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1 Introduction

Models of uncertainty and learning have provided an important framework

for studying the rapid occupational mobility and early career wage growth

of younger workers. Two notable approaches have been developed in this

setting. The first, as illustrated in Miller (1984), is the occupational match-

ing model whose main emphasis is experimentation. In this model, workers

do not know how productive they are in different occupations. They spend

the early years of their career searching for their comparative advantage by

sorting across occupations. Important to this approach is that occupational

productivities are unrelated, so poorly matched workers can always do bet-

ter by changing occupations, while highly matched workers never change

occupations.1

A second approach, exemplified in Jovanovic and Nyarko (1997), forms

a different view of learning, which characterizes a stepping-stone model of

occupational mobility. Under this approach, occupations can be ordered

along an occupational ladder. Generally, occupational productivities are

assumed to be perfectly correlated, so as learning occurs in entry level oc-

cupations, successful performance propels workers to occupations on higher

rungs. This view emphasizes vertical mobility from low skill occupations to

high skill occupations, where poorly matched workers are likely to stay in

entry level jobs and highly productive workers are the most mobile.2

The goal of this paper is to develop and estimate a model of occupational

choice that incorporates these multiple dimensions of learning into a single

framework. The model nests both sorting as experimentation (as empha-

sized by Miller (1984)) and sorting through promotion (cf. Jovanovic and

Nyarko (1997)) and the relative strength of these effects will be estimated.

In this way, the worker’s optimal search strategy becomes an endogenous

1Empirical work that assumes independence of occupation specific productivities has
been conducted in McCall (1990), Neal (1999), and Pavan (2009). Independence of
matches is also a typical feature in industrial organization models of experience goods, for
example Ackerberg (2003) and Crawford and Shum (2005).

2Gibbons et al. (2005) use an IV approach to estimate a model of learning about abso-
lute advantage that resembles this framework. Early work in Shaw (1987) explores these
types of mobility patterns using proxies for the transferability of skills across occupations.
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feature of the model rather than imposed by assumption.

In the model, individual productivity in different occupations is arbitrar-

ily correlated, so information the worker receives about their productivity

in one occupation is informative about their productivity in other occupa-

tions. Agents learn by choosing their occupations optimally. Thus learning

will be multidimensional and the optimal search strategies are complex func-

tions of the unknown parameters of the model and the worker’s complete

history of information. This more general framework produces a very large

state space, which creates well known computational challenges for estimat-

ing dynamic discrete choice models. These issues are compounded by the

high-dimensional nature of the occupational choice set, imposing significant

computational costs.3

This paper overcomes these computational challenges by implementing a

new method for estimating correlated learning models. In addition to being

able to tractably estimate these complicated models, this approach has two

other advantages. First, it can be carried out with mild assumptions on the

learning process. While it is assumed that workers are Bayesian learners, the

formation of beliefs is incorporated in a flexible way that does not necessarily

require the econometrician to know the exact probability density function

in which beliefs are based on. The second benefit of the estimator is that it

easily accommodates a large choice set and state space, allowing for a finer

level of aggregation of occupations in estimation.

The model is estimated on a subsample of the 1997 cohort of the Na-

tional Longitudinal Survey of the Youth (NLSY97). Two main conclusions

are drawn from this analysis. First, for most occupations, by age 28 the

conditional mean of ability for those actually employed in that occupation

is higher than the unconditional mean. For example, the average Construc-

tion ability for those choosing Construction at age 28 is 6% higher than if

workers chose occupations randomly, all else equal. In many cases this sort-

ing is significant relative to other factors affecting wages. For example, the

3Papgeorgiou (2010) develops a model where abilities are transferable across occu-
pations but only allows two occupations in the empirical model citing computational
constraints.
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change in wages associated with workers sorting into occupations where they

have higher ability are comparable to the total increase in wages that would

occur if all workers were endowed with an additional year of education.

The second conclusion is that the empirical hazard of choosing an oc-

cupation does not always increase monotonically in ability. In many oc-

cupations the most productive workers are the most likely to leave these

occupations and move to Manager occupations. For example, entry level

Construction workers who transition to Manger occupations by age 28 are

on average 21% more productive Construction workers and 17% more pro-

ductive Managers compared to their cohort. On the extreme, some occupa-

tions are characterized by negative sorting, where high ability workers are

the most likely to change occupations and low ability workers are the most

likely to go to these occupations, causing the average ability in these occu-

pations to decrease over time. Food Service and Office and Administrative

Support occupations fall into this category for the population studied.

An important implication of the multidimensional selection underlying

the data is the direction of the bias that occurs when this selection is not

accounted for. The standard interpretation of ability bias is that OLS es-

timates will overstate the returns to occupational tenure. There is clear

evidence of this from a comparison of the estimated returns to occupation

tenure from the model with OLS estimates. For Sales occupations, the OLS

estimates of the return to Sales experience is 50% higher than the estimates

from the model. However, in cases where low ability workers search for

new occupations, this produces a negative bias in the across occupation

returns to experience. Although these workers will find better matches in

other occupations, they will on average be lower ability since past matches

are correlated with future matches. This negative selection masks the true

transferability of accumulated human capital across occupations. Correctly

accounting for this selection implies that skills may be more transferable

than previously thought.

A number of recent papers have aimed at estimating correlated learning

models in various contexts. The most closely related papers are those by

Antonovics and Golan (2011) and Sanders (2010) who estimate occupational
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choice models in a framework of skill uncertainty. In these models the econ-

omy consist of two skills, manual and cognitive, and occupations use these

skills at varying rates. These skills are assumed to be independent, but since

they are used in all occupations, occupational productivities are correlated.

Following Yamaguchi (2010) they derive the rate of skill use from the Dic-

tionary of Occupational Titles to calibrate the occupational productivity

correlation matrix. In this paper, the correlation matrix is estimated from

the structure of wages.

This paper is organized into seven main sections. Section 2 discusses

the theoretical correlated learning model. Section 3 details how the model

is incorporated into an empirical framework. Section 4 outlines estimation.

Section 5 describes the cohort of the NLSY97 that is used in the analysis

and provides descriptive statistics on the occupational choices of these young

workers. Section 6 presents the results from estimation, analyzing the role

of sorting on ability for mobility patterns observed in the data. Finally,

Section 7 concludes.

2 Model

This section outlines the theoretical dynamic learning model. Following the

endogenous human capital and occupational choice literature of Keane and

Wolpin (1997), an individual’s career is defined as a sequence of discrete

choices. In each period, individuals choose among J + 3 mutually exclusive

activities, including unemployment (home production), schooling, military,

or employment in one of J occupations. The first period corresponds to age

16 and each period t represents a full academic year (September to August).

Let dit = c indicate that agent i makes choice c in period t from the choice

set C = {u, s,m, 1, 2, · · · , J}, which follows the ordering above.

If an individual is employed in occupation j, they are paid their oc-

cupation specific productivity. Three components contribute to a workers

productivity in occupation j: accumulated human capital, innate productiv-

ity (ability) in occupation j, and a transitory productivity shock. Human

capital is accumulated through education and occupation specific experi-
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ence. Let sit indicate the individual’s highest grade of education completed

as of date t and xit(j) be their years of experience in occupation j. The

log-wage for worker i in occupation j in period t is defined as:

witj = sitθ
s
j + xitθ

x
j + µi(j) + ηitj (1)

The returns to education and experience are different for each occupa-

tion and are represented by θs
j and θx

j . µi(j) is the individual’s match in

occupation j and represents their innate ability, which persists over time.

The J × 1 vector µi is the individual’s complete set of innate productivities

for all occupations in the economy. Finally, η is a transitory shock to pro-

ductivity that is independent over time and normally distributed mean zero

with occupation specific variance (i.e. ηitj ∼ N (0, σ2
j )).

The fundamental aspect of the agent’s occupational choice decision is

that in the beginning of their career, they face uncertainty over their vector

of innate productivities, µi. Because this is a persistent component of future

wages, workers have an incentive early in their career to discover where their

comparative advantage lies. In order to discover this information, workers

search across occupations.

It is assumed that workers are only able to acquire information about

these matches through direct occupation specific experience. In each period

of employment in occupation j, the worker observes his wage. The wage

residual, once the part due to education and experience is removed, repre-

sents a noisy signal of their innate productivity, µi(j), denoted by zit(j).

