and forecasts

differ only in that the GDP data available for estimation and forecasting will differ across

the months/data vintages. However, the specification of the model based on month 1 of
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quarter t differs, because GDP growth for period t− 1 is not yet available. In this case, the

model takes a direct multi-step form relating GDP in quarter t to GDP in quarters t − 2

and t − 3, and the forecast horizon is in effect 2 quarters, not 1 quarter. In all cases, in

light of prior evidence of the success of AR models estimated by least squares, we estimate

the AR models with extremely loose priors, so that our Bayesian estimates based on the

normal-diffuse prior effectively correspond to least squares estimates.

4.2 MIDAS

4.2.1 The basic MIDAS model

MIDAS models rely on current and lagged high frequency (monthly in our case) indicators

to forecast current and future quarterly GDP growth. To describe MIDAS models, we need

to introduce some additional notation. Specifically, we denote as before GDP growth as

yt, where t = 1, 2, 3, ..., T y is a quarterly time index and T y is the final quarter for which

GDP is available. GDP growth can be expressed also as a monthly variable with missing

values, so that GDP growth is observable only in tm = 3, 6, 9, ..., T ym where tm is the monthly

time index and T ym = 3T y. Therefore, what we want to obtain is the nowcast or forecast

of the economic activity h quarters ahead or, equivalently, hm = 3h months ahead. The

monthly stationary indicator is indicated by xtm , with tm = 1, 2, 3, ..., T xm, where T xm is the

final month for which the indicator is available. Usually monthly indicators are available

earlier during the quarter than the GDP release, so generally we condition the forecast on

the information available up to month T xm, which includes GDP information up to T y and

indicator observations up to T xm with T xm ≥ T
y
m = 3T y.

The MIDAS approach is based on direct forecasting, which requires the specification of

different models for different forecasting horizons. The forecast model for horizon h = hm/3

is:

yt+h = ytm+hm = β0 + β1b (Lm, θ)x
(3)
tm+w + εtm+hm , (9)

where ytm and xtm are, respectively, GDP growth and the monthly indicator, x
(3)
tm is the cor-

responding skip-sampled monthly indicator, w = T xm − T
y
m, and b (Lm, θ) is the exponential

Almon lag:

b (Lm, θ) =
K∑
k=0

c (k, θ)Lkm, c (k, θ) =
exp

(
θ1k + θ2k

2
)

K∑
k=0

exp (θ1k + θ2k2)

. (10)
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Note that the exponential Almon lag permits the introduction of substantial dynamics into

the model without parameter proliferation. In our BMF models parameter proliferation is

instead controlled at the estimation stage, by means of shrinkage.

We estimate the MIDAS model using nonlinear least squares (NLS) in a regression of

ytm on x
(3)
tm−k, yielding coefficients θ̂1, θ̂2, β̂0 and β̂1. Since the model is h−dependent, we

reestimate it for multi-step forecasts and when new information becomes available.

The forecast is given by:

ŷT y
m+hm|Tx = β̂0 + β̂1B

(
L1/m; θ̂

)
x
(3)
Tx
m
. (11)

As far as the specification is concerned, we use a large variety of initial parameter spec-

ifications, compute the residual sum of squares (RSS) from equation (9) and choose the

parameter set which gives the smallest residual sum of squares as initial values for the NLS

estimation. K in the exponential Almon lag function is fixed at 12, and the parameters are

restricted to θ1 < 5 and θ2 < 0.

4.2.2 The U-MIDAS model

The adoption of the exponential Almon lag polynomial b (Lm, θ) permits the use of many

lags of the high frequency indicator without increasing too much the number of parame-

ters. However, it also constrains the shape of the dynamic response of the low frequency

target variable, GDP growth for us, to the high frequency indicators. Therefore, when the

frequency mismatch is small, as in the case of monthly and quarterly variables, it can be

preferable to use an unrestricted polynomial. The resulting model is called unrestricted

MIDAS, or U-MIDAS, by Foroni, et al. (2012). Another advantage of U-MIDAS is that it

can be estimated by simple OLS.

4.2.3 Introducing an AR term

A natural extension of the basic MIDAS model is the introduction of an autoregressive term.

Including the AR dynamics is desirable but not straightforward. Ghysels et al. (2004) show

that the introduction of lagged dependent variables creates efficiency losses. Moreover, it

would result in the creation of seasonal patterns in the explanatory variables. Therefore, we

follow Clements and Galvao (2008) and introduce the AR dynamics as a common factor to
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rule out seasonal patterns. We estimate the AR-MIDAS, defined as:

ytm+hm = β0 + λytm + β1b (Lm, θ)
(

1− λLhmm
)
x
(3)
tm+w + εtm+hm , (12)

where the λ coefficient can be estimated together with the other coefficients by NLS. Even

in this case, we follow the procedure described for the MIDAS approach: first compute the

RSS from (12), choose the parameters that minimize it, and use them as initial values for

the NLS estimation.

An AR term can be also easily included in the U-MIDAS specification, where no addi-

tional complications arise and the model can be still estimated by OLS.

Since empirically we find that the use of an AR term improves the forecasting perfor-

mance of both MIDAS and U-MIDAS, we will always include it.

4.2.4 Dealing with multiple indicators

The extent of the nonlinearity of the MIDAS model increases substantially when more than

one indicator is included in the model. This is not an issue for the U-MIDAS specification,

but in this case the problem arises because of the increase in the number of parameters.

Hence, we will compute results for single indicator MIDAS and UMIDAS specifications, but

only report results for pooled forecasts constructed as simple averages of the forecasts based

on the coincident, leading, and financial groups of indicators, as specified above in section

4.1. This approach worked well according to Kuzin, Marcellino, and Schumacher (2012).

Detailed results for each indicator are available upon request.

4.3 Surveys

We also consider GDP growth nowcasts based on the Survey of Professional Forecasters

(SPF), available quarterly, and Blue Chip Consensus, available on a monthly basis, since

they are closely monitored by decision makers and typically perform quite well.

We should note that the forecasts from the nowcasting models, Blue Chip, and the SPF

reflect information sets that, in terms of timing, should be similar. In particular, the Blue

Chip (BC) survey is conducted a few days before publication on the 10th of each month. So

it should usually be the case that Blue Chip respondents have available the same information

each nowcasting model uses. For example, for month 2 of quarter t, we define the model
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to use information normally available at the end of the first week of the month, which will

include employment and the ISM for month 1 of the quarter. At the time of the Blue Chip

survey, that same information would normally be available to participating forecasters. In

the case of the SPF forecast, the mid-quarter timing of the survey means that the SPF

forecast should only be comparable to the Blue Chip and model forecasts made in month

2 of the quarter (while most comparable, the SPF forecast should normally reflect a little

more information than would be available to Blue Chip or the models).

5 Data

We focus on current-quarter forecasting of real GDP (or GNP for some of the sample) in

real time. Quarterly real-time data on GDP or GNP are taken from the Federal Reserve

Bank of Philadelphia’s Real-Time Data Set for Macroeconomists (RTDSM). For simplicity,

hereafter “GDP” refers to the output series, even though the measures are based on GNP

and a fixed weight deflator for much of the sample.

As indicated in section 3, to forecast GDP, we use a range of monthly variables: payroll

employment, industrial production, real retail sales (nominal deflated by the CPI), housing

starts, the ISM index (overall) for manufacturing, the ISM index for supplier delivery times,

the ISM index for orders, average weekly hours of production and supervisory workers, new

claims for unemployment insurance, stock prices as measured by the S&P 500 index, the

10-year Treasury bond yield, and the 3-month Treasury bill rate.

For the variables subject to significant revisions — payroll employment, industrial pro-

duction, retail sales, and housing starts — we use real-time data, obtained from the RTDSM

(employment, industrial production, and housing starts) or the Federal Reserve Bank of St.

Louis’ ALFRED database (retail sales). For the CPI, we use the 1967-base year CPI avail-

able from the BLS rather than a real-time series; Kozicki and Hoffman (2004) show that

the 1967 base year series is very similar to real-time CPI inflation. For the other variables,

subject to either small revisions or no revision, we simply use the currently available time

series, obtained from the Federal Reserve Board’s FAME database.

The full forecast evaluation period runs from 1985:Q1 through 2011:Q3 (using period t

to refer to a forecast for period t), which involves real-time data vintages from January 1985

through March 2012. For each forecast origin t starting in the first month of 1985:Q1, we
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use the real-time data vintage t to estimate the forecast models and construct forecasts of

GDP growth in the quarter.10 The starting point of the model estimation sample is always

1970:Q2, the soonest possible given data availability and lags allowed in models.

In light of the potential for the large surprises of the recent sharp recession to alter

results, we also report results for a sample ending in 2008:Q2, before the recession became

dramatic.

As discussed in such sources as Croushore (2006), Romer and Romer (2000), and Sims

(2002), evaluating the accuracy of real-time forecasts requires a difficult decision on what

to take as the actual data in calculating forecast errors. The GDP data available today

for, say, 1985, represent the best available estimates of output in 1985. However, output

as defined and measured today is quite different from output as defined and measured in

1970. For example, today we have available chain-weighted GDP; in the 1980s, output was

measured with fixed-weight GNP. Forecasters in 1985 could not have foreseen such changes

and the potential impact on measured output. Accordingly, we follow studies such as Clark

(2011), Faust and Wright (2009), and Romer and Romer (2000) and use the second available

estimates in the quarterly vintages of the RTDSM of GDP/GNP as actuals in evaluating

forecast accuracy.11

6 Results

This section presents results on the accuracy of point and density forecasts from our proposed

BMF and BMF-SV methods relative to the accuracy of forecasts from AR models, MIDAS

specifications, the Survey of Professional Forecasters (SPF), and Blue Chip. For the MIDAS,

SPF, and Blue Chip forecasts, our comparisons are limited to point forecasts. The section

first describes the metrics used and then provides the results. As noted in section 3, we

present results for both a full sample of 1985:Q1-2011:Q3 and a pre-crisis sample of 1985:Q1-

2008:Q2. The results for the TVP specifications are summarized in the final subsection, in

the interest of brevity and since, as we will see, SV is much more relevant than TVP, at

10In forming the dataset used to estimate the forecasting models at each point in time, we use the monthly

vintages of (quarterly) GDP available from the RTDSM, taking care to make sure the GDP time series used

in the regression is the one available at the time the forecast is being formed.
11We have also computed results using the first estimate of GDP and qualitatively there are no major

changes.
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least in our application. Results on overall model fit are provided in the appendix.

