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1 Introduction

Dynamic problems in economics (and many other disciplines) are characterized by large state spaces

that routinely make the model difficult or impossible to compute. Faced with these challenges,

researchers proceed in a number of different ways including analyzing a static version of the problem,

simplifying the dynamic problem to a setting where the state space is manageable, or employing a

number of techniques for approximating the value and policy functions that characterize the solution

to the problem. The problems analyzed in many broad literatures in economics ranging from models

of market equilibrium (which are almost always treated in a static framework) to strategic or social

interactions in networks (static or myopic dynamics) to dynamic games (typically characterized

by a small number of players and states) to matching problems (almost always analyzed as static

problems) remain limited by this large state space problem.

In recent years, techniques for approximating value functions in large state space problems

have been developed using simulation and interpolation (Keane and Wolpin (1994)) or parametric

policy iteration (PPI) (Rust (2000) and Bénitez-Silva, Hall, Hitsch, Pauletto, and Rust (2000)).

The main idea behind these methods is to approximate the value function using flexible functions

of the relevant state variables. Simulation and interpolation has been applied by Keane and Wolpin

(1997) and Crawford and Shum (2005) among many others. PPI has been applied to a single agent

setting in Hendel and Nevo (2006) and to a dynamic game in Sweeting (2011). While the potential

application of these methods is great, the literature contains very few formal results regarding

the quality of the approximation and, therefore, provides little formal or practical foundation for

researchers to use as they apply these methods.

In this paper, we consider an alternative, but related, method for approximating value functions

that we refer to as sieve value function iteration (SVFI).1 We develop the method in the context of a

generic single agent dynamic programming problem that can have either a finite or infinite horizon.

The SVFI method involves approximating the integrated value function with a nonparametric sieve

function. For any sieve function (i.e., for a particular choice of parameters), one can evaluate the

Bellman equation and compute a notion of distance between the approximation and its contraction,

and thus characterize how close the Bellman equation comes to holding. We approximate the value

function by choosing the parameters of the sieve function that come as close as possible to making

the Bellman equation hold exactly. Since the sieve space is a simple space, this minimization

problem is relatively easy to solve. Moreover, as the sequence of sieve spaces becomes a better and

better approximation of the original functional space F , our approximation converges to the true

value function.

In order to analyze the formal properties of the SVFI method, we assume that the complexity

of the sieve space, n, increases to infinity. In this sense our SVFI approximation technique becomes

non-parametric and we establish a number of results:

1. Consistency: we show that the sieve approximation converges to the true value function as

1For an excellent review of the method of sieves see Chen (2007).
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the richness of the sieve space increases.

2. Rates of convergence: we provide the first results in the literature for the rate at which the

approximating function converges to the true value function.

3. Iteration of Bellman operator: we characterize how rates of convergence are affected by

iterating the Bellman operator, pointing out for the first time that this has the potential to

improve performance in certain applications.

4. Bound on the error of approximation: following arguments in Rust (2000), we provide an

upper bound to the error of approximation to the unknown true value function that is feasible

to compute.

While the consistency of the SVFI might be an expected result, establishing the rate of con-

vergence of the SVFI approximation and understanding the effects of increasing the number of

iterations on the quality of the approximation are two useful formal contributions to the literature.

The fourth result can be related to results available in Rust (2000). The availability of bounds on

the error of approximation is an incredibly valuable feature of SVFI because it ensures that one

can bound the extent of approximation error relative to the true value function even when the true

value function cannot be computed, i.e., the case of relevance in very large state space problems.

This also serves as a natural guide to researchers as they implement the SVFI, providing a clear

sense of whether the approximation is reasonable for any given specification of the sieve function.

Taken together, these results provide a formal foundation for the use of the SVFI for approximating

large state space problems.

The SVFI approach is quite straightforward to understand and implement and, thus, has the

potential to be widely applied in economics and other disciplines. The framework can also be flexibly

implemented. It is possible, for example, to estimate the parameters of the sieve approximation

function by minimizing the distance in the Bellman operator for only a large subset of the states

in the state space. This is attractive for problems with large finite or infinite state spaces.

The method can be applied equally well to infinite and finite horizon problems. For finite

horizon problems, we develop two strategies for approximating value function. First, we show

how SVFI can be used to approximate the value functions at each time period using a traditional

backwards recursion solution method. More interestingly, by including the time to the horizon as

another state variable in the sieve function, we show how it is possible to approximate a single

sieve function that provides an approximation of the value function at each point in time without

solving the problem backwards. The particular features of the application in question will generally

determine which of these approaches is computationally lighter or easier to implement.

Having developed this general method for approximating value functions, we then formally

show how the SVFI can be used to estimate the structural parameters of large state space dynamic

problems in empirical applications. Conceptually it is easy to see that for any particular guess of the

model’s structural parameters, the SVFI can be used to approximate the solution to the dynamic
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problem and thus compute the approximate value and policy functions as well as conditional choice

probabilities. By comparing these objects to their empirical counterparts in the data it is possible

to compute a wide variety of objective functions that would be appropriate for estimating the

structural parameters. We show that it is possible to consistently estimate the model’s structural

parameters by embedding the SVFI within the estimation algorithm.

We close the paper by demonstrating the performance of SVFI in a particular Monte Carlo

application, inspired by the famous bus-engine replacement problem of Rust (1987), in which a

firm must dynamically manage its entire fleet of buses. We begin by analyzing an infinite horizon

problem with a state space that is finite and relatively large but manageable, i.e., for which it

is still possible to compute the value function exactly at each state. We demonstrate that SVFI

approximates value functions for this problem very closely in a tiny fraction of the time that it

takes to compute the exact solution to the problem. We show that an accurate approximation can

be obtained even when the Bellman operator is evaluated at a small, randomly, drawn subset of

the full set of states and compare the speed and accuracy of alternative methods for minimizing

this distance, including non-linear least squares, an iterative least squares method, and methods

that iterate the Bellman operator. We extend this problem to an infinite state space by adding a

continuous state variable, again demonstrating that it is possible to approximate the solution ex-

ceptionally well in a reasonably short amount of computation time. We then analyze an analogous

finite horizon problem, comparing the speed and accuracy of SVFI approximations using (a) the

traditional backwards recursion solution method in which we compute a separate sieve approxima-

tion function at each point in time and (b) an approach that treats time to the horizon as a state

variable, yielding a single time-interacted sieve approximation function.

We complete the Monte Carlo section of the paper, by evaluating the performance of SVFI

approximation within the context of the estimation of the structural parameters of the model.

Returning to the infinite horizon problem, we demonstrate that SVFI accurately estimates with

only a minimal impact on the effective standard errors while being much faster to compute. In

particular, we propose estimating the sieve parameters outside of the estimation of the structural

parameters in a manner similar to Aguirregabiria and Mira (2002) swapping of the nested fixed

point algorithm. Further, it is straightforward to examine how the estimated structural parameters

are affected by the dimension of the sieve and, therefore, to ensure that the sieve is sufficiently rich

such that its impact on the estimated structural parameters is minimal.

At this point, it is important to acknowledge that there is an existent operations research

literature that develops approximation methods to dynamic programming problems like the ones

addressed in this paper. Extensive surveys of major developments can be found in Bertsekas and

Tsitsiklis (1996), Bertsekas (2001), Powell (2008), and, more recently, Bertsekas (2012). These

references (and references therein) describe a variety of approximation methods or architectures

based on polynomial functions. For example, Bertsekas and Tsitsiklis (1996, Section 6.10) consider

parametric approximation based on “Bellman Error methods” which is closely related to our SVFI

approximation. Also, according to Bertsekas (2012, chapter 6), our SVFI can be characterized as
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an “indirect approximation method” of the value function based on a “parametric architecture”.

Just like in this paper, the operations research literature derives bounds on the error of ap-

proximation and, with these, provide consistency type results. See, e.g., Bertsekas and Tsitsiklis

(1996, page 332), Bertsekas (2001, page 34), or Bertsekas (2012, page 500). The main difference

between our methodological contribution and this literature lies on the nature of the asymptotic

analysis. On the one hand, the operations research literature considers the behavior of the approx-

imation using an iterative procedure keeping the approximating parametric space constant. On the

other hand, our analysis does not involve iterative procedures2 but it does require the sieve space

to increase in complexity in order to derive formal results. Given that our interest is in deriving

formal (asymptotic) results, the difference in the nature of the asymptotics implies that these two

approaches are clearly distinct contributions. In addition to being theoretically interesting in its

own right, the type of asymptotic analysis considered in this paper becomes essential in order to

establish the asymptotic properties of the estimation procedure that results from embedding the

SVFI within the estimation algorithm.

The rest of the paper proceeds as follows. In section 2 we describe the optimization problem.

Sections 3 and 4 develop formal results for infinite horizon problems and finite horizon problems,

respectively. In particular, we establish properties of the approximation including consistency and

rates of convergence. In section 5, we show how to use SVFI in estimation as well as properties of the

estimator. Section 6 investigates the small sample properties of our approximations, establishing

both the speed and reliability of our methods. Section 7 concludes.

2 The dynamic decision problem

In this paper, we are interested in approximating the value function of a single agent solving a

dynamic decision problem. We begin by introducing the general problem. In every period t ∈ N,

the agent observes the current value of a state (xt, εt) and chooses an action at in a finite choice

set A(xt). The first component xt is observed by the researcher whereas the second component

εt ≡ {εt(a) : a ∈ A(xt)} is not. We assume that xt ∈ X and εt ∈ E. Conditional on this

information, the agent solves the following optimization problem:

Vt(xt, εt) = sup
Πt

E


T∑
j=t

βj−t[u(xj , aj) + εj(aj)]

∣∣∣∣∣∣xt, εt
 , (2.1)

where Πt = {{aj}∞j=t : at = A(xt)} and u(xt, at) + εt(at) denotes the period utility of making

decision at in state (xt, εt), u(xt, at) representing the structural part (possibly known up to a finite

dimensional parameter) and εt(at) representing the residual part, unobserved by the researcher.

2As we explain later the minimization problem we propose can be computationally complex to implement. For
this reason, we provide an iterative algorithm with the sole purpose of approximating a solution to this minimization
problem. Nevertheless, if it were possible to solve the minimization problem directly (i.e., without using the iterative
algorithm), then our methodology does not really require the use of iterations.
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The objective of this paper is to provide a computationally feasible approximation to the value

functions (i.e., {Vt(·)}Tt=1) and study its properties. In general, we might be interested in approxi-

mating these function because we want to do welfare analysis (i.e., which can be conducted directly

using these functions) or because we are interested in any other feature of the problem that can be

computed from these functions (i.e., optimal decision rules, conditional choice probabilities (CCPs),

etc.).

The formulation in Eq. (2.1) encompasses both finite horizon problems (i.e., T =∞) and infinite

horizon problems (i.e., T < ∞). Following the dynamic programming literature, our strategy to

approximate the value function in Eq. (2.1) is to show that it is the unique solution to a (functional)

Bellman equation, and construct an approximation based on this representation. Given that the

Bellman equation representation of the finite and infinite horizon problems are fundamentally

different, it is convenient to divide the rest of the discussion into these two cases.

