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1 Introduction

Over time, many researchers have come to view forecast evaluation as a vital component

of empirical time series work. Since at least the work of Fair and Shiller (1989, 1990) and

Meese and Rogoff (1983, 1988), forecast evaluation has become an important metric for

evaluating models. If one model is superior to another, it ought to forecast more accurately.

Of course, forecast evaluation has long been important to applied forecasting. Forecasts

need to be good to be useful for decision making. Determining if forecasts are good involves

formal evaluation of the forecasts.

Since roughly the mid-1990s, the literature on forecast evaluation has mushroomed, in

a variety of directions. In the first volume of the Handbook of Economic Forecasting, West

(2006) provided a comprehensive survey of the extant literature. In this second volume, this

chapter provides an update, focusing on developments in forecast evaluation since the time

of West’s writing. For that purpose, to put recent work in a broader context, we need to

briefly cover some earlier developments, overlapping with some portions of West’s survey.

In this material, we extend West’s overview for practitioners by including a brief exposition

of the derivations of some of the key results in the literature. We then focus on more recent

developments, such as methods for evaluating population-level versus finite-sample forecast

accuracy and the evaluation of conditional versus unconditional forecasts.

In this chapter, we also hone in on two outstanding issues in the literature, and present

some original results on these issues. The first is the optimization of power in determining

the split of a sample into in-sample and out-of-sample portions. The second issue is obtain-

ing accurate inference in evaluation of small samples of multi-step forecasts. We provide

a Monte Carlo assessment of options — alternative estimators of heteroskedasticity-and-

autocorrelation (HAC) consistent variances — for obtaining small-sample inferences more

reliable than those evident from some prior Monte Carlo work. We also present some original

analysis extending West’s (1996) results to include conditional forecasts.

We should note up front that, throughout the chapter, we focus on the evaluation of

point forecasts. For overviews of the literature on the evaluation of density forecasts, we

refer the reader to the comprehensive survey of Corradi and Swanson (2006) and the chapter

by Andrew Patton in this volume.

Our chapter proceeds as follows. Section 2 presents notation used throughout the chap-

ter to represent the modeling and forecasting framework. Other, more specialized notation
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is introduced as the chapter proceeds and the need for the notation arises. To reduce clutter,

throughout the chapter our general approach is to define terms only once; to make nota-

tion easy to find, Table 1 provides a listing of notation used across multiple sections of the

chapter. Section 3 reviews developments in the evaluation of pairs of forecasts, drawing a

distinction between evaluation of population-level predictive ability and evaluation of finite-

sample predictive ability. Section 4 presents our new Monte Carlo comparison of alternative

HAC estimators in nested model forecast evaluation. Section 5 examines issues in the choice

of the split of the sample into in-sample and out-of-sample portions, presenting our new

results on power, and includes an overview of recent work on methods for testing across

multiple sample splits. Section 6 reviews approaches to unconditional versus conditional

forecast evaluation and includes our new extension of West’s (1996) results from uncondi-

tional to conditional forecasts. Section 7 summarizes recent developments in methods for

evaluating forecasts from multiple models. Section 8 reviews existing approaches to evalu-

ating forecasts from models estimated with real-time data. Section 9 discusses rationales for

evaluating out-of-sample forecasts, and, finally, Section 10 provides some examples of the

mathematics behind out-of-sample inference. Section 11 concludes with a brief summary.

2 Modeling and Forecasting Framework

The sample of observations {yt, x�t}Tt=1 includes a scalar random variable yt to be predicted,

as well as a (k × 1) vector of predictors xt. Specifically, for each time t the variable to be

predicted is yt+τ , where τ denotes the forecast horizon. The sample is divided into in-sample

and out-of-sample portions. The total in-sample observations (on yt and xt) span 1 to R.

Letting P − τ + 1 denote the number of τ -step-ahead predictions, the total out-of-sample

observations span R+ τ through R+P . The total number of observations in the sample is

R+ P = T .1

The literature is largely silent on the best way to split the sample into in- and out-of-

sample portions. There is, however, a clear trade-off. More out-of-sample observations

(larger P ) imply more forecasts and therefore more information regarding the accuracy of

the forecasts. The converse is that more in-sample observations (larger R) imply that

the parameter estimates will be more accurately estimated and likely lead to more accurate

1This seemingly innocuous assumption is actually nontrivial. For many macroeconomic variables (such
as GDP) the forecasting agent actually has access to a triangular array of vintages of both the y’s and x’s.
We return to this issue in section 8.
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forecasts. As seen below, asymptotic inference on predictive ability often depends explicitly

on the relative sample sizes, P/R. Section 5 considers in more detail the optimal choice

of sample split and reviews recently developed approaches to testing across a wide range of

samples.

Given the sample split, forecasts of yt+τ , t = R, . . . , T−τ , are generated using parametric

models of the form yt+τ = g(xt, β
∗) + ut+τ for a known function g(·, ·) and unknown finite-

dimensioned parameter vector β
∗. These parameters are estimated using one of three

distinct observation windows. Under the recursive scheme, the parameter vector is updated

at each forecast origin t = R, ..., T − τ using all available information. For example, if

NLLS is used to estimate the above model, we have β̂t = argminβ
�t−τ

s=1(ys+τ − g(xs, β))2.

Under the rolling scheme, the parameters are also updated at each forecast origin but

always using the same number of observations R in the window, as, for example: β̂t =

argminβ
�t−τ

s=t−τ−R+1(ys+τ − g(xs, β))2. In our final scheme — the fixed scheme — the

parameters are estimated only once at the initial forecast origin and hence β̂t = β̂R =

argminβ
�R−τ

s=1 (ys+τ − g(xs, β))2.

Regardless of the sample window used, the parameter estimates and the predictors are

used to construct forecasts ĝt+τ (xt, β̂t) = ŷt+τ of the dependent variable at each forecast

origin. These in turn can be used to construct forecast errors ût+τ = yt+τ− ŷt+τ . Typically

the accuracy of the forecasts is evaluated based on a known function of this forecast error.

Table 2 provides a list of several of the most common measures of “accuracy,” using our

loose interpretation of the term. The first three measures are intended to evaluate the

accuracy of a single model, whereas the remaining ones are better thought of as evaluating

the accuracy of a model relative to another model. West (2006) provides further detail on

many of these measures, including references to original sources.

Note that regardless of the measures of accuracy (from Table 2) of interest, each can

be written in a general form as f(yt+τ , xt, β̂t) = ft+τ (β̂t).
2 The goal of tests of predictive

ability is to determine how best to use (P − τ +1)−1�T−τ
t=R ft+τ (β̂t) as a means of telling us

something about the unknown future accuracy of the model(s), as well as model adequacy.

2When two models are involved, redefine β̂t as the vector formed by stacking the parameter estimates

from each of the two models so that β̂t = (β̂
�
1,t, β̂

�
2,t)

�.
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Table 1. Key Notation

Data-related
yt = scalar variable to be predicted
xt = vector of predictors
with nested models, x2,t = (x�1,t, x

�
w,t)

�, vector with k = (k1 + kw) elements
τ = forecast horizon
T = R+ P , P = # of 1-step ahead forecasts, R = in-sample size, π̂ = P/R

Model and forecast-related
βi = coefficient vector for model i with predictors xi,t
ui,t+τ = population forecast error from model i = yt+τ − x

�
i,tβ

∗
i

ûi,t+τ = estimated forecast error from model i = yt+τ − x
�
i,tβ̂i,t

with nested models, ut+τ ≡ u2,t+τ

Orthogonality conditions and loss functions
ht+τ = ht+τ (β

∗) = orthogonality conditions used to estimate model parameters
with more than one model, hi,t+τ (βi) = (yt+τ − x

�
i,tβi)xi,t

f(yt+τ , xt, β̂t) = ft+τ (β̂t) = forecast loss function

d̂t+τ = û
2
1,t+τ − û

2
2,t+τ

ĉt+τ = û1,t+τ (û1,t+τ − û2,t+τ )

�cwt+τ = û
2
1,t+τ −

�
û
2
2,t+τ − (x�2,tβ̂2,t − x

�
1,tβ̂1,t)

2
�

MSEi = (P − τ + 1)−1
T−τ�

t=R

û
2
i,t+τ

Moments and other terms in asymptotics
π = limP,R→∞ P/R, λ = (1 + π)−1

Eu
2
2,t+τ = σ

2
2; with nested models, Eu

2
t+τ = σ

2

Ω = asymptotic variance of loss differential in West (1996)
B = (Extx

�
t)
−1; with nested models, Bi = (Exi,tx

�
i,t)

−1

H(t) = t
−1�t−τ

s=1 hs+τ (recursive scheme); with nested models, H2(t) = t
−1�t−τ

j=1 h2,j+τ

F = E[∂ft+τ (β)/∂β]β=β∗

Sff = limT→∞ V ar(T−1/2�T−τ
s=1 ft+τ (β

∗))

Shh = limT→∞ V ar(T−1/2�T−τ
s=1 ht+τ )

Sfh = limT→∞Cov(T−1/2�T−τ
s=1 ft+τ (β

∗), T−1/2�T−τ
s=1 ht+τ )

Sf̂ f̂ = limP→∞ V ar((P − τ + 1)−1/2�T−τ
t=R (ft+τ (β̂t)− Eft+τ (β̂t)))

J = (Ik1×k1 , 0k1×kw)
�, Jw = (0kw×k1 , Ikw×kw)

�

F2 = J
�
wB2Jw

Ã = a (kw × k) matrix satisfying Ã
�
Ã = B

−1/2
2 (−J

�
B1J +B2)B

−1/2
2

h̃t+τ = σ
−1

ÃB
1/2
2 h2,t+τ , H̃2(t) = σ

−1
ÃB

1/2
2 H2(t)

Γh̃h̃(i) = Eh̃t+τ h̃
�
t+τ−i

Sh̃h̃ = long-run variance of h̃t+τ = Γh̃h̃(0) +
�τ−1

i=1 (Γh̃h̃(i) + Γ�
h̃h̃
(i))
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Table 1, continued.

Test statistics

MSE-t =

�
(P − τ + 1)−1/2

T−τ�

t=R

d̂t+τ

�
/Ŝ

1/2
dd , Ŝdd = long-run variance of d̂t+τ

MSE-F =

�
T−τ�

t=R

d̂t+τ

�
/σ̂

2
2, σ̂

2
2 = (P − τ + 1)−1�T−τ

t=R û
2
2,t+τ

ENC-t =

�
(P − τ + 1)−1/2

T−τ�

t=R

ĉt+τ

�
/Ŝ

1/2
cc , Ŝcc = long-run variance of ĉt+τ

ENC-F =

�
T−τ�

t=R

ĉt+τ

�
/σ̂

2
2

Distributional terms
W (ω) = a kw × 1 vector standard Brownian motion

Γ1 =
� 1
λ ω

−1
W

�(ω)Sh̃h̃dW (ω)

Γ2 =
� 1
λ ω

−2
W

�(ω)Sh̃h̃W (ω)dω

Γ3 =
� 1
λ ω

−2
W

�(ω)S2
h̃h̃
W (ω)dω

Γ4 =
� 1
λ (ϑ

�
B

−1/2
2 Ã

�
/σ)S1/2

h̃h̃
dW (ω)

Γ5 = (1− λ)β�
wF

−1
2 βw/σ

2

Table 2. Common Measures of Point Forecast Accuracy

measure ft+τ (β)
1. bias (zero mean prediction error ) ut+τ

2. serial correlation (zero first-order correlation) ut+τut+τ−1

3. efficiency (no correlation between error and prediction) ut+τg(xt, β)
4. encompassing (no correlation between u1,t+τg2(xt, β)

model 1’s error and model 2’s prediction)
5. mean square error u

2
t+τ

6. mean absolute error |ut+τ |
7. linex loss e

αut+τ − αut+τ − 1
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3 Pairs of Models: Population-Level and Finite-Sample In-
ference

Starting with West (1996), much of the literature on forecast evaluation has focused on

developing methods for testing population-level predictive ability, which involves using (P−

τ +1)−1�T−τ
t=R ft+τ (β̂t) to learn something about Eft+τ (β

∗) — that is, the accuracy of the

forecasts at unknown population values of parameters. Put another way, tests of population-

level predictive ability are designed for evaluating the adequacy and accuracy of models if

one had an infinite sample of data to estimate model parameters.

In a comparison of forecasts from nested models, tests of population-level predictive

ability are effectively equivalent to tests of whether the additional parameters in the larger

of the two models are zero. As a consequence, in a comparison of forecasts from nested

models, a null of equal mean square error (MSE) can be rejected even though, in the finite

sample at hand, the smaller model has a lower MSE than the larger model. This can occur

because, in the finite sample, imprecision in parameter estimates can cause the MSE of

the forecast from a true, larger model to exceed the MSE of the smaller model. The test

rejection implies that, in a very large sample, the larger model would be estimated precisely

enough that its forecasts could be expected to be more accurate than the forecasts from the

smaller model.

In contrast, testing finite-sample predictive ability involves using (P−τ+1)−1�T−τ
t=R ft+τ (β̂t)

to learn something about Eft+τ (β̂t) — that is, the accuracy of the forecasts at estimated

values of parameters. Put another way, tests of finite-sample predictive ability are designed

to assess the accuracy of a model in a (finite) sample of the size at hand. In a compari-

son of forecasts from nested models, these tests can be seen as raising the bar relative to

population-level tests: the question is not whether the additional coefficients of the larger

model are zero (as in population-level tests), but are they non-zero and estimated accu-

rately enough to make the competing models equally accurate in a finite sample? Under

this approach, a null of equal MSE would only be rejected if, in the sample at hand, the

rejected model’s MSE exceeded the other model’s MSE.

This section first provides an overview of population-level forecast evaluation (relatively

brief in light of the detail provided in West (2006)) and recent developments in population-

level testing. Our presentation of population-level evaluation focuses on a limited set of

tests of equal forecast accuracy, which have been the focus of the finite-sample evaluation
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literature and which have also been the source of new developments in population-level

evaluation. West (2006) provides a comprehensive overview of a broader set of tests. Build-

ing on the population-level results, we then review two recently developed approaches to

testing equal accuracy in the finite sample, due to Giacomini and White (2006) and Clark

and McCracken (2011a). The last subsection provides an overview of Monte Carlo evidence

on the small-sample reliability of various testing approaches. While section 3 focuses on

providing an overview, section 10 sketches the basics of the derivations of some key results

in the literature.

3.1 Population-level predictive ability

For questions of population-level predictive ability, it is crucial that we recognize that

Eft+τ (β
∗) depends on β

∗, the unknown true value of the parameter estimate β̂t. With this

in mind, the original question can be recast as: Can (P − τ + 1)−1�T−τ
t=R ft+τ (β̂t) be used

to learn something about the accuracy of the forecasts were we to know the true values of

the model parameters?

3.1.1 Non-nested models

Building on earlier work by Diebold and Mariano (1995), West (1996) develops a theory for

addressing this population-level question. In particular, he shows that

(P − τ + 1)−1/2
T−τ�

t=R

(ft+τ (β̂t)− Eft+τ (β
∗)) →d

N(0,Ω), (1)

and hence for a given null hypothesis regarding Eft+τ (β
∗), asymptotically valid inference

can be conducted using standard normal critical values so long as one can obtain an asymp-

totically valid estimate of Ω.3

The details of how to estimate Ω is perhaps the main technical development in West

(1996). Before providing this result, some additional notation and assumptions are needed.4

(A1) β̂t = β
∗ + BH(t) + oa.s.(1), where for some mean zero process ht+τ = ht+τ (β

∗)

[with h denoting the orthogonality conditions used to estimate parameters, such as ht+τ =

xtut+τ for a single linear regression], H(t) equals t−1�t−τ
s=1 hs+τ , R−1�t−τ

s=t−R+1 hs+τ , and

3Studies such as Corradi and Swanson (2007) have developed bootstrap-based inference approaches that
can be applied with tests that have power against generic alternatives or with tests applied to forecasts from
misspecified models.

4These assumptions are intended to be expository, not complete. See West (1996) for more detail.
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R
−1�R−τ

s=1 hs+τ for the recursive, rolling, and fixed schemes, respectively, and B denotes a

non-stochastic matrix.

(A2) The vector (ft+τ (β
∗), h�t+τ )

� is covariance stationary and satisfies mild mixing and

moment conditions.5

(A3) limP,R→∞ P/R = π, a constant that is finite for the rolling and fixed schemes but

can be infinite for the recursive scheme.

(A4) The vector F = E[∂ft+τ (β)/∂β]β=β∗ is finite.6

(A5) Ω is positive definite.

Given these assumptions, West (1996) shows that the asymptotic variance Ω can take

a variety of forms depending on how the parameters are estimated:

Ω = Sff + λfh(FBS
�
fh + SfhB

�
F

�) + λhhFBShhB
�
F

�, (2)

where Sff = limT→∞ V ar(T−1/2�T−τ
s=1 ft+τ (β

∗)), Shh = limT→∞ V ar(T−1/2�T−τ
s=1 ht+τ ),

Sfh = limT→∞Cov(T−1/2�T−τ
s=1 ft+τ (β

∗), T−1/2�T−τ
s=1 ht+τ ), and

λfh = λhh =
Recursive 1− π

−1 ln(1 + π) 2(1− π
−1 ln(1 + π))

Rolling, π ≤ 1 π/2 π − π
2
/3

Rolling, 1 < π < ∞ 1− (2π)−1 1− (3π)−1

Fixed 0 π

.

In equation (2) we see that Ω consists of three terms. The first, Sff , is the long-

run variance of the measure of accuracy when the parameters are known. The third

term, λhhFBShhB
�
F

�, captures the contribution of the variance due purely to the fact

that we do not observe β
∗ but must estimate it instead. The second term, λfh(FBS

�
fh +

SfhB
�
F

�), captures the covariance between the measure of accuracy and the estimation

error associated with β̂t. Because the parameter estimates can be constructed using three

different observation windows (recursive, rolling, and fixed) it is not surprising that the

terms that arise due to estimation error depend on that choice via the terms λfh and λhh.

With this formula in hand, estimating Ω is straightforward. Since π̂ = P/R → π

and both λfh and λhh are continuous in π, substituting π̂ for π is sufficient for esti-

mating both λfh and λhh. The F term can be estimated directly using F̂ = (P −
5Like most of the literature, West’s (1996) asymptotics treat the forecast model size as fixed and finite.