6.1 Metrics

To assess the accuracy of point forecasts, we use RMSEs. To facilitate presentation, we

report RMSEs for each nowcasting model, Blue Chip, and SPF relative to the AR model

with constant volatility. To provide a rough gauge of whether the differences in RMSEs are

statistically significantly, we use the Diebold and Mariano (1995)–West (1996) t-statistic for

equal MSE, applied to the forecast of each model relative to the benchmark.12

For comparing our proposed BMF and BMF-SV forecasts and MIDAS-based forecasts

to AR model forecasts, the overlap between each alternative model and the benchmark

could in principle complicate inference. Our models of interest do not strictly nest the AR

models, because the AR models include 2 lags of GDP growth while the nowcasting models

include just 1 lag of GDP growth. But it is possible that the models overlap, in the sense

that the true model could be an AR(1) specification. Clark and McCracken (2012) develop

forecast tests for potentially overlapping models. Based on forecast performance, it seems

unlikely that the AR model and nowcasting models overlap, so we proceed to treat them as

being non-nested. The results in West (1996) imply that we can test equal accuracy of point

forecasts from non-nested models by computing a simple t-test for equal MSE. Because some

of the differences in squared forecast errors have some serial correlation that appears to be of

an MA(1) form, we compute the t-statistics with a heteroskedasticity and auto-correlation

consistent (HAC) variance, using a rectangular kernel and bandwidth of 1.13 Computing

the t-statistics with the (data-dependent) pre-whitened quadratic spectral HAC estimator

of Andrews and Monahan (1992) yields very similar results.

The RMSE, while informative and commonly used for forecast comparisons, is based on

the point forecasts only and therefore ignores the rest of the forecast density. The overall

calibration of the density forecasts can be measured with log predictive density scores,

motivated and described in such sources as Geweke and Amisano (2010). At each forecast

origin, we compute the log predictive score using the real-time outcome and the probability

12In all cases, we abstract from the corrections to test statistics based on real time forecasts developed in

Clark and McCracken (2009), partly for simplicity and partly because the corrections proved not to be very

important in the application results of Clark and McCracken (2009).
13We also incorporate in the t-statistics the small-sample adjustment of Harvey, Leybourne, and Newbold

(1997).

20



density of the forecast. For all models, we compute the density using an empirical estimate

of the forecast density based on 5000 draws of forecasts, a non-parametric density estimator,

and a Gaussian kernel. To facilitate model comparisons, we report average log scores for

our BMF and BMF-SV models relative to a benchmark AR model with stochastic volatility

(AR-SV). To provide a rough gauge of the statistical significance of differences in average

log scores, we use the Amisano and Giacomini (2007) t-test of equal means, applied to the

log score for each model relative to the AR-SV model. We view the tests as a rough gauge

because, for forecasts from estimated models, the asymptotic validity of the Amisano and

Giacomini (2007) test requires that, as forecasting moves forward in time, the models be

estimated with a rolling, rather than expanding, sample of data. To allow for the potential of

some serial correlation in score differences, we compute the t-statistics with a HAC variance

estimate obtained with a rectangular kernel and bandwidth of 1 (using the pre-whitened

quadratic spectral estimator yields very similar results).

Some researchers have argued that the average cumulative ranked probability score

(CRPS) should be preferred to the average log predictive score, for being less sensitive

to outliers and for better recognizing forecasts that are reasonably close to, but not exactly

at, the outcome. Therefore, we have also computed CRPS results for all models, and make

them available upon request. Broadly, these CRPS results are similar to the average log

score results we report below, except that we get smaller differences in the pre-crisis sample

relative to the full sample.

As further checks on density forecast calibration, we also provide results on the accuracy

of interval forecasts and selected results for probability integral transforms (PITs). Moti-

vated in part by central bank interest in forecast confidence intervals and fan charts, recent

studies such as Giordani and Villani (2010) have used interval forecasts as a measure of

forecast accuracy for macroeconomic density forecasts. We compute results for 70 percent

interval forecasts, defined as the frequency with which real-time outcomes for GDP growth

fall inside 70 percent highest posterior density intervals estimated in real time for each

model. To provide a rough gauge of statistical significance, we include p-values for the null

of correct coverage (empirical = nominal rate of 70 percent), based on t-statistics computed

with a HAC variance estimate obtained with a rectangular kernel and bandwidth of 1. The

p-values provide only a rough gauge of significance in the sense that the theory underlying
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Christofferson’s (1998) test results abstracts from forecast model estimation — that is, pa-

rameter estimation error — while the forecasts for which we provide interval forecast results

are obtained from estimated models.

The probability integral transform (PIT) emphasized by Diebold, Tay, and Gunther

(1998) provides a more general indicator of the accuracy of density intervals than does an

interval forecast coverage rate. For an illustrative set of models, we provide PIT histograms,

obtained as decile counts of PIT transforms. For optimal density forecasts at the 1-step

horizon, the PIT series would be independent uniform (0,1) random variables. Accordingly,

the histograms would be flat. Studies such as Christoffersen and Mazzotta (2005), Clements

(2004) and Geweke and Amisano (2010) consider similar measures of density forecasts. To

provide some measure of the importance of departures from the iid uniform distribution, we

include in the histograms 90% intervals estimated under the binomial distribution (following

Diebold, Tay, and Gunther (1998)). These intervals are intended to be only a rough guide

to significance of departures from uniformity; more formal testing would require a joint test

(for all histogram bins) and addressing the possible effects of model parameter estimation

on the large-sample distributions of PITs.

6.2 Point forecasts

To assess the accuracy of point forecasts, Tables 2 and 3 provide RMSE comparisons of

our proposed BMF and BMF-SV nowcasting models, pooled MIDAS, Blue Chip, and the

SPF to forecasts from the AR model. To facilitate comparisons, the first row of each table

provides the RMSE of the AR model forecast; remaining rows provide the ratio of each

forecast’s RMSE relative to the AR model’s RMSE. A number less than 1 means a given

forecast is more accurate than the AR model. The numbers in parentheses are the p-values

of two-sided t-statistics for equal MSE.

Before discussing the results, we should note that the forecasts from the nowcasting

models, Blue Chip, and the SPF reflect information sets that, in terms of timing, should be

similar. In particular, the Blue Chip (BC) survey is conducted a few days before publication

on the 10th of each month. So it should usually be the case that Blue Chip respondents

have available the same information each nowcasting model uses. For example, for month

2 of quarter t, we define the model to use information normally available at the end of

22



the first week of the month, which will include employment and the ISM for month 1 of

the quarter. At the time of the Blue Chip survey, that same information would normally

be available to participating forecasters. In the case of the SPF forecast, the mid-quarter

timing of the survey means that the SPF forecast should only be comparable to the Blue

Chip and model forecasts made in month 2 of the quarter (while most comparable, the SPF

forecast should normally reflect a little more information than would be available to Blue

Chip or the models).

We can draw five main conclusions from the RMSE results in Tables 2 and 3. First, as

might be expected, the accuracy of forecasts from the BMF and BMF-SV models improves

as more data on the quarter becomes available, and we move from month 1 to 2, 2 to

3, and 3 to month 1 of next quarter. The gains look a little bigger with the move from

month 2 to month 3 than from month 3 to month 1 of the next quarter. For example, in

the full sample, the RMSE level (not reported in the tables) for the model with coincident

indicators (0 lags, denoting current quarter indicators only) and stochastic volatility falls

from 1.873 in month 2 of quarter t to 1.668 in month 3 and to 1.521 in month 1 of quarter

t+ 1. As a consequence, the accuracy of the nowcasting models relative to the AR baseline

increases with the addition of more information on the quarter. In the case of the model

with coincident indicators (0 lags, denoting current quarter indicators only) and stochastic

volatility, the RMSE gain in the full sample results rises from about 6 percent in month 1 to

18 percent in month 3 and 25 percent in month 1 of the next quarter. The pooled MIDAS

and U-MIDAS forecasts based on either the coincident indicators or all the indicators are

comparable to the nowcasting models based on our proposed BMF approach. Somewhat

surprisingly, the Diebold-Mariano-West test doesn’t often imply the gains to be statistically

significant in the full sample, but it does imply more significance in the sample that ends

before the depths of the crisis.

Second, in the sample that ends in mid-2008 and thereby avoids the huge forecast errors

of the severe recession, our BMF and BMF-SV nowcasting models are often as accurate as

or even a bit more accurate (although not significantly so) than Blue Chip, particularly in

months 2 and 3 of quarter t. For example, the RMSE ratio of the model with coincident

indicators (0 lags, denoting current quarter indicators only) and stochastic volatility is 0.955

in month 1, 0.926 in month 2, and 0.852 in month 3, compared to corresponding ratios for
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Blue Chip of 0.963, 0.983, and 0.881. However, from month 3 of quarter t to month 1

of quarter t + 1, the Blue Chip forecasts improve in accuracy more so than do the model

forecasts. As a result, in month 1 of quarter t+ 1, the nowcasting models are generally less

accurate than Blue Chip, although not dramatically so in the case of the better models.

Continuing with the same example, the nowcasting model yields an RMSE ratio of 0.799 for

month 1 of quarter t + 1, compared to the Blue Chip forecast’s ratio of 0.737. The pooled

MIDAS and U-MIDAS forecasts are generally not as accurate as some of our better models,

except for month 1 of quarter t and although the differences in accuracy are small.

To shed some further light on the performance of the nowcasting models and Blue Chip

over time, Figure 1 compares actual quarterly GDP growth (annualized) to point forecasts

from Blue Chip and our BMF-SV nowcasting model with coincident indicators. The chart

makes clear the improvement in accuracy that occurs with the addition of more data on

the quarter — improvement that seems most noticeable around recessions (1990-91, 2001,

2007-2009). It also shows that, over some periods of time, the model is more accurate than

Blue Chip, while in others, Blue Chip is more accurate than the model. One period in

which Blue Chip fares better is the most recent recession, when Blue Chip did a better job

of picking up and projecting unprecedented declines in GDP growth.14

Accordingly, the third main conclusion from the RMSE results is that, in the full sample,

the nowcasting models are somewhat less accurate than Blue Chip, seemingly due in part to

relative performance in the depths of the crisis.15 The challenge of beating a survey forecast

with good nowcasting models is also evident in such studies as Banbura, et al. (2012), who

develop a mixed frequency factor model-based forecast that is comparable to, but not quite

as good, as SPF in forecasts for 1995-2010.

In light of the evidence in Chauvet and Potter (2012) that the advantage of some time

series models over an AR model baseline stems largely from periods of recession, not during

economic expansions (or normal times), we have checked the forecast performance of our

models during just economic expansions (dropping out observations falling during NBER

14In light of these patterns, we have tried using the SPF forecast, available for a longer historical time

series than our Blue Chip data, as an additional regressor in our model, with a prior that pushes the model

forecasts towards the SPF. However, the resulting model did not yield any major forecast gains.
15In unreported results, we computed t-tests of equal accuracy of the nowcasting model forecasts against

Blue Chip. According to these tests, for forecasts generated in months 1-3 of quarter t, the differences in the

accuracy of model forecasts and BC forecasts are modest enough that they are never statistically significant.
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recessions). During expansions, our nowcasting models also forecast more accurately than

the AR baseline. That said,in terms of RMSEs, the advantages of the nowcasting models over

the AR baseline are somewhat smaller when recessions are excluded than in the full sample.