3 Approximation in infinite horizon problems

This section describes the application of non-parametric sieve methods to approximate the value

functions in Eq. (2.1) when the dynamic problem has an infinite horizon (i.e., T = ∞). The

distinctive feature of the infinite horizon problem is that the value function of the problem is

stationary (i.e., Vt(·) = V (·), ∀t ∈ N), provided that we impose mild additional assumptions to the

problem. In particular, we follow Rust (1987, 1988) and assume that the joint stochastic process

{xt, εt, at} is a controlled Markov process that satisfies the following conditional independence (CI)

assumption:

dP (xt+1, εt+1|xt, εt, at, xt−1, εt−1, at−1, . . . ) = dP (xt+1, εt+1|xt, εt, at), (Markov)

= dP (εt+1|xt+1, xt, εt, at)dP (xt+1|xt, εt, at),

= dP (εt+1|xt+1)dP (xt+1|xt, at). (CI)

Under these assumptions, the literature provides several ways of formulating the value function

in Eq. (2.1) as the recursive solution of a Bellman equation. In particular, these include: (a)

the social surplus function formulation discussed in Rust (1987, 1988), (b) the conditional value

function formulation of Rust (1987), and (c) the choice-specific value function formulation of Rust

(1988). Rather than describing each of these formulations in the main text, we now introduce a

single unified formulation that encompasses all of these formulations.3

According to our unified formulation, the value functions in Eq. (2.1) are stationary and solve

the following Bellman equation:

V (s) = max
a∈A(s)

{u(s, a) + βE(F (V, s′)|s, a)},∀s ∈ S, (3.1)

3Appendix B describes each of these formulations and shows that all of them are special cases of our unified
formulation.
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where s is the current value of the state, s′ is the future value of the state, S is the state space,

a represents the action chosen by the agent, A(s) is the set of actions available to the agent when

the state is s, and F is a known functional of the value function V (·) and the future state s′ that

satisfies certain known properties.4

3.1 Approximating the value function

In order to discuss the approximation of V , we must first define the space to which this function

belongs. In particular, assume that V belongs to a functional space, denoted F . For example, we

can take F to be the space of measurable, bounded, real-valued functions from S to R. We define

a metric d in this space, making (F , d) a normed vector space. If we do not indicate otherwise, the

metric is the sup-norm metric, i.e., for any f1, f2 ∈ F :

d(f1, f2) = sup
s∈S
|f1(s)− f2(s)|. (3.2)

Furthermore, we assume that this metric space is complete, i.e., it is a Banach space. Consider the

following (functional) operator Γ : F → F :

[Γθ](s) ≡ max
a∈A(s)

{u(s, a) + βE(F (θ, s′)|s, a)}, ∀s ∈ S. (3.3)

According to the definition in Eq. (3.1), the value function is the fixed point of this operator.

Furthermore, under Blackwell (1965) sufficient conditions (also see, e.g., Stokey and Lucas (1989,

Theorem 3.3)), the operator Γ can be shown to be a contraction mapping. Thus, as a consequence

of the contraction mapping theorem (see, e.g., Stokey and Lucas (1989, Theorem 3.2)), it follows

that the value function is the unique fixed point of the contraction mapping, i.e., the unique solution

to:

min
θ∈F

d(θ,Γθ) (3.4)

As a consequence, if it is possible to solve the minimization problem in Eq. (3.4), then the solution

has to be unique and equal to the value function. Unfortunately, there are several situations of

practical relevance in which this minimization problem is computationally infeasible. In this paper

we focus on the difficulties that arise when the state space is too large, i.e., the cardinality of the

set S is either infinity or finite but too large to permit the use of traditional methods.

The approximation method we propose is inspired by the sieves non-parametric estimation

method. Instead of solving the original minimization problem (i.e., Eq. (3.4)), we replace the

original (possibly infinite dimensional) parameter space F with a sequence of simpler (often finite

dimensional) parameter spaces, called sieves. Throughout this paper, the sequence of sieve spaces

will be denoted by {Θn}n≥1, where n ∈ N is an index that represents the complexity of the sieve

4Among other properties, F : F×S satisfies: (a) monotonicity: for functions f1, f2 with f1(s) ≤ f2(s) for all s ∈ S,
then F (f1, s

′) ≤ F (f2, s
′) and (b) discounting: for any function f and any α ∈ R, βF (f + α, s′) = βF (f, s′) + βα.
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space. In order for this replacement to produce an accurate approximation of the unknown value

function, it will be required that the sieve space sequence {Θn}n≥1 to become increasingly more

complex (i.e., for any n ∈ N, Θn ⊂ Θn+1 ⊆ F) and dense in F as n→∞.

For a given sieve space Θn, our method produces an approximation, denoted θ̂n. In essence, we

replace the original parameter space F by the sieve parameter space Θn and, loosely speaking, our

approximation will be given as:

θ̂n ≈ arg min
θ∈Θn

d(θ,Γθ).

That is, we will seek to choose the parameters of the sieve to get as close to a fixed point of the

Bellman operator as possible. Naturally, the quality of the approximation will be determined by

the sieve space Θn used to approximate the original parameter space F .

We introduce a definition of consistency of the approximation and rate of convergence of the

approximation.

Definition 3.1 (Consistency). θ̂n is a consistent approximation to V if and only if:

d(θ̂n, V ) = op(1), as n→∞.

To be precise, this is an approximation problem and not an estimation problem. In other words,

there are no data and, hence, no random sampling error5.

Definition 3.2 (Rate of Convergence). θ̂n converges to V at a rate of γ−1
n if and only if:

d(θ̂n, V ) ≤ Op(γn),

where γn = o(1) as n→∞.

3.2 Assumptions

We now provide a list of the assumptions used in this section. As we show in Example 3.1, all of

these assumptions are satisfied in dynamic decision problems that have a very large but finite state

space.

Assumption A.1. (F , d) is a complete metric space of functions that map S into R and Γ defined

in Eq. (3.3) is a contraction mapping with modulus β ∈ (0, 1).

Assumption A.2. For any n ∈ N, dn is a pseudo-metric in (F , d) such that ∃K1,K2 > 0,

K1 dn(f1, f2)− η1,n ≤ d(f1, f2) ≤ K2 dn(f1, f2) + η1,n,

where η1,n = Op(γ1,n) and γ1,n = o(1), uniformly in f1, f2 ∈ F .

5The reason to use op(1) instead of o(1) is that, in general, we allow for randomness in the approximation. The
randomness can occur, e.g., in the choice of the sieve space or the solution to the approximation problem.
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Assumption A.3. For some k ∈ N, we can find θn ∈ Θn that satisfies:

dn(θn,Γ
kθn) ≤ inf

θ∈Θn

dn(θ,Γkθ) + η2,n. (3.5)

where Γk is the kth iteration of Γ, η2,n = Op(γ2,n), and γ2,n = o(1).

Assumption A.4. For any f ∈ F :

inf
θ∈Θn

d(θ, f) = η3,n(f),

where η3,n(f) = Op(γ3,n(f)) and γ3,n(f) = o(1).

We now briefly comment on each of the assumptions. Even though Assumption A.1 might look

innocuous, it is not. The definition of a contraction mapping is associated to a metric space (F , d)

and, in particular, to the metric d. In other words, if (F , d) and (F , ď) are two metric spaces, it is

possible that a mapping Γ is a contraction mapping with respect to d but not with respect to ď.

This is exactly what happens in the context of single agent dynamic decision problems. According

to Blackwell (1965) sufficient conditions, Γ in Eq. (3.3) is a contraction mapping with respect to

the sup-norm metric but it may not not be a contraction mapping with respect to more convenient

metrics, such as the l2-metric. See, e.g., the discussion in Bertsekas and Tsitsiklis (1996, page 369).

In cases in which the state space S is too large, it might not be computationally possible to

work with the metric d, but we find convenient to replace this metric with an associated pseudo-

metric dn. In order for this replacement to produce interesting results, we need to assume that the

difference between the metric d and the pseudo-metric dn vanishes at a certain rate. This is what

Assumption A.2 accomplishes.

If we had the computational capability to solve the minimization problem in Eq. (3.4), then the

solution to this problem would be exactly object of interest. The motivation for this paper, however,

is to consider cases in which the size of the state space S makes solving the minimization problem

in Eq. (3.4) impossible. Assumption A.3 describes the operation that is within our computational

possibilities.

Instead of solving the problem in the original space F , we replace the space with a simpler sieve

space Θn that approximates F . Assumption A.3 implies that, by the virtue of this simplification,

we are now able to solve certain computational problems. In particular, we assume that we can:

(i) compute the kth iteration of Γ for any function in the sieve space Θn and (ii) minimize an

objective function within the sieve space Θn, possibly up to a small error denoted by η2,n. In case

the objective function can be exactly minimized, then η2,n = 0. Even when restricted to the simpler

sieve space Θn, the minimization problem in Assumption A.3 can appear to be computationally

challenging. For this reason, Section 3.3 describes an algorithm than can be used to implement this

step.

The strategy our our approximation is to replace the original parameter space F with a sequence
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of approximating sieve spaces {Θn}n≥1. In order to guarantee that this replacement does not affect

the asymptotic properties, Assumption A.4 requires that any function f ∈ F can be approximated

by an element in Θn, up to a small error denoted by η3,n(f). In order to guarantee a small error

of approximation, it is convenient to choose the sieve space Θn that mimics the properties of the

original parameter space F . In turn, in order to derive these properties, Stokey and Lucas (1989,

Corollary 1, page 52) can prove to be a very valuable tool.

In order to illustrate these assumptions, we consider the following example.

Example 3.1 (Large but finite state space). Suppose that the agent solves the value function in

Eq. (3.1) where the state-space S is finite but large, i.e., #S = N < ∞. By Stokey and Lucas

(1989, Corollary 1, page 52) we can show that the value function belongs to B(S), i.e., the space of

bounded functions that map S onto [−B,B] ∈ R, for some B <∞. This implies that we can take

the relevant metric space to be (F , d), with F = B(S) and d equal to the sup-norm metric, i.e.,

d(f1, f2) = sup
s∈S
|f1(s)− f2(s)| = max

i≤N
|f1(si)− f2(si)|, ∀f1, f2 ∈ F .

We now verify all of the assumptions. We begin with Assumption A.1. By arguments in Stokey

and Lucas (1989, page 47), (F , d) is a complete metric space of functions that map S onto R. By

the Blackwell (1965) sufficient conditions, it is easy to see that Γ : F → F is a contraction mapping

with modulus β ∈ (0, 1).

Given that #S = N is a large number, we might not be able to compute d exactly. Instead, for

any n ∈ N with n < N , we might be able to compute:

dn(f1, f2) = max
i≤n
|f1(si)− f2(si)|, ∀f1, f2 ∈ F .

This is a pseudo-norm in (F , d), which we refer as the sup-norm pseudo-metric (this pseudo-norm

becomes the sup-norm metric when n = N). Notice that:

|dn(f1, f2)− d(f1, f2)| = η1,n, ∀f1, f2 ∈ F ,

with η1,n = maxi>n |f1(si) − f2(si)| ≤ max{N − n, 0}B, and so η1,n = Op(γ1,n) and γ1,n = o(1).

This verifies Assumption A.2 with K1 = K2 = 1.

As we have already pointed out, the sup-norm (pseudo-)metric can complicated the associated

optimization problem in Assumption A.3. For this reason, it is convenient to consider alternative

pseudo-metrics. For example, one possibility is to use the l2 pseudo-metric, given by:

dn(f1, f2) =

√∑
i≤n
|f1(si)− f2(si)|2, ∀f1, f2 ∈ F ,
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In order to verify Assumption A.2 we notice that:

dn(f1, f2) ≤ max
i≤n
|f1(si)− f2(si)| ≤

√
N dn(f1, f2),

and, therefore:

dn(f1, f2) + η1,n ≤ d(f1, f2) ≤ N1/2 dn(f1, f2) + η1,n,

with η1,n = maxi>n |f1(si)− f2(si)| ≤ max{N − n, 0}B, and so it follows that η1,n = Op(γ1,n) and

γ1,n = o(1). This verifies Assumption A.2 with K1 = 1 and K2 =
√
N .

Assumption A.3 assumes that we have computational capabilities to (approximately) minimize

a certain objective function. As we have already mentioned, the minimization problem can be

approached by using the algorithm described in Section 3.3.

Finally, Assumption A.4 requires that the sieve space Θn can approximate the original space F .