That is, workers cannot separately distinguish between their unknown abil-

ity and the technology shock, η, only observing:

zit(j) = I[dit = j](witj − sitθ
s
j − xitθ

x
j )

Using these signals, workers are Bayesian updaters in the spirit of Miller

(1984) and Jovanovic (1979). Initial beliefs are distributed multivariate

normal with individual specific mean γi and precision matrix ∆, i.e. µi ∼
N (γi,∆) . Given the distribution of the technology shocks, workers know
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the distribution of the observed signals, zit(j) ∼ N (µi(j), σ
2
j ). Workers

formulate beliefs by applying Bayes’ rule to a multivariate normal prior and

normally distributed signals. Since the normal distribution is a conjugate

distribution, the posterior beliefs will be multivariate normal as well.

Let bit = Et[µi] be the worker’s expected value of their match vector

given information at date t. This is partially determined by xit, their vector

of experience, and zit, their average vector of signals defined as:

zit(j) =


1

xit(j)

t∑
t′=1

zit′(j) if xit(j) > 0

0 otherwise

In the multivariate normal case, Bayes’ rule can be written as:

bit = γi + ζ(xit,∆,Σ)[zit − γi] (2)

Where ζ(xit,∆,Σ) is weighting matrix defined as:4

ζ(xit,∆,Σ) = (∆−1 + diag(xit)Σ
−1)−1diag(xit)Σ

−1

This formulation demonstrates two intuitive aspects of the learning pro-

cess. First, beliefs are formed by the deviation of the average signal form the

initial prior. The amount and direction of the revision of beliefs is dictated

by the weighting matrix ζ. Second, and more important to the workers’

problem, is that even if a worker only has experience in one occupation, this

affects their beliefs in all occupations because the off-diagonal elements of ζ

are potentially non-zero.

Workers also update the precision of their beliefs. Similar to the mean,

the correlation of abilities implies that experience in each occupation will

affect the precision of beliefs in other occupations. Unlike the mean, the

4Σ is J × J diagonal matrix defined as,

Σ(j, j′) =

{
σ2
j if j = j′

0 if j 6= j′

}
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precision is only a function of the number of signals not the value of the sig-

nals. This covariance matrix is represented by δit = Et[µiµ
′
i]−Et[µi]Et[µi]′

where:

δit = (∆−1 + diag(xit)Σ
−1)−1

The optimal search strategy comes about as the solution to a dynamic

utility maximization problem, where agents make choices to maximize the

expected discounted sum of current and future utility. For each choice in

the current period, workers receive a flow of utility, udit, and if they choose

one of the occupations, they receive a signal of their occupation specific

productivity, zit(j). Although the signal has no affect on utility in the

current period, it has a large impact on future utility through the evolution

of beliefs. Workers may trade-off current period utility in exchange for higher

expected future utility if the information value of a signal in a particular

occupation is high enough.

Let Sit = {sit,xit, bit, δit, Xit} contain all exogenous and endogenous ele-

ments affecting the worker’s decision. All elements are defined above except

Xit, which represents additional observed factors that influence occupational

choices beyond those included in wages, (e.g. choices in previous periods).

The per-period utility function for each choice d ∈ {u, s,m, 1, · · · , J} is de-

fined as:

udit(Sit, εit) =


εit(d) , if dit = u

νd(Sit, αd) + εit(d) , if dit ∈ {s,m}
νd(Sit, αd) + E[witd|sit,xit, bit(d)] + εit(d) , if dit = 1, . . . , J

Where νd represents a general function defining the mean non-pecuniary

aspects of utility for choice d relative to the value of unemployment param-

eterized by αd. For the employment choices, workers also derive utility from

their expected occupation specific wage, which is a function of their beliefs

in the current period. Finally, ε is a contemporaneous vector of random

utility shocks revealed in period t, but not included in Sit.

Beliefs in the model evolve endogenously and stochastically. Conditional
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on choosing occupation j, the distribution of possible signals is given by

the first and second moments of their beliefs, bit and δit. Because workers

are forward looking, they not only consider how their choice affects their

information set next period but all future periods as well. Given a discount of

future utility β and taking expectations with respect to all possible sequences

of beliefs and future utility shocks, the maximal expected discounted present

value V is described by,

Vt(Sit, εit) = max
{dit′}Tt′=t

E


T∑
t′=t

βt
′−tudit′(Sit′ , εit′)

∣∣∣∣∣Sit, εit
 (3)

And VT+1 = 0 for a terminal period T .

With this expression for the value function, the optimal search strategy

in the current period is,

dit = argmax
d∈C

{
udit(Sit, εit) + βE[Vt+1(Sit+1, εit+1)|Sit, d]

}
(4)

3 Empirical Model

There are two central challenges for incorporating this model into an empiri-

cal framework. The first is that according to eq. (4), beliefs are an important

factor influencing occupational choices. Since these beliefs are not observed

directly, this creates a selection on unobservables problem. The second issue

is that including more than a few occupations results in an extremely large

state space. This makes it impossible to solve the dynamic programming

problem in eq. (3) necessary to form the choice probabilities for estimation.

The empirical strategy for dealing with the selection problem is to form

the likelihood of the observed data conditional on beliefs and then inte-

grate over the unobservables. This section is devoted to describing how the

workers’ dynamic search strategy is modeled in estimation. Rather than

explicitly solving for the optimal policy functions, these functions are ap-

proximated in a very flexible way and estimated from the data. This section

will first describe the likelihood function and then discuss how the reduced
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form policy functions are identified in this dynamic framework.

The model can be estimated with a panel of data on occupational choices

and wage outcomes. For each individual i = 1, 2, . . . , N , we observe two sets

of outcomes: their choices, di = {di1, di2, · · · , diTi} and if they are employed

their wages, wi = {wi1, wi2, · · · , wiTi}, where Ti denotes the number of pe-

riods individual i is in the sample. These outcomes are determined by both

observed and unobserved variables in the state vector, Sit, random utility

shocks, ε, occupation specific productivities, µ, and technology shocks, η.

Included in the state vector are the individual’s beliefs, which are un-

observed for several reasons. First we do not have consistent estimates of

the wage parameters to form the wage residuals that act as the individuals’

signals, zit(j). Second, we do not know their initial priors, γi, which deter-

mines if the signals are above or below their initial expectations. Finally,

we do not know the weighting matrix, ζ(∆,Σ) that they use to update their

beliefs and form expectations about future signals.

Taking these elements of beliefs as given and making an assumption on

the distribution of ε, we can form the choice probabilities as:

Pr(c|γi, θ, ζ(∆,Σ), α) =∫
ε

(
argmax
d∈C

{
udit(Sit, ε) + βE[Vt+1(Sit+1, εit+1)|Sit, d]

}
= c

)
dP (ε)

(5)

The likelihood of the observed choices is:

Lc(di|γi, θ, ζ(∆,Σ), α) =

Ti∏
t=1

∏
c∈C

Pr(c|γi, θ, ζ(∆,Σ), α)dit=c

Uncertainty in the wage equation is driven by the unobserved productiv-

ities, µ, and the unobserved technology shock, η. We have assumed that η

is normally distributed, so the probability of an observed wage conditional
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on µ has a closed form expression:

Pr(wit|θj , σj , µi(j))dit=j = 1√
2πσ2

j

exp

(
−

(wit − sitθ
s
j − xitθ

x
j − µi(j))2

2σ2
j

)dit=j

The likelihood of their joint observation of wages is:

Lw(wi|θ, σ, µi) =

Ti∏
t=1

J∏
j=1

Pr(wit|θj , σj , µi(j))dit=j

With these components, the integrated likelihood of the joint probability

of observed choices and wages follows:

Li =

∫
γ
Lc(di|γ, θ, ζ(∆,Σ), α)

∫
µ
Lw(wi|θ, σ, µ) f(µ|γ,∆) dµ dP (γ) (6)

Where f(µ|·) is the probability density function over a multivariate normal

distribution and dP (γ) is the integration over the distribution of unobserved

priors. The assumption that workers have rational expectations has several

implications for estimation. Not only is γ the econometric mean of wages,

but it is also the worker’s initial prior. Similarly, ∆ not only governs the

econometric distribution of µ, but it is also essential in how workers form

beliefs through ζ.

The rational expectations assumption delivers an important result. In-

stead of solving the dynamic programming problem in eq. (5), we could

approximate these choice probabilities with a reduced form policy function

of the observed and unobserved variables if we had consistent estimates of

θ, γ, ∆, and Σ. The rational expectations assumption implies that these

parameters are identified by other features of the data, specifically the static

wage equations. Jointly estimating wages and these policy functions and in-

tegrating over the unobservables correctly accounts for dynamic sorting and

yields consistent estimates of the policy functions and the other parameters

in the model. This quasi-structural approach is similar to Bernal and Keane
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(2010).