(The expansion versus recession distinction is smaller in density forecast accuracy than in

point forecast accuracy.) Overall, the advantages of our models over an AR baseline may be

less affected by the expansion versus recession distinction than the models of Chauvet and

Potter (2012) were affected because our models exploit more within-the-quarter indicators

of economic activity.

Returning to the primary take-aways from our results, a fourth conclusion to draw from

Tables 2 and 3 is that including stochastic volatility in our proposed BMF nowcasting model

doesn’t have much payoff, or cost, in terms of the accuracy of point forecasts. Broadly, for a

given variable set included in a nowcasting model, BMF and BMF-SV yield similar RMSE

ratios, with the SV version sometimes a little better and other times a little worse.

Finally, no single nowcasting model — that is, no single set of predictors — jumps out

as best. Either coincident indicators by themselves or coincident indicators in combination

with financial indicators seem to work about as well as anything else, in the full sample.

By themselves, financial indicators do poorly in forecasting current-quarter GDP growth.

However, including financial indicators with coincident indicators helps the models (a little)

during the recent crisis.

The main message that we can take from the point forecast evaluation is that overall

our BMF method is comparable to other mixed frequency forecasting approaches and also

to survey forecasts, though the surveys performed a bit better during the crisis. However, a

major advantage of our approach is that it also easily delivers density forecasts, and, as we

will now see, in this context the stochastic volatility specification that we adopt becomes

quite relevant.

6.3 Density forecasts: average predictive scores

To assess the calibration of density forecasts, Tables 4 and 5 provide average log score com-

parisons of our BMF and BMF-SV nowcasting models, taking an AR model with stochastic

volatility as the benchmark (since previous research has shown stochastic volatility to im-

prove density accuracy of AR forecasts). Unfortunately, while the SPF includes some den-
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sity forecast information, it is not directly in a form that would easily permit computing log

scores for current-quarter forecasts of GDP growth. The Blue Chip survey doesn’t provide

any forecast density information. And, density forecasts for pooled MIDAS models have not

been derived yet. Accordingly, we focus our density evaluation on forecasts from the BMF

and BMF-SV models estimated with simulation methods. To facilitate comparisons, the

first row of each table provides the average log score of the AR-SV forecast; remaining rows

provide the score of each other model forecast less the benchmark score. Entries greater

than 0 mean a given density forecast is more accurate (has a higher score) than the AR-SV

baseline. The numbers in parentheses are the p-values of two-sided t-statistics for tests of

equality of average log scores.

The main findings are as follows. First, including stochastic volatility in a model con-

siderably improves its average log score. This is true for both the AR model and our BMF

nowcasting models. Consider, for example, the model with coincident indicators available

early in month 2 of quarter t. The constant volatility version of the model yields an average

score that is 15.1% below the AR-SV baseline, while the stochastic volatility version yields

a score that is 8.5% above the baseline.

To provide some intuition for the importance of allowing time-varying volatility, Figure

2 reports the estimates of stochastic volatility from an AR model and our BMF-SV now-

casting model that includes coincident and financial indicators (other nowcasting models

yield similar results), obtained from the full sample of data available in our last real-time

data vintage. The volatility plotted is λ0.5m,t from equation (2), m = 1, 2, 3, corresponding to

the standard deviation of shocks to GDP growth in each model. For the AR-SV model, we

report just the posterior median of λ0.5m,t; for the BMF-SV model, we report the posterior

median and the 70 percent credible set. The charts show that time-variation in volatility

is considerable for an AR model, reflecting the Great Moderation and a rise in volatility

during the recent recession. Including within-quarter monthly indicators tends to dampens

the swings in volatility, more so as more months of data within the quarter become available.

However, even with the BMF-SV nowcasting model, there continue to be sizable movements

in volatility.

The second main finding is that the average log scores of the BMF models improve as

more data becomes available for the quarter (i.e., scores are higher for models with 2 months
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of data than 1 month of data, etc.). As a consequence, some of the nowcasting models with

2 or 3 months of data on the quarter but constant volatility score better than the AR-SV

model. However, in the full sample, in only a couple of cases are these gains statistically

significant. Moreover, in the pre-crisis sample, nowcasting models with constant volatilities

have a harder time beating the AR-SV benchmark. In fact, in this shorter sample, none of

these nowcasting specifications are significantly better than the benchmark. However, most

of the BMF-SV models continue to beat the AR-SV benchmark.

Third, almost all of the BMF-SV models improve upon the average log score of the

baseline AR-SV specification. The gains increase as the nowcasting models get more months

of data. In most cases, the gains are statistically significantly, even in the case of month 1

of the quarter.

Finally, as in the case of point forecasts, it is hard to identify a best model. The

BMF-SV model with just coincident indicators and 1 lag of indicators (as well as current

quarter monthly indicators) might be considered best, or at least as good as any other. This

specification also performs well in the in-sample analysis and in point forecasting. Again,

by themselves, financial indicators are not very helpful for forecasting. They can help in

conjunction with coincident indicators.

6.4 Interval forecasts

As another measure of density forecast accuracy, we consider interval forecasts. For all of

our econometric models, Tables 6 and 7 provide coverage rates defined as the frequency with

which actual GDP growth falls within 70 percent forecast intervals, along with p-values for

the test that empirical coverage equals the 70 percent nominal rate. A number greater

(less) than 70 percent means that a given model yields posterior density intervals that are,

on average, too wide (too narrow).

The coverage rates in the tables are striking. Models with constant volatilities in all

cases yield coverage rates of about 90 percent, which are in all cases significantly different

from the nominal rate of 70 percent. Somewhat surprisingly, given the patterns in the score

results, coverage doesn’t show much tendency to get better with the addition of more data

(it does get a little better, but not much). This suggests the improvement in predictive

scores that occurs with the addition of months of data is due to improvement in the forecast
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mean. Regardless, models with stochastic volatility in almost all cases yield coverage rates

close enough to 70 percent that they are not statistically different from 70 percent.

To further highlight the importance of SV, in Figures 3 and 4 we report the real-time

70% interval forecasts from a BMF model based on coincident indicators, without (Figure

3) and with SV (Figure 4). Figure 3 confirms that coverage is pretty terrible for models

with constant volatilities. As of month 1 of the quarter, for a model with constant volatility,

the 70 percent bands are so wide that actual outcomes hardly ever fall outside the bands.

With more months of data, the bands narrow some, but it remains the case that actual

outcomes rarely fall outside the bands. As Figure 4 indicates, the same indicator model

with stochastic volatility yields much narrower bands, and therefore more outcomes that

fall outside the 70 percent bands.

6.5 Probability integral transforms (PITs)

As noted above, PITs can be seen as a generalization of coverage rates (across different

rates). In the interest of brevity, we provide in Figures 5 and 6 PITs histograms for just the

BMF and BMF-SV models that include coincident indicators, but other models (including

AR models) would yield a similar conclusion about the role of stochastic volatility. If the

forecasting models were properly specified, the PITs would be uniformly distributed, yielding

a completely flat histogram.

The PITs histograms yield results in line with the simple coverage comparison of the

previous subsection. As Figure 5 indicates, for models with constant volatilities, the PITs

have a distinct tent-type shape, which is consistent with forecast distributions that are

too dispersed. In the case of the BMF model with coincident indicators and constant

volatility, adding more data doesn’t seem to materially improve the shape of PITs. This

finding provides further evidence that, in the case of models with constant volatilities,

the improvement in predictive scores that occurs with the addition of months of data is

due to improvement in the forecast mean, not the shape of the distribution. Figure 6

shows that including stochastic volatility in the nowcasting model yields much flatter PITs

histograms. So by the PITs measure, too, including stochastic volatility materially improves

the calibration of density forecasts.
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6.6 Results for models with TVP

In the interest of brevity, we present just a basic set of results for versions of our models

allowing TVP. Specifically, for the 1985-2011 sample, Tables 8 and 9 provide RMSE and

average log score results, for BMF-TVP and BMV-TVP-SV specifications that include just

coincident indicators, just financial indicators, and just leading indicators. To facilitate the

evaluation of the effects of introducing TVP, we include in the table the results for the

corresponding models with constant parameters (repeating results provided in Tables 2 and

3). As in previous tables, we report ratios of RMSEs relative to the AR model benchmark

and scores relative to the score of the AR-SV benchmark.

At least in our application to nowcasting U.S. GDP growth, adding TVP to our BMF

and BMF-SV specifications doesn’t offer any consistent gains to the accuracy of point or

density forecasts. In most, although not all, cases, the RMSE ratio of each model with

TVP are a little higher than the RMSE ratio of the corresponding model with constant

coefficients. Consider, for example, the model with coincident indicators used to forecast in

month 3 of the quarter. With constant coefficients, the model yields a RMSE ratio of 0.823,

compared to a ratio of 0.874 for the same model with TVP. Similarly, in most (but not all)

cases, the score differentials of the models with TVP are lower than the score differentials of

the corresponding constant-coefficient models. Of course, we can’t rule out the possibility

that TVP might be more helpful in other applications, and one of the advantages of our

proposed modeling framework is that it readily permits the inclusion of TVP.

7 Conclusions

We have developed a Bayesian Mixed Frequency method for producing current-quarter fore-

casts of GDP growth with a (possibly large) range of available within-the-quarter monthly

observations of economic indicators, such as employment and industrial production, and

financial indicators, such as stock prices and interest rates.

In light of existing evidence of time variation in the variances of shocks to GDP, we

also consider versions of the model with stochastic volatility, while most of the existing

approaches assumed that the variance is constant. Similarly, we introduce models with

time-varying regression coefficients (with or without stochastic volatility), while the latter
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are treated as constant in most of the literature on mixed frequency models.

We use Bayesian methods to estimate the model, in order to facilitate providing shrinkage

on the (possibly large set of) model estimates and conveniently generate predictive densities.

Most prior nowcasting research has focused on the accuracy of point forecasts of GDP

growth. Instead, we consider both point and density forecasts.

Empirically, we provide results on the accuracy of nowcasts of real-time GDP growth in

the U.S. from 1985 through 2011. In terms of point forecasts, our proposal is comparable

to alternative econometric methods and survey forecasts, and yields further evidence on the

usefulness of intra-quarter information. Moreover, our approach provides reliable density

and interval forecasts, for which the stochastic volatility specification is quite useful. Instead,

parameter time variation yields no additional gains, at least in our application.