Anatolyev (2007) shows, using a fixed estimation scheme and West-type asymptotics, that allowing the size
of the model to expand with the estimation and forecasting sample can greatly complicate the asymptotic
distribution of tests of predictive ability.

6McCracken (2000) weakens this assumption to F = ∂E[ft+τ (β)]/∂ββ=β∗ so that the function ft+τ (β)
need not be differentiable.
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τ + 1)−1�T−τ
t=R ∂ft+τ (β̂t)/∂β.

7 When only one model has been estimated, the B term

is typically the inverse of the Hessian matrix associated with the loss function used to

estimate the model parameters. For example, if NLLS is used to estimate the model

such that β̂t = argminβ
�t−τ

s=1(ys+τ − g(xs, β))2, then a consistent estimate of B is given

by B̂ = (T−1�T−τ
s=1 ∂

2(ys+τ − g(xs, β̂T ))
2
/∂β∂β

�)−1. If more than one model is being

used to construct ft+τ (β̂t) (so that β̂t = (β̂
�
1,t, β̂

�
2,t)

�), then B is the block diagonal matrix

diag(B1, B2) and hence a consistent estimate is B̂ = diag(B̂1, B̂2).

For the long-run variances and covariances needed to compute the test statistic, West

(1996) shows that standard kernel-based estimators are consistent. To be more precise,

define f̄ = (P − τ + 1)−1�T−τ
t=R ft+τ (β̂t), Γ̂ff (j) = (P − τ + 1)−1�T−τ

t=R+j(ft+τ (β̂t) −

f̄)(ft+τ−j(β̂t−j) − f̄)�, Γ̂hh(j) = T
−1�T−τ

t=j+1 ht+τ (β̂t)h
�
t+τ−j(β̂t−j) and Γ̂fh(j) = (P −

τ + 1)−1�T−τ
t=R+j ft+τ (β̂t)h

�
t+τ−j(β̂t−j), with Γ̂ff (j) = Γ̂ff (−j), Γ̂hh(j) = Γ̂�

hh(−j), and

Γ̂fh(j) = Γ̂�
fh(−j). The long-run variance estimates Ŝff , Ŝhh, and Ŝfh are then constructed

by weighting the relevant leads and lags of these covariances, as in HAC estimators such as

that developed by Newey and West (1987).

Interestingly, for some cases estimating Ω is as simple as using the estimate Ω̂ = Ŝff .

This arises when the second and third terms in equation (2), those due to estimation error,

cancel and hence we say the estimation error is asymptotically irrelevant.

Case 1. If π = 0, then both λfh and λhh are zero and hence Ω = Sff . This case arises

naturally when the sample split is chosen so that the number of out-of-sample observations

is small relative to the number of in-sample observations. Chong and Hendry (1986) first

observed that parameter estimation error is irrelevant if P is small relative to R.

Case 2. If F = 0, then Ω = Sff . This case arises under certain very specific cir-

cumstances but arises most naturally when the measure of “accuracy” is explicitly used

when estimating the model parameters. The canonical example is the use of a quadratic

loss function (MSE) to evaluate the accuracy of forecasts from two non-nested models es-

timated by ordinary or non-linear least squares. In this situation, the F term equals zero

and estimation error is asymptotically irrelevant.

Case 3. Under the recursive scheme, there are instances where −SfhB
�
F

� = FBShhB
�
F

�.

In this case, it isn’t so much than any particular term equals zero but that the sum of the

components just happens to cancel to zero. One such example is a test for zero mean

7If ft+τ (β) is non-differentiable see McCracken (2004) for an alternative estimator.
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prediction error in models that contain an intercept, for which section 10.1 sketches the

asymptotic derivations. See West (1996, 2006) and West and McCracken (1998) for other

examples.

3.1.2 Nested models

Although the results in West (1996) have many applications, the theory is not universal.

In particular, one of the primary assumptions for the results in West (1996) to hold is

that Ω must be positive. In nearly all the examples from Table 2, this is not an issue.

However, problems arise in applications where one wishes to compare the accuracy of two

models that are nested under the null of equal population-level forecast accuracy. Consider

the case where two nested OLS-estimated linear models are being compared. If we define

the (k × 1, k = k1 + kw) vector of predictors xt = x2,t = (x�1,t, x
�
w,t)

�, the models take

the form yt+τ = x
�
i,tβ

∗
i + ui,t+τ , for i = 1, 2, such that model 2 nests model 1 and hence

β
∗
2 = (β∗�

1 , β
∗�
w)

� = (β∗�
1 , 0)

� under the null. If we use quadratic loss to measure accuracy, we

find that ft+τ (β
∗) = (yt+τ−x

�
1,tβ

∗
1)

2−(yt+τ−x
�
2,tβ

∗
2)

2 = (yt+τ−x
�
1,tβ

∗
1)

2−(yt+τ−x
�
1,tβ

∗
1)

2 = 0

for all t. Put in words, in population, under the null, the forecast errors from the competing

errors are exactly the same at all points in time. Hence, it is clearly the case that Sff , Sfh,

and F all equal zero, making Ω also equal zero.

In this case, Clark and McCracken (2001, 2005a) and McCracken (2007) develop a differ-

ent set of asymptotics that allow for an out-of-sample test of equal population-level uncondi-

tional predictive ability between two nested models. The key to their theory is to note that

while P−1/2�T−τ
t=R (ft+τ (β̂t)−0) →p 0 when the models are nested,

�T−τ
t=R (ft+τ (β̂t)−0) need

not have a degenerate asymptotic distribution. Building on this insight they show that, in

the context of linear, OLS-estimated, direct-multistep forecasting models, a variety of statis-

tics can be used to test for equal forecast accuracy and forecast encompassing despite the

fact that the models are nested. Let ûi,t+τ = yt+τ −x
�
i,tβ̂i,t, i = 1, 2, d̂t+τ = û

2
1,t+τ − û

2
2,t+τ ,

ĉt+τ = û1,t+τ (û1,t+τ − û2,t+τ ), and σ̂
2
2 = (P − τ + 1)−1�T−τ

t=R û
2
2,t+τ . If we let Ŝdd and Ŝcc

denote long-run variance estimates for, respectively, d̂t+τ and ĉt+τ (analogous to Ŝff above)

constructed with a HAC estimator such as Newey and West’s (1987), these statistics take

the form
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MSE-t =

(P − τ + 1)−1/2
T−τ�

t=R

d̂t+τ

Ŝ
1/2
dd

, MSE-F =

T−τ�

t=R

d̂t+τ

σ̂
2
2

(3)

ENC-t =

(P − τ + 1)−1/2
T−τ�

t=R

ĉt+τ

Ŝ
1/2
cc

, ENC-F =

T−τ�

t=R

ĉt+τ

σ̂
2
2

. (4)

With nested models and a null hypothesis of equal predictive ability in population, these

tests are naturally conducted with one-sided alternatives. Ashley, Granger, and Schmalensee

(1980) first suggested that tests of equal accuracy of forecasts from nested models should be

one-sided. In the case of tests for equal MSE, the reasoning is straight-forward. Under the

null that xw,t has no predictive power for yt+τ , the population difference in MSEs will equal

0. Under the alternative that xw,t has predictive power, the population difference in MSEs

will be positive (MSE2 < MSE1). As a result, the MSE-t and MSE-F tests are one–sided

to the right.

The more-involved logic for one-sided tests of forecast encompassing (which applies to

both non-nested and nested model comparisons) was first laid out in Harvey, Leybourne,

and Newbold (1998). Under the null that xw,t has no predictive power for yt+τ , the popu-

lation covariance between u1,t+τ and (u1,t+τ − u2,t+τ ) will equal 0 (with nested models, the

population forecast errors of the models will be exactly the same). Under the alternative

that xw,t does have predictive power, the covariance will be positive. To see why, consider

the forecast combination regression yt+τ = (1 − α)g1,t+τ + αg2,t+τ + error, where g1 and

g2 denote forecasts from the restricted and unrestricted models, respectively. Subtracting

g1,t+τ from both sides, and making the substitution u1,t+τ − u2,t+τ = g2,t+τ − g1,t+τ , yields

the encompassing regression u1,t+τ = α(u1,t+τ −u2,t+τ )+error. If xw,t does have predictive

power, such that model 2 is true, the population combination coefficient α equals 1. As a

result, the covariance between u1,t+τ and (u1,t+τ − u2,t+τ ) will be positive. Consequently,

the ENC-t and ENC-F tests are one–sided to the right.

Turning to asymptotic distributions, for each test the distributions have representa-

tions as functions of stochastic integrals of quadratics in Brownian motion. To illustrate

essential features, we present selected results, for the distributions of the MSE-t and MSE-

F tests when the recursive sampling scheme is used, developed in Clark and McCracken

(2005a). Section 10 sketches the basics of the necessary derivations. These asymptotic re-
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sults require the following additional notation. Let (assume) limP,R→∞ P/R = π ∈ (0,∞),

and define λ = (1 + π)−1. Let hi,t+τ (βi) = (yt+τ − x
�
i,tβi)xi,t, hi,t+τ = hi,t+τ (β

∗
i ), and

Eu
2
2,t+τ = Eu

2
t+τ = σ

2. For H2(t) = t
−1�t−τ

j=1 h2,j+τ , Bi = (Exi,tx
�
i,t)

−1
i = 1, 2,

the selection matrix J = (Ik1×k1 , 0k1×kw)
�, and a (kw × k) matrix Ã satisfying Ã

�
Ã =

B
−1/2
2 (−J

�
B1J + B2)B

−1/2
2 , let h̃t+τ = σ

−1
ÃB

1/2
2 h2,t+τ and H̃2(t) = σ

−1
ÃB

1/2
2 H2(t).

If we define Γh̃h̃(i) = Eh̃t+τ h̃
�
t+τ−i, then Sh̃h̃ = Γh̃h̃(0) +

�τ−1
i=1 (Γh̃h̃(i) + Γ�

h̃h̃
(i)). Fi-

nally, let W (ω) denote a kw × 1 vector standard Brownian motion, and define the fol-

lowing functionals: Γ1 =
� 1
λ ω

−1
W

�(ω)Sh̃h̃dW (ω), Γ2 =
� 1
λ ω

−2
W

�(ω)Sh̃h̃W (ω)dω, and

Γ3 =
� 1
λ ω

−2
W

�(ω)S2
h̃h̃
W (ω)dω.

Under the assumptions of Clark and McCracken (2005a), it follows that

MSE-F →d 2Γ1 − Γ2 (5)

MSE-t →d (Γ1 − 0.5Γ2) /Γ
0.5
3 .

These limiting distributions are neither normal nor χ2 when the forecasts are nested under

the null. Hansen and Timmermann (2011) offer the following intuitive characterization of

the MSE-F distribution. The first term arises from the recursive estimation, with forecast

errors mapping to dW (ω) and parameter estimation errors mapping to W (ω); the former

influences the latter in later forecasts. The second term stems from the accuracy loss

associated with estimating more parameters in the larger model.

As the above equations suggest, the distributions generally depend upon the unknown

nuisance parameter Sh̃h̃ that in turn depends upon the second moments of the forecast

errors ut+τ , the regressors x2,t, and the orthogonality conditions h2,t+τ . Algebraically,

this dependence arises because, in the presence of conditional heteroskedasticity or serial

correlation in the forecast errors, an information matrix-type equality fails: the expected

outer product of the predictors is no longer proportional to the long run variance of h2,t+τ

with constant of proportionality σ
2. Similarly, in the context of likelihood-ratio statistics,

Vuong (1989, Theorem 3.3) shows that the limiting distribution of the likelihood ratio

statistic has a representation as a mixture of independent χ2
(1) variates (in contrast to our

integrals of weighted quadratics of Brownian motion). This distribution is free of nuisance

parameters when the information matrix equality holds but in general does depend upon

such nuisance parameters.

The limiting distributions are free of nuisance parameters if Sh̃h̃ = I. If this is the

case — if, for example, τ = 1 and the forecast errors are conditionally homoskedastic

12



— the MSE-F representation simplifies to McCracken’s (2007). Clark and McCracken

(2005a) note that there is one other case in which the distributions of t-tests of equal MSE

and forecast encompassing simplify to the nuisance parameter-free versions of Clark and

McCracken (2001) and McCracken (2007): when kw = 1, the scalar Sh̃h̃ can be factored out

of both the numerator and denominator and hence cancels. Also, in the perhaps unlikely

scenario in which each of the eigenvalues of Sh̃h̃ are identical, one can show that the limiting

distributions no longer depend upon the value of Sh̃h̃.

When the limiting distribution is free of nuisance parameters, as in the case of forecast

errors that are serially uncorrelated and exhibit conditional homoskedasticity, asymptotic

critical values can be obtained from tables provided in Clark and McCracken (2001), Mc-

Cracken (2007), and (in more detail) on these authors’ webpages. These critical values

were obtained by Monte Carlo simulations of the asymptotic distributions. These limit-

ing distributions depend on two known parameters: the sample split parameter λ and the

number of exclusion restrictions, kw. As discussed in McCracken (2007), given λ, as kw

rises, the distribution of the MSE-F test drifts further into the negative orthant. Since the

parameter λ enters the asymptotic distributions nonlinearly, its effect on their distributions

is somewhat ambiguous. But we can say with certainty that the asymptotic mean of the

MSE-F statistic decreases with λ just as it does with kw.

For the cases in which the asymptotic distributions depend on unknown nuisance pa-

rameters that capture the presence of serial correlation in the forecast errors or conditional

heteroskedasticity, Clark and McCracken (2005a) develop two alternative approaches to ob-

taining critical values. One approach is to compute asymptotic critical values from Monte

Carlo simulations of the asymptotic distribution, which is a function of the variance matrix

Sh̃h̃ that can be consistently estimated from the data. In the case of conditionally ho-

moskedastic, one–step ahead forecast errors, the resulting critical values would be exactly

the same as those of Clark and McCracken (2001) and McCracken (2007).

The second approach from Clark and McCracken (2005a) is to bootstrap data from a

restricted VAR bootstrap, based on the parametric method of Kilian (1999). Under this

bootstrap, vector autoregressive equations for yt and xt — restricted to impose the null

that x has no predictive power for y — are estimated by OLS using the full sample of

observations, with the residuals stored for sampling. Note that the DGP equation for y

takes exactly the same form as the restricted forecasting model for τ = 1 (but estimated
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with all available data). In Clark and McCracken (2005a), in the case of the x equation, the

lag orders for y and x are determined according to the AIC, allowing different lag lengths

on each variable.8 Bootstrapped time series on yt and xt are generated by drawing with

replacement from the sample residuals and using the autoregressive structures of the VAR

equations to iteratively construct data. In each bootstrap replication, the bootstrapped

data are used to recursively estimate the restricted and unrestricted forecasting models

— all specified in direct, multi-step form — on which the sample results are based. The

resulting forecasts are then used to calculate forecast test statistics. Critical values are

simply computed as percentiles of the bootstrapped test statistics.

While the asymptotic validity of the restricted VAR bootstrap for population-level fore-

cast evaluation has not been established, it has been shown to work well in practice (e.g.,

Clark and McCracken (2001, 2005a), Clark and West (2006, 2007)). The primary hurdle

in proving the validity of the bootstrap is the dependence of multi-step forecasts on non-

linear functions of the parameters of the 1-step ahead VAR model. That is, the VAR in

conventional 1-step ahead form implies multi-step forecasts that depend on polynomials

of coefficients of the VAR. These non-linearities make it extremely difficult to prove the

validity of the bootstrap. As described in section 3.1.3, more recent research has identified

an alternative bootstrap approach for which validity can be proven.

For the ENC-t test applied to nested forecasting models, Clark and West (2006, 2007)

show that, under certain conditions, the distribution is either asymptotically normal or

approximately normal in practice. Clark and West demonstrate that the test can be viewed

as an adjusted test for equal MSE, where the adjustment involves subtracting out of the

difference in MSE a term that captures (under the null hypothesis of equal accuracy in

population) the extra sampling error in the large model. Clark and West present the loss

differential of the test statistic as

�cwt+τ = û
2
1,t+τ −

�
û
2
2,t+τ − (x�2,tβ̂2,t − x

�
1,tβ̂1,t)

2
�
,

where the correction term is the square of the difference in forecasts from the competing

models. The average of this term over time captures the effect of additional parameter

8For the system of y, x equations to be used in the bootstrap, Clark and McCracken (2005a) adjust
the coefficients of the OLS–estimated models for the small–sample bias that can plague time series models.
Specifically, they use the bootstrap method proposed by Kilian (1998) to adjust the coefficients of the OLS–
estimated models and then use the bias–adjusted forms as the bootstrap DGP equations. However, with the
Monte Carlo designs and empirical applications we have considered, these bias adjustments don’t usually
have much effect on the resulting critical values or p-values.
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estimation error in the larger model relative to the smaller. Because the difference in

forecasts equals −1 times the difference in forecast errors, a little algebra shows that the

loss differential �cwt+τ is 2 times the loss differential ĉt+τ = û1,t+τ (û1,t+τ − û2,t+τ ) of the

ENC-t test. Consequently, the t-statistic proposed by Clark andWest (2006, 2007) is exactly

the same as the ENC-t statistic.

Clark and West (2006) show that, in the special case of a null forecasting model that

takes a martingale difference form (such as a no-change forecast implied by a random walk

null, in which case the null model does not have estimated parameters), and alternative

model forecasts generated with a rolling sample of data, the asymptotic distribution of the

ENC-t test is standard normal. In the more general case of a null model that includes

estimated parameters, Clark and West (2006, 2007) show that, within some limits on P/R

and kw settings (not necessarily all settings), the right-tail critical values can be reasonably

approximated by standard normal critical values.