The quasi-structural approach has the clear advantage in that it does

not require the onerous task of solving the dynamic programming problem

of this very large state space problem nor impose the requisite assumptions

to formulate the dynamic problem. An additional benefit to this approach

is that it enables us to also relax some of the previous assumptions over

how workers form beliefs. Specifically, rather than parameterize the weight

matrix ζ in eq. (2) with ∆ and Σ, we can incorporate the belief updating

rules used by the workers non-parametrically. Let ζjj′,t′ be a parameter that

represents the worker’s revision of beliefs about their match in occupation

j given t′ signals of their match in occupation j′. Then beliefs can be

represented as:

bit(j) = γi(j) +

t∑
t′=1

J∑
j′=1

ζjj′,t′I[xit(j
′) = t′](zit(j

′)− γi(j′))

For the policy functions, what matters is how beliefs affect choices. Once

we include beliefs into the policy functions, the parameters ζjj′,t′ will be

absorbed into the parameters of the policy functions. Therefore, instead of

including beliefs as the state variables, we can account for their impact on

choices by directly including I[xit(j
′) = t′](zit(j

′) − γi(j
′)) for all t′ ∈ T

and all j′ ∈ J as state variables in the policy functions. Consequently,

identification of the policy functions is driven by the rational expectations

assumption on γ only and the assumption that the average signal in each

occupation is a sufficient statistic in the formation of beliefs. This adds more

flexibility to the model where workers can update beliefs in a way that is

unknown to the econometrician, but accounted for in estimation.

The policy functions are modeled as a universal logit, with all character-

istics entering all choice equations. The variables used in the approximation

are defined by X̃it(θ, γ), where the conditioning on θ and γ indicates that

this vector is dependent on other features of the model. These variables are
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enumerated in Appendix A. The policy functions are defined as:

Ω(c|X̃it(θ, γ)) =


1

1 +
∑

c′∈{s,m,1,...,J} exp(X̃itωc′)
if c = u

exp(X̃itωc)

1 +
∑

c′∈{s,m,1,...,J} exp(X̃itωc′)
if c = {s,m, 1, . . . , J}

Where Ω(c|·) ≈ Pr(c|·), unemployment is the omitted choice, and ω are the

policy function parameters.

Before discussing estimation, an important result of the productivity

wage assumption can be seen in eq. (6). If individuals have homogeneous

priors, then the log-likelihood in eq. (6) is additively separable in the choices

and wages.5 In this case, the wage parameters and the distributional param-

eters, γ and ∆, can all be consistently estimated ignoring the choice data

and more importantly without solving the dynamic programming problem

in eq. (3). While homogenous priors is not assumed in this paper, this result

demonstrates the theoretical economic assumptions in which the observed

outcome variables can be estimated as a correlated random effect, without

modeling choices.6

4 Estimation

To accommodate initial priors, γi is represented by a finite mixture distri-

bution over K types, with values, γk. In this way, initial priors are modeled

in the same way as unobserved heterogeneity in perfect information models

of occupational choice, e.g. Keane and Wolpin (1997). This level of hetero-

5The likelihood function becomes:

ln(Li) = ln(Lc(di|γ, θ, ζ(∆,Σ), α)) + ln

(∫
µ

Lw(wi|θ, σ, µ) f(µ|γ,∆) dµ

)
6Such a model can be solved using a number of standard methods, either framing the

problem as a system of seemingly unrelated regressions (SUR) (Greene (2002)) or setting
up a state space model and using a Kalman filter (Hamilton (1994)). One particularly
useful application of this result is in problems with high-dimensional choice sets with 100’s
or 1,000’s of choices, where modeling these choices can effectively be ignored or at least
estimated independently from the other model parameters.
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geneity will have a strong effect on workers’ choices as well as their mean

wages in all occupations. Since initial priors play an important role in the

model, we allow the probability that an individual is type k to be conditional

on observed data, gi, with parameters, φ, defined as πk(gi, φ).7

The final log-likelihood for estimation is:

Ψ̂ = argmax
Ψ

N∑
i=1

ln

(
K∑
k=1

πk(gi, φ)Lc(di|X̃it(θ, γk), ω)

∫
µ
Lw(wi|µ, θ, σ)f(µ|γk,∆)dµ

)
(7)

Where Ψ = {φ, γk, θ, ω, σ,∆}
Although many difficult aspects of the empirical model are circumvented

by the quasi-structural approach, the objective function in eq. (7) is still

too difficult if not impossible to optimize. The multiple integration and the

presence of the wage parameters in the choice equation make it extremely

difficult to derive the analytical gradient of the objective function.8 Be-

cause we cannot derive the analytical gradient, we would need to rely on

optimizers that either compute numerical approximations to the gradient or

are gradient free. Either of these methods are computationally inefficient

with more than a few parameters. This is problematic because the model

contains 1,350 parameters for the policy functions, 182 wage parameters,

and 121 parameters governing the distribution of the unobservables. A sec-

ondary issue in estimation is that we want full flexibility in the correlation

structure of µ. This means that the off-diagonal elements of ∆ are non-

zero, so we must constrain this matrix to be positive-definite, which may be

difficult to enforce in any optimization routine.

7In the empirical model, gi includes mother’s highest grade completed and the highest
grade of the individual at age 16. gi = [1 , (mother’s hgc) , I · (mother’s hgc missing) , I ·
(HGC age 16 <10)]. πk(gi, φ) is modeled as a logistic regression, with k = 1 as the omitted
outcome.

8The normality assumption on µ means that the integration over Lw with respect to
µ has a closed form (although complicated) expression. So the difficulty is not primarily
in the integration, but in taking the derivative of the integrated value.
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The model is estimated using the Generalized Expectation and Maxi-

mization (GEM) algorithm outlined in James (2012). This approach over-

comes all of the computational challenges associated with this model. First,

it does not require the derivation or approximation of the gradient of the

original likelihood function and can therefore accommodate an enormous

parameter space with little effect on computation time. This is the main

result in James (2012), which makes it possible to estimate complicated

models of the type presented in this paper. Such models were previously

not within reach of empirical researchers. Second, it simplifies the inte-

gration by breaking the multidimensional integration into a set of single

dimensional integrals, which have simple closed form expressions. Third,

it guarantees that the covariance matrix ∆ is positive definite (see. Train

(2007)).

Instead of directly optimizing the log-likelihood L(Ψ), the GEM algo-

rithm forms an augmented data likelihood Q(Ψ|Ψm), which is a lower bound

of the objective function at parameters Ψm. The crucial characteristic of

Q(·) is that L(Ψm) = Q(Ψm|Ψm). Therefore finding Ψ∗ = argmax
Ψ

Q(Ψ|Ψm)

guarantees that L(Ψ∗) > L(Ψm). This insight implies that it is possible to

find values in the support of Ψ that achieve higher realizations of the likeli-

hood L(·) not by maximizing L(·) directly, which is extremely difficult, but

instead by successively maximizing Q(·), which is very simple. The ease

of maximizing Q(·) makes the entire algorithm very fast, especially com-

pared to conventional methods that rely on numerically approximating the

gradient. The complete algorithm is detailed in Appendix B.

5 Data Extract and Summary: NLSY97

The model is estimated using the 1997 cohort of the National Longitudinal

Survey of Youth (NLSY97). The NLSY97 is a nationally representative

sample of men and women born between 1980 and 1984. These individuals

were between the ages of 12 and 18 at the time of their first interview in

1997 and interviewed annually thereafter. Round 1 to round 12 is used for

the analysis, where the respondents are between the ages of 23 and 29 in
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Table 1: Occupation Categories

Occ.
Cat.

2002
3-Digit
Census
Code

Description

MGR 0010-0430 Management occupations
BUS 0500-0950 Business and financial operations occupations

PROF1 1000-1960 Professional and related occupations: Aggregation 1
1000-1240 Computer and mathematical occupations
1300-1560 Architecture and engineering occupations
1600-1960 Life, physical, and social science occupations

PROF2 2000-3540 Professional and related occupations: Aggregation 2
2000-2060 Community and social services occupations
2100-2150 Legal occupations
2200-2550 Education, training, and library occupations
2600-2960 Arts, design, entertainment, sports, and

media occupations
3000-3540 Healthcare practitioner and technical occupations

SERV1 3600-3950; Service Occupations: Aggregation 1
3600-3650 Healthcare support occupations
3700-3950 Protective service occupations

FOOD 4000-4160 Food preparation and serving related occupations
SERV2 4200-4650; Service Occupations: Aggregation 2

4200-4250 Building and grounds cleaning and
maintenance occupations

4300-4650 Personal care and service occupations
SALES 4700-4960 Sales and related occupations

OFFICE 5000-5930 Office and administrative support occupations
CONST 6000-6940 Construction and extraction occupations

6000-6130 Farming, fishing, and forestry occupations
6200-6940 Construction and extraction occupations

MAINT 7000-7620 Installation, maintenance, and repair occupations
PROD 7700-8960 Production occupations
TRAN 9000-9750 Transportation and material moving occupations

round 12.