Our proposed approach could be extended in several directions, such as using higher

frequency information. It could be also applied to nowcast other relevant economic variables,

such as components of GDP, the inflation rate, or fiscal indicators. We leave these interesting

extensions for future research.
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8 Appendix

To assess more generally how the competing models fit the full sample of data, we follow

studies such as Geweke and Amisano (2010) in using 1-step ahead predictive likelihoods. The

predictive likelihood is closely related to the marginal likelihood: the marginal likelihood

can be expressed as the product of a sequence of 1-step ahead predictive likelihoods. In our

model setting, the predictive likelihood has the advantage of being simple to compute. For

model Mi, the log predictive likelihood is defined as

log PL(Mi) =
T∑
t=t0

log p(yot |y(t−1),Mi), (13)

where yot denotes the observed outcome for the data vector y in period t, y(t−1) denotes

the history of data up to period t − 1 (note that the model is estimated and the forecast

generated using only data up through t − 1), and p(·) denotes the predictive density.16 In

computing the predictive density, we use an empirical estimate of the forecast density based

on 5000 draws of forecasts, a non-parametric density estimator, and a Gaussian kernel. In

computing the log predictive likelihood, we sum the log values over the period 1985:Q1

through 2011:Q3 (or through 2008:Q2), computed with our real-time data vintages.

Appendix Tables 1 and 2 provide the sums of log predictive likelihoods for each model,

for the full sample and the pre-crisis sample, respectively. The first row gives the fit of the

AR model with stochastic volatility, taken as the baseline for model fit (as noted above, the

model fit for the AR models differs by month due to differences in data vintages and, for

the month 1 case, data availability). The remaining rows give the difference between the

likelihood of the indicated BMF or BMF-SV model and the baseline likelihood. A positive

number means the indicated model fits better than the baseline. In log terms, a difference

in likelihood of a few points corresponds to a large difference in model probabilities.

The following comments are worth making. First, stochastic volatility significantly im-

proves the fit of an AR model (by more than 26 log points). Second, stochastic volatility

also significantly improves the fit of all the BMF-SV nowcasting models relative to constant

volatility BMF counterparts. However, the gains to stochastic volatility are somewhat more

modest with the nowcasting models than the AR models. Third, in month 1 of the quarter,

16For the AR forecasting models based on the data available in the first month of the quarter, for which

in quarter t only data through t− 2 are available, the forecast horizon is actually 2 quarters.
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the nowcasting models have modest advantages over an AR model. The BMF nowcasting

models fit the data modestly better (by about 6-7 log points) than the AR model with con-

stant volatility. The BMF-SV nowcasting models fit the data somewhat better (4 to 14 log

points) than the AR model with SV. Fourth, the fit of each nowcasting model consistently

improves as more months of data become available, more so in moving from month 2 to 3

and from month 3 to month 1 of the next quarter than in moving from month 1 to month

2. Finally, the pre-crisis sample yields results similar to those for the full sample, with the

difference that advantages of the nowcasting models over the AR models are modestly larger

in the pre-crisis sample than the full sample. The best BMF-SV models are also similar

across samples and typically include the coincident indicators, possibly combined with the

financial indicators.

32



References

[1] Aastveit, K., Gerdrup, K., and Jore, A.S. (2011), Nowcasting GDP in Real-Time: A

Density Combination Approach, mimeo, Norges Bank.

[2] Amisano, G., and Giacomini, R. (2007), Comparing Density Forecasts via Weighted

Likelihood Ratio Tests, Journal of Business and Economic Statistics 25, 177-190.

[3] Andrews, D.W.K., and Monahan, J.C. (1992), An Improved Heteroskedasticity and

Autocorrelation Consistent Covariance Matrix Estimator, Econometrica 60, 953-966.

[4] Baffigi, A., Golinelli, R., and Parigi, G. (2004), Bridge Models to Forecast the Euro

Area GDP, International Journal of Forecasting 20, 447-460.

[5] Banbura, M., Giannone, D., and Reichlin, L. (2010), Large Bayesian Vector Autore-

gressions, Journal of Applied Econometrics 25, 71-92.

[6] Banbura, M., Giannone, D., and Reichlin, L. (2011), Nowcasting, in Oxford Handbook

on Economic Forecasting, Clements, M.P., and Hendry D.F. (eds). Oxford University

Press: Oxford.

[7] Banbura, M., Giannone, D., Modugno, M., and Reichlin, L. (2012), Nowcasting and

the Real Time Data Flow, in Handbook of Economic Forecasting, Elliott, G., and Tim-

mermann, A. (eds). Forthcoming.

[8] Bencivelli, L., Marcellino, M., and Moretti, G.L. (2012), Selecting predictors by

Bayesian model Averaging in Bridge Models, manuscript, Banca d’Italia.

[9] Camacho, M., Perez-Quiros, G. (2010), Introducing the EURO-STING: Short Term

INdicator of Euro Area Growth, Journal of Applied Econometrics 25, 663-694.

[10] Carriero, A., Kapetanios, G., and Marcellino M. (2011), Forecasting Large Datasets

with Bayesian Reduced Rank Multivariate Models, Journal of Applied Econometrics

26, 735-761.

[11] Carriero, A., Clark, T., and Marcellino, M. (2011), Bayesian VARs: Specification

choices and forecasting performance, CEPR WP 8273.

33



[12] Carriero, A., Clark, T., and Marcellino, M. (2012), Common Drifting Volatility in Large

Bayesian VARs, CEPR WP 8894.

[13] Carter, C.K., and Kohn, R. (1994), On Gibbs Sampling for State Space Models,

Biometrika 81, 541-553.

[14] Chauvet, M., and Potter, S. (2012), Forecasting Output, in Handbook of Economic

Forecasting, Elliott, G., and Timmermann, A. (eds). Forthcoming.

[15] Chen, W., Anderson, B.D., Deistler, M., and Filler, A. (2012), Properties of Blocked

Linear Systems, Automatica, 48, 2520-2525.

[16] Chiu, C.W., Eraker, B., Foerster, A.T., Kim, T.B., and Seoane, H.D. (2011), Estimat-

ing VARs Sampled at Mixed or Irregular Spaced Frequencies: A Bayesian Approach,

Federal Reserve Bank of Kansas City Research Working Paper 11-11.

[17] Christoffersen, P.F. (1998), Evaluating Interval Forecasts, International Economic Re-

view 39, 841-862.

[18] Christoffersen, P.F., and Mazzotta, S (2005), The Accuracy of Density Forecasts from

Foreign Exchange Options, Journal of Financial Econometrics 3, 578-605.

[19] Clark, T.E. (2011), Real-Time Density Forecasts from BVARs with Stochastic Volatil-

ity, Journal of Business and Economic Statistics 29, 327-341.

[20] Clark, T.E., and McCracken, M.W. (2009), Tests of Equal Predictive Ability With

Real-Time Data, Journal of Business and Economic Statistics 27, 441-454.

[21] Clark, T.E., and McCracken, M.W. (2012), Tests of Equal Forecast Accuracy for Over-

lapping Models, manuscript, Federal Reserve Bank of Cleveland.

[22] Clements, M.P. (2004), Evaluating the Bank of England Density Forecasts of Inflation,

Economic Journal 114, 844-866.

[23] Clements, M.P., and Galvao, A.B. (2008), Macroeconomic Forecasting with Mixed-

Frequency Data: Forecasting US Output Growth, Journal of Business and Economic

Statistics 26, 546-554.

34



[24] Cogley, T., and Sargent, T. (2005), Drifts and Volatilities: Monetary Policies and

Outcomes in the post-WWII US, Review of Economic Dynamics 8, 262-302.

[25] Croushore, D. (2006), Forecasting with Real-Time Macroeconomic Data, in Handbook

of Economic Forecasting, Elliott, G., Granger, C., and Timmermann, A. (eds). North

Holland: Amsterdam.

[26] Croushore, D., and Stark, T. (2001), A Real-Time Data Set for Macroeconomists,

Journal of Econometrics 105, 111-30.

[27] De Mol, C., Giannone, D., and Reichlin, L. (2008), Forecasting Using a Large Number

of Predictors: Is Bayesian Shrinkage a Valid Alternative to Principal Components?

Journal of Econometrics 146, 318-328.

[28] D’Agostino, A., Gambetti, L. and Giannone, D. (2012), Macroeconomic Forecasting

and Structural Change, Journal of Applied Econometrics, forthcoming.

[29] Diebold, F.X., and Mariano, R. (1995), Comparing Predictive Accuracy, Journal of

Business and Economic Statistics 13, 253-263.

[30] Diebold, F.X., Gunther, T.A., and Tay, A.S. (1998), Evaluating Density Forecasts with

Applications to Financial Risk Management, International Economic Review 39, 863-

883.

[31] Diron, M. (2008), Short-Term Forecasts Of Euro Area Real GDP Growth: An Assess-

ment Of Real-Time Performance Based On Vintage Data, Journal of Forecasting 27,

371-390.

[32] Durbin, J., and Koopman, S.J. (2002), A Simple and Efficient Simulation Smoother for

State Space Time Series Analysis, Biometrika 89, 603-615.

[33] Faust, J., and Wright, J. (2009), Comparing Greenbook and Reduced Form Forecasts

using a Large Realtime Dataset, Journal of Business and Economic Statistics 27, 468-

479.

[34] Faust, J., and Wright, J. (2012), Inflation Forecasting, in Handbook of Economic Fore-

casting, Elliott, G., and Timmermann, A. (eds). Forthcoming.

35



[35] Foroni, C., Ghysels, E., and Marcellino, M. (2012), Mixed-Frequency Vector Autore-

gressive Models, mimeo, EUI.

[36] Foroni, C., Marcellino, M., and Schumacher, C. (2012), U-MIDAS: MIDAS Regressions

with Unrestricted Lag Polynomials, CEPR Discussion Paper 8828.

[37] Foroni, C., and Marcellino, M. (2012), Mixed-Frequency Structural Models: Identifica-

tion, Estimation, and Policy Analysis, mimeo, EUI.

[38] Frale, C., Marcellino, M., Mazzi, G.L., and Proietti, T. (2011), EUROMIND: A

Monthly Indicator of the Euro Area Economic Conditions, Journal of the Royal Statis-

tical Society, Series A, 174, 439-470.

[39] Geweke, J., and Amisano, G. (2010), Comparing and Evaluating Bayesian Predictive

Distributions of Asset Returns, International Journal of Forecasting 26, 216-230.

[40] Ghysels, E., Santa-Clara, P., and Valkanov, R. (2004), The MIDAS Touch: MIxed

DAta Sampling Regression Models, mimeo, University of North Carolina.

[41] Ghysels, E. (2012), Macroeconomics and the Reality of Mixed Frequency Data,

manuscript, University of North Carolina.