The non-parametric sieve estimation literature describes many possible choices of sieve spaces that

will produce this type of result. For example, for any n ∈ N, we take Θn to be the set of polynomial

functions defined in S of degree n. Then, the Weierstrass Theorem (see, e.g., Royden (1988, page

128)) implies that:

inf
θ∈Θn

d(θ, v) = o(1), ∀v ∈ F ,

as required by Assumption A.4. Results on the rate of convergence of the o(1) term are available

from Chen (2007), and references therein (e.g., Lorentz (1966) and Powell (1981, chapters 15-16)).

3.3 An iterative procedure to implement the minimization

This paper proposes an approximation method by replacing the original parameter space F in

Eq. (3.4) with a simpler sieve space Θn in Eq. (3.5). Unfortunately, the single-step minimization

problem in Eq. (3.5) can be computationally challenging to approach as is.

In order to deal with these challenges, we suggest the Algorithm 3.1. Relative to the original

minimization problem, this algorithm replaces the single-step minimization problem with a itera-

tive multi-step procedure. We explain the relative advantages of this alternative procedure after

introducing the algorithm.

Algorithm 3.1. Let {εn}n≥1 be a tolerance sequence that satisfies εn = o(1). For an arbitrary

initial function f ∈ Θn, consider the following iterative procedure:

1. Given f , choose a function θm ∈ Θn such that:

θm = arg min
θ∈Θn

dn(θ,Γkf). (3.6)

2. If max{dn(θm,Γ
kf), dn(θm, f)} ≤ εn, then stop the algorithm and define θn ≡ θm. Otherwise,

set f = θm and return to step 1.
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If the algorithm converges, then it can be shown that the resulting θn ∈ Θn satisfies Eq. (3.5)

with η2,n = O(max{εn, η1,n}).6

The pseudo-norm dn should be chosen so that it makes the minimization problem in Eq. (3.6)

easy to solve. For example, if dn is a weighted l2 norm and if Θn is a finite dimensional linear sieve

(i.e., a linear span of finitely many known basis functions7), then the minimization problem in Eq.

(3.6) can be solved with a closed form by a least squares procedure.

Having defined the dynamic decision problem and laid out basic definitions and assumptions,

we now introduce our method for approximating the value function and prove a series of results

regarding the properties of this approximation. We begin by analyzing infinite horizon problems,

taking up finite horizon problems in the following section of the paper.

3.4 Definition of the approximation

Under Assumption A.1, the Contraction Mapping Theorem (see, e.g., Stokey and Lucas (1989,

Theorem 3.2, page 50)) indicates that the contraction mapping Γ defined by Eq. (3.3) has a unique

fixed point. As we have explained, Eq. (3.1) implies this fixed point is the value function of

interest, which we have denoted by V ∈ F . As we have explained, this motivates us to consider the

(unfeasible) optimization problem in Eq. (3.4) or, more generally, for some k ∈ N, the following

(equally unfeasible) optimization problem:

inf
θ∈F

d(θ,Γkθ).

Even though the objective function can be computed, the sample space of the problem under con-

sideration makes the domain of the optimization, F , too complex to handle. In order to circumvent

this issue, we consider replacing the space F with a sequence of approximating spaces or sieves.

According to Assumption A.4, the sequence of spaces {Θn}n≥1 becomes a good approximation of F
as our computational possibilities, n, diverge to infinity. In particular, this motives us to consider

the following alternative optimization problem:

inf
θ∈Θn

d(θ,Γkθ).

In certain situations, minimizing with respect to the metric d might not be computationally easy

or even possible. In those cases, it is convenient to consider replacing the metric d with a suitable

pseudo-metric dn according to Assumption A.2. This leads us to consider the following optimization

problem:

inf
θ∈Θn

dn(θ,Γkθ).

6See Lemma A.1 for the formal statement and its proof.
7This is a widely used class of sieve spaces that includes polynomials, trigonometric functions, splines, and

orthogonal wavelets. See, e.g., Chen (2007, page 5570).
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In certain settings, the above minimization problem might only be feasible up to a certain residual

term that will vanish as n diverges to infinity. This is precisely the case described in Assumption

A.3. This progression naturally leads to the definition of our SVFI approximation.

Definition 3.3 (Sieve Value Function Approximation). Assume Assumption A.3. Then the SVFI

approximation of V is any θ̂n ∈ Θn that satisfies:

dn(θ̂n,Γ
kθ̂n) ≤ inf

θ∈Θn

dn(θ,Γkθ) + η2,n. (3.7)

where η2,n = Op(γ2,n) with γ2,n = o(1).

3.5 Properties of the approximation

All of the findings of this section are corollaries of the following lemma.

Lemma 3.1. Assume Assumptions A.1-A.4. Then, the SVFI approximation satisfies:

d(θ̂n, V ) ≤ (1 +K2K
−1
1 )η1,n +K2η2,n +K−1

1 K2(1 + βk)η3,n(V )

1− βk
, (3.8)

where V ∈ F is the unique fixed point of Γ in (F , d).

Lemma 3.1 is the key result to establish the consistency of the SVFI approximation, derive its

rate of convergence, and investigate the finite sample properties of its approximation error. The

following result establishes the consistency and the rate of convergence of the approximation.

Theorem 3.1. Assume Assumptions A.1-A.4. Then, the SVFI approximation satisfies:

d(θ̂n, V ) = Op(max{γ1,n, γ2,n, γ3,n(V )}),

where max{γ1,n, γ2,n, γ3,n(V )} = o(1) as n → ∞, and V ∈ F is the unique fixed point of Γ in

(F , d). This implies that the SVFI approximation:

1. is consistent approximation of V , i.e., d(θ̂n, V ) = op(1), as n→∞.

2. converges to V at a rate of min{γ−1
1,n, γ

−1
2,n, γ

−1
3,n(V )}.

Theorem 3.1 implies that the rate of convergence of the approximation depends on the rate at

which three errors converge to zero. These errors are:

1. The error of approximating the metric d with the approximate pseudo-metric dn, denoted by

η1,n, which converges to zero at a rate of γ−1
1,n.

2. The error of approximation when minimizing the objective function dn(θ,Γkθ), denoted by

η2,n, which converges to zero at a rate of γ−1
2,n.
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Table 1: Value of constants associated to the upper bound on the
error of approximation for different number of iterations.a

Number of iterations: k
1 2 3 4 5 6 7

1/(1− βk) 10 5.26 3.69 2.91 2.44 2.13 1.92

(1 + βk)/(1− βk) 19 9.53 6.38 4.82 3.88 3.27 2.83
a The discount factor β is set to 0.9.

3. The error of approximating the value function V ∈ F with an element in the sieve space Θn,

denoted by η3,n(V ), which converges to zero at a rate of γ−1
3,n(V ).

The slowest of these three rates determines the rate of convergence of the approximation. The

motivation for introducing sieve approximations was the fact that working with the original space F
was computationally infeasible, i.e., the third source of error η3,n(V ) cannot be avoided. However,

it might be possible to avoid the other sources of error. In other words, it might be possible to use

dn = d, leading to γ1,n = 0, or it might be possible to solve the minimization of dn(θ,Γkθ) exactly,

leading to γ2,n = 0. If so, then, the convergence rate of this source of error is infinity, effectively

disappearing from the expression for the rate of convergence min{γ−1
1,n, γ

−1
2,n, γ

−1
3,n(V )}.

It is interesting to notice that the findings in Theorem 3.1 do not depend on the number of

contraction mapping iterations k in Assumption A.3 (in particular, they hold even if k = 1). The

choice of k affects several constants associated with the rates of convergence, which are “hidden”

in the Op notation. While these constants are not relevant for the asymptotic results, they can be

very relevant for finite values of the computational power n. The right tool for this analysis is Eq.

(3.8) in Lemma 3.1, which provides a concrete upper bound on the error of approximation that can

be used to study the effect of changes in k that is valid for any value of n. This result reveals that

the three sources of error are each associated with a constant that depend on k. In particular, the

error terms η1,n, η2,n, and η3,n are associated to the constants (1 +K2K
−1
1 )/(1− βk), K2/(1− βk),

and K−1
1 K2(1 + βk)/(1− βk), respectively. A corollary of this is that, ceteris paribus, an increase

in the number of value function iterations k reduces the value of the upper bound of the error of

approximation. In particular, Table 1 illustrates that there are significant gains in precision from

raising the value of k when the discount factor is β = 0.9. For example, changing the number

of iterations from k = 1 to k = 2 reduces the (upper bound on the) error of approximation by

approximately 50%.

We illustrate the tradeoffs associated with increasing the number of contraction mapping iter-

ations k in the Monte Carlo analysis in Section 6.
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4 Approximation in finite horizon dynamic problems

This section describes the application of non-parametric sieve methods to approximate the value

functions in Eq. (2.1) when the dynamic problem has a finite horizon (i.e. T <∞). The distinctive

feature of the finite horizon problem is that the value function of the problem is no longer stationary

(i.e. Vt(·) depends on the time index). As time passes and the terminal period T approaches, the

agent’s value function changes.

Using backward induction, the value function in any given period can be expressed the opti-

mized choice between instantaneous utility and the discounter value for the immediately proceeding

period. By repeating the arguments used to develop the unified formulation used in the infinite

horizon case, we use s to denote the current value of the state, s′ to denote the future value of the

state, S to denote the state space, a to denote the action chosen by the agent, A(s) to denote the

space of actions available to the agent when the state is s, and F to be a known functional of Vt+1(·)
and s′ that satisfies certain known properties. Based on this notation, in every period t = 1, . . . , T ,

the agent solves an optimization problem characterized by the following value function:

Vt(s) = max
a∈A(s)

{u(s, a) + βE(F (Vt+1, s
′)|s, a)}, ∀s ∈ S, (4.1)

where the variables and functions are defined as in Eq. (3.1) and:

VT+1(s) = 0, ∀s ∈ S. (4.2)

Using the notation developed in Eq. 3.3, the sequence of value functions {Vt}Tt=1 can be defined as

follows: VT = ΓVT+1 with a zero terminal value, i.e., VT+1(s) = 0, ∀s ∈ S.8

The approximation procedure developed for the infinite horizon problem must be modified to

accommodate several distinct features of the finite horizon setup. First, the finite horizon problem

requires an approximation for the value function at each point in time; the infinite horizon problem

is stationary, i.e., the agent solves the same problem every period, and thus only requires the

approximation of a single value function V . Second, the approximation procedure developed for

the infinite horizon problem required the value function V to be a fixed point in a contraction

mapping. Clearly, this will not be true for the non-stationary finite horizon problem. As time

progresses, the last period of the game approaches and this affects the value of participating in the

game. Thus the value functions of the finite horizon problem are not fixed points to any mapping,

but are instead a finite sequence of functions that are sequentially related.

With enough computational power, the set of functions {Vt}Tt=1 could be computed exactly

using backward induction. Nevertheless, for economic models with large state spaces, the exact

8It should be noted that each of the objects in Eq. (4.1), i.e., the set of possible actions A(·), the period utility
function u(·), the expectation operator E(·), and the functional F (·), could be allowed to be time-specific without
affecting any of the theoretical results to follow. We opted to keep these elements time invariant to simplify the
exposition and to relate them easily to elements in Eq. (3.1).
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implementation of backward induction might be too computationally challenging or even impossible.

The objective of this section is to propose a sieve value function approximation for such settings.

For a given computational power (i.e. for a given sieve space Θn), our approximation method

produces a sequence of approximations: {θ̂n,t}Tt=1 where, for all t = 1, . . . , T , θ̂n,t is the sieve value

function approximation for Vt.

We consider two approximation procedures. The first is, essentially, the sieve approximation

version of a traditional backward induction. The value function is first approximated for the last

period and this approximate function is used to solve for the (approximate) value function for

the previous period. Continuing to work backwards yields an approximate value function for each

period. Implementing this procedure requires using computational routines that are specifically

tailored for the finite horizon setup.