Based on the responses to the retrospective education and employment

questions, each year an individual is assigned to one of 16 mutually exclu-

sive activities: unemployment, schooling, military service, or fulltime em-

ployment in one of 13 occupations, which are defined by their 1-digit census

occupation classification code in Table 1. The assignment of activities and

the population studied are described in Appendix C. The analysis focuses

on the white male subsample, which includes 2,117 individuals with 16,371

person-year observations.

Table 2 summarizes the distribution of activities by age, as well as the
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number of observations at each age for this cohort. As expected, labor

market attachment is weak for these young workers with about 20% neither

in school or working fulltime. The share of employment is not even across

the 13 occupations. In particular very few individuals in their early 20’s

work in any of the Manager, Business, or Professional occupations, however

by their late 20’s these represent about 25% of those employed.

Table 3 provides details on the link between education and occupation.

The first column shows the average year of education completed for all ob-

servations of workers in these occupations for this cohort. This ranges from

a low of 11.6 years for Construction occupations to a high of 15.7 years for

Business and Financial Services occupations. Of the occupations tradition-

ally grouped as high skill (Manager, Business, and Professional occupations),

Manger occupations have the lowest mean education level, with on average

one year less than the other three high skill occupations.

The remaining columns in Table 3 show the share of entry level occu-

pations as well as the share of individuals who have ever worked in each

occupation (conditional on entering the labor market) as of age 28 for those

with at most a high school degree, those with some college, and those with

a college degree or more. For high school graduates, 75% of their entry level

jobs are represented by five of the 13 occupation categories, including Con-

struction, Transportation, Food Service, Production, and Sales. Virtually

none begin their career in high skill occupations. The next column shows

the fraction of these workers who ever work in each occupation. Notably,

more than one-third of these workers spend time in Construction occupa-

tions. Also, about 6% gain experience as a Manager, the most likely high

skill occupation for these workers.

Turning to the occupation experiences of those with a college degree,

more than half begin their career in either Manager, Business, or Professional

occupations. Also, almost 25% will have some Sales experience by the age

of 28. Finally, the patterns of those with some college are a mix between

high school graduates and college graduates. However, this group is more

likely to hold initial occupations in Food, Sales, and Office compared to the

18



Table 3: Occupations and Education

Mean
Years

Education

HS Grad. or
Less

Some College College Grad.
or More

Share
Entrya

Share

Everb
Share
Entry

Share
Ever

Share
Entry

Share
Ever

(%) (%) (%) (%) (%) (%)

MGR 14.3 – 6 3 7 7 14

BUS 15.7 – 2 2 5 11 17

PROF1 15.4 – 4 5 13 21 25

PROF2 15.3 – 4 4 10 14 18

SERV1 13.0 – 5 3 7 4 5

FOOD 11.8 13 18 16 20 3 4

SERV2 11.7 6 10 3 4 – –

SALES 13.2 10 19 15 27 14 22

OFFICE 13.2 8 18 15 25 13 17

CONST 11.6 22 37 11 15 2 3

MAINT 12.2 7 17 7 11 – 3

PROD 11.9 12 22 5 11 4 5

TRAN 11.7 17 31 9 13 5 5

a Fraction of first occupation choice. Sums to one. Cells less than 2% not
reported.

b Fraction of individuals who have entered the labor market who have ever
worked in occupation. Does not sum to one. Cells less than 2% not reported.
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other education groups.

6 Results

The goal of this paper is to investigate the importance of ability sorting

for observed occupational choices and wages. The results section is divided

into three parts. First we begin with the estimates for the distributional

parameters of unobserved abilities µ. Then we move toward studying the

role of sorting on these unobserved variables for career outcomes. Finally,

we compare the estimates of the wage parameters from the model to OLS

estimates in order to study the bias that arises when we do not control for

the selection generated by the correlated learning framework. The parame-

ter estimates not reported in the main body of the paper are presented in

Appendix D.

6.1 Distribution of Abilities

The distribution of abilities, µi, is characterized by the individual specific

initial priors γk and the covariance matrix ∆. The finite mixture of unob-

served priors is estimated with two types (i.e. K = 2). The estimated Type

1’s account for 60% of the population and Type 2’s represent 40%. The es-

timates indicate that the individual type heterogeneity is highly correlated

with education: Type 1’s on average complete 12.6 years of education and

Type 2’s complete 16.1 years. Since the type estimates are so correlated

with education, going forward in the description of the results it is simpler

to split the population into high school graduates and college graduates.

The estimates of the distributional parameters of unobserved ability are

presented in Table 4. The first line shows the differences in initial priors

and the statistical significance. Here the priors are differenced against the

priors of Type 1, i.e. γ2 − γ1. The priors are the individual type specific

constant in the log wage equation, so the differences are interpreted as the

percentage difference in initial expected wages. These estimates suggest

that Type 2’s have on average higher ability than Type 1’s across the 13
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occupations, where the difference between them is larger than zero for 10 out

of the 13. Many of these differences are large and significant. The largest is

in Business and Financial Services occupations where Type 2’s expect 38%

higher wages than Type 1’s upon entering the labor market, apart from

the fact that they have on average different levels of education. Conversely,

Type 1’s have a signifiant advantage in SERV1 occupations, which includes

Healthcare Support and Protective Services. Construction occupations show

the smallest difference with almost no distinction in priors across the two

types.

The remaining sections of Table 4 show the estimated residual distribu-

tion of abilities across the 13 occupations after controlling for initial priors.

The second row reports the standard deviation of innate productivity in

each occupation and the bottom section reports the correlation structure.

The standard deviation of ability refers to the unconditional distribution of

ability in these occupations in the population, not the conditional distribu-

tion of ability for those that select into these occupations. The variance of

occupation specific abilities is large, even after controlling for the initial level

of heterogeneity. If workers have rational expectations, their 95% confidence

interval of their uncertainty for their Manager ability (for example) is that

their productivity will be either 57% lower than they initially expected, or

57% higher than they expected. Put another way, in the population the top

mangers are 57% more productive than the average manager, while the least

productive would be 57% less productive than average. These variances dif-

fer considerably across occupations, with the largest variances among Sales,

Manger, and Business and the lowest variances in Service and Transporta-

tion occupations.

Occupation specific abilities are highly correlated across occupations. In

general, these values are all positive, with only one negative (not significant)

correlation between PROF2 (which includes Social Service occupations and

education related occupations) and Business and Financial Services occupa-

tions. The fact that the correlations are mostly positive implies that there is

a general level of productivity that persists even after controlling for initial
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priors. As individuals learn they are more (less) productive than they ini-

tially expected in one occupation, they will likely infer that they are better

(worse) at all things than initially expected.

While occupation abilities are very correlated, important differences ap-

pear. One example is among the three service occupations, which by census

definitions should all be very related. This is true between the SERV1 and

SERV2 category, where the correlation coefficient is one of the highest in

the table at 0.91. However, these two service categories are not nearly as

correlated with Food Service, with a correlation coefficient of 0.41 between

Food Service and SERV2.

6.2 Learning and Occupational Sorting

We now turn to examining the extent to which workers sort on occupation

specific productivities and the extent to which this sorting is effected by

the fact that abilities are correlated. The main tool for this analysis is

the estimated policy functions and the primitives of the underlying ability

distribution. Given these values, we can regenerate the data and study

workers’ responses to new information over their careers’. The focus is on

sorting relative to initial expectations, measured as µi(j)−γi(j).9 Since these

variables relate to the individual specific constant in the log-wage equation,

the value of this measure has a very clear interpretation as a percent change

in wages.

To begin the analysis, we first examine the empirical hazard of work-

ers choosing an occupation conditional on their ability. The upper plot of

Figure 1 shows the average probability of working in Construction at age

28 for high school graduates whose entry occupation was Construction as a

function of their Construction ability differenced by their initial prior. The

bottom plot preforms a similar analysis for college graduates and Sales occu-

pation. According to Table 3, both of these occupations represent important

entry occupations for the respective education levels.

9Sorting on initial priors is not studied in this paper. In some ways this type of sorting
resembles that of the perfect information model of Keane and Wolpin (1997), which is not
surprising since this form of unobservable is modeled in a very similar way.
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For both of these occupations, Figure 1 confirms our main intuition, that

those who are less capable in their entry occupation are less likely and those

that are more capable are more likely to continue working in their entry

occupation. High school graduates beginning their career in Construction

who are 40% less productive than average (about -1.5 standard deviations

below the mean) have only a 25% probability of choosing Construction at

age 28. By contrast, the mean probability of choosing Construction at age

28 is more than 60% for workers whose Construction ability is +1.5 standard

deviations above average.