[42] Giannone, D., Reichlin, R., and Small, D. (2008), Nowcasting GDP and Inflation:

The Real-Time Informational Content of Macroeconomic Data Releases, Journal of

Monetary Economics 55, 665-676.

[43] Giordani, P., and Villani, M. (2010), Forecasting Macroeconomic Time Series with

Locally Adaptive Signal Extraction, International Journal of Forecasting 26, 312-325.

[44] Guerin, P., and Marcellino, M. (2012), Markov Switching MIDAS Models, Journal of

Business and Economic Statistics, forthcoming.

[45] Jacquier, E., Polson, N., and Rossi, P. (1994), Bayesian Analysis of Stochastic Volatility

Models, Journal of Business and Economic Statistics 12, 371-418.

[46] Harvey, D., Leybourne, S. and Newbold, P. (1997), Testing the Equality of Prediction

Mean Squared Errors, International Journal of Forecasting 13, 281-291.

36



[47] Kadiyala, K., and Karlsson, S. (1997), Numerical Methods for Estimation and Inference

in Bayesian VAR-Models, Journal of Applied Econometrics 12, 99-132.

[48] Kozicki, S., and Hoffman, B. (2004), Rounding Error: A Distorting Influence on Index

Data, Journal of Money, Credit and Banking 36, 319-e38.

[49] Kuzin, V., Marcellino, M., and Schumacher, C. (2011), MIDAS vs. Mixed-Frequency

VAR: Nowcasting GDP in the Euro Area, International Journal of Forecasting 27,

529-542.

[50] Kuzin, V., Marcellino, M., and Schumacher, C. (2012), Pooling Versus Model Selection

for Nowcasting GDP with Many Predictors: Empirical Evidence for Six Industrialized

Countries, Journal of Applied Econometrics, forthcoming.

[51] Litterman, R. (1986), Forecasting with Bayesian Vector Autoregressions: Five Years of

Experience, Journal of Business and Economic Statistics 4, 25-38.

[52] Mariano, R., and Murasawa, Y. (2003), A New Coincident Index Of Business Cycles

Based on Monthly And Quarterly Series, Journal of Applied Econometrics 18, 427-443.

[53] Marcellino, M., Stock, J.H., and Watson, M.W. (2006), A Comparison of Direct and

Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series, Journal

of Econometrics 135, 499-526.

[54] Marcellino, M., and Schumacher, C. (2010), Factor-MIDAS for Now- and Forecasting

with Ragged-Edge Data: A Model Comparison for German GDP, Oxford Bulletin of

Economics and Statistics 72, 518-550.

[55] Marcellino, M., Porqueddu, M., and Venditti, F. (2012), Short-Term GDP Forecasting

with a Mixed Frequency Dynamic Factor Model with Stochastic Volatility, working

paper, Banca d’Italia.

[56] McCracken, M.W., and Sekhposyan, T. (2012), Real-Time Forecasting with a Large,

Mixed Frequency, Bayesian VAR, manuscript, Federal Reserve Bank of St. Louis.

[57] Primiceri, G. (2005), Time Varying Structural Vector Autoregressions and Monetary

Policy, Review of Economic Studies 72, 821-852.

37



[58] Rodriguez, A., and Puggioni, G. (2010), Mixed Frequency Models: Bayesian Ap-

proaches to Estimation and Prediction, International Journal of Forecasting 26, 293-

311.

[59] Romer, C., and Romer, D. (2000), Federal Reserve Information and the Behavior of

Interest Rates, American Economic Review 90, 429-457.

[60] Sims, C. (2002), The Role of Models and Probabilities in the Monetary Policy Process,

Brookings Papers on Economic Activity 2, 1-40.

[61] Song, D., and Schorfheide, F. (2012), Real-Time Density Forecasting with a Mixed

Frequency VAR, manuscript, University of Pennsylvania.

[62] Stock, J.H., and Watson, M.W. (1989), A Probability Model of the Coincident Eco-

nomic Indicators, in Leading Economic Indicators, Lahiri, K., and Moore, G.H. (eds).

Cambridge University Press: New York.

[63] Wallis, K. (1986), Forecasting with an Econometric Model: The ‘Ragged Edge’ Prob-

lem, Journal of Forecasting 5, 1-13.

[64] West, K.D. (1996), Asymptotic Inference about Predictive Ability, Econometrica 64,

1067-84,

[65] Zadrozny, P.A. (1988), Gaussian-Likelihood of Continuous-Time ARMAX Models when

Data are Stocks and Flows at Different Frequencies, Econometric Theory 4, 108-124.

38



Table	  1.	  	  Specifications	  of	  BMF	  models	  of	  GDP	  growth

month	  1 month	  2 month	  3 month	  1
model quarter	  t quarter	  t quarter	  t quarter	  t+1
1.	  AR two	  lags	  of	  GDP	  growth two	  lags	  of	  GDP	  growth two	  lags	  of	  GDP	  growth two	  lags	  of	  GDP	  growth

estimated	  up	  thru	  t-‐2 estimated	  up	  thru	  t-‐1 estimated	  up	  thru	  t-‐1 estimated	  up	  thru	  t-‐1

2.	  coinc.0lags GDP(t-‐2) GDP(t-‐1) GDP(t-‐1) GDP(t-‐1)
emp(months	  1-‐3	  of	  t-‐1) emp(month	  1	  of	  t) emp(months	  1-‐2	  of	  t) emp(months	  1-‐3	  of	  t)
ISM(months	  1-‐3	  of	  t-‐1) ISM(month	  1	  of	  t) ISM(months	  1-‐2	  of	  t) ISM(months	  1-‐3	  of	  t)
IP(months	  1-‐2	  of	  t-‐1) IP(month	  1	  of	  t) IP(months	  1-‐2	  of	  t)
RS(months	  1-‐2	  of	  t-‐1) RS(month	  1	  of	  t) RS(months	  1-‐2	  of	  t)
starts(months	  1-‐2	  of	  t-‐1) starts(month	  1	  of	  t) starts(months	  1-‐2	  of	  t)

3.	  coinc.1lag NA same	  as	  in	  (2),	  plus: same	  as	  in	  (2),	  plus: same	  as	  in	  (2),	  plus:
emp(months	  1-‐3	  of	  t-‐1) emp(months	  1-‐3	  of	  t-‐1) emp(months	  1-‐3	  of	  t-‐1)
ISM(months	  1-‐3	  of	  t-‐1) ISM(months	  1-‐3	  of	  t-‐1) ISM(months	  1-‐3	  of	  t-‐1)
IP(months	  1-‐3	  of	  t-‐1) IP(months	  1-‐3	  of	  t-‐1) IP(months	  1-‐3	  of	  t-‐1)
RS(months	  1-‐3	  of	  t-‐1) RS(months	  1-‐3	  of	  t-‐1) RS(months	  1-‐3	  of	  t-‐1)
starts(months	  1-‐3	  of	  t-‐1) starts(months	  1-‐3	  of	  t-‐1) starts(months	  1-‐3	  of	  t-‐1)

4.	  fin.0lags GDP(t-‐2) GDP(t-‐1) GDP(t-‐1) GDP(t-‐1)
stprice(months	  1-‐3	  of	  t-‐1) stprice(month	  1	  of	  t) stprice(months	  1-‐2	  of	  t) stprice(months	  1-‐3	  of	  t)
tbill(months	  1-‐3	  of	  t-‐1) tbill(month	  1	  of	  t) tbill(months	  1-‐2	  of	  t) tbill(months	  1-‐3	  of	  t)
tbond(months	  1-‐3	  of	  t-‐1) tbond(month	  1	  of	  t) tbond(months	  1-‐2	  of	  t) tbond(months	  1-‐3	  of	  t)

5.	  fin.1lag NA same	  as	  in	  (4),	  plus: same	  as	  in	  (4),	  plus: same	  as	  in	  (4),	  plus:
stprice(months	  1-‐3	  of	  t-‐1) stprice(months	  1-‐3	  of	  t-‐1) stprice(months	  1-‐3	  of	  t-‐1)
tbill(months	  1-‐3	  of	  t-‐1) tbill(months	  1-‐3	  of	  t-‐1) tbill(months	  1-‐3	  of	  t-‐1)
tbond(months	  1-‐3	  of	  t-‐1) tbond(months	  1-‐3	  of	  t-‐1) tbond(months	  1-‐3	  of	  t-‐1)

6.	  lead.0lags GDP(t-‐2) GDP(t-‐1) GDP(t-‐1) GDP(t-‐1)
supdel(months	  1-‐3	  of	  t-‐1) supdel(month	  1	  of	  t) supdel(months	  1-‐2	  of	  t) supdel(months	  1-‐3	  of	  t)
orders(months	  1-‐3	  of	  t-‐1) orders(month	  1	  of	  t) orders(months	  1-‐2	  of	  t) orders(months	  1-‐3	  of	  t)
hours(months	  1-‐3	  of	  t-‐1) hours(month	  1	  of	  t) hours(months	  1-‐2	  of	  t) hours(months	  1-‐3	  of	  t)
claims(months	  1-‐2	  of	  t-‐1) claims(month	  1	  of	  t) claims(months	  1-‐2	  of	  t)

7.	  lead.1lag NA same	  as	  in	  (6),	  plus: same	  as	  in	  (6),	  plus: same	  as	  in	  (6),	  plus:
supdel(months	  1-‐3	  of	  t-‐1) supdel(months	  1-‐3	  of	  t-‐1) supdel(months	  1-‐3	  of	  t-‐1)
orders(months	  1-‐3	  of	  t-‐1) orders(months	  1-‐3	  of	  t-‐1) orders(months	  1-‐3	  of	  t-‐1)
hours(months	  1-‐3	  of	  t-‐1) hours(months	  1-‐3	  of	  t-‐1) hours(months	  1-‐3	  of	  t-‐1)
claims(months	  1-‐3	  of	  t-‐1) claims(months	  1-‐3	  of	  t-‐1) claims(months	  1-‐3	  of	  t-‐1)

8.	  coinc.fin.0lags predictors	  of	  (2)	  and	  (4) predictors	  of	  (2)	  and	  (4) predictors	  of	  (2)	  and	  (4) predictors	  of	  (2)	  and	  (4)

9.	  coinc.fin.1lag predictors	  of	  (3)	  and	  (5) predictors	  of	  (3)	  and	  (5) predictors	  of	  (3)	  and	  (5) predictors	  of	  (3)	  and	  (5)

10.	  coinc.lead.0lags predictors	  of	  (2)	  and	  (6) predictors	  of	  (2)	  and	  (6) predictors	  of	  (2)	  and	  (6) predictors	  of	  (2)	  and	  (6)

11.	  coinc.lead.1lag predictors	  of	  (3)	  and	  (7) predictors	  of	  (3)	  and	  (7) predictors	  of	  (3)	  and	  (7) predictors	  of	  (3)	  and	  (7)