The second procedure entails expanding the state space to include time as a state variable. To

the best of our knowledge, this procedure is novel to our paper. While this procedure is less intuitive

than backward induction, it has the advantage of being implemented with the same computational

routines developed above for the infinite horizon problem.

4.1 Approximation using backward induction

The computation of the sequence of value functions {Vt}Tt=1 by backward induction is well under-

stood and requires no further discussion. This section proposes an approximation to these value

functions using sieves. The approximation requires the following assumptions. By repeating previ-

ous arguments, it is easy to see that these assumptions are satisfied in dynamic decision problems

that have a very large but finite state space.

Assumption B.1. (F , d) is a complete metric space of functions that map S onto R, where d is

the sup-norm metric, i.e.,

d(f1, f2) = sup
s∈S
||f1(s)− f2(s)||, ∀f1, f2 ∈ F .

Assumption B.2. For any n ∈ N, dn is a pseudo-metric in (F , d) such that ∃K1,K2 > 0,

K1 dn(f1, f2)− λ1,n ≤ d(f1, f2) ≤ K2 dn(f1, f2) + λ1,n,

where λ1,n = Op(υ1,n) and υ1,n = o(1), uniformly in f1, f2 ∈ F .

Assumption B.3. For any f ∈ F , we can find θn ∈ Θn that satisfies:

dn(θn, f) ≤ inf
θ∈Θn

dn(θ, f) + λ2,n.

where λ2,n = Op(υ2,n) and υ2,n = o(1), uniformly in f ∈ F .
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Assumption B.4. For any f ∈ F :

inf
θ∈Θn

d(θ, f) = λ3,n,

where λ3,n = Op(υ3,n) and υ3,n = o(1), uniformly in f ∈ F .

Assumption B.5. For all f1, f2 ∈ F , a ∈ A(s), and s ∈ S:

E[F (f1, s
′)− F (f2, s

′)|s, a] ≤ d(f1, f2).

We now briefly comment on each of the assumptions with focus on the differences with As-

sumptions A.1-A.4. With respect to Assumption A.1, Assumption B.1 eliminates the contraction

mapping requirement with the requirement that d is the sup-norm metric. As we have already

explained, these two assumptions are not that different, as the mapping Γ in Eq. (3.3) can be

shown to be a contraction mapping with respect to the sup-norm metric but not with respect to

other metrics. Assumption B.2 is identical to Assumption A.2. Assumption B.3 is very similar to

Assumption A.3. The differences between the two are the following. First, Assumption A.3 as-

sumed that one could (approximately) minimize a specific objective function within the sieve space

Θn, whereas Assumption B.3 assumes that one can (approximately) find the best approximation

within the sieve space Θn for any function in F . Second, in accordance to the first point, Assump-

tion B.3 requires that the error of minimization to converge to zero (in probability) uniformly in

f ∈ F . Assumption B.4 strengthens Assumption A.4 as it requires that infθ∈Θn d(θ, f) converges

to zero (in probability) uniformly in f ∈ F . In other words, instead of requiring a vanishing error

of approximation of any particular function, we require that the a vanishing error of approximation

for the worst function in the class of functions F . For references on these stronger results see, e.g.,

chapter 8 in Lorentz (1966). Finally, Assumption B.5 is a mild assumption about the properties of

the mapping F . In particular, Lemma A.2 verifies that this assumption holds for all possible the

formulations of the problem.

The approximation considered in this section is defined as follows:

Definition 4.1 (Sieve Value Function Approximation). Assume Assumption B.3. Then the ap-

proximation of {Vt}Tt=1 is {θ̂n,t}Tt=1 constructed in the following iterative manner. For z = 1, . . . , T ,

let t = T + 1− z and complete the following steps:

1. Define θ̂∗t,n : S → R as follows:

θ̂∗t,n(s) ≡ [Γθ̂t+1,n](s) = max
a∈A(s)

{u(s, a) + βE(F (θ̂t+1,n, s
′)|s, a)}, ∀s ∈ S,

where either: t = T and θ̂t+1,n(s) ≡ VT+1(s) = 0 ∀s ∈ S, or t < T and θ̂t+1,n has been defined

in a previous iteration of the algorithm.
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2. Define θ̂t,n : S → R to be any θ̂t,n ∈ Θn that satisfies:

dn(θ̂t,n, θ̂
∗
t,n) ≤ inf

θ∈Θn

dn(θ, θ̂∗t,n) + λ2,n,

where λ2,n = Op(υ2,n) and υ2,n = o(1).

It is evident from the description of the procedure that this method implements the traditional

backward induction procedure using sieve approximations, i.e., it performs an approximation of the

value function of the terminal period and uses the approximation of the value function in a given

period to conduct an approximation for the value function in the immediately preceding period.

The following theorem establishes the asymptotic properties of the approximation.

Theorem 4.1. Assume Assumptions B.1-B.5. Then, the approximation satisfies:

max
t=1,...,T

d(θ̂t,n, Vt) = Op(max{υ1,n, υ2,n, υ3,n}),

where max{υ1,n, υ2,n, υ3,n} = o(1) as n→∞. This implies that for all t = 1, . . . , T , the sieve value

function approximation θ̂t,n:

1. is a consistent approximation of Vt, i.e., d(θ̂t,n, Vt) = op(1), as n→∞.

2. converges to Vt at a rate of min{υ−1
1,n, υ

−1
2,n, υ

−1
3,n}.

As in Theorem 3.1, Theorem 4.1 indicates that the rate of convergence of the approximation

depends on the rate at which three errors converge to zero. The slowest of these three rates

determines the rate of convergence of the approximation.

4.2 Approximation using time as a state variable

The approximation considered in this section entails considering the time dimension as part of the

state of the problem. In some sense, it may seem counterintuitive to “increase” the state space for a

problem in which the size of space was already deemed to large to compute directly. However, as we

demonstrate in this section, the approximation is computationally feasible and can be implemented

using the exact same computational tools as in the infinite horizon case.

Consider the state space that results from the cartesian product of the (time invariant) state

space S with the time dimension {1, . . . , T + 1}, i.e., S̃ = S × {1, . . . , T + 1}. Throughout this

section, we superscript with the symbol ∼ to denote objects in the new state space that includes

the time dimension. For example, the new metric space is denoted by (F̃ , d̃), where F̃ denotes a set

functions from S̃ onto R and d̃ denotes the corresponding norm in this space. In this enlarged state

space, the sequence of value functions {Vt}T+1
t=1 defined by Eqs. (4.1) and (4.2) can be equivalently

re-written as follows:

V (s, t) ≡ Vt(s).
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In the state space S̃ we can define an analogue to the function Γ, which we denote by Γ̃ and

define as follows:

[Γ̃θ](s, t) ≡ sup
a∈A(s)

{
u(s, a) + βE(F (θ, (s′, t+ 1)|(s, t), a)

}
× 1[t < T + 1], ∀(s, t) ∈ S̃. (4.3)

In order to conduct the approximation in the state space S̃, we use a sequence of sieve spaces,

denoted by {Θ̃n}n≥1, where each Θ̃n is a space of (simple) functions that map S̃ onto R. We

consider the following assumptions.

Assumption B.6. (F̃ , d̃) is a complete metric space of functions that map S̃ onto R, where d̃ is

the sup-norm metric, i.e.,

d̃(f1, f2) = sup
(s,t)∈S̃

||f1(s, t)− f2(s, t)||, ∀f1, f2 ∈ F̃ .

Assumption B.7. For any n ∈ N, d̃n is a pseudo-metric in (F̃ , d̃) such that ∃K1,K2 > 0,

K1d̃n(f1, f2)− λ1,n ≤ d̃(f1, f2) ≤ K2d̃n(f1, f2) + λ1,n,

where λ1,n = Op(υ1,n) and υ1,n = o(1), uniformly in f1, f2 ∈ F̃ .

Assumption B.8. For some k ∈ N, we can find θn ∈ Θn that satisfies:

d̃n(θn, Γ̃
kθn) ≤ inf

θ∈Θ̃n

d̃n(θ, Γ̃kθ) + λ2,n,

where Γ̃k is the kth iteration of Γ̃, λ2,n = Op(υ2,n), and υ2,n = o(1).

Assumption B.9. For any f ∈ F̃ :

inf
θ∈Θ̃n

d̃(θ, f) = λ3,n(f),

where λ3,n(f) = Op(υ3,n(f)) and υ3,n(f) = o(1).

Assumption B.10. For all f1, f2 ∈ F̃ , a ∈ A(s), and (s, t) ∈ S̃:

E[F (f1, (s
′, t+ 1))− F (f2, (s

′, t+ 1))|(s, t), a] ≤ d(f1, f2).

With the exception of the fact that the state space has been enriched with the time index,

Assumptions B.6-B.10 are analogous to assumptions that have already been discussed in the paper.

On the one hand, Assumptions B.6, B.7, and B.10 are analogous to Assumptions B.1, B.2, and
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B.5 used to consider the sieve approximation to the backward induction solution in finite horizon

problems. On the other hand, Assumptions B.8 and B.9 are analogous to Assumptions A.3 and

A.4 used to consider the SVFI approximation in infinite horizon problems.

In the context of the SVFI approximation in infinite horizon problems, we provided an iterative

algorithm to (approximately) minimizing the objective function. A similar iterative procedure can

be developed in the present context.

Algorithm 4.1. Let {εn}n≥1 be a tolerance sequence that satisfies εn = o(1). For an arbitrary

initial function f ∈ Θ̃n, consider the following iterative procedure:

1. Given f , choose a function θm ∈ Θ̃n such that:

θm = inf
θ∈Θ̃n

d̃n(θ, Γ̃kf).

2. If max{d̃n(θm, Γ̃
kf), d̃n(θm, f)} ≤ εn, then stop the algorithm and define θn ≡ θm. Otherwise,

set f = θm and return to step 1.

If the algorithm converges, then it can be shown that the resulting θn ∈ Θ̃n satisfies Eq. (3.5)

with λ2,n = O(max{εn, λ1,n}).9

The following result is the key to the asymptotic findings of this section.

Lemma 4.1. Assume Assumptions B.6 and B.10. Let V ∈ F̃ be the function defined by: V (t, s) ≡
Vt(s) for all S × {1, . . . , T + 1}. Then:

1. Γ̃ is a contraction mapping with modulus β on (F̃ , d̃).

2. V is the unique fixed point of the contraction mapping Γ̃, i.e., Γ̃V = V .

In the context of infinite horizon problems, Assumption A.1 indicated that the value function

was the unique fixed point of a certain contraction mapping. This result was the key to proposing

the SVFI approximation method. Lemma 4.1 indicates that an analogous result holds for in the

context of finite horizon problem. In fact, if we combine this result with the remaining assumptions,

the current setup satisfies all of the conditions required for the SVFI approximation. As a conse-

quence, an analogous approximation to the the SVFI approximation will have the same asymptotic

properties, i.e, consistency and rates of convergence. This analogous approximation is defined next.

Definition 4.2 (Sieve Value Function Approximation). Assume Assumption B.8. Then the sieve

approximation of {Vt}Tt=1 is {θ̂t,n}Tt=1 where, for every (s, t) ∈ S×{1, . . . , T}, θ̂t,n(s) ≡ θ̂n(s, t) and

θ̂n ∈ Θ̃n is any function that satisfies:

d̃n(θ̂n, Γ̃
kθ̂n) ≤ inf

θ∈Θ̃n

d̃n(θ, Γ̃kθ) + λ2,n.

9This can be shown using a very similar argument to the one used for Algorithm 3.1 in Lemma A.1. The argument
requires that Γ̃ is a contraction mapping with modulus β on (F̃ , d̃), which shown in Lemma 4.1.
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where λ2,n = Op(υ2,n) and υ2,n = o(1).