However, for both of these occupations, the hazard rate plateaus for high

ability workers and even begins to decline for very high ability workers. This

underscores the complicated selection problem generated by the correlated

learning structure. In concordance with the matching model, low ability

workers are likely to leave these occupations in pursuit of better matches

in other occupations. On the other hand, high ability workers may become

mobile as well, since the correlation structure may increase the value of their

other employment options.

To show the effects of this sorting for Construction, the top section of

Figure 2 plots the conditional distribution for high school graduates that

select into Construction at three points in time. The solid line plots the

unconditional distribution of abilities in Construction, which is represen-

tative of workers choosing occupations randomly or the initial sorting into

Construction.10 The dashed line plots the distribution of abilities for those

that choose Construction at age 21, and the dash-dot line plots the distribu-

tion for those that select Construction at age 28. This plot provides strong

evidence that workers are selecting positively on ability in Construction as

the probability mass moves up and to the right with age.11 This means

that these workers are becoming on average higher ability and more con-

centrated around higher ability over time. The vertical dash-dot line shows

10Ability and productivity in this context refers to µ only, which abstracts from the fact
that workers may become more productive over time through accumulated human capital.

11The results are even stronger if the plots are conditional on experience in Construction
rather than age.
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Figure 1: Hazard Rate of Staying in Entry Occupation
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the average ability in construction at age 28 for high school graduates. For

Construction, wages are on average 6% higher due to this positive sorting

compared to a world where workers choose occupations randomly and we

hold fix the distribution of accumulated human capital.

The sorting patterns in Construction are illustrative of occupations that

exhibit positive sorting. An important implication of the correlated learn-

ing framework is that not all occupations will experience positive sorting.

In fact, in some occupations we may observe negative sorting, where high

ability workers are the most likely to leave these occupations and the aver-

age ability decreases over time. An example of average negative selection

occurs for high school graduates that select into Food Service occupations.

For High school graduates, Figure 2 plots how the distribution of ability in

Food Service evolves with age for those that work in Food Service.

Table 5 summarizes the average sorting on ability for each occupation at

age 28 for high school graduates and college graduates and compares these

values against two other major contributors to wage growth: education and

own occupation specific experience. Most occupations show strong evidence

of positive sorting. Of the eight occupations most populated by high school

graduates, Manager, Sales, Construction, and Production show an increase

of about 6%, Maintenance and Transportation show a smaller increase of

3%, and Food and Office show negative values. Similar patterns and levels

persist for college graduates. For most occupations, the average increase

in wages that occurs through sorting on ability is more than the average

increase in wages which would occur if all individuals were endowed with

one additional year of education. Similarly, the average improvement in

wages for many occupations is almost equivalent to the increase in wages

that would occur if all workers received one additional year of experience.

Looking only at the average effect of sorting may mask some important

patterns in the data. For example, the average ability in Construction at

age 28 for high school graduates is 0.06. This is composed of individuals

who choose Construction and discover they have high ability and stay, those

that discover low ability and leave, others who may have begun their career
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Figure 2: Conditional Distribution of Ability In Construction and Food
Service Occupations By Age for High School Graduates
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Table 5: Comparison of Wage Returns at Age 28

Wage Return For
One Year of Accum

Human Capital
HS Grada Col Grad

Educ.
θs
j

Own
Expr.
θx
j (j)

Share
Emp
(%)

Mean
Ability
Age 28b

Share
Emp
(%)

Mean
Ability
Age 28

MGR 0.053 0.104 4 0.067 17 0.072

BUS 0.018 0.080 – – 16 −0.007

PROF1 0.052 0.102 – – 14 0.056

PROF2 0.096 0.027 – – 7 0.070

SERV1 0.074 0.056 – – 3 0.039

FOOD 0.030 0.050 7 −0.036 – –

SERV2 0.007 0.061 – – – –

SALES 0.043 0.055 10 0.063 21 0.026

OFFICE 0.022 0.061 8 −0.004 12 0.003

CONST 0.038 0.075 24 0.062 – –

MAINT 0.023 0.083 21 0.032 – –

PROD 0.036 0.071 9 0.061 – –

TRAN 0.023 0.054 9 0.033 – –
a Cells with employment share less than 3% not reported.
b E[µ(j)− γ(j)|d28 = j], for row j
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in Transportation, discovered a low match, and subsequently moved to Con-

struction, etc. Tables 6 decomposes these averages for high school graduates

in Transportation, Office, and Manager occupations as examples to further

highlight important dimensions of the data.

The top section of Tables 6 provides information on high school graduates

working in Transportation at age 28. Each row shows the entry occupation

of these workers. The first column shows the share of age 28 Transportation

workers coming from each entry occupation. For each entry occupation,

the remaining columns compare the average ability in the entry occupation

and the average ability in Transportation for those workers choosing Trans-

portation relative to the other workers beginning their career in that entry

occupation. Looking at transitions at this level of detail may generate some

small sample issues. To address this problem, these statistics are simulated

from the non-parametric bootstrap of parameters and statistical significance

assigned based off of the estimated confidence interval.

Table 5 showed that sorting by Transportation workers on average ac-

counted for 3% of wages. This is much smaller than many of the other

occupations. Tables 6 demonstrates that there are large differences in this

average when you compare individuals by their entry occupation. For exam-

ple, 38% of Transportation workers at age 28 began their career in Trans-

portation. For these workers choosing to stay in Transportation, sorting on

average represents 8% of wages, more than double the average for all Trans-

portation workers. This means that driving down the average is a flow into

Transportation of poorly matched workers. This phenomenon is a byprod-

uct of the correlation of abilities. As low ability workers seek out better

matches by changing occupations, they will likely find on average lower, but

better matches in other occupations. This is apparent in looking at the 11%

of transportation workers who began their career in Construction. These

workers are on average 20% less productive in Construction than the other

workers whose entry occupation was Construction. The estimated correla-

tion coefficient between Construction and Transportation is 0.5, meaning

that these workers will likely have lower Transportation ability as well. This

is clearly true as their average transportation ability is -0.05, which drags
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down the total average. A different measure of sorting that could apply to

these workers is the 15% increase in wages they experience (holding other

things fixed) by avoiding Construction.

The middle section of Table 6 decomposes the average ability for those

working in Office and Administrative Support occupations, which had a

negative value. The influx of low ability workers is the primary factor driv-

ing down the average sorting on ability observed for this occupation. Those

who began their career in Office and choose Office at age 28 show no positive

sorting on ability. However, low ability workers from Sales, Construction,

Maintenance, and Production bring down the average over time. Impor-

tantly though, each of these workers finds a better match than their entry

occupation.

There is strong evidence that workers sort into occupations where they

discover that they are high ability. We are also interested in the degree

that workers discovering a high ability in one occupation may use this infor-

mation to sort into other occupations. The important occupation for this

analysis is Manager occupations. Virtually no high school graduate begins

their career as a Manager, yet 4% are in these occupations by age 28. The

bottom section of Table 6 shows the career patterns for these high school

graduates who are working in Manager occupations at age 28. Manager

occupations show the largest level of ability sorting. This is extremely sug-

gestive of the stepping-stone type mobility in Jovanovic and Nyarko (1997).

The two largest values are for Sales occupations and Construction occu-

pations. Construction workers that become Managers are on average 21%

more productive Construction workers than the average worker beginning in

Construction. Because of the correlation they are also 17% more productive

Managers. Positive sorting on Manager ability is less important in other

occupations, for example Transportation.

To conclude the analysis on sorting, Table 7 summarizes the aggregate

effect of sorting for all individuals in the population. The analysis divides

workers into two groups: those who discover they have higher ability and

those who discover they have lower ability than initially expected in their
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Table 6: Average Ability By Age 28 Occupation and Entry
Occupation, High School Graduates

Entry Occupation
Share

Age 28
Occ.(%)

Entry
Occ.

Matcha

Age 28
Occ.