12.	  coinc.lead.fin.0lags predictors	  of	  (2),	  (4),	  and	  (6) predictors	  of	  (2),	  (4),	  and	  (6) predictors	  of	  (2),	  (4),	  and	  (6) predictors	  of	  (2),	  (4),	  and	  (6)

Notes:
1.	  	  All	  models	  include	  a	  constant.
2.	  	  Variables	  are	  defined	  as	  follows:	  	  employment	  (emp);	  ISM	  manufacturing	  index	  (ISM);	  industrial	  productdion	  (IP);	  retail	  sales	  (RS);	  housing	  starts	  (starts);
	  	  	  	  	  	  ISM	  index	  of	  supplier	  delivery	  times	  (supdel);	  ISM	  index	  of	  new	  orders	  (orders);	  average	  weekly	  hours	  worked	  (hours);	  new	  claims	  for	  unemployment
	  	  	  	  	  	  insurance	  (claims);	  S&P	  index	  of	  stock	  prices	  (stprice);	  3-‐month	  Treasury	  bill	  rate	  (tbill);	  and	  10-‐year	  Treasury	  bond	  (tbond).
3.	  	  The	  variable	  transformations	  are	  given	  in	  section	  3.

predictors	  in	  model	  for:



Table 2. RMSEs relative to AR benchmark, 1985:Q1-2011:Q3
(RMSE for AR, RMSE ratios for all others)

(p-values of equal MSEs in parentheses)

month 1 month 2 month 3 month 1
forecast qrtr. t qrtr. t qrtr. t qrtr. t + 1
ARbaseline 2.213 2.066 2.046 2.029
BC 0.831 (0.251) 0.845 (0.305) 0.757 (0.133) 0.622 (0.034)
SPF NA 0.803 (0.206) NA NA
ARbaseline.SV 0.999 (0.922) 1.007 (0.227) 1.007 (0.342) 1.010 (0.191)
coinc.0lags 0.932 (0.167) 0.916 (0.102) 0.823 (0.120) 0.770 (0.091)
coinc.1lag NA 0.877 (0.169) 0.805 (0.121) 0.743 (0.082)
coinc.fin.0lags 0.929 (0.071) 0.907 (0.093) 0.790 (0.116) 0.762 (0.120)
coinc.fin.1lag NA 0.838 (0.103) 0.771 (0.118) 0.741 (0.109)
coinc.lead.0lags 0.908 (0.164) 0.867 (0.124) 0.793 (0.154) 0.752 (0.122)
coinc.lead.1lag NA 0.836 (0.178) 0.784 (0.158) 0.738 (0.114)
coinc.lead.fin.0lags 0.932 (0.210) 0.872 (0.141) 0.800 (0.207) 0.770 (0.175)
fin.0lags 1.030 (0.451) 1.035 (0.326) 1.030 (0.353) 1.023 (0.456)
fin.1lag NA 1.031 (0.375) 1.027 (0.419) 1.018 (0.579)
lead.0lags 0.959 (0.156) 0.920 (0.102) 0.844 (0.111) 0.805 (0.120)
lead.1lag NA 0.905 (0.118) 0.837 (0.124) 0.799 (0.132)
coinc.0lags.SV 0.936 (0.248) 0.906 (0.098) 0.815 (0.108) 0.749 (0.071)
coinc.1lag.SV NA 0.874 (0.196) 0.791 (0.114) 0.716 (0.067)
coinc.fin.0lags.SV 0.900 (0.110) 0.888 (0.116) 0.806 (0.158) 0.758 (0.120)
coinc.fin.1lag.SV NA 0.844 (0.198) 0.783 (0.168) 0.744 (0.132)
coinc.lead.0lags.SV 0.902 (0.202) 0.868 (0.164) 0.807 (0.179) 0.753 (0.125)
coinc.lead.1lag.SV NA 0.857 (0.276) 0.793 (0.181) 0.746 (0.131)
coinc.lead.fin.0lags.SV 0.925 (0.350) 0.879 (0.234) 0.816 (0.246) 0.771 (0.173)
fin.0lags.SV 0.996 (0.863) 1.001 (0.946) 1.001 (0.950) 0.987 (0.632)
fin.1lag.SV NA 0.998 (0.947) 0.990 (0.743) 0.979 (0.571)
lead.0lags.SV 0.949 (0.130) 0.897 (0.083) 0.835 (0.135) 0.809 (0.157)
lead.1lag.SV NA 0.877 (0.117) 0.833 (0.164) 0.802 (0.171)
MIDAS, coinc. 0.855 (0.139) 0.864 (0.252) 0.783 (0.111) 0.728 (0.069)
MIDAS, lead 0.876 (0.103) 0.878 (0.157) 0.860 (0.154) 0.843 (0.130)
MIDAS, fin. 0.984 (0.682) 0.965 (0.469) 1.028 (0.365) 1.022 (0.412)
MIDAS, all 0.859 (0.053) 0.849 (0.100) 0.815 (0.054) 0.786 (0.050)
U-MIDAS, coinc. 0.883 (0.236) 0.862 (0.252) 0.787 (0.138) 0.723 (0.072)
U-MIDAS, lead 0.912 (0.271) 0.889 (0.221) 0.878 (0.217) 0.866 (0.194)
U-MIDAS, fin. 1.033 (0.324) 0.995 (0.878) 0.981 (0.639) 1.007 (0.831)
U-MIDAS, all 0.894 (0.113) 0.858 (0.113) 0.800 (0.070) 0.773 (0.044)

Notes: See Table 1 and sections 3 and 4 for the definition of the models. The equal forecast accuracy test is described in
section 6.1. The reported RMSEs reflect GDP growth defined in annualized percentage terms.
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Table 3. RMSEs relative to AR benchmark, 1985:Q1-2008:Q2
(RMSE for AR, RMSE ratios for all others)

(p-values of equal MSEs in parentheses)

month 1 month 2 month 3 month 1
forecast qrtr. t qrtr. t qrtr. t qrtr. t + 1
ARbaseline 1.820 1.758 1.745 1.733
BC 0.963 (0.665) 0.983 (0.824) 0.881 (0.123) 0.737 (0.001)
SPF NA 0.930 (0.331) NA NA
ARbaseline.SV 1.002 (0.829) 1.005 (0.498) 1.010 (0.312) 1.010 (0.309)
coinc.0lags 0.960 (0.050) 0.941 (0.015) 0.859 (0.018) 0.816 (0.005)
coinc.1lag NA 0.923 (0.025) 0.857 (0.021) 0.805 (0.003)
coinc.fin.0lags 0.942 (0.091) 0.918 (0.003) 0.848 (0.012) 0.836 (0.016)
coinc.fin.1lag NA 0.889 (0.003) 0.847 (0.021) 0.830 (0.015)
coinc.lead.0lags 0.954 (0.102) 0.914 (0.041) 0.869 (0.067) 0.841 (0.034)
coinc.lead.1lag NA 0.916 (0.099) 0.878 (0.101) 0.839 (0.030)
coinc.lead.fin.0lags 0.979 (0.567) 0.914 (0.024) 0.892 (0.144) 0.864 (0.062)
fin.0lags 1.001 (0.979) 1.022 (0.626) 1.026 (0.517) 1.022 (0.576)
fin.1lag NA 1.015 (0.740) 1.021 (0.619) 1.013 (0.766)
lead.0lags 0.994 (0.613) 0.953 (0.067) 0.913 (0.031) 0.896 (0.039)
lead.1lag NA 0.950 (0.069) 0.917 (0.061) 0.903 (0.072)
coinc.0lags.SV 0.955 (0.159) 0.926 (0.045) 0.852 (0.025) 0.799 (0.003)
coinc.1lag.SV NA 0.922 (0.105) 0.848 (0.028) 0.788 (0.002)
coinc.fin.0lags.SV 0.921 (0.048) 0.914 (0.028) 0.869 (0.065) 0.842 (0.029)
coinc.fin.1lag.SV NA 0.919 (0.184) 0.884 (0.126) 0.855 (0.057)
coinc.lead.0lags.SV 0.950 (0.257) 0.921 (0.143) 0.888 (0.144) 0.848 (0.046)
coinc.lead.1lag.SV NA 0.955 (0.504) 0.896 (0.175) 0.856 (0.078)
coinc.lead.fin.0lags.SV 1.000 (0.993) 0.941 (0.292) 0.914 (0.268) 0.870 (0.070)
fin.0lags.SV 0.992 (0.839) 1.016 (0.611) 1.024 (0.364) 1.014 (0.585)
fin.1lag.SV NA 1.015 (0.686) 1.014 (0.680) 1.008 (0.832)
lead.0lags.SV 0.980 (0.234) 0.933 (0.045) 0.913 (0.097) 0.912 (0.145)
lead.1lag.SV NA 0.930 (0.122) 0.927 (0.220) 0.921 (0.219)
MIDAS, coinc. 0.902 (0.139) 0.953 (0.252) 0.857 (0.111) 0.806 (0.069)
MIDAS, lead 0.919 (0.103) 0.919 (0.157) 0.915 (0.154) 0.898 (0.130)
MIDAS, fin. 1.009 (0.682) 1.003 (0.469) 1.028 (0.365) 1.044 (0.412)
MIDAS, all 0.889 (0.053) 0.905 (0.100) 0.864 (0.054) 0.844 (0.050)
U-MIDAS, coinc. 0.972 (0.236) 0.969 (0.252) 0.882 (0.138) 0.809 (0.072)
U-MIDAS, lead 0.977 (0.271) 0.940 (0.221) 0.936 (0.217) 0.925 (0.194)
U-MIDAS, fin. 1.044 (0.324) 1.029 (0.878) 1.004 (0.639) 1.021 (0.831)
U-MIDAS, all 0.943 (0.113) 0.921 (0.113) 0.865 (0.070) 0.831 (0.044)

Notes: See Table 1 and sections 3 and 4 for the definition of the models. The equal forecast accuracy test is described in
section 6.1. The reported RMSEs reflect GDP growth defined in annualized percentage terms.
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Table 4. Average log scores relative to AR-SV benchmark, 1985:Q1-2011:Q3
(Score for AR-SV, differences in scores for all others)