Based on the previous discussion, the following result is a simple corollary of Theorem 3.1 and

Lemma 4.1.

Theorem 4.2. Assume Assumptions B.6-B.10. Then, the function θ̂n ∈ Θ̃n in Definition 4.2

satisfies:

d̃(θ̂n, V ) = Op(max{υ1,n, υ2,n, υ3,n(V )}),

where max{υ1,n, υ2,n, υ3,n(V )} = o(1) as n → ∞ and V ∈ F̃ is the function defined by: V (t, s) ≡
Vt(s) for all S×{1, . . . , T + 1}. This implies that for all t = 1, . . . , T , the sieve approximation θ̂t,n:

1. is a consistent approximation of Vt, i.e., sups∈S |θ̂t,n(s)− Vt(s)| = op(1), as n→∞.

2. converges to Vt at a rate of min{υ−1
1,n, υ

−1
2,n, υ

−1
3,n(V )}.

As in Theorems 3.1 and 4.1, Theorem 4.2 indicates that the rate of convergence of the approxi-

mation depends on the rate at which three errors converge to zero. Once again, the slowest of these

three rates determines the rate of convergence of the approximation.

5 Estimation

The results to this point in the paper characterize the (approximate) computation of the value

function (and associated object of interests) for a known vector parameters π that characterize the

agent’s dynamic decision problem. In this section, we now consider the problem of estimating π

in a parameter space Π when the researcher has data on dynamic decisions and, again, the state

space is too large to permit the direct computation of V for a given value of π.10 As before, the

associated value function V incorporates all the information that is relevant to the decision problem

and depends on the parameter π, i.e., V (·|π). In this setup, the approximation problem of previous

sections entails the approximation of the value function V for a particular value of the parameter

π ∈ Π. Let π∗ denote the true parameter value, i.e., V (·) ≡ V (·|π∗).
For concreteness, consider an agent solving the value function in Eq. (3.1) with:

AS ≡ {(a, s) : a ∈ A(s) and ∀s ∈ S},

instantaneous utility function given by:

u(s, a) = u(s, a|π1), ∀(a, s) ∈ AS,

10Throughout this section, we pretend that the dynamic problem we refer to is the infinite horizon single agent
decision problem. Nevertheless, by making slight notational changes, the results of this section can also be applied
to a finite horizon problem.

20



transition probabilities given by:

dP (ε′, x′|x, a) = dP (ε′, x′|x, a, π2), ∀(a, s) ∈ AS,

and a discount factor β = π3. Set π ≡ (π1, π2, π3) ∈ Π. For each parameter value π ∈ Π, the

corresponding value function is denoted V (·|π).

The SVFI approximation procedure described in Definition 3.3 provides a method for approxi-

mating the value function for any given set of primitives (i.e., choice set, utility function, discount

factor, and transition probabilities). In this setting, these primitives are functions of the unknown

parameter value π. To be consistent with this interpretation, we denote: θn ≡ θn(·|π).

If the value function (or some function derived from it) were observed for an arbitrary set of

values, then the SVFI approximation procedure could be used to approximate it. Furthermore, the

consistency result in Theorem 3.1 suggests that the parameter π could be estimated as follows:

π̂n = arg min
π∈Π

Q(θn(·|π)), (5.1)

where Q(θn(·|π)) is an appropriately chosen function that measures the distance between θn(·|π)

and the value function V . For instance, Q could be the following function:

Q(θn(·|π)) =

∫
(V (s)− θn(s|π))2 dµ(s),

where µ is any arbitrary positive measure over S. In practice, however, the estimator in Eq. (5.1)

is unfeasible because the value function is not observed by the researcher and, consequently, Q is

unknown.

In practice, the value function, or some feature derived from it (e.g., CCPs), can be estimated

from the data. With some abuse of notation, let VI denote the estimated value function using a

sample of size I (observations are indexed i = 1, . . . , I) and let QI denote the function that measures

the distance between θn(·|π) and VI . Our previous discussion suggests that the parameter π could

be estimated according to the following definition.

Definition 5.1 (Estimator based on the Sieve Value Function Approximation). Let QI : Π→ R+

be the function of the data that measures the distance between VI and θn(·|π) for any π ∈ Π and let

n = n(I). The estimator of the true parameter value π∗, denoted π̂I , satisfies:

QI(θ̂n(·|π̂I)) ≤ inf
π∈Π

QI(θ̂n(·|π)) + op(1), as I →∞. (5.2)

In order to clarify the structure of the problem, we consider an illustrative example.

Example 5.1. In this case, we estimate the CCPs from a sample of I observed choices. In partic-
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ular, if the set S is finite, then the following estimator:

P̂I = {P̂I(a|s), ∀(a, s) ∈ AS},

where:

P̂I(a|s) =

I∑
i=1

1[ai = a, si = s]/

I∑
i=1

1[si = s],

is a
√
I-consistent estimator of the CCPs.

By definition, the CCPs can be derived from the value function. Let J(·|π) : F → [0, 1]#AS be

the mapping between the value function and the CCPs, i.e.,

J(V |π) = {P (a|s), ∀(a, s) ∈ AS},

where the conditioning on π indicates that the mapping itself could depend on the parameter value.11

This discussion suggests the estimation of π with π̂I as in Eq. (5.2), where the measure µ is set to

be the empirical measure, i.e.,

QI(θn(·|π)) =

∫
(P̂I − J(θn(π)|π))2 dP̂I , (5.3)

= I−1
I∑
i=1

1[(ai, si) = (a, s)](P̂I(a|s)− J(a,s)(V |, π))2. (5.4)

In other words, we choose the parameter value that minimizes the integrated squared distance be-

tween the observed CCPs and the approximated CCPs, where the empirical measure is used as the

measure of integration.

The objective of the rest of the section is to provide conditions under which π̂I is consistent.

To this end, we now provide a list of the assumptions that are exclusively used in this section.

Assumption C.1. (F1, d1) and (F2, d2) are metric spaces. The true value function V = V (·|π∗) ∈
F1 and the true parameter value π∗ ∈ Π ⊆ F2.

Assumption C.2. The SVFI approximation satisfies:

sup
π∈Π

d1(θ̂n(·|π), V (·|π)) = op(1), as n→∞.

Assumption C.3. There is a function Q(·) : F1 → R such that:

a. ĉ(n, I) = op(δ(n, I)) where ĉ(n, I) ≡ supf∈Θn
|QI(f)−Q(f)|.

11The function J will depend on the specific formulation of the dynamic decision problem. See Appendix B for a
description of each of the formulations and the definition of the function J in each case.
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b. Q is uniformly continuous in F1 under d1, i.e., for any δ > 0, there exists ε > 0 such that

f1, f2 ∈ F1 with d1(f1, f2) < ε implies Q(f1)−Q(f2) ≤ δ.

c. The function Q(V (·|π)) : Π→ R is uniquely minimized at π = π∗.

Assumption C.4. For every I ∈ N, n = n(I) with n(I)→∞ and δ(n(I), I)→ 0 as I →∞.

We now briefly comment on each of the assumptions. Assumption C.1 provides a label to

relevant spaces, functions, and parameters. Assumption C.2 is a high level assumption which

indicates that θ̂n(·|π) is a consistent approximation of V (·|π), uniform over π ∈ Π. By repeating

the arguments in Theorem 3.1, it is not hard to see that Assumption C.2 holds as a result of using

the SVFI approximation procedure described in Definition 3.3 under Assumptions A.1-A.4, with the

exception that Assumption A.4 is strengthened to hold uniformly in f ∈ F (i.e., as in Assumption

B.4). Assumption C.3 is similar to assumptions used in the literature on extremum estimators (see,

e.g., Chen (2007, Theorem 3.1) for conditions pertaining to sieve estimators, and Amemiya (1985,

Theorem 4.1.1) or McFadden and Newey (1994, Theorem 2.1) for finite dimensional estimators).

Finally, Assumption C.4 describes conditions that restrict the relationship between the data sample

size and the complexity of the sieve.

Under these assumptions, it is possible to obtain consistent estimators of the parameters of large

state space dynamic decision problems by embedding SVFI methods in the estimation algorithm.

Theorem 5.1. Assume Assumptions C.1-C.4. Then, the estimator in Eq. (5.1) is consistent, i.e.,

d2(π̂I , π
∗) = op(1), as I →∞.

6 Monte Carlo simulations

In this section we illustrate the small sample properties of sieve value function approximation in an

infinite horizon single agent setting. We first demonstrate sieve approximation of the value function

when the structural parameters are known. In the second part of this section, we show how sieves

can be applied in the estimation of structural models. The Monte Carlo experiments are conducted

in a framework similar to the bus engine replacement problem in Rust (1987). In our context

though, the problem is modified so that rather than making the engine replacement decision of

a single bus, the agent now endogenizes the purchasing and replacement decision over an entire

fleet of buses, with the constraint that at most one bus can be replaced in any period. Allowing

more buses increases the number of state variables, allowing us to study the approximation for

both small and large scale problems. We consider a single bus setting where we can compare the

sieve approximation to full solution methods and then study the performance of sieves in a more

complex problem (10 buses) where full solution methods are infeasible.

Let J indicate the number of buses in the agent’s fleet. The endogenous state vector xt contains

the current engine mileage for each bus j, xt(j). There are J endogenous state variables. In each
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period the agent has the option of reseting any (but only one) of the J engine mileages to zero. The

choice set is defined as at = {0, 1, . . . , J}, where at = 0 represents replacing no buses and at = j

corresponds replacing the engine in bus j. For these examples we assume that if a bus engine is

not replaced the engine mileage transitions as an exponential random variable that is the same for

all buses.

xt+1(j) =

{
xt(j) + ζt(j) , if at 6= j

ζt(j) , if at = j

Where the probability density function of ζ is P (ζ|λ) = λ exp(−λζ).

Given the current mileage states x, the agent chooses to set at most one engine milage to zero

in the current period. Contemporaneous utility is defined as u(x, at) + εt(at), where ε is a random

utility shock and mean flow utility is defined as

u(xt, at) =

{
α
∑J

j=1 xt(j)/J , if at = 0

α
∑J

j=1 xt(j)/J − αxt(at)/J +RC , if at = {1, . . . , J}

RC is the replacement cost of a bus engine.

The agent’s problem is to make an optimal sequence of purchasing decisions to maximize the

expected discounted flow of future per-period pay-offs. With discount factor β, we can formulate

the value function using the recursive Bellman representation:

V (xt, εt) = max
at∈{0,1,...,J}

{u(xt, at) + εt(at) + βE[V (xt+1, εt+1)|xt, at]}

Where the expectation is taken with respect to all future milage shocks ζ and utility shocks ε.

The choice specific value functions (excluding the shocks) for choice a ∈ {0, 1, . . . , J} are

v(xt, a) = u(xt, a) + βE[V (xt+1, εt+1)|xt, a].

The agent’s optimal decision in period t is then to choose a∗t such that:

a∗t = arg max
a∈{0,1,...,J}

{v(xt, a) + εt(a)}.

6.1 Approximation

Let θn denote the sieve approximation of the ex-ante value function, i.e. θn(xt) ≈
E[maxa∈{0,1,...,J}(v(xt, a) + εt(a))|xt] where the expectation is over the random pay-off shock ε.

Assuming the utility shocks are distributed type-I extreme value, we have a known closed form

representation of the expectation:

E[V (xt, εt)|xt] = ln

(∑
a∈{0,1,...,J}

exp(v(xt, a))

)
+ γ, (6.1)
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Where γ is Euler’s constant.