Matchb

Transportation at Age 28

FOOD 7 −0.05 −0.01

SALES 7 0.03 0.03

OFFICE 15 0.09 0.06∗

CONST 10 −0.20∗∗ −0.05

MAINT 5 −0.20 −0.04

PROD 11 −0.04 −0.00

TRAN 38 0.08∗ 0.08∗

Office and Administrative Support at Age 28

FOOD 19 0.02 0.02

SALES 10 −0.14∗ −0.05

OFFICE 21 0.01 0.01

CONST 8 −0.30∗∗∗ −0.03

MAINT 5 −0.09 −0.04

PROD 10 −0.20& −0.03

TRAN 17 −0.01 0.00

Manger at Age 28

FOOD 11 −0.02 0.04

SALES 7 0.26∗ 0.16∗

OFFICE 9 −0.07 0.03

CONST 15 0.21∗∗ 0.17∗∗

MAINT – – –

PROD 10 −0.13 −0.08

TRAN 24 −0.02 0.01

a E[µ(j)− γ(j)|dentry = j, d28 = j′]− E[µ(j)− γ(j)|dentry = j]
b E[µ(j′)−γ(j′)|dentry = j, d28 = j′]−E[µ(j′)−γ(j′)|dentry = j]

***,**,* Significantly different from zero at 1%, 5%, and 10% level
respectively. Constructed from 800 non-parametric bootstraps
of the model.

& Significantly different from zero at 15% level.
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Table 7: Occupational Sorting at Age 28, All Workers

Share
of Total

(%)

Entry
Occ.

Matcha

Age 28
Occ.

Matchb

Differ-
encec

ABOVE Average Entry Occupation Match: [µ(dentry)− γ(dentry)] > 0

Unemployed Age 28 9 0.199 – –

Age 28 Occ. Same as Entry 15 0.218 0.218 0.000

Age 28 Occ. Different as Entry 26 0.211 0.135 −0.076

BELOW Average Entry Occupation Match: [µ(dentry)− γ(dentry)] < 0

Unemployed Age 28 12 −0.219 – –

Age 28 Occ. Same as Entry 11 −0.177 −0.177 0.000

Age 28 Occ. Different as Entry 27 −0.220 −0.092 0.127

Total 100 0.000 0.029 –

a E[µ(dent)− γ(dent)]
b E[µ(d28)− γ(d28)]
c E[µ(d28)− γ(d28)]− E[µ(dent)− γ(dent)]

entry occupation. Each group is equally represented by definition. Each

group is further broken down by those who are unemployed at age 28, those

working in their entry occupation at age 28, and those working in an occu-

pation different from their entry occupation at age 28.

The first column shows the share of each segment of the population as

a percent of the total population. Those with above average ability in their

entry occupation are 33% more likely to remain in their entry occupation

than those discovering they are below average ability in their entry occu-

pation. These two groups move to new occupations at the same rate, but

those discovering low ability in their entry occupation are more likely to be

unemployed at age 28.

For each segment of the population, the remaining columns show the

average ability in their entry occupation, their average ability in their age

28 occupation, and the difference. The bottom row reports the total. By

construction, the average ability of entry occupation is zero, since no workers

have any information to sort on. By age 28, the average ability increases
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to almost 3%. From the earlier analysis, this number is the average of all

occupations, with some having a 6% increase, others having a 3% increase,

and some having negative values.

Using the entry match as a baseline, we can compare the match for the

occupations workers choose at age 28. For workers with above average pro-

ductivity in their entry occupation, they have above average productivity

in their age 28 occupation, either from staying in their entry occupation or

moving to a new occupation. Those changing occupations on average have

lower, but still positive, ability in their new occupation. This was seen in

both Construction workers and Sales workers moving to Manger occupa-

tions, where each group had high entry abilities than Manager abilities.

Workers with a below average ability in their entry occupation continue

to have below average ability in their age 28 occupation on average. How-

ever, the workers who change occupations move to occupations where they

are substantially more productive, a difference of 12%. These workers sort-

ing into occupations where they have higher, but still negative, abilities are

one of the main drivers of the increase in average ability in the population.

6.3 Selection Bias

The correlated learning framework generates a very interesting selection

problem. For most occupations there is strong evidence that workers sort

positively on ability. Failing to account for this selection will produce an

upward bias in the returns to experience in these occupations. However, as

low ability workers try new occupations, the correlation implies they will

on average be lower ability in other occupations. Failing to account for

this selection may downward bias the estimates of the across occupational

returns to accumulated human capital, understating the transferability of

accumulated skills across occupations.

This section studies the bias in the OLS estimates when we do not con-

trol for selection. What makes this analysis challenging is that a bias in

one parameter biases all of the parameters. To address this, we compute

the theoretical bias which would occur if consistent estimates of all of the
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Table 8: OLS Bias in Wage Estimatesa

Food Sales
Off-
ice

Cons-
truc

Main-
ten

Prod Tran

xit FOOD 0.009 0.015 0.015 −0.013 −0.033 0.008 −0.020&

xit SALES −0.011 0.030∗∗ −0.020 0.009 0.004 −0.014 −0.001

xit OFFICE −0.107∗∗ −0.014 0.006 −0.020∗ −0.021 0.018 0.005

xit CONST −0.033& −0.006 −0.017∗ 0.014∗∗∗ −0.019∗∗ −0.014∗ −0.024∗∗∗

xit MAINT −0.028 −0.086∗ −0.016 −0.015∗∗∗ 0.013∗ −0.007 −0.024&

xit PROD 0.003 −0.018 −0.018∗ −0.005 0.007 0.017∗ −0.008

xit TRAN −0.074∗∗ −0.029∗ −0.005 0.000 −0.003 −0.003 0.019∗∗∗

a This analysis uses the model estimates to simulate choices and wages for high
school graduates with Type 1 priors and computes the theoretical bias taking all of
the other parameters as given.

***,**,* Significantly different from zero at 1%, 5%, and 10% level respectively.
Constructed from 800 non-parametric bootstraps of the model.

& Significantly different from zero at 15% level.

parameters were available except the parameter of interest. In this case the

bias in the return to experience in occupation j′ for wages in occupation j

is defined as cov(xit(j
′), µi(j)|dit = j)/var(xit(j

′)|dit = j). In addition, to

abstract from sorting by education and type, we also condition this analysis

on high school graduates with Type 1 priors.

Table 8 shows the bias in the estimated return to accumulated human

capital for the seven most common occupations for high school graduates.

As expected, most of the own occupation specific returns (the diagonal ele-

ments) are significantly biased upward as workers sort positively on ability.

The two exceptions are Food Service and Office and Administrative support,

which showed little sorting in the earlier analysis. The bias appears most

significant for Sales, Construction, and Transportation. Tables 5 shows the

estimated own experience return for these occupations from the model. The

bias is largest in Sales of close to 50%. For Transportation the bias is 35%

and almost 20% for Construction.

Looking at the bias in the across occupational returns to experience

(the off-diagonal elements), for many occupations, the selection produces a
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downward bias. Of the 42 across occupation experience returns reported,

31 have a negative bias, with 10 being statistically significant. One of the

largest and most significant is the return for Construction experience in

Transportation, where Table 6 demonstrated that low ability Construction

workers were likely to sort into Transportation.

7 Conclusion

This paper develops and estimates a multidimensional correlated learning

model to study early career wage growth and occupational choices. By al-

lowing occupation specific productivities to be flexibly correlated, the model

facilitates both sorting through experimentation, described in Miller (1984),

where workers discovering low ability in an occupation are likely to try new

occupations in pursuit of a better match, and sorting through promotion,

described in Jovanovic and Nyarko (1997), where workers discovering high

ability in an occupation become more likely to be move to new occupations

because of their high performance in their first occupation.

The correlated learning approach produces an extremely challenging se-

lection problem as the worker’s optimal search strategy is a complicated

function of the unknown model parameters. Previous work has avoided this

selection problem by imposing assumptions on the correlation structure,

either assuming occupation specific productivities are completely indepen-

dent or perfectly correlated, which imply the optimal search strategy to be

imposed in estimation. In this paper, the underlying correlation structure

of occupation specific productivity is a key parameter of interest, and the

optimal search strategy is an endogenous feature of the model. The method-

ological approach used in this paper can be advantageously extended to the

broader class of learning models where continuous outcomes are observed

along with choices. For example, major choice and grades, pharmaceuti-

cal demand when data is available on side-effects, or health choices when

measures of health are observed.

The model is estimated on the National Longitudinal Survey of Youth

1997. On average, sorting on ability has a positive and strong effect on
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wages. By age 28, the average increase in wages due to sorting on ability

is approximately equal to the average increase in wages that would occur if

all workers were endowed with an additional year of education. The results

provide strong evidence that sorting occurs in multiple dimensions. Workers

who discover a low ability in their current occupation are very likely to try

new occupations. In most cases these workers find higher matches. On

the other hand, while workers that discover they are high ability in an

occupation are more likely to stay, they also become more likely to move to

high skill occupations like Manager.