3.1.3 Recent developments in population-level evaluation

Since West’s (2006) survey, there have been two important extensions of the literature on

evaluating pairs of forecasts at the population level, both for nested models. First, Hansen

and Timmermann (2011) have extended the results of Clark and McCracken (2005a) and

McCracken (2007) by deriving a simplification of the asymptotic distribution of the MSE-

F test, under less stringent assumptions. While Clark and McCracken (2005a) and Mc-

Cracken (2007) use assumptions adapted from Hansen (1992), Hansen and Timmermann

use assumptions based on de Jong and Davidson (2000), which are the weakest assump-

tions that can be used to ensure convergence to stochastic integrals. More importantly,

Hansen and Timmermann simplify the matrix of nuisance parameters (the second moment

matrix Sh̃h̃ in equation (5)) that enters the asymptotic distribution in Clark and McCracken

(2005a) to a diagonal matrix of eigenvalues of the second moment matrix. From that result,

Hansen and Timmermann are able to show that the asymptotic distribution simplifies to

an eigenvalue-weighted average of a function (one for each eigenvalue) of two independent

χ
2-distributed random variables. In turn, with a 1-step ahead forecast horizon and condi-

tional homoskedasticity of the forecast errors, the distribution sometimes simplifies to an

analytical form. These simplifications offer the advantage of making asymptotic critical

values easier to obtain, by eliminating the need for simulations in some cases, and make

simulating critical values easier and more precise in general.
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The second important extension is Clark and McCracken’s (2011b) development of a

fixed regressor bootstrap, which they prove to be asymptotically valid (and consistent)

under assumptions similar to those of Clark and McCracken (2005a). Some researchers and

practitioners may find it a little easier to implement than the restricted VAR bootstrap

described above. The fixed regressor bootstrap’s steps consist of the following.

1. (a) Use OLS to estimate the parameter vector β
∗
1 associated with the restricted

model. Store the fitted values x
�
1,sβ̂1,T , s = 1, ..., T − τ . (b) Use OLS to estimate the

parameter vector β
∗
2 associated with the unrestricted model. Store the residuals v̂2,s+τ ,

s = 1, ..., T − τ .

2. If τ > 1, use NLLS to estimate an MA(τ − 1) model for the OLS residuals �v2,s+τ

such that v2,s+τ = ε2,s+τ + θ1ε2,s+τ−1 + ...+ θτ−1ε2,s+1.

3. Let ηs, s = 1, ..., T, denote an i.i.d N(0, 1) sequence of simulated random variables.

If τ = 1, form a time series of innovations �v∗2,s+1 = ηs+1�v2,s+1. If τ > 1, form a time series

of innovations computed as �v∗2,s+τ = (ηs+τ�ε2,s+τ+ �θ1ηs+τ−1�ε2,s+τ−1 + ...+�θτ−1ηs+1�ε2,s+1),

s = 1, ..., T − τ .

4. Form artificial samples of y∗s+τ using the fixed regressor structure, y∗s+τ = x
�
1,sβ̂1,T +

�v∗2,s+τ .

5. Using the artificial data, construct forecasts and an estimate of the test statistics

(e.g., MSE-F , MSE-t, ENC-F , ENC-t) as if these were the original data.

6 Repeat steps 3-5 a large number of times: j = 1, ..., N .

7. Reject the null hypothesis, at the α% level, if the test statistic is greater than the

(100− α)%-ile of the empirical distribution of the simulated test statistics.

3.2 Finite-sample predictive ability

A test of finite-sample predictive ability addresses a different, but related, question than the

one described in the previous subsection: Can we use (P −τ +1)−1
�T−τ

t=R
ft+τ (β̂t) to learn

something about Eft+τ (β̂t)? For this question, it is crucial to recognize that Eft+τ (β̂t)

depends on β̂t and not the unknown true value of the parameter β
∗. In other words,

we want to know whether (P − τ + 1)−1
�T−τ

t=R
ft+τ (β̂t) can be used to learn something

about the accuracy of the forecasts given that our forecasts are constructed using estimated

parameters.

The importance of such a distinction is perhaps easiest to see when comparing the

forecast accuracy of two nested models. Continuing with the notation above, we know
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that if β∗
w = 0, then the two models are identical and hence have equal population-level

predictive ability. We also know that if β∗
w �= 0, then in population, the larger model will

forecast more accurately than the smaller model. In practice, though, even when β
∗
w �= 0,

the parameters are estimated with finite samples of data. It is then perfectly reasonable

to consider the option that the smaller model is as accurate as (or even more accurate

than) the larger model despite the fact that β
∗
w �= 0. This is particularly likely when the

dimension of β∗
w is large relative to the existing sample size.

3.2.1 Giacomini and White (2006)

The first study to address this type of null hypothesis is Giacomini and White (2006). They

note that two models can have equal forecast accuracy in finite samples if, continuing with

our nested model comparison, the bias associated with estimating the misspecified restricted

model happens to balance with the additional estimation error associated with estimating

β
∗
w in the correctly specified unrestricted model. This observation is perfectly true, but

implementing a test for it is much harder, especially given a universe where you don’t want

to have to make extremely restrictive assumptions on the data (such as joint normality,

conditionally homoskedastic and serially uncorrelated forecast errors, etc.). This scenario

is much harder because we know in advance that any asymptotic approach to inference that

allows the parameter estimates to be consistent for their population counterparts will imply

that the unrestricted model is more accurate than the restricted model. In the notation

of the tests of population-level predictive ability and our nested model comparison, this

implies that any asymptotics that allow R to diverge to infinity will fail to be relevant for

the null of equal finite-sample predictive ability.

As a result, Giacomini and White (2006) dispense with that assumption. More precisely

they show that if the parameter estimates are constructed using a rolling scheme with a

finite observation window R, then

(P − τ + 1)−1/2
T−τ�

t=R

(ft+τ (β̂t)− Eft+τ (β̂t)) →d
N(0, Sf̂ f̂ ), (6)

where Sf̂ f̂ = limP→∞ V ar((P − τ + 1)−1/2�T−τ
t=R (ft+τ (β̂t) − Eft+τ (β̂t))). Note that this

differs from the asymptotic variance in West (1996) even when the second and third terms

in Ω are asymptotically irrelevant since Sf̂ f̂ �= Sff .

This result is extremely powerful and covers a wide range of applications, including

every example in Table 2. Interestingly, by requiring that the forecasts be constructed
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using a small, finite, rolling window of observations, Giacomini and White (2006) are able

to substantially weaken many of the most important assumptions needed for the results in

Clark and McCracken (2001, 2005a), McCracken (2007), and West (1996). In particular,

covariance stationarity of the observables is no longer needed — only that the observables

are I(0) with relatively mild mixing and moment conditions. There is no need for Ω to

be positive (though Sf̂ f̂ must be), and hence both nested and non-nested comparisons are

allowed. The forecasts can be based on estimators that are Bayesian, nonparametric, or

semi-parametric. The key is that R must be small and finite in all cases.

The primary weakness of the results in Giacomini and White (2006) is that their ap-

proach cannot be used with the recursive scheme. The recursive scheme fails because,

absent any other assumptions on the parameter β∗
w, as the sample size increases the param-

eter estimates β̂t are consistent for their population counterparts and thus estimation error

vanishes. Although the rolling scheme is relatively common among forecasting agents, it is

by no means universal. Moreover, the asymptotics apply only when we think of the rolling

observation window as small relative to the number of out-of-sample observations. Monte

Carlo evidence on the magnitudes of P and R needed for accurate inference is limited.

Most extant Monte Carlo work has focused on how small P/R needs to be make parameter

estimation error asymptotically irrelevant, as opposed to how large the ratio needs to be

for Giacomini and White asymptotics to be accurate.9

3.2.2 Clark and McCracken (2011a)

More recent work by Clark and McCracken (2011a) shows that, in some circumstances,

one can construct a test of equal finite-sample unconditional predictive ability that permits

not only the rolling scheme, but also the recursive scheme. In particular, they consider

the case of testing this null hypothesis when comparing two nested OLS-estimated linear

models and hence Eft+τ (β̂t) = E[(yt+τ−x
�
1,tβ̂1,t)

2−(yt+τ−x
�
2,tβ̂2,t)

2] = 0. The asymptotics

are not unlike those from their previous work on equal population-level predictive ability

(described in the previous section) but capture the bias and estimation error associated

with, respectively, a misspecified restricted model and a correctly specified, but imprecisely

estimated, unrestricted model.

But as noted above, since their results are asymptotic and the estimation error as-

9Clark and McCracken (2011c) consider larger P/R ratios than do most previous Monte Carlo assess-
ments.
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sociated with the parameter estimates vanishes asymptotically, balancing that estimation

error with a bias component is problematic using standard parameterizations of a linear

regression model. Instead Clark and McCracken (2011a) consider the case in which the

additional predictors in the unrestricted model are “weak,” using the following local-to-zero

parameterization of the data generating process:

yt+τ = x
�
2,tβ

∗
2,T + ut+τ = x

�
1,tβ

∗
1 + x

�
w,t(R

−1/2
β
∗
w) + ut+τ . (7)

The intuition for this parameterization is based on an observation: As the sample size

used to estimate the regression parameters increases, the estimation error associated with

OLS estimation vanishes at a
√
T rate. If bias due to model misspecification in the smaller

(restricted) model is going to balance with the estimation error, it must also vanish at a
√
T

rate.10 To be clear, we do not take the model in equation (7) as a literal representation of

the data, but rather consider it a tool for modeling how a bias-variance trade-off can exist

in large samples as the size of the sample used for estimation increases.

As is the case for tests of equal population-level forecast accuracy between two nested

models, the asymptotic distributions derived by Clark and McCracken (2011a) under weak

predictability are nonstandard and have representations as functions of stochastic integrals

of quadratics in Brownian motion. Moreover, the asymptotic distributions depend on

unknown nuisance parameters that capture the presence of serial correlation in the forecast

errors and conditional heteroskedasticity. Under the weak predictability null hypothesis,

the nuisance parameters in the asymptotic distribution (under the null) also include the

vector of coefficients on the weak predictors.

Consider, for example, the asymptotic distribution of the MSE-F test in equation (3).

Under the assumptions of Clark and McCracken (2011a), the asymptotic distribution will

10As in most prior work, Clark and McCracken (2011a) take the forecast model size as fixed and finite.
Under alternative asymptotics, and a fixed estimation scheme, Calhoun (2011) considers the effect of allowing
model size to expand with the sample size. Calhoun assumes P → ∞, R → ∞, P 2/T → 0, and Q → ∞,
where Q denotes the number of observations in a future (beyond period T ) sample of data not yet observed
by the forecaster. The assumption P 2/T → 0 means that the forecast sample increases at a slower rate than
does the estimation sample. Letting k2 denote the number of parameters in the larger model, he also assumes
that k2/T is uniformly positive. Under these conditions, the parameters of the forecast model cannot be
estimated consistently. The normalized difference in MSE has a normal distribution with mean equal to the
expected mean of the loss differential in the future sample. In this case, the expectation is applied to the
loss differential under the estimated coefficients, not the population value of the coefficients. As in Clark
and McCracken (2011a) and Giacomini and White (2006), Calhoun’s result implies that, in the sample of
interest, a smaller model may forecast as well as or better than a larger model even when the smaller model
is not true. Despite asymptotics that depart from Giacomini and White in allowing the forecast sample size
to grow, the forecasts in Calhoun’s analysis, like the forecasts in Giacomini and White’s analysis, reflect
parameter estimation error that does not vanish asymptotically. In Calhoun’s case, this error doesn’t vanish
because the model size is growing with the forecast sample.
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depend on the stochastic integrals introduced in section 3.1.2 and the following: Γ4 =
� 1
λ (ϑ

�
B

−1/2
2 Ã

�
/σ)S1/2

h̃h̃
dW (ω) and Γ5 = (1− λ)β�

wF
−1
2 βw/σ

2, where Jw = (0kw×k1 , Ikw×kw)
�,

ϑ = (0k1×1, βw)
�
, and F2 = J

�
wB2Jw. The asymptotic distribution is:

MSE-F →d {2Γ1 − Γ2}+ 2{Γ4}+ {Γ5}. (8)

The first two terms of the asymptotic distribution (involving Γ1 and Γ2) are the same

as in equation (5), which is the Clark and McCracken (2005a) distribution under the null

of equal accuracy in population. The third and fourth terms (involving Γ4 and Γ5) arise

due to weak predictability. The fourth term, Γ5, corresponds to a non-centrality term that

gives some indication of the power that the test statistic has against deviations from the

null hypothesis of equal population-level predictive ability H0 : E(u21,t+τ − u
2
2,t+τ ) = 0 for

all t — for which it must be the case that βw = 0.

Under the assumptions of Clark and McCracken (2011a), it is straightforward to show

that the mean of the asymptotic distribution of the MSE-F statistic can be used to approx-

imate the mean difference in the average out-of-sample predictive ability of the two models,

as:

E

T−τ�

t=R

(û21,t+τ − û
2
2,t+τ ) ≈

� 1

λ
[−ω

−1
tr((−JB1J

� +B2)V ) + β
�
wF

−1
2 βw]dω

where V = limT→∞ V ar(T−1/2�T−τ
j=1 h2,j+τ ) for h2,j+τ defined in section 3.1.2. Intuitively,

one might consider using these expressions as a means of characterizing when the two models

have equal average finite-sample predictive ability over the out-of-sample period. For exam-

ple, having set these two expressions to zero, integrating and solving for the marginal signal-

to-noise ratio implies β�
wF

−1
2 βw/tr ((−JB1J

� +B2)V ) equals − ln(λ)/ (1− λ).11 This con-

dition simplifies further when τ = 1 and the forecast errors are conditionally homoskedastic,

in which case tr((−JB1J
� +B2)V ) = σ

2
kw.

The marginal signal-to-noise ratio β
�
wF

−1
2 βw/tr ((−JB1J

� +B2)V ) forms the basis of

our new approach to testing for equal predictive ability. Rather than testing for equal

population-level predictive ability H0 : E(u21,t+τ − u
2
2,t+τ ) = 0 for all t — for which it

must be the case that βw = 0 — we test for equal average out-of-sample predictive ability

H0 : E(P−1�T−τ
t=R (û21,t+τ − û

2
2,t+τ )) = 0 – for which it is approximately the case that

β
�
wF

−1
2 βw equals − ln(λ)

1−λ tr((−JB1J
� +B2)V ) for the recursive forecasting scheme and 1 for

the rolling scheme.

11Under the rolling scheme the corresponding result is that β�
wF

−1
2 βw/tr ((−JB1J

� +B2)V ) = 1.
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Since tabulating critical values in the general case is infeasible, Clark and McCracken

(2011a) present a simple bootstrap that can provide asymptotically valid critical values in

certain circumstances. In the following, let Bi(T ) = (T−1�T−τ
s=1 xi,sx

�
i,s)

−1 and F2(T ) =

J
�
wB2(T )Jw, and let V (T ) denote a HAC estimator of the long-run variance of the OLS

moment condition v̂2,s+τx2,s associated with the unrestricted model. The steps of the

bootstrap are as follows.

1. (a) Estimate the parameter vector β∗
2 associated with the unrestricted model using

the weighted ridge regression

β̃2,T = (β̃
�
1,T , β̃

�
w,T )

� (9)

= argmin
b2

T−τ�

s=1

(ys+τ − x
�
2,sb2)

2 s.t. b�2JwF
−1
2 (T )J �

wb2 = ρ̂/T ,

where ρ̂ equals − ln(λ̂)

1−λ̂
tr((−JB1(T )J � +B2(T ))V (T )) or tr((−JB1(T )J � +B2(T ))V (T )) for

the recursive or rolling schemes, respectively. Store the fitted values x�2,tβ̃2,T . (b) Estimate

the parameter vector β
∗
2 associated with the unrestricted model using OLS and store the

residuals v̂2,s+τ .

2. If τ > 1, use NLLS to estimate an MA(τ − 1) model for the OLS residuals v̂2,s+τ

such that v2,s+τ = ε2,s+τ + θ1ε2,s+τ−1 + ...+ θτ−1ε2,s+1.

3. Let ηs, s = 1, ..., T, denote an i.i.d N(0, 1) sequence of simulated random variables.

If τ = 1, form a time series of innovations �v∗2,s+1 = ηs+1�v2,s+1. If τ > 1, form a time series

of innovations computed as �v∗2,s+τ = (ηs+τ�ε2,s+τ+ �θ1ηs−1+τ�ε2,s+τ−1 + ...+�θτ−1ηs+1�ε2,s+1),

s = 1, ..., T − τ .

4. Form artificial samples of y∗s+τ using the fixed regressor structure, y∗s+τ = x
�
2,sβ̃2,T +

v̂
∗
2,s+τ .

5. Using the artificial data, construct forecasts and an estimate of the test statistics

(e.g., MSE-F , MSE-t) as if these were the original data.

6. Repeat steps 3-5 a large number of times: j = 1, ..., N .

7. Reject the null hypothesis, at the α% level, if the test statistic is greater than the

(100− α)%-ile of the empirical distribution of the simulated test statistics.

Clark and McCracken (2011a) show that critical values from this bootstrap are asymp-

totically valid in two important cases. First, if the number of additional predictors (kw) is 1,

then the bootstrap is asymptotically valid and allows for both multiple-step-ahead forecasts

and conditionally heteroskedastic errors. Second, if the forecast horizon (τ) is 1 and the
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forecast errors are conditionally homoskedastic, then the bootstrap is asymptotically valid

even when the number of additional predictors is greater than 1. While neither case covers

the broadest situation in which βw is not scalar and the forecast errors exhibit either serial

correlation or conditional heteroskedasticity, these two special cases cover a wide range of

empirically relevant applications. Kilian (1999) argues that conditional homoskedasticity is

a reasonable assumption for one-step ahead forecasts of quarterly macroeconomic variables.

Moreover, in many applications in which a nested model comparison is made (Goyal and

Welch (2008), Stock and Watson (2003), etc.), the unrestricted forecasts are made by simply

adding one lag of a single predictor to the baseline restricted model. Of course, in more

general settings that fall outside these two cases, it is possible that the proposed bootstrap

will be reliable even if we can’t prove its asymptotic validity. Some supplementary Monte

Carlo experiments in Clark and McCracken (2011a) confirm this supposition on the broader

reliability of our testing approach.

3.2.3 Small-sample properties

Most recent assessments of the small-sample behavior of tests of predictive ability applied to

pairs of forecasts have focused on forecasts from nested models. Accordingly, our survey of

evidence on small-sample properties focuses on nested model comparisons. For evidence on

the properties of tests applied to forecasts from non-nested models or forecasts that don’t

involve model estimation, see such studies as Clark (1999), Diebold and Mariano (1995),

McCracken (2000), West (1996), and Busetti, Marcucci, and Veronese (2009).