(p-values of equal mean scores in parentheses)

month 1 month 2 month 3 month 1
forecast qrtr. t qrtr. t qrtr. t qrtr. t + 1
ARbaseline.SV -2.210 -2.144 -2.134 -2.123
ARbaseline -0.245 (0.000) -0.258 (0.000) -0.264 (0.000) -0.269 (0.000)
coinc.0lags -0.177 (0.015) -0.151 (0.009) -0.007 (0.916) 0.045 (0.493)
coinc.1lag NA -0.108 (0.115) 0.019 (0.777) 0.081 (0.251)
coinc.fin.0lags -0.162 (0.012) -0.133 (0.026) 0.032 (0.670) 0.061 (0.404)
coinc.fin.1lag NA -0.062 (0.387) 0.067 (0.393) 0.100 (0.193)
coinc.lead.0lags -0.162 (0.032) -0.108 (0.114) 0.071 (0.373) 0.105 (0.181)
coinc.lead.1lag NA -0.032 (0.680) 0.104 (0.203) 0.139 (0.080)
coinc.lead.fin.0lags -0.145 (0.031) -0.091 (0.186) 0.070 (0.416) 0.094 (0.251)
fin.0lags -0.229 (0.000) -0.260 (0.000) -0.258 (0.000) -0.266 (0.000)
fin.1lag NA -0.252 (0.000) -0.241 (0.000) -0.242 (0.000)
lead.0lags -0.201 (0.003) -0.192 (0.002) -0.110 (0.112) -0.062 (0.374)
lead.1lag NA -0.168 (0.009) -0.076 (0.273) -0.022 (0.760)
coinc.0lags.SV 0.018 (0.558) 0.085 (0.010) 0.195 (0.002) 0.279 (0.000)
coinc.1lag.SV NA 0.137 (0.005) 0.221 (0.003) 0.315 (0.000)
coinc.fin.0lags.SV 0.102 (0.001) 0.106 (0.000) 0.205 (0.011) 0.247 (0.003)
coinc.fin.1lag.SV NA 0.193 (0.003) 0.208 (0.031) 0.262 (0.010)
coinc.lead.0lags.SV 0.098 (0.004) 0.126 (0.012) 0.201 (0.013) 0.271 (0.001)
coinc.lead.1lag.SV NA 0.137 (0.108) 0.152 (0.156) 0.077 (0.751)
coinc.lead.fin.0lags.SV 0.125 (0.002) 0.126 (0.017) 0.182 (0.065) 0.227 (0.020)
fin.0lags.SV 0.001 (0.973) -0.011 (0.651) -0.020 (0.523) -0.009 (0.815)
fin.1lag.SV NA -0.013 (0.657) -0.009 (0.788) -0.004 (0.918)
lead.0lags.SV 0.047 (0.036) 0.078 (0.019) 0.114 (0.018) 0.137 (0.017)
lead.1lag.SV NA 0.110 (0.008) 0.141 (0.010) 0.179 (0.009)

Notes: See Table 1 and sections 3 and 4 for the definition of the models. The average log score and the equal forecast
accuracy test are described in section 6.1. The reported scores reflect GDP growth defined in annualized percentage terms.
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Table 5. Average log scores relative to AR-SV benchmark, 1985:Q1-2008:Q2
(Score for AR-SV, differences in scores for all others)

(p-values of equal mean scores in parentheses)

month 1 month 2 month 3 month 1
forecast qrtr. t qrtr. t qrtr. t qrtr. t + 1
ARbaseline.SV -2.091 -2.049 -2.049 -2.047
ARbaseline -0.307 (0.000) -0.312 (0.000) -0.310 (0.000) -0.307 (0.000)
coinc.0lags -0.251 (0.000) -0.208 (0.000) -0.055 (0.275) -0.002 (0.962)
coinc.1lag NA -0.173 (0.000) -0.035 (0.492) 0.024 (0.646)
coinc.fin.0lags -0.226 (0.000) -0.188 (0.000) -0.029 (0.575) 0.002 (0.975)
coinc.fin.1lag NA -0.133 (0.010) -0.000 (0.997) 0.033 (0.514)
coinc.lead.0lags -0.243 (0.000) -0.177 (0.000) 0.009 (0.871) 0.042 (0.461)
coinc.lead.1lag NA -0.107 (0.037) 0.037 (0.508) 0.071 (0.198)
coinc.lead.fin.0lags -0.216 (0.000) -0.155 (0.002) 0.003 (0.959) 0.034 (0.535)
fin.0lags -0.273 (0.000) -0.304 (0.000) -0.298 (0.000) -0.300 (0.000)
fin.1lag NA -0.294 (0.000) -0.280 (0.000) -0.275 (0.000)
lead.0lags -0.274 (0.000) -0.256 (0.000) -0.182 (0.001) -0.133 (0.013)
lead.1lag NA -0.235 (0.000) -0.149 (0.004) -0.096 (0.070)
coinc.0lags.SV 0.028 (0.229) 0.079 (0.022) 0.178 (0.002) 0.259 (0.000)
coinc.1lag.SV NA 0.121 (0.003) 0.199 (0.003) 0.286 (0.000)
coinc.fin.0lags.SV 0.088 (0.002) 0.102 (0.001) 0.187 (0.003) 0.218 (0.001)
coinc.fin.1lag.SV NA 0.153 (0.001) 0.159 (0.044) 0.203 (0.023)
coinc.lead.0lags.SV 0.074 (0.010) 0.102 (0.034) 0.176 (0.007) 0.227 (0.001)
coinc.lead.1lag.SV NA 0.085 (0.255) 0.097 (0.322) -0.014 (0.959)
coinc.lead.fin.0lags.SV 0.086 (0.019) 0.103 (0.029) 0.150 (0.024) 0.182 (0.019)
fin.0lags.SV -0.008 (0.775) -0.018 (0.520) -0.012 (0.710) 0.010 (0.732)
fin.1lag.SV NA -0.022 (0.512) 0.003 (0.933) 0.012 (0.741)
lead.0lags.SV 0.031 (0.192) 0.056 (0.106) 0.076 (0.077) 0.086 (0.066)
lead.1lag.SV NA 0.077 (0.051) 0.096 (0.037) 0.113 (0.030)

Notes: See Table 1 and sections 3 and 4 for the definition of the models. The average log score and the equal forecast
accuracy test are described in section 6.1. The reported scores reflect GDP growth defined in annualized percentage terms.
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Table 6. Coverage rates, nominal 70%, 1985:Q1-2011:Q3
(p-values of correct coverage in parentheses)

month 1 month 2 month 3 month 1
forecast qrtr. t qrtr. t qrtr. t qrtr. t + 1
ARbaseline 0.925 (0.000) 0.944 (0.000) 0.944 (0.000) 0.944 (0.000)
ARbaseline.SV 0.720 (0.653) 0.692 (0.851) 0.720 (0.653) 0.729 (0.502)
coinc.0lags 0.925 (0.000) 0.935 (0.000) 0.925 (0.000) 0.916 (0.000)
coinc.1lag NA 0.916 (0.000) 0.907 (0.000) 0.897 (0.000)
coinc.fin.0lags 0.925 (0.000) 0.925 (0.000) 0.916 (0.000) 0.907 (0.000)
coinc.fin.1lag NA 0.935 (0.000) 0.907 (0.000) 0.879 (0.000)
coinc.lead.0lags 0.925 (0.000) 0.916 (0.000) 0.907 (0.000) 0.907 (0.000)
coinc.lead.1lag NA 0.916 (0.000) 0.860 (0.000) 0.897 (0.000)
coinc.lead.fin.0lags 0.925 (0.000) 0.925 (0.000) 0.869 (0.000) 0.897 (0.000)
fin.0lags 0.944 (0.000) 0.944 (0.000) 0.944 (0.000) 0.944 (0.000)
fin.1lag NA 0.935 (0.000) 0.944 (0.000) 0.935 (0.000)
lead.0lags 0.935 (0.000) 0.944 (0.000) 0.925 (0.000) 0.925 (0.000)
lead.1lag NA 0.944 (0.000) 0.935 (0.000) 0.916 (0.000)
coinc.0lags.SV 0.748 (0.259) 0.729 (0.502) 0.748 (0.259) 0.757 (0.171)
coinc.1lag.SV NA 0.757 (0.171) 0.701 (0.983) 0.701 (0.983)
coinc.fin.0lags.SV 0.729 (0.502) 0.729 (0.502) 0.729 (0.502) 0.729 (0.502)
coinc.fin.1lag.SV NA 0.664 (0.427) 0.636 (0.168) 0.645 (0.236)
coinc.lead.0lags.SV 0.757 (0.171) 0.701 (0.983) 0.710 (0.816) 0.710 (0.816)
coinc.lead.1lag.SV NA 0.654 (0.322) 0.579 (0.012) 0.589 (0.020)
coinc.lead.fin.0lags.SV 0.692 (0.851) 0.673 (0.552) 0.626 (0.116) 0.720 (0.653)
fin.0lags.SV 0.785 (0.033) 0.748 (0.259) 0.748 (0.259) 0.729 (0.502)
fin.1lag.SV NA 0.794 (0.016) 0.738 (0.369) 0.757 (0.171)
lead.0lags.SV 0.785 (0.033) 0.794 (0.016) 0.813 (0.003) 0.785 (0.033)
lead.1lag.SV NA 0.757 (0.171) 0.748 (0.259) 0.729 (0.502)

Notes: See Table 1 and sections 3 and 4 for the definition of the models. The coverage rate and the test of correct coverage
are described in section 6.1.
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Table 7. Coverage rates, nominal 70%, 1985:Q1-2008:Q2
(p-values of correct coverage in parentheses)

month 1 month 2 month 3 month 1
forecast qrtr. t qrtr. t qrtr. t qrtr. t + 1
ARbaseline 0.947 (0.000) 0.957 (0.000) 0.968 (0.000) 0.957 (0.000)
ARbaseline.SV 0.723 (0.614) 0.691 (0.859) 0.723 (0.614) 0.745 (0.323)
coinc.0lags 0.947 (0.000) 0.947 (0.000) 0.936 (0.000) 0.926 (0.000)
coinc.1lag NA 0.936 (0.000) 0.915 (0.000) 0.904 (0.000)
coinc.fin.0lags 0.957 (0.000) 0.947 (0.000) 0.926 (0.000) 0.915 (0.000)
coinc.fin.1lag NA 0.957 (0.000) 0.915 (0.000) 0.894 (0.000)
coinc.lead.0lags 0.947 (0.000) 0.947 (0.000) 0.915 (0.000) 0.915 (0.000)
coinc.lead.1lag NA 0.936 (0.000) 0.862 (0.000) 0.904 (0.000)
coinc.lead.fin.0lags 0.947 (0.000) 0.947 (0.000) 0.872 (0.000) 0.894 (0.000)
fin.0lags 0.968 (0.000) 0.968 (0.000) 0.968 (0.000) 0.968 (0.000)
fin.1lag NA 0.957 (0.000) 0.968 (0.000) 0.957 (0.000)
lead.0lags 0.947 (0.000) 0.957 (0.000) 0.957 (0.000) 0.957 (0.000)
lead.1lag NA 0.957 (0.000) 0.957 (0.000) 0.936 (0.000)
coinc.0lags.SV 0.777 (0.076) 0.745 (0.323) 0.745 (0.323) 0.755 (0.215)
coinc.1lag.SV NA 0.777 (0.076) 0.713 (0.786) 0.691 (0.859)
coinc.fin.0lags.SV 0.755 (0.215) 0.766 (0.133) 0.745 (0.323) 0.734 (0.457)
coinc.fin.1lag.SV NA 0.691 (0.859) 0.638 (0.216) 0.638 (0.216)
coinc.lead.0lags.SV 0.787 (0.040) 0.734 (0.457) 0.702 (0.964) 0.702 (0.964)
coinc.lead.1lag.SV NA 0.660 (0.411) 0.564 (0.008) 0.585 (0.025)
coinc.lead.fin.0lags.SV 0.691 (0.859) 0.702 (0.964) 0.638 (0.216) 0.713 (0.786)
fin.0lags.SV 0.787 (0.040) 0.755 (0.215) 0.755 (0.215) 0.734 (0.457)
fin.1lag.SV NA 0.809 (0.008) 0.745 (0.323) 0.777 (0.076)
lead.0lags.SV 0.809 (0.008) 0.819 (0.003) 0.830 (0.001) 0.798 (0.019)
lead.1lag.SV NA 0.787 (0.040) 0.766 (0.133) 0.734 (0.457)