Finally, while the empirical model did not require estimating the struc-

tural utility parameters directly, it delivered consistent estimates of all of

the wage and distributional parameters, as well as consistent estimates of

the conditional choice probabilities. Taking these values as given, James

(2011) shows how the structural utility parameters can be recovered in a

computationally efficient second stage using the insights of Arcidiacono and

Miller (2010).

References

D. Ackerberg. Advertising, learning, and consumer choice in experience good
markets: an empirical examination. International Economic Review, 44
(3):1007–1040, August 2003.

K. Antonovics and L. Golan. Experimentation and job choice. Working
Paper, March 2011.

P. Arcidiacono and J. B. Jones. Finite mixture distributions, sequential
likelihood and the em algorithm. Econometrica, 71(3):933–946, May 2003.

P. Arcidiacono and R. A. Miller. Ccp estimation of dynamic discrete choice
models. Duke University, July 2010.

R. Bernal and M. Keane. Quasi-structural estimation of a model of childcare
choices and child cognitive ability production. Journal of Econometrics,
156:164–189, 2010.

36



G. Crawford and M. Shum. Uncertainty and learning in pharmaceutical
demand. Econometrica, 73(4):1137–1173, July 2005.

R. Gibbons, L. F. Katz, T. Lemieux, and D. Parent. Comparative advantage,
learning, and sectoral wage determination. Journal of Labor Economics,
23(4), 2005.

W. H. Greene. Econometric Analysis. Prentice Hall, 2002.

J. D. Hamilton. State-space models. Handbook of Econometrics, 4, 1994.

J. James. Ability matching and occupational choice. Federal Reserve Bank
of Cleveland, Oct. 2011.

J. James. A tractable estimator for general mixed multinomial logit models.
Federal Reserve Bank of Cleveland, May 2012.

B. Jovanovic. Job matching and the theory of turnover. The Journal of
Political Economy, 87(5):972–990, Oct. 1979.

B. Jovanovic and Y. Nyarko. Stepping-stone mobility. Carnegie-Rochester
Conference Series on Public Policy, 46(289-325), 1997.

G. Kambourov and I. Manovskii. Occupational specificity of human capital.
International Economic Review, 50(1):63–115, February 2009.

M. Keane and K. Wolpin. The career decisions of young men. Journal of
Political Economy, 105(3):473–522, June 1997.

B. P. McCall. Occupational matching: A test of sorts. The Journal of
Political Economy, 98(1):45–69, Feb. 1990.

R. Miller. Job matching and occupational choice. The Journal of Political
Economy, 92(6):1086–1120, Dec. 1984.

D. Neal. The complexity of job mobility among young men. Journal of
Labor Economics, 17(2):237–261, Apr. 1999.

T. Papgeorgiou. Learning your comparative advantage. Penn State Univer-
sity, Jun. 2010.

R. Pavan. Career choice and wage growth. University of Rochester, July
2009.

C. Sanders. Skill uncertainty, skill accumulation, and occupational choice.
Washington University, St. Louis, December 2010.

37



K. L. Shaw. Occupational change, employer change, and the transferability
of skills. Southern Economic Journal, 53(3):702–719, Jan. 1987.

K. Train. A recursive estimator for random coefficient models. Working
Paper, 2007.

S. Yamaguchi. Tasks and heterogeneous human capital. McMaster Univer-
sity, June 2010.

38



A Conditional Choice Probabilities

Table 9: List of Variables Included in Choice Policy Functions:
X̃it(θ,γk)

Definition
Number of
Parameters

ageit 1
I[ageit ∈ {16, 17}] 1

I[ageit ∈ {18, 19, 20, 21}] 1
Highest grade completed 1

High school degree 1
BA degree 1
Lag Choice 15

Ever have experience in military and each occupation 14
Cum. Experience in military and occupation 14

I[γi = γk] ∀k ∈ K 2
I[xit(j) ≥ 1](zit(j)− γk(j)) ∀j ∈ J 13
I[xit(j) ≥ 2](zit(j)− γk(j)) ∀j ∈ J 13
I[xit(j) ≥ 3](zit(j)− γk(j)) ∀j ∈ J 13

Total Each Equation 90
×15

Total Number of Parameters in Policy Functions 1,350

B Details of Estimation

The quasi-structural model is estimated using a Generalized Expectation
and Maximization (GEM) algorithm outlined in James (2012). The GEM
algorithm is a modified EM algorithm that uses a simple step to update the
choice parameters rather than the full M-step of the EM algorithm. Rather
that directly maximizing eq. (7), the GEM algorithm instead iteratively
maximizes an augmented data likelihood Ψm+1 = argmax

Ψ
Q(Ψ|Ψm), which

takes as input the previous iterations estimates Ψm.
Letting f(·|ξ,Υ) denote the cdf of a multivariate normal with mean ξ
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and covariance Υ. The augmented data likelihood takes the form:

Q(Ψ|Ψm) =
N∑
i=1

K∑
k=1

qmik

∫
µ

ln
(
πk(gi, φ)Lc(di|X̃it(θ, γk), ω)

× Lw(wi|µ, θ, σ)f(µ|γk,∆)
)
f(µ|ξmik ,Υm

ik)dµ (8)

The augmented data likelihood differs from the original likelihood in
two ways. First it includes two additional elements, qmik and f(µ|ξmik ,Υm

ik).
These can be interpreted as probability density functions of the unobserved
variables γi and µ conditional on the individual’s data and the current pa-
rameter estimates. q is a discrete probability of the unobserved prior, and
f is a multivariate normal distribution of unobserved ability, µ. For now we
will take these as given and discuss the maximization of eq. (8). Later we
will return to the derivation of these densities.

The second difference in the augmented data likelihood and the origi-
nal likelihood is that the log function is inside of the integration. This is
an extremely desirable property of the EM algorithm discussed in Arcidia-
cono and Jones (2003), which implies additive separability of many of the
parameters and allows us to maximize the parameters independently.

The maximization of each parameter has a closed form expression, so
the algorithm is extremely fast. The update of each parameter is discussed
below.

Update φ: Parameters for initial conditions. φ enters eq. (8) as:

argmax
φ

N∑
i=1

K∑
k=1

qmik ln(πk(gi, φ))

Where

πk(gi, φ) =


1

1 + exp(giφ)
if k = 1

exp(giφ)

1 + exp(giφ)
if k = 2

This represents a weighted logit, whose maximization does not have a closed
form solution. The GEM algorithm in James (2012) shows that we can
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update the parameters by computing one modified Newton-Raphson step.

φm+1 = φm −B−1
φ

(
N∑
i=1

K∑
k=1

gi(q
m
ik − πk(gi, φm))

)

Where B−1
φ = −4

(
N∑
i=1

g′igi

)−1

Update ω: Parameters for policy functions. ω enters eq. (8) as:

argmax
ω

N∑
i=1

K∑
k=1

Ti∑
t=1

∑
c∈C

(dit = c)qmik ln(Ω(c|X̃it(θ, γk)))

Where

Ω(c|X̃it(θ, γk)) =


1

1 +
∑

c′∈{s,m,1,...,J} exp(X̃itωc′)
if c = u

exp(X̃itωc)

1 +
∑

c′∈{s,m,1,...,J} exp(X̃itωc′)
if c = {s,m, 1, . . . , J}

This represents a weighted logit, so we apply the same lower bound result
as the initial condition parameter. Since this is a multivariate logit, the
parameters must be appropriately vectorized but has the general form

ωm+1 = ωm −B−1
ω

(
N∑
i=1

K∑
k=1

Ti∑
t=1

qmikX̃it(dit − Ω(·|X̃it(θ, γk)))

)

See James (2012) for the derivation of B−1
ω .

Update γk: Initial priors, independently for each k. γk enters eq.
(8) in both the choice equations and as the mean of the distribution. Ar-
cidiacono and Jones (2003) show that while less efficient, we can obtain
consistent estimates of the parameters by maximizing over only part of the
likelihood. Ignoring that γk enters the choices we have:

argmax
γk

N∑
i=1

qmik

∫
µ

ln(f(µ|γk,∆m))f(µ|ξmik ,Υm
ik)dµ
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This has a closed form solution as:

γm+1
k =

∑N
i=1 q

m
ikξ

m
ik∑N

i=1 q
m
ik

Update ∆: Covariance of abilities. ∆ enters eq. (8) as:

argmax
∆

N∑
i=1

K∑
k=1

qmik

∫
µ

ln(f(µ|γm+1
k ,∆))f(µ|ξmik ,Υm

ik)dµ

This has a closed form solution as,

∆m+1 =
K∑
k=1

(∑N
i=1 q

m
ik(Υm

ik + (ξmik)(ξmik)′)

N
−
∑N

i=1 q
m
ik

N
(γm+1
k )(γm+1

k )′

)

Update θj: Wage parameters for occupation j independently for
each occupation. θj enters eq. (8) in both the choice equation and wage
equation. Applying the result of Arcidiacono and Jones (2003) again and
ignoring that θ enters the choices:

argmax
θj

N∑
i=1

K∑
k=1

Ti∑
t=1

(dit = j)qmik

∫
µ(j)

ln(Pr(wit|xit, µ, θj , σmj ))f(µ(j)|ξmik ,Υm
ik)dµ

This is a weighted least squares problem with a closed form solution

θm+1
j =

(
N∑
i=1

Ti∑
t=1

(dit = j)x′itxit

)−1( N∑
i

Ti∑
t=1

(dit = j)x′it(wit − E(µi(j)))

)

Where E(µi(j)) =

K∑
k=1

qmikξ
m
ik(j).