For tests of equal predictive ability at the population level, Monte Carlo results in Clark

and McCracken (2001, 2005a), Clark and West (2006, 2007), and McCracken (2007) show

that critical values obtained from Monte Carlo simulations of the asymptotic distributions

generally yield good size and power properties for 1-step ahead forecasts, but can yield rejec-

tion rates greater than nominal size for multi-step forecasts. Similarly, results in Clark and

West (2006, 2007) indicate that comparing the ENC-t or Clark-West test against standard

normal critical values can work reasonably well but exhibit size distortions as the forecast

horizon increases (note that, for null models that take a random walk form, these distortions

can be avoided by using the Hodrick (1992) estimator of the standard deviation that enters

the test statistic). In section 4 of this chapter, we examine whether the size performance

of the ENC-t test based on normal critical values can be improved by using an alternative

HAC estimator of the standard error in the denominator of the test statistic.
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A number of Monte Carlo studies have shown that some bootstrap approaches can

yield good size and power properties for tests of equal predictive ability at the population

level. Clark and McCracken (2001, 2005a) and Clark and West (2006, 2007) find that the

restricted VAR bootstrap described above works well in a range of settings. Experiments

in Clark and McCracken (2011a, 2011b) and section 4 below show that the fixed regressor

bootstrap under the null of equal predictive ability at the population level (also referred to

as a no-predictability fixed regressor bootstrap) works equally well. Both of these bootstrap

approaches offer the advantage that they yield accurately sized tests even at long forecast

horizons.

For tests of equal predictive ability in a finite sample, Giacomini and White (2006)

present Monte Carlo evidence that, for 1-step ahead forecasts generated under a rolling

estimation scheme, comparing a t-test for equal MSE against standard normal critical values

has reasonable size and power properties. However, their results are based on two-sided

tests. If a researcher or practitioner prefers to take the smaller forecasting model as the

null to be rejected only if it is less accurate than the larger model (as opposed to also

rejecting the larger model in favor of the smaller), he or she would consider a one-sided

test. Examining this case, Clark and McCracken (2011a, 2011c) find that comparing t-tests

of equal MSE against standard normal critical values (under a null of equal accuracy in

the finite sample) tends to yield modestly under-sized tests, especially at shorter forecast

horizons. The under-sizing is actually a bit worse with forecasts generated under a rolling

estimation scheme than under a recursive scheme, even though the former is justified by

the results of Giacomini and White and the latter is not. One other puzzle highlighted in

Clark and McCracken’s (2011a, 2011c) Monte Carlo analysis across a wide range of sample

sizes is that, when the MSE-t test is compared against standard normal critical values, the

rejection rate falls as P/R rises. This pattern runs contrary to the asymptotic results of

Giacomini and White (2006), which imply that the test should be more accurate when P

is large. It is possible, of course, that the asymptotics kick in very slowly.

Clark and McCracken (2011a) find that comparing tests of equal MSE against critical

values generated from a pairwise simplification of White’s (2000) non-parametric bootstrap

yields results very similar to those obtained for standard normal critical values — consistent,

although sometimes just modest, undersizing. Corradi and Swanson (2007) also generally

find the non-parametric bootstrap to be under-sized when applied to 1-step ahead forecasts
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from nested models. White’s bootstrap offers the advantage of simplicity, as it only involves

re-sampling forecast errors. While White showed the bootstrap to be asymptotically valid

for non-nested models, the bootstrap may be valid under the asymptotics of Giacomini

and White (2006), for forecasts generated from an estimation sample of a fixed size (rolling

window estimation scheme).

For a range of DGPs and settings, the Monte Carlo evidence in Clark and McCracken

(2011a, 2011c) shows that, for testing equal forecast accuracy in the finite sample, the fixed

regressor bootstrap detailed in section 3.1.3 works well. When the null of equal accuracy in

the finite sample is true, the testing procedures yield approximately correctly sized tests.

When an alternative model is, in truth, more accurate than the null, the testing procedures

have reasonable power. However, using this bootstrap at longer forecast horizons tends to

result in some over-sizing, stemming from imprecision in the HAC estimate of the variance

matrix V used to determine the parameterization of the bootstrap DGP. In the next section,

we consider whether alternative HAC estimators improve the reliability of the bootstrap at

longer forecast horizons.

4 Monte Carlo Comparison of Alternative HAC Estimators

In practice, one unresolved challenge in forecast test inference is achieving accurately sized

tests applied at multi-step horizons — a challenge that increases as the forecast horizon

grows and the size of the forecast sample declines. The root of the challenge is precise

estimation of the HAC variance that enters the test statistic. For example, in Clark and

McCracken’s (2005a) Monte Carlo assessment of the properties of tests of equal accuracy

in population, using asymptotic critical values yields size distortions that increase with the

forecast horizon and can be substantial in small samples. Bootstrapping the test statistic can

effectively deal with the problem: as documented in sources such as Clark and McCracken

(2005a), comparing the same tests against bootstrapped critical values yields accurately

sized tests.

However, bootstrap methods are not necessarily a universal solution. One reason noted

above, is that, for tests of the null of equal accuracy in the finite sample, Clark and Mc-

Cracken (2011a) find that the use of a bootstrap is by itself not enough to eliminate size

distortions. A second reason is that, to avoid the computational burden of bootstrapping

critical values, some researchers may prefer to construct test statistics that can be compared
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against asymptotic critical values without size distortions. For example, in applications that

involve using the test of Clark and West (2006, 2007) to test equal forecast accuracy in pop-

ulation, some might find it helpful to be able to compare some version of the test against

the Clark and West-suggested normal critical values, without the problem of sharp size

distortions at multi-step horizons.

Some past research suggests that judicious choice of the HAC estimator could improve

size performance at longer forecast horizons. Most past work on the finite-sample properties

of forecast tests has used the HAC estimator of Newey and West (1987), seemingly the most

common HAC estimator in empirical work. However, Clark and West (2006) find that using

the HAC estimator of Hodrick (1992) — which can be applied with a martingale difference

null, but not with more general null models — yields much better size properties for their

proposed test of equal forecast accuracy. The results of Harvey, Leybourne, and Newbold

(1997) also suggest that, in some cases, test size could be improved by making a simple

finite-sample adjustment to the test.

Building on this past work, in this section we conduct a systematic Monte Carlo ex-

amination of whether alternative HAC estimators can alleviate size distortions that can

arise with the estimator of Newey and West (1987). We focus on tests applied to forecasts

from nested models, under the null of equal accuracy in population and under the null of

equal accuracy in the finite sample. Drawing on the setup of Clark and McCracken (2011a),

we use simulations of bivariate and multivariate DGPs based on common macroeconomic

applications. In these simulations, the benchmark forecasting model is a univariate model

of the predictand y; the alternative models add lags of various other variables of interest.

With data simulated from these processes, we form three basic test statistics using a

range of HAC estimators and compare them to alternative sources of critical values. The

first subsection details the data-generating processes. The next subsection describes the

alternative HAC estimators. The following subsection lists the sources of critical values.

Remaining subsections present the results. We focus our presentation on recursive forecasts,

and we report empirical rejection rates using a nominal size of 10%.

4.1 Monte Carlo design

For all DGPs, we generate data using independent draws of innovations from the normal

distribution and the autoregressive structure of the DGP. We consider forecast horizons of

four and eight steps. Note that, in this Monte Carlo analysis, to facilitate comparisons across
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forecast horizons, for a forecast horizon of τ , we report results for samples of P̃ = P + τ − 1

forecasts, so that the number of forecasts is the same for each τ . With quarterly data in

mind, we also consider a range of sample sizes (R, P̃ ), reflecting those commonly available

in practice: 40,80; 40,120; 80,20; 80,40; 80,80; 80,120; 120,40; and 120,80.

The two DGPs we consider are based on empirical relationships among U.S. inflation and

a range of predictors, estimated with 1968-2008 data. In all cases, our reported results are

based on 5000 Monte Carlo draws and, with bootstrap methods, 499 bootstrap replications.

4.1.1 DGPs

DGP 1 is based on the empirical relationship between the change in core PCE inflation

(yt) and the Chicago Fed’s index of the business cycle (x1,t, the CFNAI), where the change

in inflation is the change in the four-quarter rate of inflation:12

yt+τ = b11x1,t + vt+τ

vt+τ = εt+τ +
τ−1�

i=1

θiεt+τ−i

(θ1, . . . , θτ−1) = (0.95, 0.9, 0.8) for τ = 4

(θ1, . . . , θτ−1) = (0.90, 0.95, 0.95, 0.65, 0.6, 0.5, 0.4) for τ = 8 (10)

x1,t+1 = 0.7x1,t + v1,t+1

var

�
εt+τ

v1,t+τ

�
=

�
0.2
0.0 0.3

�
for τ = 4

var

�
εt+τ

v1,t+τ

�
=

�
0.5
0.0 0.3

�
for τ = 8.

In the DGP 1 experiments, the forecasting models are:

null: yt+τ = β0 + u1,t+τ (11)

alternative: yt+τ = β0 + β1x1,t + u2,t+τ . (12)

We consider experiments with different settings of b11, the coefficient on x1,t, chosen to

reflect particular null hypotheses. First, the coefficient is set to 0, to assess tests of the

null of equal forecast accuracy in population. Second, the coefficient is set to a value that

makes the models equally accurate (in expectation) on average over the forecast sample. To

determine the coefficient value, we begin with an (empirically-based) coefficient of b11 = 0.4

for τ = 4 and b11 = 1.0 for τ = 8. For each R, P̃ combination, we use the asymptotic theory

12Specifically, in the empirical estimates underlying the DGP settings, we defined yt+τ =
100 ln(pt+τ/pt+τ−4)− 100 ln(pt/pt−4), where p denotes the core PCE price index.
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of Clark and McCracken (2011a) to determine a preliminary re-scaling of the coefficient

to yield equal accuracy. For each R, P̃ combination, we then conduct three sets of Monte

Carlo experiments (with a large number of draws), searching across grids of the re-scaling

of the coefficient to select a scaling that minimizes the average (across Monte Carlo draws)

difference in MSEs from the competing forecasting models.13

DGP 2 extends DGP 1 to include more predictands for y:

yt+τ = b11x1,t + b21x2,t + b31x3,t + vt+τ

vt+τ = εt+τ +
τ−1�

i=1

θiεt+τ−i

(θ1, . . . , θτ−1) = (0.95, 0.9, 0.8) for τ = 4

(θ1, . . . , θτ−1) = (0.90, 0.95, 0.95, 0.65, 0.6, 0.5, 0.4) for τ = 8 (13)

x1,t+1 = 0.7x1,t + v1,t+1

x2,t+1 = 0.8x2,t + v2,t+1

x3,t+1 = 0.8x3,t + v3,t+1

var





εt+τ

v1,t+τ

v2,t+τ

v3,t+τ



 =





0.2
−0.01 0.3
0.03 0.03 2.2
−0.2 0.02 0.8 9.0



 for τ = 4

var





εt+τ

v1,t+τ

v2,t+τ

v3,t+τ



 =





0.5
0.05 0.3
−0.08 0.03 2.2
0.3 0.02 0.8 9.0



 for τ = 8.

In the DGP 2 experiments, the forecasting models are:

null: yt+τ = β0 + u1,t+τ (14)

alternative: yt+τ = β0 + β1x1,t + β2x2,t + β3x3,t + u2,t+τ . (15)

Again, we consider experiments with different settings of the bij coefficients, to reflect

particular null hypotheses. First, the coefficients are set to 0, to assess tests of the null

of equal forecast accuracy in population. Second, the coefficients are set to values that

make the competing forecasting models equally accurate (in expectation) on average over

13Specifically, we first consider 11 different experiments, each using 20,000 draws and a modestly different
set of coefficient values obtained by scaling the baseline values, using a grid of scaling factors. We then pick
the coefficient scaling that yields the lowest (in absolute value) average (across draws) difference in MSEs.
We then repeat the 11-experiment exercise. Finally, we consider a third set of 21 experiments, with a more
refined grid of coefficient scaling values and 200,000 draws. The coefficient scaling value that yields the
smallest (absolute) difference in MSEs in this third set of experiments is then used to set the coefficients in
the DGP simulated for the purpose of evaluating test properties.
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the forecast sample. To determine the coefficient vector value, we begin with (empirically-

based) coefficients of b11 = 0.4, b21 = 0.2, b31 = 0.05 for τ = 4 and b11 = 1.0, b21 =

0.2, b31 = 0.05 for τ = 8. As described above, for each R, P̃ combination, we use the

asymptotic theory of Clark and McCracken (2011a) to determine a preliminary re-scaling

of the coefficient vector to yield equal accuracy, and then we conduct three sets of Monte

Carlo grid searches to refine the re-scaling that yields (on average) equal forecast accuracy.

4.2 Inference approaches

For MSE-F and MSE-t tests of equal MSE and the adjusted t-test of equal MSE developed

in Clark and West (2006, 2007), denoted here as CW-t, we consider various HAC estimators

under three different approaches to inference — that is, three different sources of critical

values. In all cases, because the competing forecasting models are nested, we only consider

one-sided tests, with an alternative hypothesis that the larger forecasting model is more

accurate than the smaller.

First, we compare the MSE-t and CW-t tests against standard normal critical values.

Under the finite (and fixed) R, large P asymptotics of Giacomini and White (2006), with

a null hypothesis of equal accuracy in the finite sample, the MSE-t test applied to rolling

forecasts from nested models is asymptotically standard normal. While their result does

not apply under a recursive estimation scheme, Clark and McCracken (2011a) find that the

size properties of the test are slightly better with recursive forecasts than rolling forecasts.

Clark and West (2007) find that, under the null hypothesis of equal accuracy in population,

the distribution of the CW-t test (equivalent to the ENC-t test for forecast encompassing

considered in such studies as Clark and McCracken (2001, 2005a)) is approximately standard

normal (in a range of settings, not necessarily all).

Second, under the null hypothesis of equal accuracy in population, we compare the

MSE-F , MSE-t, and CW-t tests against critical values obtained from the no-predictability

fixed regressor bootstrap (henceforth, no-predictability FRBS) of Clark and McCracken

(2011b). As detailed in section 3.1.3, this bootstrap imposes the null of equal population-

level accuracy by restricting βw to equal 0.

Finally, under the null of equal forecast accuracy in the finite sample, we compare the

MSE-F and MSE-t tests against critical values from the fixed regressor bootstrap (hence-

forth, FRBS) of Clark and McCracken (2011a). As detailed in section 3.2.2, under this

procedure, we re-estimate the alternative forecasting model subject to the constraint that
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Table 3. Alternative HAC Estimators Considered

Estimator Source Lags
NW Newey and West (1987) 1.5 τ

Rectangular Hansen (1982) τ − 1
West West (1997) τ − 1
QS Andrews and Monahan (1992) data-determined
HLN Harvey, Leybourne, and Newbold (1997) τ − 1

implies the null and alternative model forecasts to be equally accurate and generate artificial

data, forecasts, and test statistics from this DGP.

4.3 HAC estimators

Table 3 lists the alternative HAC estimators we consider with various combinations of the

test statistics and sources of critical values.

Following most work in the literature, including our own past Monte Carlo assessments

of the small-sample properties of forecast tests, we take the estimator of Newey and West

(1987) as the baseline, estimating the variance with 1.5τ lags. While much empirical work

fixes the lag length (i.e., the bandwidth), the consistency of the estimator rests on the

bandwidth increasing with sample size. The NW estimator rate converges at a rate of Tα,

where α is less than 1/2, and α = 1/3 if the bandwidth parameter is chosen at the optimal

rate developed in Andrews (1991).

One alternative, included in Diebold and Mariano’s (1995) original development of the

MSE-t test, is the rectangular kernel estimator of Hansen (1982), which exploits or presumes

one of the implications of optimality of forecasts, which is serial correlation of order τ − 1.

While the Newey-West estimator reduces the weight given to covariances as the lag increases,

the rectangular estimator assigns a weight of 1 to all lags up through lag τ − 1. Compared

to the NW, West (1997), or quadratic spectral (QS) estimators, the rectangular estimator

suffers a disadvantage that it need not be positive semi-definite (in our simulations, in

the very rare instance in which that occurred, we replaced the rectangular estimator with

the NW estimator). However, compared to the NW and QS estimators, the rectangular

estimator converges at a faster rate, of T 0.5. The imposition of parametric restrictions may

offer some gains in small-sample precision over the NW and QS estimators.

We also consider the estimator of West (1997), which generalizes one suggested by

Hodrick (1992). Our use of the West estimator is motivated by the Clark and West (2006)

finding that, under a martingale difference null that permits the application of Hodrick’s
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(1992) estimator, tests based on Hodrick’s HAC estimator have superior size properties.

The West estimator involves: fitting an MA model to the residual series of the equation of

interest; forming a weighted sum of lags of the right hand side variables from the equation

of interest, using the MA coefficients as weights; and then computing the HAC variance

as the simple contemporaneous variance of the MA residual times the weighted sum of

variables. The West estimator has an advantage over the rectangular estimator of being

guaranteed to be positive semi-definite and the advantage over the NW and QS estimators

that it converges at a rate of T 0.5. Again, the imposition of parametric restrictions may

offer some gains in small-sample precision over the NW and QS estimators.

Our fourth HAC estimator is the pre-whitened quadratic spectral variance developed by

Andrews and Monahan (1992). For the equation of interest, this estimator involves: pre-

whitening the products of the residual and right-hand side variables by fitting a VAR(1);

determining the optimal bandwidth for the quadratic spectral kernel to be used with the

residuals from the VAR(1); computing the HAC variance for the VAR residuals using this

kernel and bandwidth; and then using the VAR structure to compute the HAC variance for

the original variables (the products of the residual and right-hand side variables). Compared

to the NW estimator, the QS estimator has an advantage in convergence rate. For example,

if the bandwidth parameter is chosen at the optimal rate, the QS convergence rate is

2/5, compared to 1/3 for NW. However, the QS estimator is more difficult to compute,

particularly with pre-whitening and bandwidth optimization.14

Finally, for the MSE-t and CW-t tests compared to standard normal critical values,

we consider the adjusted variance developed by Harvey, Leybourne, and Newbold (1997).