Notes: See Table 1 and sections 3 and 4 for the definition of the models. The coverage rate and the test of correct coverage
are described in section 6.1.
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Table 8. RMSEs relative to AR benchmark, 1985:Q1-2011:Q3
BMF models with TVP
BMF models with TVP

month 1 month 2 month 3 month 1
forecast qrtr. t qrtr. t qrtr. t qrtr. t + 1
Models with constant coefficients
coinc.0lags 0.932 (0.167) 0.916(0.102) 0.823 (0.120) 0.770 (0.091)
fin.0lags 1.030 (0.451) 1.035(0.326) 1.030 (0.353) 1.023 (0.456)
lead.0lags 0.959 (0.156) 0.920(0.102) 0.844 (0.111) 0.805 (0.120)
coinc.0lags.SV 0.936 (0.248) 0.906(0.098) 0.815 (0.108) 0.749 (0.071)
fin.0lags.SV 0.996 (0.863) 1.001(0.946) 1.001 (0.950) 0.987 (0.632)
lead.0lags.SV 0.949 (0.130) 0.897(0.083) 0.835 (0.135) 0.809 (0.157)
Models with TVP
TVP.coinc.0lags 0.925 (0.493) 0.950(0.601) 0.874 (0.264) 0.831 (0.157)
TVP.fin.0lags 1.036 (0.227) 1.021(0.483) 1.016 (0.656) 1.009 (0.827)
TVP.lead.0lags 0.934 (0.341) 0.915(0.435) 0.909 (0.533) 0.882 (0.439)
TVP.coinc.0lags.SV 0.963 (0.712) 0.916(0.374) 0.882 (0.286) 0.835 (0.164)
TVP.fin.0lags.SV 1.010 (0.783) 1.029(0.352) 1.035 (0.366) 1.012 (0.772)
TVP.lead.0lags.SV 1.020 (0.793) 0.941(0.540) 0.945 (0.679) 0.891 (0.449)

Notes: See Table 1 and sections 3 and 4 for the definition of the models. The equal forecast accuracy test is described in
section 6.1. The reported RMSEs reflect GDP growth defined in annualized percentage terms.
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Table 9. Average log scores relative to AR-SV benchmark, 1985:Q1-2011:Q3
BMF models with TVP

(p-values of equal mean scores in parentheses)

month 1 month 2 month 3 month 1
forecast qrtr. t qrtr. t qrtr. t qrtr. t + 1
Models with constant coefficients
coinc.0lags -0.177 (0.015) -0.151(0.009) -0.007 (0.916) 0.045 (0.493)
fin.0lags -0.229 (0.000) -0.260(0.000) -0.258 (0.000) -0.266 (0.000)
lead.0lags -0.201 (0.003) -0.192(0.002) -0.110 (0.112) -0.062 (0.374)
coinc.0lags.SV 0.018 (0.558) 0.085(0.010) 0.195 (0.002) 0.279 (0.000)
fin.0lags.SV 0.001 (0.973) -0.011(0.651) -0.020 (0.523) -0.009 (0.815)
lead.0lags.SV 0.047 (0.036) 0.078(0.019) 0.114 (0.018) 0.137 (0.017)
Models with TVP
TVP.coinc.0lags -0.179 (0.058) -0.084(0.230) 0.017 (0.787) 0.039 (0.516)
TVP.fin.0lags -0.218 (0.000) -0.248(0.000) -0.242 (0.000) -0.239 (0.000)
TVP.lead.0lags -0.263 (0.003) -0.147(0.067) -0.118 (0.167) -0.147 (0.062)
TVP.coinc.0lags.SV 0.031 (0.638) 0.086(0.112) 0.116 (0.057) 0.154 (0.012)
TVP.fin.0lags.SV -0.012 (0.666) -0.026(0.311) -0.010 (0.737) 0.014 (0.678)
TVP.lead.0lags.SV -0.088 (0.177) 0.023(0.688) -0.016 (0.839) 0.001 (0.991)

Notes: See Table 1 and sections 3 and 4 for the definition of the models. The equal forecast accuracy test is described in
section 6.1. The reported RMSEs reflect GDP growth defined in annualized percentage terms.
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Appendix Table 1. Sums of log predictive likelihoods, 1985:Q1-2011:Q3
(Sum for AR-SV benchmark, difference in LPL in all others)

month 1 month 2 month 3 month 1
model qrtr. t qrtr. t qrtr. t qrtr. t + 1
ARbaseline -26.223 -27.629 -28.265 -28.810
ARbaseline.SV -236.461 -229.425 -228.348 -227.110
coinc.0lags -18.946 -16.201 -0.739 4.828
coinc.1lag NA -11.596 2.072 8.619
coinc.fin.0lags -17.292 -14.277 3.407 6.568
coinc.fin.1lag NA -6.681 7.160 10.688
coinc.lead.0lags -17.316 -11.522 7.587 11.183
coinc.lead.1lag NA -3.401 11.175 14.898
coinc.lead.fin.0lags -15.517 -9.743 7.514 10.090
fin.0lags -24.456 -27.819 -27.558 -28.446
fin.1lag NA -26.987 -25.782 -25.940
lead.0lags -21.541 -20.499 -11.760 -6.643
lead.1lag NA -18.018 -8.164 -2.352
coinc.0lags.SV 1.940 9.106 20.827 29.839
coinc.1lag.SV NA 14.674 23.605 33.699
coinc.fin.0lags.SV 10.928 11.349 21.885 26.473
coinc.fin.1lag.SV NA 20.629 22.275 28.057
coinc.lead.0lags.SV 10.492 13.436 21.538 29.000
coinc.lead.1lag.SV NA 14.621 16.317 8.212
coinc.lead.fin.0lags.SV 13.403 13.437 19.499 24.253
fin.0lags.SV 0.097 -1.192 -2.160 -0.986
fin.1lag.SV NA -1.439 -0.987 -0.459
lead.0lags.SV 5.070 8.392 12.240 14.697
lead.1lag.SV NA 11.742 15.085 19.129

Notes: See Table 1 for the definition of the models. SV indicates BMF specifications with stochastic volatility. The log
predictive likelihood is defined in section 6.1. The reported likelihoods reflect GDP growth defined in annualized percentage
terms.
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Appendix Table 2. Sums of log predictive likelihoods, 1985:Q1-2008:Q2
(Sum for AR-SV benchmark, difference in LPL in all others)

month 1 month 2 month 3 month 1
model qrtr. t qrtr. t qrtr. t qrtr. t + 1
ARbaseline -28.832 -29.353 -29.095 -28.903
ARbaseline.SV -196.511 -192.646 -192.606 -192.392
coinc.0lags -23.630 -19.544 -5.213 -0.230
coinc.1lag NA -16.292 -3.288 2.230
coinc.fin.0lags -21.254 -17.653 -2.724 0.151
coinc.fin.1lag NA -12.472 -0.021 3.104
coinc.lead.0lags -22.829 -16.675 0.857 3.916
coinc.lead.1lag NA -10.098 3.453 6.701
coinc.lead.fin.0lags -20.269 -14.523 0.272 3.176
fin.0lags -25.681 -28.589 -28.056 -28.208
fin.1lag NA -27.592 -26.360 -25.804
lead.0lags -25.775 -24.046 -17.136 -12.505
lead.1lag NA -22.124 -14.024 -9.069
coinc.0lags.SV 2.593 7.416 16.710 24.325
coinc.1lag.SV NA 11.402 18.668 26.872
coinc.fin.0lags.SV 8.270 9.560 17.549 20.504
coinc.fin.1lag.SV NA 14.369 14.912 19.107
coinc.lead.0lags.SV 6.984 9.587 16.536 21.374
coinc.lead.1lag.SV NA 8.001 9.151 -1.288
coinc.lead.fin.0lags.SV 8.120 9.681 14.114 17.107
fin.0lags.SV -0.778 -1.680 -1.085 0.909
fin.1lag.SV NA -2.037 0.265 1.097
lead.0lags.SV 2.914 5.242 7.132 8.128
lead.1lag.SV NA 7.268 9.042 10.591

Notes: See Table 1 for the definition of the models. SV indicates BMF specifications with stochastic volatility. The log
predictive likelihood is defined in section 6.1. The reported likelihoods reflect GDP growth defined in annualized percentage
terms.
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Point forecasts of GDP growth, 1985:Q1-2011:Q3
Model:  coinc.0lags.SV

Forecast made in month 1 of quarter t
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Figure 1: Real-time point forecasts from Blue Chip and BMF-SV model with coincident indicators
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Stochastic volatility estimates, AR.SV versus coinc.0lags.SV
(Posterior medians of standard deviation)
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Figure 2: Volatility (λ0.5
m,t of equation (3)) estimates from selected models, last vintage of data
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70% Interval forecasts of GDP growth, 1985:Q1-2011:Q3
Model:  coinc.0lags
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Figure 3: Real-time interval forecasts from BMF model with coincident indicators
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70% Interval forecasts of GDP growth, 1985:Q1-2011:Q3
Model:  coinc.0lags.SV
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Figure 4: Real-time interval forecasts from BMF-SV model with coincident indicators
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PITs for forecasts of GDP growth, 1985:Q1-2011:Q3
Model: coinc.0lags

Forecast made in month 1 of quarter t

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

Forecast made in month 2 of quarter t

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

Forecast made in month 3 of quarter t

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

Forecast made in month 1 of quarter t+1

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

Figure 5: PITs histograms, BMF model with coincident indicators
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PITs for forecasts of GDP growth, 1985:Q1-2011:Q3
Model: coinc.0lags.SV
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Figure 6: PITs histograms, BMF-SV model with coincident indicators
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