Therefore, for a chosen sieve space Θn, we seek an approximation of the expression in Eq. (6.1),

θn ∈ Θn, such that:

θn(xt) ≈ ln

(∑
a∈{0,1,...,J}

exp(v(xt, a))

)
+ γ

= ln

(∑
a∈{0,1,...,J}

exp (u(xt, a) + βE [V (xt+1, εt+1)|xt, a])

)
+ γ

≈ ln

(∑
a∈{0,1,...,J}

exp (u(xt, a) + βE [θn(xt+1)|xt, a])

)
+ γ. (6.2)

The right hand side of Eq. (6.2) represents one contraction on the approximation, θn, defined

as Γ1θn(xt+1|xt). Section 3.5 demonstrates that we can actually reduce the upper-bound of the

approximation error by increasing the number of iterations of the contraction operator on the ap-

proximation. Rather than immediately plugging the approximation into the expected future value

term, we could alternatively write this term using Eq. (6.1) as a function of next periods con-

temporaneous profit functions and a two-period away expected future value term. If we substitute

the approximation into the two-period away expected future value function, this corresponds to

two iterations of the contraction (k = 2). We could continue in this way for k > 2, though the

computational burden increases exponentially with k.

We construct the sieve approximation of order n using ordinary polynomials of the state vari-

ables and their interactions, where n denotes the highest order of the polynomial, i.e. n = 1 includes

only linear terms, n = 2 includes linear terms, the squares, and all two-way interactions, etc. Given

a value of the state vector, x, our nth order polynomial is generated by the function Wn(x). The

sieve approximation is then,

θn(x) = Wn(x)ρ

Where ρ are the parameters that approximate the value function.

For any state variable x, the sieve approximation and its contraction will satisfy,

Wn(x)ρ ≈ ln

(∑
a∈{0,1,...,J}

exp
(
u(x, a) + βE

[
Wn(x′)ρ|x, a

]))
+ γ (6.3)

A key convenience of constructing the approximation with a linear function is that the parameters ρ

can be taken out of the expected value, with the expectation only applying to the state transitions,

so we can replace E[Wn(x′)ρ|x, a] = E[Wn(x′)|x, a]ρ.

Given a sample of state vectors xs for s = 1, . . . , S, the parameters ρ in (6.3) are found through

the iterative Algorithm 3.1 using the sum of squared errors as the distance function. At iteration
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Table 2: Sieve Approximation (J = 1) a

Max.
Poly

Within-Approximation Sample
Fit

Comparison to
Full-Solution

||θ − Γθ||2 ||θ − Γ1θ||∞ R-squared max{|Prsieve−Prfullsol |}

1st 90.03315 2.11202 0.72411 0.43999

2nd 32.81664 0.85165 0.88525 0.12709

3rd 6.71985 0.23755 0.97456 0.03073

4th 2.59063 0.07202 0.99010 0.00914

5th 1.71290 0.05776 0.99345 0.01741

6th 0.41342 0.01338 0.99842 0.00740

7th 0.38959 0.01210 0.99851 0.00587

a Sieve approximation uses 10,000 draws on the interval (0,1). The parameters
are set to α = −5, RC = −10, λ = 1/.05 and β = .99

m, the parameters are updated for m+ 1 by solving:

ρm+1 = arg max
ρ

S∑
s=1

[
Wn(xs)ρ− ln

(∑
a∈{0,1,...,J}

exp
(
u(xs, a) + βE

[
Wn(x′s)|xs, a

]
ρm
))

+ γ

]2

,

(6.4)

Repeating until convergence.

Let X represent a matrix whose sth row contains Wn(xs). Similarly, Xa is a matrix who’s

sth row contains E [Wn(x′s)|xs, a]. The maximum of eq. (6.4) has a closed form solution, so the

iterative procedure finds a fixed point to the equation

ρm+1 = (X ′X)−1X ′
[
ln

(∑
a∈{0,1,...,J}

exp
(
u(X, a) + βXaρ

m
))

+ γ

]
(6.5)

The element inside the brackets on the right-hand side of eq. (6.5) can be abbreviated as Γ1θ(ρm)

since it represents one contraction on the sieve function with parameters ρm.

Equation (6.5) has two important features. First, most of it’s components, including (X ′X)−1X ′

and Xa can be computed outside of the algorithm and do not need to be recomputed at each

iteration. Second, since the sieve is a simple linear function, the elements of Xa, the expectations

of the sieve given the state transitions, are simply the raw moments of the random variables. In

many cases, these moments have a closed form expression or can be approximated to any precision

with simulation methods, which holds true for both continuous or discrete state variables.12

12In our engine replacement problem, for example, if an element of the approximating function is the interaction
of mileages between bus 1 and bus 2 (i.e. x(1) × x(2)), and neither engine is replaced, then the expectation for the
state transition next period is defined as,

E[(x(1) + ζ(1))(x(2) + ζ(2))] = x(1)x(2) + x(1)E[ζ(2)] + x(2)E[ζ(1)] + E[ζ(1)ζ(2)]

Given the assumption that ζ is an exponential random variable with parameter λ, E[ζ] = 1/λ.
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Table 2 illustrates the performance of the sieve approximation for the single bus case. In this

example we consider up to a seventh order polynomial which, including the constant, contains eight

terms. The benefit of looking at the single state variable case is that we can also solve the value

function using other methods to compare to the results of the sieve approximation. Once we have

the approximating function, we can also compute three measures of fit within the approximation

sample to evaluate the performance of the sieve. These include,

1. Sum of squared errors: ||θ − Γ1θ||2

S∑
s=1

(
θ(xs)− Γ1θ(x′s|xs)

)2

2. Supremum norm: ||θ − Γ1θ||∞

max{|θ(xs)− Γ1θ(x′s|xs)|}Ss=1

3. R-squared

1− ||θ − Γ1θ||2
||Γ1θ − E(Γ1θ)||2

The column to the far right of Table 2 uses the sieve approximation to compute choice prob-

abilities for a given state vector and compares them to the actual choice probabilities from a full

solution method. This shows that for the low order polynomials, in particular n = 1, the sieve

does a very poor job approximating the value function. This is also apparent looking at the within

approximation fit, for example the R-squared of 0.72. However, as suggested by the theoretical

results, by increasing the sieve complexity we approach a near perfect approximation to the value

function, such that with a seventh order polynomial the maximum difference between the choice

probability predicted by the sieve and the actual choice probability is close to one-half of one

percent.

Table 3 displays the results of the sieve approximation method for a much larger problem

containing 10 continuous state variables. Similar to the smaller problem, the measures of within

approximation fit become successively better as the complexity of the sieve is increased. Although

we have no method to compare the predicted probabilities with the true values as we could with

the smaller model, the fact that we can achieve similar measures of fit within the sample gives some

indication that we are close to the true value function.

6.2 Estimation

We now apply sieve value function approximation to estimate dynamic models, where we simulta-

neously solve for the structural parameters and the associated sieve value function approximation

that maximizes the likelihood of observed choice data. We consider the single bus replacement case
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Table 3: Sieve Approximation (J = 10) a

Max.
Poly

Num.
Parms.

Within-Approximation Sample
Fit

||θ − Γθ||2 ||θ − Γ1θ||∞ R-squared

1st 11 101.06255 3.66225 0.92834

2nd 66 7.00686 0.27396 0.99177

3rd 286 2.04118 0.08259 0.99768

4th 1001 0.64141 0.03279 0.99928

5th 3003 0.34694 0.01685 0.99961

a Sieve approximation uses 10,000 draws on the interval
(0,2). The parameters are set to α = −5, RC = −10,
λ = 1/.05 and β = .99

so that data can be generated from the true choice probabilities. In general, the data will contain

fewer observations than are necessary to approximate the sieve function. This is not a problem

because we are free to draw as many state vectors as we want from the state space to supplement

the states that are actually observed. Since the observed sample contains the most relevant part of

the state space, for example we will never observe buses with extraordinarily high mileages because

they will have been replaced long before then, rather than randomly drawing from the state space

for the approximation, we may be able to improve our approximation (and thus our structural

parameter estimates) by focusing on the state space near the generated data. For these exercises

we will draw 10,000 random points which will be perturbations around the observed data points.

Our model contains two unknown structural parameters, α and RC. Estimation is implemented

by modifying the iterative algorithm used for approximation described in Section 3.3. The param-

eter of interest is denoted by π ≡ (α,RC). Let the observations be indexed by i = 1, . . . , I, where

I denotes the sample size, ai denotes the observed choice for observation i, and xi denotes the

observed state for observation i.

The estimator of π is denoted by π̂I and is computed according to the following procedure.

First, we choose arbitrary initial values of (π̂0
I , θ̂

0
n) ∈ Π × Θ̃n. Then, we set m = 1 and use the

following iterative algorithm:

1. Choose π̂mI to maximize the (approximate) likelihood:

π̂mI = arg max
π∈Π

I∑
i=1

ln(Pr(ai|π, xi, θ̂m−1
n ).

2. Choose θ̂mn to solve the fixed point in eq. (6.5) taking π̂mI as given.

3. If ||π̂mI − π̂
m−1
I || < 10−6, then stop the algorithm and set π̂I = π̂mI . Otherwise, set m = m+ 1

and return to the first step.
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Table 4: Sieve Estimation (J = 1)a

α RC

Parameters -5.000 -10.000

Max. Poly

1st
−2.3369 −5.7587
(0.1200) (0.1551)

2nd
−8.6813 −16.6561
(1.1337) (1.7981)

3rd
−5.0001 −10.0168
(0.2724) (0.4787)

4th
−5.0248 −10.0595
(0.2803) (0.5008)

a Results from 2000 replications, each with
5,000 observations. Initial values of
structural parameters and sieve
approximation were set to zero.

This algorithm parallels Aguirregabiria and Mira (2002) in the sense that it swaps the calculation

of the value function to outside of the maximization of the likelihood over the structural parameters.

The outer iterations of this procedure will converge linearly, however, this approach requires an inner

iterative routine to maximize the structural utility parameters conditional on the approximation and

also to resolve the approximating function conditional on the new structural parameters. Although

this process is sped up by using the previous estimates as warm starts, these inner iterative routines

are undesirable. A computationally efficient estimation algorithm is outlined in James (2012), which

requires no inner iterative routines and whose outer iterations converge super-linearly.

Results of the estimation exercise for different values of sieve complexity are presented in Table

4. The results show that for the first and second order polynomial the parameter estimates are

extremely biased, which is not surprising given that these functions performed very poorly in

approximating the value function in Table 2. However this bias completely disappears for the third

order polynomial and above.

7 Conclusion

This paper proposes a methodology to approximate the value function in single agent dynamic

problems where a large state space makes value function iteration unfeasible. Our method is based

on non-parametric sieve estimation, and we refer to it as Sieve Value Function Iteration (SVFI).

We provide a formal framework to analyze the approximation error. In particular, we show that
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the SVFI approximation converges to the value function as the complexity of the sieve increases,

and we characterize the rate of this convergence. Furthermore, we provide a concrete upper bound

on the error of approximation which can be used to analyze its contributing factors.

A Monte Carlo analysis reveals that the SVFI approximation is very successful in estimating

the value function. These results suggest that our approximation can successfully be used to solve

models that would otherwise be computationally infeasible, implying that these techniques may

substantially broaden the class of models that can be solved and estimated.

Given the standard challenges with large state space problems, we expect SVFI to open up a

wide variety of avenues of theoretical and empirical exploration of complex dynamic single agent and

equilibrium problems. For example, in Arcidiacono, Bayer, Bugni, and James (2012), we consider

sequential move dynamic games. Estimation of these games can be done via standard two-step

procedures. Through the use of sieves, it is possible to calculate the conditional choice probabilities

of the finite horizon game which has a unique equilibrium, the limit of which is also an equilibrium

in the infinite horizon game. It is then possible to compare the conditional choice probabilities from

the finite horizon equilibrium to those observed in the data, testing to see whether this equilibrium

was played.
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Appendix A Technical appendix

Lemma A.1. Assume Assumptions A.1-A.2 and let θn ∈ Θn be the result of a convergence in Algorithm

3.1. Then, θn satisfies Eq. (3.5) with η2,n = O(max{εn, η1,n}).

Proof. By definition, the algorithm stops when: d(f, θn) ≤ εn and dn(θn,Γ
kf) ≤ εn for some θn, f ∈ Θn.