Their adjustment is a finite-sample one, developed assuming forecasts in which parameter

estimator error is irrelevant and the variance is computed with the rectangular estimator

included in Diebold and Mariano’s (1996) original development of the MSE-t test. The

HLN adjustment consists of forming the t-statistic using the rectangular variance estimate

and τ − 1 lags and then multiplying the t-test by

��
P̃ + 1− 2τ + P̃−1τ (τ − 1)

�
/P̃ .

In the interest of limiting the volume of results, we limit the combinations of these HAC

estimators, test statistics, and inference approaches to the set necessary to determine what

must be done to get correctly-sized tests for the relevant null hypothesis.

14In the interest of brevity, we don’t consider the pre-whitened, data-dependent estimator of Newey and
West (1994), which uses the Bartlett kernel. In unreported results, Clark and West (2006) found the Andrews
and Monahan (1992) estimator to yield slightly to modestly better performance than the Newey and West
(1994) estimator.
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Under a null of equal accuracy in population, for tests compared against critical values

from the no-predictability FRBS, based on prior research the use of the bootstrap is likely

to be enough by itself to deliver accurately sized tests. Accordingly, in constructing the

MSE-t and CW-t tests for comparison against these critical values, we simply use the NW

HAC estimator to compute the denominators of the t-statistics. For the MSE-F test, no

HAC estimator enters the computation. With this bootstrap, we don’t consider any other

HAC estimators.

Under a null of equal accuracy in the finite sample, for tests compared against critical

values from the FRBS, the use of the bootstrap isn’t enough to deliver accurately sized tests

for multi-step forecasts (in small samples), because of imprecision in the HAC variance V

that plays a role in determining the parameters of the bootstrap DGP. Accordingly, in

this case, we consider multiple versions of the bootstrap, each one using a different HAC

estimator of V .15 That is, we generate results for one version of the bootstrap based on the

NW estimate of V , another set of results for the bootstrap based on the rectangular estimate

of V , and so on.16 In this case, the computation of the MSE-F and MSE-t tests does not

depend on the HAC estimator; for MSE-t, we use the NW variance in the denominator

in all cases. Rather, just the bootstrapped data and resulting artificial forecasts, artificial

test statistics, and critical values depend on the HAC estimator, through the role of V in

determining the DGP.

Finally, for t-tests compared against standard normal critical values, for both of the

MSE-t and CW-t statistics, we consider five different versions, each one computed with a

different HAC estimate of the standard deviation in the denominator of the t-test. For the

occasional Monte Carlo draw in which the rectangular and HLN variances are not positive,

we replace the rectangular estimate with the NW estimate of the standard deviation.

15To increase the precision of comparisons across HAC estimators, we use the same random numbers to
compute results for each different approach to estimating V . Specifically, using the NW estimate of V , we
use a random number generator in simulating bootstrap data. We save the underlying random numbers and
then use them again when we conduct a bootstrap under the rectangular estimate of V . We proceed to use
the same random numbers and conduct bootstraps based on the other estimates of V .

16For each alternative approach to estimating V , we follow sources such as Andrews and Monahan (1992)
in incorporating a small-sample adjustment. Specifically, we normalize the variance by T − k, where k
denotes the number of right-hand side variables, rather than T . This small-sample adjustment yields a
small, consistent improvement in size.
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4.4 Results

4.4.1 Null of equal accuracy in population

We begin with experiments under the null hypothesis of equal forecast accuracy in popula-

tion, for which Tables 4 and 5 provide Monte Carlo results. Specifically, focusing on the tests

and inference approaches that might be expected to yield reasonably-sized tests, Tables 4

and 5 provide results for the MSE-F , MSE-t, and CW-t tests (with the t-statistics computed

using the NW estimator) compared against critical values from the no-predictability FRBS

and for the CW-t test computed with alternative HAC estimators and compared against

standard normal critical values. In light of the common usage of the MSE-t test with nor-

mal critical values, we also include results for this test computed with alternative HAC

estimators. Under the null of equal accuracy in population, this test should be undersized

when compared against standard normal critical values.

The no-predictability FRBS generally yields accurately sized tests. Size peaks at 12% in

the experiment with DGP 2, τ = 8, and R = 120, P̃ = 40. In most other cases, size is quite

close to 10%. For example, in the experiment with DGP 2, τ = 4, and R = 120, P̃ = 80,

the sizes of the MSE-F , MSE-t, and CW-t tests are 10.7%, 10.2%, and 9.7%, respectively.

For the CW-t test compared to standard normal critical values, using the NW estima-

tor of the standard deviation in the denominator of the test statistic often, although not

always, yields significantly oversized tests — a finding consistent with results in Clark and

McCracken (2005a) and Clark and West (2006, 2007). The size distortions increase as the

forecast sample shrinks, the forecast horizon rises, and the size of the alternative forecasting

model grows. For example, with R = 120, P̃ = 40, the rejection rate of the NW-based CW-t

test is 13.9% with DGP 1 and τ = 4, 18.3% with DGP 1 and τ = 8, 14.9% with DGP 2

and τ = 4, and 20.2% with DGP 2 and τ = 8. With R = 120, P̃ = 80, the corresponding

rejection rates fall to 11.1%, 12.5%, 12.0%, and 15.2%. But in relatively larger forecast

samples, shorter forecast horizons, and smaller alternative models, using the NW estimator

can yield a reasonably sized CW-t test. For instance, with DGP 1 and a forecast horizon of

4, the NW version of the CW-t test compared against normal critical values has a rejection

rate of 9.6% with R = 40, P̃ = 80 and 9.3% with R = 40, P̃ = 120.

For the same test, using the rectangular estimator of the standard deviation in the test

statistic yields slightly better size performance. For example, in the DGP 1 experiment

with a forecast horizon of 8 periods and R = 120, P̃ = 40, the rejection rate of the CW-t
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test based on the rectangular estimator is 17.2%, while the rejection rate of the test based

on the NW estimator is 18.3%. But it remains the case that the test can be significantly

oversized, especially with small forecast samples, long horizons, and an alternative model

with kw > 1.

As with the NW estimator, using the West estimator of the standard deviation in the

CW-t test often yields far too high a rejection rate, particularly with small P̃ . Overall, the

test based on the West estimator fares comparably — sometimes better, sometimes worse

— to the test based on the NW estimator. For instance, with DGP 2 and a forecast horizon

of 8 periods, using the West estimator yields a rejection rate of 32.7% with R = 80, P̃ = 20

and 13.8% with R = 80, P̃ = 80, compared to corresponding rejection rates of 27.7% and

15.5% based on the NW estimator.

Size performance is considerably better when the CW-t test is computed with the QS

and HLN estimators (recall that the HLN estimator uses the rectangular variance estimate

and a finite-sample adjustment of the variance and test statistic). Once again, size tends to

be an increasing function of the forecast horizon and alternative model size and a decreasing

function of forecast sample size. For forecast samples of 40 or more observations, using the

QS estimator often yields size below 10%. For example, with DGP 1, R = 40, P̃ = 120,

the rejection rate is 6.7% for the 4-step forecast horizon and 7.1% for the 8-step horizon.

By reducing the forecast sample to P̃ = 80 and moving to the larger alternative model of

DGP 2, we raise the rejection rate to 10.0%. The QS-based test becomes over-sized —

but to a much smaller degree than in the NW, rectangular, and West-based tests — in

very small forecast samples (P̃ = 20). For example, with DGP 2, a forecast horizon of 8

periods, and R = 80, P̃ = 20, using the QS estimator with the CW-t test yields size of

15.9%. By comparison, the HLN-based test is less prone to being undersized, but a little

more prone to being oversized in small samples (more so the longer the forecast horizon).

For instance, with DGP 1, R = 40, P̃ = 120, the HLN-based rejection rate is 7.8% for the

4-step forecast horizon and 9.1% for the 8-step horizon, compared to corresponding rates

of 6.7% and 7.1% for the QS-based test. With DGP 2, R = 120, P̃ = 40, the HLN-based

rejection rate is 11.2% for the 4-step forecast horizon and 15.7% for the 8-step horizon,

compared to corresponding rates of 9.2% and 12.2% for the QS-based test. Whether either

the QS and HLN estimators can be viewed as best depends on one’s concern with modest

undersizing of QS versus modest oversizing of HLN.
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Finally, for the MSE-t test compared to standard normal critical values, both the HLN

and QS estimators yield the systematic undersizing that should be expected based on

population-level asymptotics. Across all experiments in Tables 4 and 5, the size of the

QS-based MSE-t test ranges from 0.3% to 9.8%, and the size of the HLN-based test ranges

from 0.4% to 8.8%. The other HAC estimators — NW, rectangular, and West — can yield

over-sized tests, if the forecast sample is small or the forecast horizon long. For example,

in experiments with DGP 1, a forecast horizon of 8 periods, and R = 80, P̃ = 20, the

MSE-t tests based on the NW, rectangular, and West estimators have size of 18.9%, 14.7%,

and 25.4%, respectively. With the same settings but for a forecast sample size of P̃ = 80,

the tests are undersized as expected, with corresponding rejection rates of 6.0%, 6.1%, and

6.8%.

4.4.2 Null of equal accuracy in the finite sample

We turn now to tests under the null hypothesis of equal accuracy in the finite sample, for

which Tables 6 and 7 report results. The results for the FRBS based on the NW estimator

(of the V matrix that helps determine the bootstrap DGP) are consistent with those of

Clark and McCracken (2011a). With small samples and multi-step forecasts, the MSE-F

and MSE-t tests compared against FRBS critical values are slightly to modestly oversized.

The size distortion tends to rise as the forecast sample shrinks, the forecast horizon increases,

and the number of additional variables in the larger forecasting model (kw) increases. For

example, based on the NW HAC estimator, with R = P̃ = 80, the MSE-F test has rejection

rates of 12.6% with DGP 1 and τ = 4, 14.3% with DGP 1 and τ = 8, 16.0% with DGP 2

and τ = 4, and 15.8% with DGP 2 and τ = 8 (recall that kw = 1 in DGP 1 and kw = 3 in

DGP 2). The size distortions tend to be a little smaller with the MSE-t test than MSE-F

(however, as shown in Clark and McCracken (2011a), the MSE-t test also has lower power

than the MSE-F test). In the same example, the MSE-t test has rejection rates of 11.0%

with DGP 1 and τ = 4, 12.5% with DGP 1 and τ = 8, 14.2% with DGP 2 and τ = 4, and

14.2% with DGP 2 and τ = 8.

Using the rectangular estimator slightly reduces the size distortions of the MSE-F and

MSE-t tests, with more noticeable improvements in DGP 2 (larger kw) than DGP 1 (smaller

kw). For instance, with R = P̃ = 80 and a forecast horizon of τ = 8, the size of the MSE-

F test in DGP 1 experiments edges down from 14.3% under the NW estimator to 14.1%

under the rectangular estimator. In corresponding DGP 2 experiments, the rejection rate
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for MSE-F falls from 15.8% to 14.6%. Again, size distortions are slightly smaller for the

MSE-t test than the MSE-F test. Reflecting these patterns, in empirical applications with

properties similar to those of our experiments, for a forecast horizon of 4 periods or less and

an unrestricted forecasting model that has only one variable more than the benchmark, the

rectangular estimator may be seen as sufficient for obtaining reasonably accurate inference

with the MSE-t test.

Using the QS estimator of the V matrix needed to set parameters of the FRBS yields

somewhat larger gains in size performance. For instance, with R = P̃ = 80 and a forecast

horizon of τ = 8, the size of the MSE-F test in DGP 1 experiments falls from 14.3% under

the NW estimator to 11.1% under the QS estimator; the size of the MSE-t test declines

from 12.5% (NW) to 10.4% (QS). In corresponding DGP 2 experiments, the rejection rate

for MSE-F falls from 15.8% (NW) to 12.9% (QS), and the rejection rate for MSE-t declines

from 14.2% (NW) to 12.0% (QS). At the forecast horizon of four periods, in larger samples

of forecasts in DGP 1, using the QS estimator with the FRBS can yield slightly undersized

tests. For example, in the DGP 1 experiment with R = 120, P̃ = 40, and τ = 4, the MSE-F

test has size of 8.8% when the QS estimator is used in the bootstrap. Overall, in empirical

applications with properties similar to those of our experiments, the QS estimator seems

to deliver reasonably good size properties with an unrestricted forecasting model that has

only one variable more than the benchmark.

Across all experiment settings, using the West estimator of the HAC variance of the

bootstrap yields the best size performance. For instance, with R = P̃ = 80 and a forecast

horizon of τ = 8, the size of the MSE-F test in DGP 1 experiments falls from 14.3% under

the NW estimator to 10.1% under the West estimator; the size of the MSE-t test declines

from 12.5% (NW) to 9.7% (West). In corresponding DGP 2 experiments, the rejection rate

for MSE-F falls from 15.8% (NW) to 9.6% (West), and the rejection rate for MSE-t declines

from 14.2% (NW) to 10.1% (West). While the QS estimator often fares about as well as the

West estimator when P̃ is smaller than R, at longer forecast horizons the West estimator

fares much better than the QS estimator when P̃ is larger than R. Consider some of the

experiments with DGP 2 and a forecast horizon of τ = 8. With R = 120, P̃ = 40, the

MSE-F test has size of 11.2% under the FRBS based on the QS estimator and 9.0% under

the bootstrap based on the West estimator. But with R = 40, P̃ = 120, the MSE-F test

has size of 13.2% under the FRBS based on the QS estimator and 9.1% under the bootstrap
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based on the West estimator.

Finally, we consider the MSE-t test compared to standard normal critical values. The

t-tests based on the NW, rectangular, and West HAC estimators are prone to significant

over-sizing if the forecast sample is small or the forecast horizon long. For example, in

experiments with DGP 1, a forecast horizon of 8 periods, and R = 80, P̃ = 20, the MSE-t

tests based on the NW, rectangular, and West estimators have size of 27.0% 21.6%, and

32.2%, respectively. With the same settings but for a forecast sample size of P̃ = 80, the

tests are just modestly over-sized, with corresponding rejection rates of 14.3%, 14.2%, and

14.1%. The size of the test is much more accurate with the QS and HLN estimators of

the standard deviation in the test statistic. For instance, in the DGP 1 experiment for

the 8-step ahead horizon, with R = 80, P̃ = 80, using the QS and HLN estimators yields

rejection rates of 9.6% and 12.2%, respectively, compared to rates of more than 14% for the

NW, rectangular, and West estimators. Whether either the QS and HLN estimators can be

viewed as best depends on one’s concern with the tendency of QS to be undersized (more

so than HLN) in some settings versus the tendency of HLN to be oversized (more so than

QS) in other settings.

4.5 Results summary

Based on these results, we can offer some recommendations for obtaining accurate inference

in tests applied to multi-step forecasts from nested models, taking as given a desire to keep

variance computations as simple as possible. While other estimators can work in more

limited conditions (e.g., forecast horizons that aren’t too long and forecast samples that are

fairly large), the following seem to work well in general conditions.

• Tests of equal accuracy in population compared against critical values obtained with

the no-predictability fixed regressor bootstrap of Clark and McCracken (2011b): sim-

ply use the Newey and West (1987) estimator in computing test statistics.

• Tests of equal accuracy in population compared against standard normal critical val-

ues: use either the pre-whitened quadratic spectral estimator of Andrews and Mon-

ahan (1992) or the adjusted variance developed in Harvey, Leybourne, and Newbold

(1997) in computing the MSE-t and CW-t tests (this will yield a CW-t test with

empirical size about equal to nominal and a MSE-t test that doesn’t yield spurious

rejections with small samples and long horizons).
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• Tests of equal accuracy in the finite sample compared against critical values obtained

with the fixed regressor bootstrap of Clark and McCracken (2011a): use the HAC

estimator of West (1997) to compute the V matrix that helps determine the bootstrap

parameterization, and use the Newey and West (1987) estimator in computing the

denominators of t-tests.

• Tests of equal accuracy in the finite sample compared against standard normal critical

values: use either the pre-whitened quadratic spectral estimator of Andrews and Mon-

ahan (1992) or the adjusted variance developed in Harvey, Leybourne, and Newbold

(1997) in computing the MSE-t test.

5 On the Choice of Sample Split

In any out-of-sample testing environment one has to decide how to split the sample into

in-sample and out-of-sample portions. That is, if one has access to observables from

t = 1, ..., T , in order to conduct a pseudo-out-of-sample forecasting exercise one has to

determine how much data to withhold for the initial estimation sample (R) and how much

to use for forecast evaluation (P ). In this section we provide some tentative guidance

towards making that decision when the goal is to maximize power.

We separate our analysis into three distinct parts. First we provide some tentative

guidance when asymptotic inference follows from the results in West (1996) — and hence

notably is valid for comparisons of non-nested models. We then provide some discussion

for nested model comparisons based on recent work by Hansen and Timmermann (2011).

Finally, we discuss recent work by both Hansen and Timmermann (2011) and Rossi and

Inoue (2011) on methods for conducting inference that avoids the sample-split issue all

together. Throughout we focus exclusively on tests of population-level predictive ability.