Update σj: Variance of technology shock independently for each
occupation j. σj enters eq. (8) as:

argmax
θj

N∑
i=1

K∑
k=1

Ti∑
t=1

(dit = j)qmik

∫
µ(j)

ln(Pr(wit|xit, µ, θm+1
j , σj))f(µ(j)|ξmik ,Υm

ik)dµ

42



This is a weighted least squares problem with a closed form solution

(
σm+1
j

)2
=

∑N
i=1

∑Ti
t=1(dit = j)

(
(wit − xitθm+1

j )2 − 2(wit − xitθm+1
j )E(µi(j)) + E2(µi(j))

)
∑N

i=1

∑Ti
t=1(dit = j)

Where E(µi(j)) =
K∑
k=1

qmikξ
m
ik(j) and E2(µi(j)) =

K∑
k=1

qmik(Υm
ik(j, j)+(ξmik(j))2).

The maximizations take as input qmik , ξmik and Υm
ik. These are computed

conditional on each individuals’ data and the mth iteration parameter esti-
mates.

ξmik =((∆m)−1 +Di(Σ
m)−1)−1((∆m)−1γmk +Di(Σ

m)−1zi)

Υm
ik =((∆m)−1 +Di(Σ

m)−1)−1

qmik =
πk(gi, φ

m)Lc(di|X̃it(θ
m, γmk ), ωm)

∫
µ Lw(wi|µ, θm, σm)f(µ|γmk ,∆m)dµ∑K

k′=1 πk′(gi, φ
m)Lc(di|X̃it(θm, γmk′ ), ω

m)
∫
µ Lw(wi|µ, θm, σm)f(µ|γmk′ ,∆m)dµ

Where

Σ(j, j′) =

{
σ2
j if j = j′

0 if j 6= j′

}

Di(j, j
′) =


Ti∑
t=1

(dit = j) if j = j′

0 if j 6= j′



zi(j) =

{ ∑Ti
t=1(dit = j)(wit − xitθmj )∑Ti

t=1(dit = j)

}

C NLSY97 Activity Assignment and Sample Se-
lection

Assignment of activities was done sequentially beginning with education.

Schooling The schooling assignment was based on reported attendance
and did not require them to actually complete the grade. This is consis-
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tent with a general model where individual’s make education choices with
uncertain outcomes. Since the quasi-structural model only estimates pol-
icy functions conditional on state variables, we are not required to make
assumptions on the how agents form expectations over outcomes. For pri-
mary and secondary education, the individual was coded as attending school
if they reported attending any grade at all.

The NLSY97 provides a monthly postsecondary education enrollment
indicator. In general it does not appear that this variable is informative
about actual attendance as the mode number of months of attendance for
those with positive attendance is 12 months. For those pursuing postsec-
ondary education below an advanced degree, a monthly term variable was
collected. This variable appears much more reliable as most individuals re-
port no term over the summer months. Therefore, these individuals where
assigned to schooling if they reported attending college and provided a valid
term for at least 6 out of 12 months. Schooling was not assigned to those
that did not have a valid term. However, for these individuals, if it was ap-
parent that they were not enlisted in the military and not employed fulltime,
then they were recoded as attending school.

Term information was not collected for those attending graduate school,
so the monthly attendance variable was the sole criteria. If information is not
available for the entire year, for example in their last interview round, then
the information in available months was converted to a 12 month equivalent
and the same criteria applied.

Employment If the respondent did not meet the school enrollment crite-
ria and reported working at least 1,400 labor hours for the year, then the
individual was assigned to employment. Again, if the individual was not
present for the entire year, the weeks observed where converted to an an-
nual equivalent. If the individual worked multiple full-time jobs, then the
attributes of the job with the most fulltime weeks was assigned for that year.
For each job, the respondent identifies the 3-digit 2002 Census occupation
code. Given the reported 3-digit occupation, the individual is assigned to
one of the 13 occupation categories following table 1.12 Finally, wages are

12Previous papers modeling career decisions, (e.g. Neal (1999); Pavan (2009); Kam-
bourov and Manovskii (2009)) using the NLSY79 or Panel Study of Income Dynamics
(PSID) data have documented the high potential for measurement error when the re-
ported occupation code is taken directly from the data. To avoid counting false career
changes these papers impose a number of edits on the occupational data. The primary
edit is to not consider any occupational change unless it is accompanied by a change in
employer. Yamaguchi (2010) points out that this may be an undesirable restriction on
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assigned using the hourly compensation rate of pay, which includes all forms
of monetary compensation affiliated with the job and is deflated using the
consumer price index to year 2008 dollars.

Military If an individual reported active military service for 25 or more
weeks in a year their activity was coded as military.

Unemployment Finally, if they did not meet any of the assignment cri-
teria, they were assigned to unemployed.

The analysis focuses on the white male cross-sectional sample from the
data. This group consists of 2,284 individuals. The discrete decision period
corresponds to the school year (September to August). The decisions of
individuals are continually tracked from age 16 (t=1) until round 12. Of the
original population, 2,138 remain in the survey until at least age 16. If the
gap between interview dates for any individual exceeds 16 months, then the
remaining observations for that individual are dropped from the analysis.13

This leaves 17,616 person-years for the analysis.
Finally, an individual’s remaining observations where dropped if any one

of three events occurred: 1) their highest grade completed or degree com-
pleted is invalid from the survey data, 2) the individual’s primary activity
was employment, but no occupation was reported or the reported wage was
greater than $100 per hour or less than $5 per hour14, or 3) reported com-

the data as it is likely to exclude important career changes as individuals are promoted
within the firm. The NLYS97 is unique from the NLSY79 and PSID in that it likely
does not suffer from systematic measurement error in the reported occupation. From the
beginning, the NLSY97 was conducted with a computer-assisted interview system which
allows interviewers to reference back to the responses of their previous years interview.
Interviewees are first read their previous years job description and are asked if that contin-
ues to define their job function. The occupation code only changes if they report a change
in duties. Pavan (2009), using the NLSY79 data, cites evidence of spurious reported oc-
cupation changes by the fact that 40% of individuals remaining with the same employer
in consecutive periods report a change in 3-digit occupations. The analogous figure for
the NLSY97 data at the 3-digit detail level is only 13% of workers. This is a reasonable
figure representing mobility within firms. The fact that this number is not overstated
provides reasonable assurance of the reliability of the observed occupation changes. This
feature makes the NLSY97 particularly desirable for a model that looks at a finer level of
occupational choice.

13The exception is for interviews conducted in 1997. In many cases the gap between
the round 1 and round 2 interview exceeded 18 months.

14In 2008 real dollars.
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pleting 20 or more years of education.15 These filters affected 7% of the
records, leaving 2,117 individuals and 16,371 person-years for the analysis,
averaging 7.66 years per individual.

D Parameter Estimates

Table 10: Logit Initial Condition Parameters π(gi|φ)

Type 1 Type 2

Constant φ1k
0.000 −6.738∗∗∗

– (1.236)

Mother HGC φ2k
0.000 0.478∗∗∗

– (0.089)

Mother HGC Missing HGC φ3k
0.000 6.292∗∗∗

– (1.260)

HGC at Age 16 LT 10th φ4k
0.000 −0.653∗∗∗

– (0.258)

***,**,* Significantly different from zero at 1%, 5%, and 10%
level respectively. Constructed from 800
non-parametric bootstraps of the model.

The 1,350 variables describing the policy functions are available from the
author by request.

15There appear to be a large fraction of medical students who meet the employment
criteria with 20 years of education. Mean wages increase monotonically across education
levels except for 19 years to 20 years where the average wage falls 28%. These outliers
have a strong effect on the returns to education, so these 20 observations are dropped.
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