Based on this, consider the following argument:

dn(θn,Γ
kθn) ≤ dn(θn,Γ

kf) + dn(Γkf,Γkθn)

≤ dn(θn,Γ
kf) +K−1

1 d(Γkf,Γkθn) +K−1
1 η1,n

≤ dn(θn,Γ
kf) +K−1

1 βkd(f, θn) +K−1
1 η1,n

≤ dn(θn,Γ
kf) +K−1

1 βkK2dn(f, θn) +K−1
1 βkK2η1,n +K−1

1 η1,n

≤ εn(1 +K−1
1 βkK2) + (K−1

1 βkK2 +K−1
1 )η1,n

≤ inf
θ∈Θn

dn(θ,Γkθ) + η2,n,

where η2,n ≡ εn(1 + K−1
1 βkK2) + (K−1

1 βkK2 + K−1
1 )η1,n and, thus, η2,n = O(max{εn, η1,n}), as required.

The first inequality follows from the triangular inequality (applied to the pseudo-metric dn), the second

and fourth inequalities follow from Assumption A.2, the third inequality follows from the fact that Γ is a

contraction mapping with modulus β, the fifth inequality follows from the stopping rule in the algorithm,

the final inequality follows from the definition of η2,n and the fact that the pseudo-metric dn is positive.

Proof of Lemma 3.1. We begin by showing that or any θ ∈ F and m ∈ N:

d(θ, V ) ≤ d(θ,Γmθ)/(1− βm),

To see this, consider the following derivation:

d(θ, V ) ≤ d(θ,Γmθ) + d(Γmθ,ΓmV ) + d(ΓmV, V ),

= d(θ,Γmθ) + d(Γmθ,ΓmV ),

≤ d(θ,Γmθ) + βm d(θ, V ),

where the first inequality follows from the Triangle Inequality, the next equality follows from the fact that

V is a fixed point, and the final inequality follows from the fact that Γ is a contraction mapping. Eq. (A) is

a straight-forward consequence of this result.

Let θ̂n ∈ Θn ⊆ F be the SVFI approximation in Definition 3.3. On the one hand, consider the following

derivation:

d(θ̂n, V )(1− βk) ≤ d(θ̂n,Γ
kθ̂n),

≤ K2 dn(θ̂n,Γ
kθ̂n) + η1,n,

≤ K2 inf
θ∈Θn

dn(θ,Γkθ) + η1,n +K2η2,n,

≤ K−1
1 K2 inf

θ∈Θn

d(θ,Γkθ) + (1 +K2K
−1
1 )η1,n +K2η2,n,

where the first inequality follows from Eq. (A), the second and fourth inequalities follow from Assumption

A.2, and the third inequality follows from Eq. (3.7).
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On the other hand, for any θ ∈ F , consider the following derivation:

d(θ,Γkθ) ≤ d(θ, V ) + d(V,ΓkV ) + d(ΓkV,Γkθ),

= d(θ, V ) + d(ΓkV,Γkθ),

≤ (1 + βk)d(θ, V ),

where the first inequality follows from the triangle inequality, the next equality follows from the fact that V

is a fixed point, and the final inequality follows from the fact that Γ is a contraction mapping in (d,Γ). If

we take infimum of θ ∈ Θn ⊆ F on both sides:

inf
θ∈Θn

d(θ,Γkθ) ≤ (1 + βk) inf
θ∈Θn

d(θ, V ) = (1 + βk)η3,n(V ).

The result follows directly from combining the previous results.

Proof of Theorem 3.1. By combining Lemma 3.1 with Assumption A.4, it follows that:

d(θ̂n, V ) ≤
{
K−1

1 K2(1 + βk)η3,n(V ) + (1 +K2K
−1
1 )η1,n +K2η2,n

}
(1− βk)−1,

= Op(max{γ1,n, γ2,n, γ3,n(V )}),

where max{γ1,n, γ2,n, γ3,n(V )} = o(1) as n → ∞. Using elementary arguments, this result implies

that: (1) d(θ̂n, V ) = op(1) as n → ∞ and (2) d(θ̂n, V ) converges in probability to zero at a rate of

max{γ1,n, γ2,n, γ3,n(V )}−1 = min{γ−1
1,n, γ

−1
2,n, γ3,n(V )−1}.

Lemma A.2. Under Assumption B.1, Assumption B.5 is satisfied for all the formulations of the dynamic

decision problem described in Appendix B.

Proof. We verify the result for each formulation described in Appendix B. We begin with the conditional

value function formulation. In this case: s = (x, ε) and F (V, s′) = V (s′). Then:

E[F (f1, s
′)− F (f2, s

′)|s, a] = E(f1(s′)− f2(s′)|s, a) ≤ d(f1, f2),

where the equality holds by definition of F and the inequality holds because d is the sup-norm metric.

We now consider the social surplus function formulation. In this case: s = (x, a), F (V, s′) = G(V (x′)|x′),
and A(s) = {a}. Then:

E[F (f1, s
′)− F (f2, s

′)|s, a] = E[G(f1(s′)|s′)−G(f2(s′)|s′)|s, a],

= E[E[ max
a′∈A(x′)

(f1(x′, a′) + ε(a′))− max
a′∈A(x′)

(f2(x′, a′) + ε(a′))|x′]|x, a],

≤ E[|E[ max
a′∈A(x′)

(f1(x′, a′) + ε(a′))− max
a′∈A(x′)

(f2(x′, a′) + ε(a′))|x′]||x, a],

≤ E[ max
a′∈A(x′)

|f1(x′, a′)− f2(x′, a′)||x, a] ≤ d(f1, f2),

where the first equality holds by definition of F , the second equality holds by definition of G, the first and

second inequalities hold by elementary arguments, and the final inequality holds because d is the sup-norm

metric.

We conclude with the choice-specific value function formulation. In this case: s = (x, a), F (V, s′) =

G(β−1u(x′) + V (x′)|x′), and A(s) = {a}. Using the same arguments as in the social surplus function
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formulation, it is not hard to verify the result.

Proof of Theorem 4.1. This proof proceeds by induction. Set t = 1. By definition, θ̂T+2−t,n = VT+1

and, thus, d(VT+2−t, θ̂T+2−t,n) = 0. We now prove the inductive step. Suppose that for some t ≥ 1,

d(VT+2−t, θ̂T+2−t,n) = Op(max{υ1,n, υ2,n, υ3,n}). We now show that: d(VT+1−t, θ̂T+1−t,n) = op(1), as n →
∞. By the triangular inequality:

d(VT+1−t, θ̂T+1−t,n) = d(VT+1−t, θ̂
∗
T+1−t,n) + d(θ̂∗T+1−t,n, θ̂T+1−t,n).

We now analyze each of the terms on the right hand side satisfies the desired property.

We begin with d(VT+1−t, θ̂
∗
T+1−t,n). Fix s ∈ S arbitrarily. Let a1,n(s) ∈ A(s) be such that:

θ̂∗T+1−t,n(s) = u(s, a1,n(s)) + βE(F (θ̂T+2−t,n, s
′)|s, a1,n(s)),

i.e., a1,n(s) is the maximizer, which exists due to the fact that A(s) is a finite set. Then, consider the

following derivation:

θ̂∗T+1−t,n(s) = u(s, a1,n(s)) + βE(F (θ̂T+2−t,n, s
′)|s, a1,n(s)),

≤ u(s, a1,n(s)) + βE(F (VT+2−t, s
′)|s, a1,n(s)) + βd(θ̂T+2−t,n, VT+2−t),

≤ VT+1−t(s) + βd(θ̂T+2−t,n, VT+2−t),

where the first equality holds by Eq. (A), the next inequality holds by Assumption B.5, and the final

inequality holds by Eq. (4.1). As a consequence, it follows that: sups∈S(θ̂∗T+1−t,n(s) − VT+1−t(s)) ≤
βd(θ̂T+2−t,n, VT+2−t). By a similar argument, one can show that sups∈S(VT+1−t(s) − θ̂∗T+1−t,n (s)) ≤
βd(θ̂T+2−t,n, VT+2−t). By combining both inequalities with Assumption B.1, it follows that:

d(θ̂∗T+1−t,n, VT+1−t) = sup
s∈S
|θ̂∗T+1−t,n(s)− VT+1−t(s)| ≤ βd(θ̂T+2−t,n, VT+2−t).

By the inductive assumption, it follows that: d(θ̂∗T+1−t,n, VT+1−t) = Op(max{υ1,n, υ2,n, υ3,n}).
We continue with d(θ̂∗T+1−t,n, θ̂T+1−t,n). Consider the following derivation:

d(θ̂∗T+1−t,n, θ̂T+1−t,n) ≤ K2 dn(θ̂∗T+1−t,n, θ̂T+1−t,n) + λ1,n,

≤ K2 inf
θ∈Θn

dn(θ, θ̂∗T+1−t,n) + λ1,n + λ2,n(θ̂∗T+1−t,n),

≤ K−1
1 K2 inf

θ∈Θn

d(θ, θ̂∗T+1−t,n) + λ1,n(1 +K−1
1 ) + λ2,n,

≤ K−1
1 K2 sup

f∈F
λ3,n(f) + λ1,n(1 +K−1

1 ) + λ2,n

where the first and third inequalities hold by Assumption B.2, the second inequality holds by Assumption

B.3, and the final inequality holds by Assumption B.4. By the properties of λ1,n, λ2,n, and λ3,n, it follows

that d(θ̂∗T+1−t,n, θ̂T+1−t,n) = Op(max{υ1,n, υ2,n, υ3,n}).

Proof of Lemma 4.1. Part 1. Consider a pair of functions f1, f2 ∈ F̃ . First, consider t = T+1. By definition,

Γ̃f1(s, t) = Γ̃f2(s, t) = 0 ∀s ∈ S, which implies that: sups∈S |Γ̃f1(s, T+1)−Γ̃f2(s, T+1)| = 0. Next, consider
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t = 1, . . . , T . For any arbitrary s ∈ S:

|Γ̃f1(s, t)− Γ̃f2(s, t)| =

{
supa∈A(s) {u(s, a) + βE(F (f1, (s

′, t+ 1))|(s, t), a)}
− supa∈A(s) {u(s, a) + βE(F (f2, (s

′, t+ 1))|(s, t), a)}

}
≤ β sup

a∈A(s)

E(F (f1, (s
′, t+ 1))− F (f2, (s

′, t+ 1))|(s, t), a)

= β sup
a∈A(s)

E(F (f1,t+1, s
′)− F (f2,t+1, s

′)|s, a)

≤ β sup
a∈A(s)

E(f1,t+1(s′)− f2,t+1(s′)|s, a)

≤ β sup
s∈S
|f1,t+1(s)− f2,t+1(s)| = β sup

s∈S
|f1(s, t+ 1)− f2(s, t+ 1)|,

where for any f ∈ F̃ and (s, t) ∈ S × {1, . . . , T + 1}, we use ft(s) ≡ f(s, t). Notice that we are also using

the fact that conditional expectations are time invariant, but that is assumed for simplicity of notation, i.e.,

the assumption can be eliminated by indexing expectations with a time index. By reversing the roles of f1

and f2, we deduce that: ∀t = 1, . . . , T :

sup
s∈S
|Γ̃f1(s, t)− Γ̃f2(s, t)| ≤ β sup

s∈S
|f1(s, t+ 1)− f2(s, t+ 1)|.