5.1 Optimality in the West (1996) framework

Recall from section 3.1.1 that West (1996) shows that under the null hypothesis H0 :

Eft+τ = γ a test statistic of the form

(P − τ + 1)−1/2
T−τ�

t=R

(ft+τ (β̂t)− γ)/Ω̂1/2 (16)

can be asymptotically standard normal if estimation error is appropriately accounted for

when constructing Ω̂. Suppose that instead of the null hypothesis holding, there exists a
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sequence of local alternatives satisfying Eft+τ = γ + T
−1/2

δ. In this environment it is

straightforward to show that

(P − τ + 1)−1/2
T−τ�

t=R

(ft+τ (β̂t)− γ)/Ω̂1/2 →d
N(

�
π

1 + π

�1/2�
δ

Ω1/2

�
, 1), (17)

which is asymptotically normal with unit variance but has a non-zero asymptotic mean that

depends explicitly on the sample-split parameter π through both π
1+π and Ω. In practice

this type of test is typically two-sided and hence rather than work with the statistic in (16)

we look at its square. Under the sequence of local alternatives we immediately have that

�
(P − τ + 1)−1/2

T−τ�

t=R

(ft+τ (β̂t)− γ)/Ω̂1/2

�2

→d
χ
2(1; Λ), (18)

a non-central χ2 variate with a non-centrality parameter Λ that varies with the estimation

scheme because Ω varies with the estimation scheme:

Fixed, 0 ≤ π < ∞ : Λ = (
π

1 + π
)(

δ
2

Sff + πFBShhB
�F � ) (19)

Rolling, 0 ≤ π ≤ 1 : Λ = (
π

1 + π
)(

δ
2

Sff + (π)FBS
�
fh + (π − π2

3 )FBShhB
�F �

) (20)

Rolling, 1 ≤ π < ∞ : Λ = (
π

1 + π
)(

δ
2

Sff + (2− 1
π )FBS

�
fh + (1− 1

3π )FBShhB
�F � ) (21)

Recursive, 0 ≤ π ≤ ∞ : Λ = (
π

1 + π
)(

δ
2

Sff + 2(1− 1
π ln(1 + π))(FBS

�
fh + FBShhB

�F �)
)

(22)

Maximizing power is then equivalent to choosing the value of π that maximizes the

non-centrality parameter associated with the sampling scheme being used. Doing so we

obtain

Fixed π
∗ =

� ∞ if F = 0�
Sff

FBShhB�F �

�1/2
else

�
(23)

Rolling π
∗ =

�
∞ if F = 0 or − FBS

�
fh = FBShhB

�
F

�

∞ else (result to be verified)

�
(24)
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Recursive π
∗ =

�
∞ if F = 0 or − FBS

�
fh = FBShhB

�
F

�
�
2+π∗

π∗
�
ln(1 + π

∗) = 2 + 1
2

�
Sff

FBS�
fh+FBShhB�F �

�
else

�

(25)

From these derivations, we can draw the following conclusions.

1. In each case, when F = 0 we find that the optimal sample split is one that chooses

the ratio P/R to be large. Perhaps the most important application of this optimality result

is in cases in which two OLS-estimated non-nested models are being compared based on

their mean square errors. However, one should note that strictly speaking the π
∗ = ∞

case cannot literally be taken to be true for the fixed and rolling schemes since the results

in West (1996) only apply when 0 ≤ π < ∞. Even so, when F = 0 it is clearly the case

that the non-centrality parameter is monotone increasing in π and hence the optimal value

of π is arbitrarily large.

2. For both the rolling and recursive schemes, in those cases for which −FBS
�
fh =

FBShhB
�
F

�, we find that the optimal sample split is one that chooses the ratio P/R to be

large. While this may seem an unlikely coincidence, West (1996) and West and McCracken

(1998) show that this happens fairly easily when evaluating OLS-estimated linear models

using tests of zero-mean prediction error or efficiency when one is willing to assume that

the model errors are conditionally homoskedastic and serially uncorrelated.

3. When estimation error is not asymptotically irrelevant and hence Ω �= Sff , the

optimal sample split can take values that are not arbitrarily large and in fact can be quite

small depending on the covariance structure of the observables. One simple example occurs

in the cases described in point 2 but when the fixed scheme is used: when evaluating OLS-

estimated linear models using tests of zero-mean prediction error or efficiency it can often

be the case that −FBS
�
fh = FBShhB

�
F

� = Sff and hence we find that the optimal sample

split uses half of the observables to estimate the model parameters and the other half to

evaluate the forecasts.

When Ω �= Sff , the optimal sample split is more difficult to interpret for the rolling and

recursive schemes, for which there does not seem to be a closed form solution. Rather,

the optimal sample split must be inferred numerically given values of Sff , FBS
�
fh, and

FBShhB
�
F

�
.

4. In general, when estimation error is asymptotically relevant the optimal sample split

is finite but depends on unknown nuisance parameters. Using the methods described in
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section 3.1.1, these parameters can be estimated using the observables and hence one can

imagine constructing a feasible variant of the optimal sample split parameter π∗
. Of course

taking such an approach precludes the optimal sample split since it is very unlikely that

in any finite sample the estimate will match the optimal value. Even worse, estimating

the optimal sample split parameter requires conducting a preliminary pseudo out-of-sample

exercise which by its vary nature constitutes pre-testing. Thus any out-of-sample inference

based on an estimated optimal sample split is unlikely to match the theory for which it

was designed. Put more bluntly, if we let π̂
∗ denote the estimated optimal sample split

parameter, R̂∗ = [T 1
1+π̂∗ ], and P̂

∗ = T − R̂
∗ + τ , it is not obvious that the statistic

(P̂ ∗ − τ + 1)−1/2
T−τ�

t=R̂∗

(ft+τ (β̂t)− γ)/Ω̂∗1/2 (26)

is asymptotically standard normal.

5. While not a proof, based upon the analytics above it seems reasonable to suggest a

simple rule of thumb: when choosing a sample split one should choose a value of P/R that

is at least 1 and perhaps much higher. To be clear, this argument is based solely on a desire

to maximize power and not to reduce any potential sources of size distortions. For example,

as we saw in section 4.4, we are more likely to observe finite sample size distortions when

P/R is large, especially when the fixed or rolling schemes are being used. Fortunately, as

we show in section 5.4, for non-nested models a simple size correction mechanism is easily

introduced to the test statistic that alleviates the issue.

5.2 Optimality for nested model comparisons

As noted in Clark and McCracken (2001), among others, the analytics in West (1996) do

not apply when constructing either tests of equal MSE or tests of encompassing for two

models that are nested under the null. As such, the analytics related to the optimal

choice of sample split cannot be inferred from the results described in the previous section.

Regardless, Hansen and Timmermann (2011) present results that are quite similar in the

sense that the optimal sample split is one that chooses the ratio P/R to be large.

Consider the case discussed in section 3.1.2 where two nested OLS-estimated linear

models are being compared, such that model 2 nests model 1 and hence β
∗
2 = (β∗�

1 , β
∗�
w)

� =

(β∗�
1 , 0)

� under the null. But as we did for the results above, suppose that, instead of

the null hypothesis holding, there exists a sequence of local alternatives satisfying β2,T =
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(β�
1, T

−1/2
β
�
w)

�
. In section 3.2.2 we showed that under the recursive scheme we obtain17

MSE-F →d {2Γ1 − Γ2}+ 2{Γ4}+ {Γ5}. (27)

Inoue and Kilian (2004) obtained a similar result, in a slightly less general model setup, in a

comparison of the power of in-sample and out-of-sample tests of population-level predictive

ability.

In equation (27) we see that the sequence of local alternatives only affects the asymptotic

distribution through Γ4 and Γ5. Moreover, it is fairly intuitive to interpret Γ5 = (1 −

λ)β�
wF

−1
2 βw/σ

2 as the non-centrality parameter of the asymptotic distribution in the same

way as we did above for Λ in the West-based analytics. If we treat this term as the objective

function and maximize it with respect to π we quickly find that the optimal value of the

sample split is one that chooses the ratio P/R to be large. The analytical argument

presented here reinforces the simulation-based evidence provided in Clark and McCracken

(2001, 2005a) and McCracken (2007). A more formal discussion of the optimal sample split

is given in Hansen and Timmermann (2011).

5.3 Sample-split robust methods

Motivated at least in part by the potential for sensitivity of forecast evaluation results

to sample choice, Hansen and Timmermann (2011) and Rossi and Inoue (2011) develop

methods for testing the null of equal predictive ability across different sample splits. In

both studies, the null is equal predictive ability at the population level. One concern is

with the effects of data mining: in practice, one might search across sample splits (or be

influenced by results in other studies) for a test result that appears significant, without

taking the search into account in gauging significance. The other concern is with power: as

noted above, some sample splits might yield greater power than others. In light of these

concerns, tests that explicitly consider a range of samples might have advantages.

In these studies, it is assumed that, in a given data set, forecasts are evaluated over a

range of sample splits. More specifically, continuing to let R denote the last observation used

in estimation for forming the first forecast, forecast tests may be formed using R settings of

between Rl and Ru. Under this multiple-sample approach, one might consider the maximum

of the sequence of test statistics computed for a range of samples. For example, with the

17Results for the rolling and fixed are similar.
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MSE-F test, the robust test would take the form

maxR=Rl,...,Ru MSE-F (R) = maxR=Rl,...,Ru

�
T−τ�

t=R

d̂t+τ

�
/σ̂

2
2(R),

where σ̂
2
2(R) denotes the MSE of model 2 for the sample split at observation R.

Focusing on nested models, Hansen and Timmermann (2011) use the asymptotic frame-

work of Clark and McCracken (2001, 2005a) and McCracken (2007) to develop the asymp-

totic distribution of the maximum of the MSE-F test. As detailed below, Monte Carlo

simulations confirm that searching across samples without taking the search into account

yields spurious findings of predictive ability. For 1-step ahead forecasts (with conditional

homoskedasticity), Hansen and Timmermann consider a local alternative (drawing on their

results that simplify the asymptotic distribution of McCracken (2007)) to assess power,

which indicates that power rises as the forecast sample grows — a finding consistent with

our analysis in the preceding section. Out of concern that the marginal distribution of the

test statistic computed for each sample split varies with the sample split, Hansen and Tim-

mermann propose using nominal p-values for each individual sample split instead of test

statistics for each split. More specifically, they propose comparing the minimum p-value

with critical values obtained by Monte Carlo simulations of an asymptotic distribution

(given in the paper) that is a functional of Brownian motion.

Rossi and Inoue (2011) develop results for both non-nested and nested models. With

non-nested models, Rossi and Inoue use high-level assumptions that rest on the asymptotic

framework of West (1996). They consider two test statistics, one that averages a normalized

loss differential across different sample splits and the other that is the maximum of the

normalized loss differential across sample splits, where the sample is split at each possible

observation between Rl and Ru:

sup test = sup
R=Rl,...,Ru

1

σ̂R
T
−1/2

d̄(R)

average test =
1

Ru −Rl + 1

Ru�

R=Rl

| 1

σ̂R
T
−1/2

d̄(R)|,

where d̄(R) denotes the average loss differential for the forecast sample that begins with

observation R+ τ − 1 and σ̂
2
R denotes a consistent estimate of the long-run variance of the

loss differential for the same sample. The null hypothesis is that, in population, the average

loss differential is 0 for all sample splits (all R considered).
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Under West-type conditions that imply the partial sum of the loss differential obeys a

functional central limit theorem, Rossi and Inoue show that the null asymptotic distribu-

tions of the test statistics are functions of (univariate) standard Brownian motion. The

distributions depend on the sample fractions Rl/T and Ru/T but no other parameters.

Rossi and Inoue provide a table of asymptotic critical values obtained by Monte Carlo

simulation.

For nested models, Rossi and Inoue (2011) focus on statistics based on the Clark and

West (2006, 2007) t-test. They then exploit the approximate normality of the test for a

single sample to propose two tests — one a maximum and the other an average — robust

to multiple samples. For example, the maximum version takes the form

sup test = sup
R=Rl,...,Ru

1

σ̂R
T
−1/2

cw(R), (28)

where cw(R) denotes the average Clark-West loss differential for the forecast sample that

begins with observation R + τ − 1 and σ̂R denotes a consistent estimate of the long-run

variance of the loss differential for the same sample. The null hypothesis is that, in popu-

lation, the average Clark-West loss differential is 0 for all sample splits (all R considered).

In this case, too, the null asymptotic distributions of the test statistics are functions of

(univariate) standard Brownian motion, with critical values available from tables provided

by the authors.

Rossi and Inoue (2011) also provide results for the F -type test of forecast encompassing

developed in Clark and McCracken (2001), denoted ENC-F above. In this case, Rossi

and Inoue rely on the asymptotics of Clark and McCracken (2001) and show that, for 1-

step ahead, conditionally homoskedastic forecast errors, the asymptotic distribution for the

average and maximum of the statistic across sample splits is also a function of standard

Brownian motion (functions somewhat more complicated than in the results previously

described), with dependence on the range of sample splits and the number of additional

parameters in the larger model. Again, Rossi and Inoue use Monte Carlo simulations of the

asymptotic distribution to obtain critical values, provided in tables in the paper.

Finally, Rossi and Inoue (2011) also develop multiple sample-robust versions of a range

of regression-based tests of predictive ability, including tests for bias, efficiency, the Chong

and Hendry (1986) form of encompassing, and serial correlation. Under the assumption that

the partial sum of a loss function obeys a functional central limit theorem, Rossi and Inoue

show that the maximum and average of Wald tests formed for a range of sample splits have
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limiting distributions that are functions of Brownian motion, depending on only the sample

fractions Rl/T and Ru/T . These results will apply under the conditions described in West

(1996) and West and McCracken (1998) that are necessary to obtain standard distributions

for tests applied to a single forecast sample; in many cases, the relevant variance matrix

will need to be computed to account for the effects of parameter estimation error.

Monte Carlo evidence in Hansen and Timmermann (2011) and Rossi and Inoue (2011)

shows that searching across sample splits without accounting for it in inference can yield

material size distortions. However, in both studies, the presumed searches are extensive,

across many different (continuous) sample splits. In practice, researchers probably engage in

more limited searches, checking just a few (discrete) sample splits. At this point, the impacts

of more limited searches are less clear. At any rate, Monte Carlo experiments in Rossi and

Inoue (2011) also indicate that their proposed tests have reasonable size properties. As to

power in the finite sample, Rossi and Inoue (2011) present Monte Carlo evidence that using

their tests can offer important gains in power over the approach of conducting a test for a

single split. However, it seems that most of the power gains come with instabilities in the

data generating process and forecasting models. For example, if the predictive content of

one variable for another fell 3/4 of the way through the data sample, searching for predictive

content across a wide range of samples increases the chances of detecting predictive content

relative to the chance of finding the content with a test based on one short forecast sample

based on, say, just the last 1/4 of the sample.

5.4 Size corrections

As with any testing that is based upon asymptotic approximations, there is always the

concern that the asymptotic distribution does not match well with the finite sample dis-

tribution of the test statistic. That is, while it may be the case that a t-type test of zero

mean prediction error of the form

(P − τ + 1)−1/2
T−τ�

t=R

(ût+τ − 0)/Ω̂1/2 (29)

is asymptotically standard normal, it may not be the case that the standard normal ap-

proximation works well in a sample of size (say) T = 100 with P = R = 50.

In this section we highlight a particular type of size-correction mechanism suggested

in Giacomini and Rossi (2009) that is based on a modest extension of the theory in West

(1996). To understand the source of their proposed size correction, note that the theory
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developed in West (1996) is based upon a particular decomposition of the moment condition

P
−1/2

�T−τ

t=R
(ft+τ (β̂t)− γ):

(P − τ + 1)−1/2
T−τ�

t=R

(ft+τ (β̂t)− γ) = (P − τ + 1)−1/2
T−τ�

t=R

(ft+τ (β
∗)− γ) (30)

+ FB(P − τ + 1)−1/2
T−τ�

t=R

H(t) + op(1).

The first right-hand side component captures the part of the test statistic that would

exist if the parameters were known and did not need to be estimated. The second compo-

nent captures the effect of parameter estimation error on the test statistic. Each of these

two components can be asymptotically normal and hence when added together, the term

(P − τ +1)−1/2
�T−τ

t=R
(ft+τ (β̂t)− γ) is asymptotically normal with an asymptotic variance

that is, in general, affected by each of the two subcomponents.

The size correction proposed by Giacomini and Rossi (2009) arises not from either of

these two terms but rather from a judicious decomposition of the residual term op(1) in

equation (31). They note that while it is certainly true that this residual component is

asymptotically irrelevant, it might be the case that at least part of it is important in finite

samples. Their proposed size correction is based on a modest extension of equation (31)

that is based on the second order term in a Taylor expansion:

(P − τ + 1)−1/2
T−τ�

t=R

(ft+τ (β̂t)− γ) = (P − τ + 1)−1/2
T−τ�

t=R

(ft+τ (β
∗)− γ) (31)

+ FB(P − τ + 1)−1/2
T−τ�

t=R

H(t)

+ 0.5((P − τ + 1)−1/2
T−τ�

t=R

H
�(t)B�(E

∂
2
ft+τ (β

∗)

∂β∂β
� )BH(t)) + op(1).

As shown in West (1996), ((P − τ +1)−1/2
�T−τ

t=R
H

�(t)B�(E ∂2ft+τ (β∗)
∂β∂β� )BH(t)) is op(1).

That said, in finite samples this term might be sufficiently large to prevent the test statistic

from being well approximated by a standard normal. Giacomini and Rossi (2009) therefore

suggest a size-corrected form of the test statistic that subtracts an estimate of the mean

of the second order term and then bases inference on the standard normal distribution.

Specifically they recommend using a size-corrected version of the test statistic that takes

the form

((P − τ + 1)−1/2
T−τ�

t=R

(ft+τ (β̂t)− γ)− SCT )/Ω̂
1/2

, (32)
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where the size-correcting term SCT takes a form that depends upon the sampling scheme

being used:

fixed and rolling : T−1/20.5(π̂)1/2(1 + π̂)1/2tr

�
B̂

�

�
(P − τ + 1)−1

T−τ�

t=R

∂
2
ft+τ (β̂t)

∂β∂β
�

�
B̂Ŝhh

�

(33)

recursive : −T
−10.5

�
1 + π̂

−1
�1/2

ln (1 + π̂) tr

�
B̂

�

�
(P − τ + 1)−1

T−τ�

t=R

∂
2
ft+τ (β̂t)

∂β∂β
�

�
B̂Ŝhh

�
.

(34)

This derivation yields two broad conclusions.

1. Holding tr

�
B̂

�
�
(P − τ + 1)−1

�T−τ

t=R

∂2ft+τ (β̂t)
∂β∂β�

�
B̂Ŝhh

�
constant, the size-correcting

term is larger for the fixed and rolling schemes than the recursive. This occurs since for

all π̂, π̂1/2(1 + π̂)1/2 is larger than (1 + π̂
−1)1/2 ln(1 + π̂).

2. Holding tr

�
B̂

�
�
(P − τ + 1)−1

�T−τ

t=R

∂2ft+τ (β̂t)
∂β∂β�

�
B̂Ŝhh

�
constant, the size-correcting

term is increasing in π̂ for all sampling schemes. Hence one expects that the size-correction

will be most useful when the initial estimation sample size R is small relative to the total

sample size T . Accordingly, size correction may become important if P/R is set high to

achieve high power (in light of the evidence above that, in many settings, power is maxi-

mized by making P/R large).