By combining information from all values of t = 1, . . . , T + 1, it follows that:

d̃(Γ̃f1, Γ̃f2) = max
t=1,...,T+1

sup
s∈S
|tildeΓf1(s, t)− tildeΓf2(s, t)| ≤ β max

t=1,...,T+1
sup
s∈S
|f1(s, t)− f2(s, t)| = βd̃(f1, f2).

Part 2. By the Contraction Mapping Theorem (see, e.g., Stokey and Lucas (1989, page 50)) the mapping

tildeΓ has a unique fixed point in F̃ . It suffices to show that V is such fixed point, i.e., d̃(V, Γ̃V ) = 0. For

t = T + 1, the definition of Γ̃V is: (Γ̃V )(s, T + 1) = 0 = V (T + 1, s) ≡ VT+1(s). For any other t = 1, . . . , T ,

it follows that:

(Γ̃V )(s, t) = sup
a∈A(s)

{u(s, a) + βE(F (V, (s′, t+ 1))|(s, t), a)}

= sup
a∈A(s)

{u(s, a) + βE(F (Vt+1, s
′))|s, a)} = Vt(s) = V (s, t),

which completes the proof.

Proof of Theorem 4.2. By Lemma 4.1, the analogue of Assumptions A.2-A.4 hold for the state space S̃.

Under these assumptions, the result is a corollary of Theorem 3.1.

Proof of Theorem 5.1. Fix ε > 0 arbitrarily. Then, ∃δ > 0 such that ∀π ∈ Π: d2(π, π∗) > ε⇒ Q(V (·|π))−
Q(V (·|π∗)) > δ. This implies that ∃δ > 0 such that:

P (d2(π̂I , π
∗) ≤ ε) ≥ P (Q(V (·|π̂I))−Q(V (·|π∗)) ≤ δ).

The strategy of the proof is to show that the RHS converges to one as I →∞. To this end, for a fixed δ > 0,
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consider the following argument:

P (Q(V (·|π̂I))−Q(V (·|π∗) ≤ δ)

= P

(
Q(V (·|π̂I))−Q(θ̂n(·|π̂I)) +Q(θ̂n(·|π̂I))−QI(θ̂n(·|π̂I))

+QI(θ̂n(·|π̂I))−Q(V (·|π∗)) ≤ δ

)
,

≥ P

(
{Q(V (·|π̂I))−Q(θ̂n(·|π̂I)) ≤ δ/3} ∩ {Q(θ̂n(·|π̂I))−QI(θ̂n(·|π̂I)) ≤ δ/3}

∩{QI(θ̂n(·|π̂I))−Q(V (·|π∗)) ≤ δ/3}

)
,

≥

{
P (Q(V (·|π̂I))−Q(θ̂n(·|π̂I)) ≤ δ/3) + P (Q(θ̂n(·|π̂I))−QI(θ̂n(·|π̂I)) ≤ δ/3)

+P (QI(θ̂n(·|π̂I))−Q(V (·|π∗)) ≤ δ/3)− 2

}
.

The last expression on the RHS includes three probability expressions. The proof is completed by showing

that these expressions converge to one as I →∞.

Consider the first expression. By the uniform continuity of Q, there is η > 0 such that:

sup
π∈Π

d1(θ̂n(·|π), V (·|π)) < η ⇒ d1(θ̂n(·|π̂I), V (·|π̂I)) < η ⇒ Q(θ̂n(·|π̂I))−Q(V (·|π̂I)) ≤ δ/3.

It follows then that:

P (Q(θ̂n(·|π̂I))−Q(V (·|π̂I)) ≤ δ/3)→ 1, as n→∞,

or, equivalently, as I →∞ because n(I)→∞ as I →∞.

Consider the second expression. Notice that:

Q(θ̂n(·|π̂I))−QI(θ̂n(·|π̂I)) ≤ sup
f∈Θn

|QI(f)−Q(f)| = ĉ(n, I),

and since ĉ(n, I) = op(δ(n(I), I)) = op(1) as I →∞, it follows that:

P (Q(θ̂n(·|π̂I))−QI(θ̂n(·|π̂I)) ≤ δ/3)→ 1, as I →∞.

Finally, consider the third expression. By definition of the estimation:

QI(θ̂n(·|π̂I)) ≤ inf
π∈Π

QI(θn(·|π)) + op(1) ≤ QI(θn(·|π∗)) + op(1),

as I →∞. This implies that:

QI(θ̂n(·|π̂I))−Q(V (·|π∗)) ≤ QI(θ̂n(·|π∗))−Q(V (·|π∗)) + op(1),

= QI(θ̂n(·|π∗))−Q(θ̂n(·|π∗)) +Q(θ̂n(·|π∗))−Q(V (·|π∗)) + op(1),

≤ sup
f∈Θn

|QI(f)−Q(f)|+Q(θ̂n(·|π∗))−Q(V (·|π∗)) + op(1).

Repeating arguments used in previous expressions, it follows that:

P (QI(θ̂n(·|π̂I))−Q(V (·|π∗)) ≤ δ/3)→ 1, as I →∞,

completing the proof.

36



Appendix B Alternative formulations of decision problem

As described in the main text of Section 2, there are three possible ways to formulate the dynamic decision

problem of Eq. (2.1) as a recursive problem. The objective of this section is to describe each of these

formulations and show that each of them is a special case of the unified formulation described in the main

text.

B.1 Value function formulation

This formulation of the dynamic decision problem is the most obvious one but, as we will argue, the most

computationally demanding in terms of the size of the state space. It is easy to verify that Eq. (2.1) can be

represented as follows:

V (x, ε) = max
a∈A(x)

{u(x, a) + ε(a) + β

∫
V (x′, ε′)dP (x′, ε′|x, ε, a)},

= max
a∈A(x)

{u(x, a) + ε(a) + βE[V (x′, ε′)|x, ε, a]}.

If we let s ≡ (x, ε) and S ≡ X × E, V : S → R is the fixed point of the following mapping:

(Γ1m)(x, ε) = max
a∈A(x)

{u(x, a) + ε(a) + βE[m(x′, ε′)|x, ε, a]}, ∀(x, ε) ∈ S.

This corresponds to the conditional value function formulation of the problem (Rust (1987, Eq. (4.4))).

Notice that our derivations so far did not require the Conditional Independence (CI) Assumption. It is

straight-forward to verify that it is a contraction mapping (in the sup-norm) by using the Blackwell (1965)

sufficient conditions for a contraction (see Stokey and Lucas (1989, Theorem 3.3)). This is an obvious object

of interest, as it allows us to deduce optimal decision rules in the following way:

f(x, ε) = arg max
a∈A(x)

{u(x, a) + ε(a) + βE[V (x′, ε′)|x, ε, a]},

with a related conditional choice probability (CCP):

P (a = ā|x) =

∫
ε

(
arg max
a∈A(x)

{u(x, a) + ε(a) + βE[V (x′, ε′)|x, ε, a]} = ā

)
dP (ε|x).

We now verify that this formulation is a particular case of the unified formulation. This is shown in

Table 5, which explains how the objects in the unified notation are defined in terms of the primitive objects

in Eq. (2.1). According to the table, F is defined as follows: F (V, s′) = V (s′). It is straightforward to verify

that this function satisfies all of the properties required for F .

Primitive object V (x, ε) X × E A(x) a u(x, a) + ε(a) V (s′)
Unified formulation V s S A(s) a u(s, a) F (V, s′)

Table 5: Representation of the primitive object of the conditional value function formulation in terms of
the unified formulation.

Notice that the state space in this formulation is given by s = (x, ε), which is relatively large as it

includes ε = {ε(a) : a ∈ A(x)} (i.e., has the cardinality of A(x)). By the nature of the type of problems
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under consideration it is reasonable to consider alternative formulations of the problem, where ε is not part

of the state space.

B.2 Social surplus function formulation

This formulation of the problem is developed in Rust (1988). In order to explain the formulation, it is

necessary to define certain objects. Given a vector v(x) = {v(x, a) : a ∈ A(x)}, define the social surplus

function as follows:

G(v(x)|x) ≡
∫
ε

max
a∈A(x)

{v(x, a) + ε(a)} dP (ε|x) = E

(
max
a∈A(x)

{v(x, a) + ε(a)}
∣∣∣∣x) .

If we let s ≡ (x, a) and S ≡ {(x, a) : a ∈ A(x), x ∈ X}, Rust (1988, Theorem 3.2) indicates that:

V (x, ε) = max
a∈A(x)

[v(x, a) + ε(a)],

where v : S → R is the unique fixed point of the following contraction mapping:

(Γ2m)(x, a) = u(x, a) + βE[G(m(x′)|x′)|x, a],∀(x, a) ∈ S.

Notice that, in the formula, m(x′) is shorthand for the vector {m(x′, i′) : i′ ∈ A(x′)}. Our assumptions

imply that the mapping is a contraction mapping (in the sup-norm) by using the Blackwell (1965) sufficient

conditions for a contraction (in this case, it is important to establish that G satisfies the properties in Rust

(1988, Theorem 3.2)). Notice that the fixed point v is the object of interest because it allows us to recover

the original value function V (using Eq. (B.2)) and, with it, we can then construct the rest of the objects of

interest such as optimal decision rules and CCPs.

The advantage of working with this formulation of the dynamic decision problem is that the state space

is (x, a), whose dimension is smaller than for the condition value function formulation. Another advantage

is that the CCPs can be written simply as (see Rust (1988, Theorem 3.4)):

P (a = ā|x) = Gā(v(x)|x),

where Gā denotes the derivative of the social surplus function (i.e., Eq. (B.2)) with respect to v(x, ā).

We now verify that this formulation is a particular case of the unified formulation. This is shown in

Table 6, which explains how the objects in the unified notation are defined in terms of the primitive objects

in Eq. (2.1). According to the table, F is defined as follows: F (V, s′) = G(V (x′)|x′), where G is the social

surplus function (i.e., Eq. (B.2)) with its own choice set A(x′). Theorem 3.1 in Rust (1988) shows that the

function G satisfies all of the desired properties.

Unified formulation v s S A(s) a u(s, a) F (V, s′)
Primitive object V (x, a) {(x, a) : a ∈ A(x), x ∈ X} {a} a u(x, a) G(V (x′)|x′)

Table 6: Representation of the primitive object of the social surplus function formulation formulation in
terms of the unified formulation.
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B.3 Choice-specific value function formulation

This formulation is related to the social surplus function formulation and is explained in Rust (1988), page

1014. As in the previous formulation, let s ≡ (x, a) and S ≡ {(x, a) : a ∈ A(x), x ∈ X}. Under our

assumptions, Rust (1988) indicates that:

v(x, a) = u(x, a) + βEV (x, a),

where v : S → R is the function in Eq. (B.2) and EV : S → R is the fixed point in the following contraction

mapping:

(Γ3m)(x, a) = E[G(u(x′) + βm(x′)|(x′))|x, a], ∀(x, a) ∈ S.

This formulation is intimately related to the social surplus function formulation and shares all its advantages

relative to the conditional value function formulation, i.e., the state space is (x, a), which have a relatively

smaller dimension, and the CCPs are relatively easy to compute using Eq. (B.2).

We now verify that this formulation is a particular case of the unified formulation. This is shown in

Table 7, which explains how the objects in the unified notation are defined in terms of the primitive objects

in Eq. (2.1). According to the table, F is defined as follows: F (V, s′) = G(β−1u(x′) + V (x′)|x′), where G is

the social surplus function (i.e., Eq. (B.2)) with its own action set A(x′). Rust (1988, Theorem 3.1) shows

that the function G satisfies all of the desired properties.

Unified formulation V s S A(s) a u(s, i) F (V, s′)
Primitive object EV (x, a) {(x, a) : i ∈ A(x), x ∈ X} {a} a 0 G(β−1u(x′) + V (x′)|x′)

Table 7: Representation of the primitive object of the choice-specific value function formulation formulation
in terms of the unified formulation.
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