6 Unconditional Versus Conditional Evaluation

In section 3 we introduced the distinction between tests of population-level predictive ability

and tests of finite-sample predictive ability. There, the key distinction was the importance

of introducing finite sample estimation error under the null hypothesis. That is, tests of

population-level predictive ability test the null hypothesis that Eft+τ (β
∗) = γ, whereas

tests of finite-sample level predictive ability test the related but distinct hypothesis that

Eft+τ (β̂t) = γ.

One thing both hypotheses have in common is that the expectation operator E(·) is

defined relative to the trivial σ-field (∅,�) and hence is an unconditional expectation. In

the terminology of this section, everything that has been discussed so far in this chapter can

be characterized as a test of unconditional predictive ability. In contrast, Giacomini and

White (2006) consider a different type of hypothesis in which they replace the unconditional

expectation operator with a conditional one E[·|�t] where �t denotes an information set
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available to the forecasting agent at time t. This somewhat subtle difference leads to a

broader class of tests of predictive ability.

As an example of how such a test might be useful, consider a proposal suggested, but

not elucidated, in Diebold and Mariano (1995). They suggest that while it might be the

case that two non-nested models have equal (unconditional) predictive ability in terms of

mean square errors, it still might be the case that one model performs better than the other

at certain parts of the business cycle and vice versa.18 To see how this might occur, first

consider constructing a test of equal unconditional MSE via a regression of the form

u
2
1,t+τ − u

2
2,t+τ = α0 + εt+τ . (35)

In this notation the null hypothesis H0 : Eu
2
1,t+τ − u

2
2,t+τ = 0 simplifies to testing the

null H0 : α0 = 0. Now suppose that instead of estimating the regression in equation (35)

we estimate one of the form

u
2
1,t+τ − u

2
2,t+τ = α0 + α11(Recession at time t) + εt+τ , (36)

where 1(·) denotes a function taking the value 1 if the argument is true and zero otherwise.

In this notation, the null hypothesis H0 : Eu
2
1,t+τ − u

2
2,t+τ = 0 is equivalent to testing the

null H0 : α0 + α1d = 0 where d denotes the percentage of the sample that the economy is

in a recession.

While the regression in equation (36) is unnecessarily complicated for testing the null of

equal unconditional predictive ability, it opens the door for tests of the kind that Diebold

and Mariano (1995) proposed. For example we could use the regression in (36) to test the

null that the two models have equal predictive ability regardless of the state of the business

cycle — that is, H0 : E(u21,t+τ − u
2
2,t+τ |Recession at time t) = 0 — by testing whether

H0 : α0 = α1 = 0 holds. If this more restrictive hypothesis holds then it is certainly the

case that the weaker hypothesis of equal predictive ability over the entire business cycle

holds but the converse is not true. One could have α0 + α1d = 0 and yet both α0 and

α1 are not zero and hence it is possible that one model forecasts better than the other

depending on the state of the business cycle.

In this discussion, we have purposefully shied away from the population versus finite-

sample predictive ability issue. We did so in order to emphasize that the concept of

18We’ll return to the issue of nested models later in this section.
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conditional predictive ability is a completely distinct concept. Tests of conditional pre-

dictive ability can be implemented at both the finite-sample and population level. To see

how, consider the slightly modified version of the regression in equation (36):

û
2
1,t+τ − û

2
2,t+τ = α0 + α11(Recession at time t) + εt+τ . (37)

The sole modification is that we wrote the regression in terms of the estimated forecast

errors û
2
i,t+τ rather than the population values of the forecast errors u

2
i,t+τ . Whether we

are testing for equal population level predictive ability regardless of the state of the business

cycle [H0 : E(u21,t+τ−u
2
2,t+τ |Recession at time t) = 0] or equal finite-sample predictive ability

regardless of the state of the business cycle [H0 : E(û21,t+τ − û
2
2,t+τ |Recession at time t) = 0],

this type of regression can be used as a testing device. What distinguishes the two is largely

a matter of asymptotics. In the following we consider two alternative approaches.

6.1 Giacomini and White (2006)

While Diebold and Mariano (1995) first suggested the idea of conditional predictive ability,

Giacomini and White (2006) first provided a theory for implementing such a test with

forecasts that may come from estimated models and made the idea of conditional predictive

ability a major part of the literature. Continuing with the recession-oriented example

above, they suggest constructing a test statistic of the form19

GWT = (P − τ + 1)Z̄ �
T Ŝ

−1
f̂ f̂

Z̄T , (38)

where Z̄T denotes the vector

�
1

P − τ + 1

T−τ�

t=R

(û21,t+τ − û
2
2,t+τ ),

1

P − τ + 1

T−τ�

t=R

(û21,t+τ − û
2
2,t+τ )1(Recession at t)

��

(39)

and Ŝf̂ f̂ denotes an appropriately constructed covariance matrix associated with the asymp-

totic distribution of (P − τ + 1)1/2Z̄T . Under modest mixing and moment conditions they

show that the statistic GWT is asymptotically χ
2 with 2 degrees of freedom.

In order for their asymptotics to work they make one additional assumption: that the

models used to construct the forecasts are estimated using a rolling (or fixed) window of

observations of size R that is finite and small relative to the prediction sample P. While

19Under certain conditions, this test statistic is asymptotically equivalent to using the uncentered R2 from
the regression in equation (37) as the test statistic. These conditions are delineated in Giacomini and White
(2006). For brevity we emphasize the more generally valid quadratic form in equation (38).
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this assumption rules out the use of the recursive scheme it has many powerful benefits,

which we delineate below.

1. The GWT statistic tests for not only conditional predictive ability but also finite-

sample predictive ability. That is, the null hypothesis being tested is one that takes the

form H0 : E(û21,t+τ − û
2
2,t+τ |Recession at time t) = 0. The reason for this, previously

delineated in section 3.2.1, is that regardless of the total sample size T, estimation error

never vanishes and hence estimation error is introduced under the null.

2. The test allows for both nested and non-nested comparisons in the same asymptotic

framework. Regardless of whether models 1 and 2 are nested or non-nested, the GWT

statistic remains asymptotically χ
2 with 2 degrees of freedom

3. The statistic is far more generally applicable than testing the conditional predictive

ability of two forecasting models over the business cycle. One could imagine testing for

conditional zero-mean prediction error, efficiency, encompassing, etc. In each case there

is some proposed null hypothesis of the form H0 : E(ft+τ (β̂t)|�t) = 0 where �t denotes

an information set available to the forecasting agent at time t. If we let zt denote a

kz × 1 vector of instruments that is observable at time t, the null can be tested using the

same statistic GWT = (P − τ + 1)Z̄ �
T Ŝ

−1
f̂ f̂

Z̄T but where Z̄T denotes the vector (P − τ +

1)−1
�T−τ

t=R
ft+τ (β̂t)zt and Ŝf̂ f̂ denotes a consistent estimate of the long-run variance of

(P − τ + 1)−1/2
�T−τ

t=R
ft+τ (β̂t)zt. In each application the statistic is asymptotically χ

2

with kz degrees of freedom.

4. In constructing the test statistic it is important to ensure that the estimate Ŝf̂ f̂ of the

long-run variance Sf̂ f̂ = limP→∞ V ar((P − τ + 1)1/2Z̄T ) is appropriately constructed. In

particular we have to account for the fact that the null hypothesis of conditional predictive

ability imposes restrictions on not only the first moment of ft+τ (β̂t)zt, but also the second

moments. Under the null E(ft+τ (β̂t)|�t) = 0, ft+τ (β̂t)zt has anMA(τ−1) serial correlation

structure. In contrast, a test of unconditional predictive ability only imposes restrictions

on the first moment of ft+τ (β̂t)zt.

To insure clarity of the point being made with regard to the asymptotic variance matrix

Sf̂ f̂ , consider the simplest situation where zt = 1. Under the null of equal finite-sample

unconditional predictive ability we know from section 3.2.1 that

(P − τ + 1)−1/2
T−τ�

t=R

(û21,t+τ − û
2
2,t+τ ) →d

N(0, Sf̂ f̂ ) (40)
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where Sf̂ f̂ = limP→∞ V ar((P − τ +1)−1/2�T−τ
t=R (û21,t+τ − û

2
2,t+τ )). For this null hypothesis

the structure of Sf̂ f̂ is unconstrained in the sense that û
2
1,t+τ − û

2
2,t+τ may exhibit serial

correlation of any order – including infinite. Hence one typically would estimate Sf̂ f̂ as in

Newey and West’s (1987) HAC estimator by weighting the relevant leads and lags of the

estimated covariance matrices Γ̂f̂ f̂ (j) = (P − τ + 1)−1�T−τ
t=R+j(û

2
1,t+τ − û

2
2,t+τ )(û

2
1,t+τ−j −

û
2
2,t+τ−j), where Γ̂f̂ f̂ (j) = Γ̂f̂ f̂ (−j).

Let’s now return to the case where we want to test for equal finite-sample conditional

predictive ability. We still obtain the result that

(P − τ + 1)−1/2
T−τ�

t=R

(û21,t+τ − û
2
2,t+τ ) →d

N(0, Sf̂ f̂ ), (41)

but the value of Sf̂ f̂ is now different. In the notation above, due to the conditioning we

know that for all τ ≤ j, Γ̂f̂ f̂ (j) = 0. Hence an asymptotically valid estimate of Sf̂ f̂ now

only requires estimating Γ̂f̂ f̂ (j) for 0 ≤ j ≤ τ − 1. Despite these added restrictions, one

certainly could continue to use a HAC estimator such as Newey and West’s (1987), but

that is likely to be unnecessarily profligate in the number of estimated covariances and may

lead to size distortions of the kind discussed in section 4. A more parsimonious approach

is simply to use a rectangular kernel that weights equally only the first τ − 1 covariances.

6.2 West (1996)

In the Giacomini and White (2006) framework described above, by default one tests for

both finite-sample predictive ability and conditional predictive ability and hence the null

is E(ft+τ (β̂t)|�t) = 0. This occurs due to the nature of the small rolling (or fixed)

window being used for estimating the model parameters. If instead we wanted to test for

conditional population-level predictive ability E(ft+τ (β
∗)|�t) = 0, we could do so using an

appropriately modified version of the theory described in West (1996) that accounts for

the fact that under the null hypothesis, ft+τ (β
∗) is unpredictable using any observables

contained in the information set �t.

As an example, let’s revisit the recession example above where we are considering the

relative predictive ability of two non-nested models. In the notation of West (1996),

the null hypothesis of interest is H0 : E(u21,t+τ − u
2
2,t+τ |Recession at time t) = 0, where

ui,t+τ , i = 1, 2, denote the population-level forecast errors associated with models 1 and 2

respectively. To test such a hypothesis it is reasonable to follow the intuition in Giacomini
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and White (2006) and base inference on the sample moment condition Z̄T equal to

�
(P − τ + 1)−1

T−τ�

t=R

(û21,t+τ − û
2
2,t+τ ), (P − τ + 1)−1

T−τ�

t=R

(û21,t+τ − û
2
2,t+τ )1(Recession at t)

��

(42)

with corresponding test statistic

(P − τ + 1)Z̄ �
T Ω̂

−1
Z̄T . (43)

Interestingly, one is still able to use the asymptotic theory in West (1996) to show that

this statistic can be asymptotically χ
2 with 2 degrees of freedom despite the fact that tests

of conditional predictive ability are not discussed in that paper.

To see how, suppose that instead of wanting to test for conditional predictive ability,

one wanted to test the null that the bivariate unconditional moment condition (E(u21,t+τ −

u
2
2,t+τ ), E(u21,t+τ − u

2
2,t+τ )1(Recession at time t))� is equal to zero. The results in West

(1996) apply directly and we conclude that (P − τ +1)Z̄ �
T Ω̂

−1
Z̄T →d

χ
2(2) for an appropri-

ately estimated (2×2) variance matrix Ω. Now suppose that instead we impose the strictly

stronger conditional moment condition E(u21,t+τ − u
2
2,t+τ |�t) = 0. It must still be the case

that (P − τ + 1)Z̄ �
T Ω̂

−1
Z̄T →d

χ
2(2) for an appropriately estimated variance matrix Ω.

The main difference between the two cases just described, as we noted above for the Gi-

acomini and White (2006) analytics, is that a null of conditional predictive ability imposes

a restriction on both the first and second moments of ft+τ (β
∗)zt. In particular ft+τ (β

∗)zt

has an MA(τ − 1) serial correlation structure. This changes how we estimate the asymp-

totic variance Ω via how we estimate both the Sff and Sfh components in equation (2).

Specifically, both of these two matrices can now be estimated using a HAC estimator with a

rectangular kernel of order τ − 1, whereas when testing for unconditional predictive ability

one would have had to account for the possibility that ft+τ (β
∗)zt exhibited serial correlation

of infinite order using a HAC estimator such as that of Newey and West (1987).

7 Evaluation of Multiple Forecasts

In recent years, there has been significant progress on methods for evaluating multiple

forecasts, particularly from nested models. As summarized in West (2006), early work on

the evaluation of multiple forecasts focused on non-nested models or judgmental forecasts.

White (2000) develops a bootstrap for evaluating multiple forecasts of these types, under

asymptotics similar to those in West (1996), except that, in the case of non-nested models,
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the forecast sample must be small enough relative to the estimation sample to make pa-

rameter estimation error irrelevant. His bootstrap has the advantage of only requiring the

resampling of forecast errors, avoiding the estimation of forecasting models and forecasts

in artificial data. In White (2000), and in most subsequent studies in the multiple model

literature, the null and alternative hypotheses take the form

H0 : maxk=1,...,K lk ≤ 0 vs. HA : maxk=1,...,K lk > 0,

where lk denotes the mean loss differential between model k and the benchmark, such as

lk = MSE0 −MSEk. A positive differential means the alternative model is superior to the

benchmark.

At the time of West’s survey, two other studies had developed some extensions of White’s

(2000) testing approach. First, Hansen (2005) shows that normalizing and re-centering the

test statistic in a specific manner can lead to a more accurately sized and powerful test,

with the power-enhancing adjustments serving to reduce the influence of bad forecasting

models. Second, under basic West (1996) asymptotics, Corradi and Swanson (2007) develop

a bootstrap applicable when parameter estimation error is not irrelevant. Under general

conditions, as forecasting moves forward in time and the model estimation window expands,

observations earlier in the data sample enter in the forecast test statistics more frequently

than do observations that fall later in the data sample. This creates a location bias in the

bootstrap distribution. To adjust for this asymptotic bias, Corradi and Swanson develop a

recentering of the bootstrap score. Under their West-type asymptotics, the bootstrap can

be applied to forecasts from non-nested models.

More recently, two studies have developed new approaches for the evaluation of multiple

forecasts from models that are not nested and for which parameter estimation error is

asymptotically irrelevant. First, Mariano and Preve (2009) propose a multivariate version

of the Diebold and Mariano (1995) test for application to forecasts that either do not come

from estimated models or, if they do, come from models estimated with samples large enough

relative to the forecast sample as to make parameter estimation error irrelevant. Under their

assumptions, a Wald-type test in the vector of loss differentials has a χ
2 distribution.

Second, building on Hansen (2005), Corradi and Distaso (2011) develop a class of tests

for superior predictive ability, intended to have power better than White’s (2000) reality

check. Corradi and Distaso assume that parameter estimation error is asymptotically ir-

relevant, for reasons such as those given in West (1996) — for example, a forecast sample
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that is small relative to the estimation sample. Drawing on the literature on constructing

confidence intervals for moment conditions defined by multiple inequalities, Corradi and

Distaso develop a class of tests for superior predictive ability, which can be compared to

bootstrapped critical values. Their general class of tests includes Hansen’s (2005) SPA test

— the maximum across models of t-tests for equal loss (e.g, equal MSE).

Other recent extensions to the literature on evaluating multiple forecasts have focused

on projections from nested models. To evaluate forecasts from a small to modest set of

nested models, Rapach and Wohar (2006) rely on an expanded version of the restricted

VAR bootstrap used by such studies as Kilian (1999) and Clark and McCracken (2005a)

to evaluate pairs of forecasts. This approach consists of comparing the maximum of fore-

cast test statistics (e.g., MSE-F and ENC-F ) to a bootstrapped distribution obtained by:

simulating data from a VAR in the predictand of interest and all predictors considered,

where the equation for the predictand y is restricted to the form of the null model; and

then generating forecasts and test statistics for all models considered.

Motivated in part by a desire to avoid the computations associated with these kinds of

bootstrap methods, Hubrich and West (2010) propose taking advantage of the approximate

normality (or exact normality with rolling forecasts and a null model that is a martingale

difference sequence) of the Clark and West (2006, 2007) test (equivalently, the ENC-t test).

One test statistic they propose is a χ
2 test. Letting CW denote the mean of the vector

of numerators of the Clark and West-t test (loss differentials) and ŜCW,CW denote the

estimated (long-run) variance-covariance matrix of the vector of loss differentials, the test

statistic is formed as (P − τ + 1)CW
�
Ŝ
−1
CW,CWCW . The other test statistic they propose is

the maximum of the sequence of Clark and West t-tests for all models considered. Taking

the individual t-tests to be normally distributed, the quantiles of the maximum distribution

can either be easily computed with simple Monte Carlo simulations or, when the model set

is very small, looked up in Monte-Carlo generated tables provided by Hubrich and West.20

In general settings, using the Hubrich-West result involves computing a variance-covariance

matrix for the vector of loss differentials for the set of models, conducting Monte Carlo

simulations of a multivariate normal distribution with that variance-covariance matrix, and

computing quantiles of the simulated distribution of the maximum statistic.

20For the case of three forecasts (which yields two loss differentials), Hubrich and West (2010) provide
tables of critical values obtained by numerical solution of the density function of the maximum of two
correlated standard normal random variables. The appropriate critical value is a function of the correlation
between the loss differentials.
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Granziera, Hubrich, and Moon (2011) propose a likelihood ratio-type predictability test

for comparison of a small set of nested models. Their proposed test distinguishes among

different types of nesting relationships, with all alternative models nesting the benchmark

specification: (1) all of the alternative models nest another, (2) no nesting relationship

among the alternative models, and (3) nesting within certain groups of models but not across

groups. By adjusting the (two-sided) Wald statistic of Hubrich andWest (2010) to formulate

it as one-sided test, Granziera, Hubrich, and Moon improve the power of the test. Following

Hubrich and West (2010) in treating the underlying loss differentials — numerators of the

Clark and West (2006, 2007) test — as approximately normally distributed, Granziera,

Hubrich, and Moon propose comparing the likelihood ratio-type predictability test to χ
2

critical values. In light of the asymptotic results of Clark and McCracken (2001, 2005a)

that indicate the t-test distribution for each forecast pair (alternative versus benchmark) is

not actually normal under general conditions, Granziera, Hubrich, and Moon also compare

their proposed test to critical values obtained with the bootstrap of Clark and McCracken

(2011b).

Finally, under the large R, large P asymptotics of such studies as Clark and McCracken

(2001, 2005a) and West (1996), Clark and McCracken (2011b) develop a fixed regressor

bootstrap for testing population-level equal accuracy of forecasts from nested models. They

define test statistics that are the maxima (across models) of the equal MSE and encompass-

ing tests defined in section 3.2.2, where each of a range of alternative models is tested against

a nested benchmark model. They show that the asymptotic distributions are the maxima

of pairwise asymptotic distributions of MSE-F , MSE-t, ENC-F , and ENC-t tests that are

functions of stochastic integrals of Brownian motion. Clark and McCracken develop a fixed

regressor bootstrap for obtaining asymptotic critical values and prove the validity of the

bootstrap, for a null hypothesis of equal population-level accuracy. The bootstrap takes the

basic form given above in section 3.1.3, modified to account for multiple alternative models

and to sample the needed residuals from an unrestricted model that includes all predictors

considered across all models.

Turning to Monte Carlo evidence on the small-sample properties of these tests for equal

predictive ability in multiple models, Hubrich and West (2010) show their proposed maxi-

mum Clark-West test to be slightly undersized and the χ2 test based on the Clark-West nu-

merators to be slightly oversized, when applied to 1-step ahead forecasts from 3 or 5 models.
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The maximum test has better power than the χ
2 test. For comparison, Hubrich and West

also provide results based on White’s (2000) non-parametric reality check bootstrap, which

is asymptotically valid for non-nested models (under some additional conditions) but not

nested models. They find the reality check to be somewhat undersized, or even severely un-

dersized in small samples. For the maximum and χ
2 Clark-West tests, Granziera, Hubrich,

and Moon (2011) obtain similar Monte Carlo results for forecasts from 3 or 4 models. Their

proposed likelihood ratio test improves on the finite-sample power of the Hubrich-West χ2

test, but the power rankings of the likelihood ratio test and maximum Clark-West test vary

with the application setting and sample size. Granziera, Hubrich, and Moon (2011) find

tests based on the fixed regressor bootstrap of Clark and McCracken (2011b) to be slightly

undersized to correctly sized.

Clark and McCracken (2011b) provide Monte Carlo results for experiments with much

larger numbers of forecasts (experiments with 17 and 128 models) and both a 1-step and

4-step ahead forecast horizon. They find that tests of equal MSE and forecast encompass-

ing based on the fixed regressor bootstrap have good size properties (i.e., have empirical

size close to nominal size) in a range of settings. But they also show that, in applica-

tions with high persistence in predictors and high correlations between innovations to the

predictand and the predictors (so that the problems highlighted by Stambaugh (1999) ap-

ply), the tests can be modestly oversized. Under general conditions, in most, although not

all, cases, the tests of forecast encompassing have slightly lower size than tests of equal

MSE. In broad terms, the F -type and t-type tests have comparable size. Considering other

testing approaches, Clark and McCracken find that, in experiments with 17 forecasting

models, comparing the ENC-t (or Clark-West) test against critical values obtained with the

Hubrich and West (2010) approach have reasonable size properties at the 1-step horizon,

but not the 4-step horizon, especially in small samples. The oversizing appears to be due to

small-sample imprecision of the autocorrelation-consistent estimated variance of the normal

random variables, obtained as in Newey and West (1987); perhaps other HAC estimators

could reduce the size distortions. Finally, consistent with the evidence in Hubrich and West

(2010), Clark and McCracken find that tests of equal MSE based on critical values obtained

from White’s (2000) non-parametric bootstrap are generally unreliable — for the null of

equal accuracy at the population level — in application to nested models. Rejection rates

based on the non-parametric bootstrap are systematically too low in size experiments and
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lower than rates based on other approaches in power experiments. Corradi and Swanson

(2007) report similar results for some other tests of equal predictive ability, applied to pairs

of nested models.

8 Evaluation of Real-Time Forecasts

Throughout the literature on forecast evaluation, one issue that is almost always overlooked

is the real-time nature of the data being used. For example, in section 2 we laid out a

framework for forecasting for which, at each forecast origin t = R, ..., T − τ , we observe a

sequence of observables {ys, x�s}ts=1 that includes a scalar random variable yt to be predicted,

as well as a (k×1) vector of predictors xt. In particular, note that the notation being used

implies that the difference between the information sets at time t and time t + 1 consists

exclusively of the pair {yt+1, x
�
t+1}. This framework for forecasting makes perfect sense

in the cases when both y and x consist of unrevised financial variables like interest and

exchange rates. Hence for many financial applications, including Goyal and Welch (2008)

or Chen, Rogoff, and Rossi (2010), this framework is perfectly reasonable.

But once we start looking into the predictive content of macroeconomic variables, the use

of this framework becomes tenuous due to the fact that as we move across forecast origins,

the historical values of many macroeconomic series (including GDP, employment, and to

a somewhat lesser degree inflation) are revised. In order to capture this feature, consider

instead a framework for forecasting for which, at each forecast origin t = R, ..., T − τ , we

observe a sequence of observables {ys(t), x�s(t)}ts=1 that includes a scalar random variable

ys(t) to be predicted, as well as a (k× 1) vector of predictors xs(t). As was the case above,

the subscript continues to denote the historical date associated with the value of the variable

but now we have the parenthetical (t). This additional notation is intended to make clear

that as statistical agencies gather more data across time, and sometimes even change the

definitions of variables, the historical value of a particular variable can change. In other

words, the difference between the information sets at time t and time t+1 consists not only

of the pair {yt+1(t+1), x�t+1(t+1)} but potentially the entire sequence of past observables.

There are several ways around this issue when it comes to out-of-sample forecast evalua-

tion. The easiest and most common approach is to ignore the real-time issue. For example,

Stock and Watson (2003) conduct pseudo out-of-sample forecasting exercises designed to

look at the predictive content of asset prices for a variety of macroeconomic series. In that
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exercise they use 2000 to 2002-vintage macroeconomic data.21 In their exercise, they —

like most other researchers in the forecasting literature (including ourselves, in some other

papers) — completely ignore the possibility that the data has been revised across time. By

taking that approach they do not truly address the question of whether asset prices have

predictive content for macroeconomic series so much as they address a related question:

Would asset prices have had predictive content for macroeconomic variables if the present

vintage of data had been available historically at each forecast origin t = R, ..., T − τ? To

be fair, Stock and Watson were well aware of this issue. They provide a rationale for their

choice in footnote 3 of the corresponding paper.

A second, subtle approach is advocated by Koenig, Dolmas and Piger (2003). They

suggest using the various vintages of data as they would have been observed in real time

to construct forecasts. In the notation above they advocate conducting the pseudo out-of-

sample forecast exercise only using the values of the series observed at the time that the

forecast was constructed. In this framework the only relevant data at each forecast origin

t = R, ..., T − τ consist of the observables{ys(s), x�s(s)}ts=1. Were we to take this approach,

the additional parentheticals (s) become vacuous and we revert to the framework discussed

throughout this chapter. Clements and Galvao (2010) apply the approach of Koenig, Dolmas

and Piger (2003) to forecasting GDP growth and inflation with AR models.

A final, and much more difficult approach is not to ignore the revision process across

vintages of the macroeconomic series and to deal with the vintages of data in the way they

are most commonly used. In this approach the pseudo out-of-sample forecasting exercise

explicitly takes into account the fact that the values of the reported y and x variables may

vary across time. As shown in Clark and McCracken (2009) this may very well lead to

differences in the statistical behavior of out-of-sample tests of predictive ability. This arises

because by their nature, out-of-sample tests are particularly susceptible to changes in the

correlation structure of the data as the revision process unfolds. This susceptibility has

three sources: (i) while parameter estimates are typically functions of only a small number

of observations that remain subject to revision, out-of-sample statistics are functions of a

sequence of parameter estimates (one for each forecast origin), (ii) the predictand used to

generate the forecast and (iii) the dependent variable used to construct the forecast error

may be subject to revision and hence a sequence of revisions contribute to the test statistic.

21For example, the GDP-related files in the dataset Mark Watson has kindly made publicly available have
date stamps of May 20, 2000. The files for other variables have date stamps ranging up to late 2002.
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If data subject to revision possess a different mean and covariance structure than final

revised data (as Aruoba 2008 finds), tests of predictive ability using real-time data may

have a different asymptotic distribution than tests constructed using data that is never

revised.

The issue is of increasing importance for a couple of reasons. First, as shown in Diebold

and Rudebusch (1991), Amato and Swanson (2001), Christoffersen, Ghysels, and Swanson

(2002), and Orphanides and van Norden (2005), the predictability of various models is

often very different when using real-time vintages of data instead of using the most recent

final-vintage data. And second, real-time vintages of macroeconomic data are becoming

increasingly available not only for the U.S. but also for a range of other economies.22 This

has made it much easier for researchers who are interested in forecasting to conduct their

pseudo out-of-sample forecasting exercises in a fashion that is significantly closer to the

real-world in which policy makers have to construct forecasts and make decisions based

upon them.

Of course, one might wonder why the data used in forecast evaluation should be real-

time, and why forecasts aren’t constructed taking revisions into account. Stark and Croushore

(2003) argue forecasts should be evaluated with real-time data because practical forecast-

ing — especially from the standpoint of a policy maker who has to make decisions based

upon said forecasts — is an inherently real-time exercise. Reflecting such views, the num-

ber of studies using real-time data in forecast evaluation is now quite large (see, e.g.,

the work surveyed in Croushore (2006) and the list Dean Croushore kindly maintains at

https://facultystaff.richmond.edu/ dcrousho/data.htm). As to the construction of forecasts,

Croushore (2006) notes that, in the presence of data revisions, the optimal approach will

often involve jointly modeling the final data and revision process, and forecasting from the

resulting model (e.g., Howrey 1978, Kishor and Koenig (2011)).

More commonly, though, forecasts are generated at a moment in time using the most

recent vintage of data. Accordingly, Clark and McCracken (2009) focus on such an approach,

and provide results covering the most common practices: generating forecasts with real-time

data and evaluating the forecasts with either preliminary or final data. To accomplish this

they make a simplifying assumption about the revision process. In particular they assume

22Data for the U.S. are readily accessible at the Federal Reserve Banks of Philadelphia
(http://www.phil.frb.org/research-and-data/real-time-center/real-time-data/) and St. Louis
(http://research.stlouisfed.org/tips/alfred/). See Dean Croushore’s website for a more complete list
of U.S. and international data sources: https://facultystaff.richmond.edu/ dcrousho/data.htm.
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that macroeconomic series are revised for a finite number of periods r (which they refer to

as the “vintage horizon”), after which the series are not revised.23 In this framework, at

each forecast origin we continue to observe a sequence of observables{ys(t), x�s(t)}ts=1 that

are subject to revision across forecast origins with the caveat that for all t ≥ s+r, ys(t) = ys

and xs(t) = xs: The parenthetical is dropped when the revision process is completed.

As an example, consider the case in which the predictive content of two linear models

ys+τ (t) = x
�
1,s(t)β

∗
1 + u1,s+τ (t) (model 1) and ys+τ (t) = x

�
2,s(t)β

∗
2 + u2,s+τ (t) (model 2)

are being compared. For each forecast origin t the variable to be predicted is yt+τ (t�),

where t
� ≥ t + τ denotes the vintage used to evaluate the forecasts. In the context of one

quarter-ahead forecasts of GDP growth yt+1, this vintage may be the initial release at the

end of the first month following the end of the present quarter (yt+1(t+1+1 month)), may

be the first revised value at the end of the second month following the end of the quarter

(yt+1(t + 1 + 2 months)), or the final release at the end of the third month following the

end of the present quarter (yt+1(t+ 1 + 3 months)).

For fixed values of the vintage horizon r and the vintage t� used to evaluate the forecasts,

Clark and McCracken (2009) revisit the asymptotic theory for population-level tests of equal

forecast accuracy between these two OLS-estimated models when they are non-nested or

nested models. They find that whether or not the standard asymptotics discussed in

sections 3.1.1 and 3.1.2 continue to apply depends critically upon the properties of the data

revisions.

8.1 Non-nested comparisons

As we did in section 3.1.2, consider a test of equal MSE based upon the sequence of loss

differentials d̂t+τ (t�) = û
2
1,t+τ (t

�)− û
2
2,t+τ (t

�). In a framework with data revisions, Clark and

McCracken (2009) show that West’s (1996) result of asymptotic normality and asymptoti-

cally irrelevant estimation risk (making Ω = Sdd) can break down. In particular they show

that if the data revisions are predictable, the statistic

MSE-t = (P − τ + 1)1/2
d̄�
Ω̂
. (44)

is asympotically standard normal where, with a proper redefinition of terms, Ω takes the

form presented in equation (2) of section 3.1.1. Specifically

Ω = Sdd + 2λfh(FBS
�
fh) + λhhFBShhB

�
F

�, (45)

23Annual and benchmark revisions are ignored.
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with F = (−2Eu1,t+τ (t�)x�1,t(t), 2Eu2,t+τ (t�)x�2,t(t)), B a block diagonal matrix with block

diagonal elements B1 and B2, Sdd the long-run variance of dt+τ (t�), Shh the long-run variance

of ht+τ and Sdh the long-run covariance of ht+τ and dt+τ .

Since the asymptotic variance Ω has the same form as that in West (1996), some of the

special cases in which one can ignore parameter estimation error remain the same. For

example, if the number of forecasts P − τ + 1 is small relative to the number of in-sample

observations from the initial forecast origin R, such that π = 0, then λfh and λhh are zero

and hence the latter covariance terms are zero.

Another special case arises when F equals zero. In this case the latter covariance terms

are zero and hence parameter estimation error can be ignored. To see when this will or will

not arise it is useful to write out the population forecast errors explicitly. That is, consider

the moment condition E(yt+τ (t�)−x
�
i,t(t)β

∗
i )x

�
i,t(t). Moreover, note that β∗

i is defined as the

probability limit of the regression parameter estimate in the regression ys+τ = x
�
i,sβ

∗
i+ui,s+τ .

Hence F equals zero if Exi,t(t)yt+τ (t�) = (Exi,t(t)x�i,t(t))(Exi,tx
�
i,t)

−1(Exi,tyt+τ ) for each

i = 1, 2. Some specific instances that result in F = 0 are listed below.

1. x and y are unrevised.

2. x is unrevised and the revisions to y are uncorrelated with x.

3. x is unrevised and final revised vintage y is used for evaluation.

4. x is unrevised and the “vintages” of y’s are redefined so that the data release used for

estimation is also used for evaluation (as suggested by Koenig, Dolmas and Piger (2003)).

In general, though, neither of these special cases — that π = 0 or F = 0 — need hold.

In the former case, West and McCracken (1998) emphasize that in finite samples the ratio

P/R = �π may be small but that need not guarantee that parameter estimation error is

negligible since it may be the case that FBSdh +FBShhBF
� remains large. For the latter

case, in the presence of predictable data revisions it is typically not the case that F = 0.

To conduct inference then requires constructing a consistent estimate of the asymptotic

variance Ω.

8.2 Nested comparisons

In section 3.1.2, we showed that tests of equal population-level predictability between nested

models have asymptotic distributions that are typically non-standard — that is, not asymp-

totically standard normal or χ2. However, these results required the absence of data revi-

sions. In the presence of predictable data revisions, the asymptotics for these tests change
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dramatically — much more so than in the non-nested case.24 The key issue in the analyt-

ics is that when there are data revisions, the residuals ys+τ − x
�
i,sβ

∗
i , s = 1, ..., t − τ , and

the forecast errors yt+τ (t�)− x
�
i,t(t)β

∗
i , t = R, ..., T − τ , need not have the same covariance

structure.

Keeping track of this distinction, Clark and McCracken (2009) show that for nested

model comparisons the statistic

MSE-t = (P − τ + 1)1/2
d̄�
Ω̂

(46)

is asympotically standard normal, where Ω takes the form

Ω = λhhF (−JB1J
� +B2)Shh(−JB1J

� +B2)F
�
, (47)

with F = 2Eu2,t+τ (t�)x�2,t(t) and B1, B2, Shh as defined in section 3.1.2.

The result makes clear that in the presence of predictable revisions, a t-test for equal

predictive ability can be constructed that is asymptotically standard normal under the null

hypothesis — even when the models are nested. This is in sharp contrast to the results

in Clark and McCracken (2005a) and McCracken (2007), in which the tests generally have

non-standard limiting distributions. This finding has a number of important implications,

listed below.

1. The statistic MSE-t = (P−τ+1)1/2d̄/
�
Ŝdd diverges with probability 1 under the null

hypothesis. This occurs because (i) (P − τ +1)1/2d̄ is asymptotically normal and (ii) Ŝdd is

a consistent estimate of Sdd, which is zero when the models are nested. A similar argument

implies the MSE-F statistic also diverges with probability 1 under the null hypothesis.

2. Out-of-sample inference for nested comparisons can be conducted without the strong

auxiliary assumptions made in Clark and McCracken (2005a) and McCracken (2007) re-

garding the correct specification of the models. Optimal forecasts from properly specified

models will generally follow an MA(τ − 1) process, which we typically required in our prior

work. In the presence of predictable revisions, the serial correlation in τ -step forecast errors

can take a more general form.

3. Perhaps most importantly, asymptotically valid inference can be conducted without

the bootstrap or non-standard tables. So long as an asymptotically valid estimate of Ω is

available, standard normal tables can be used to conduct inference. Consistent methods

for estimating the appropriate standard errors are described in section 3.1.1.

24Mankiw, Runkle, and Shapiro (1984) refer to predictable revisions as “noise” and unpredictable revisions
as “news.”
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Regardless, it is possible that the asymptotic distribution of the MSE-t test can differ

from that given in equations (46) and (47). The leading case occurs when the revisions

are unpredictable rather than predictable, so that F = 2Eu2,t+τ (t�)x�2,t(t) = 0. Another

occurs when model 1 is a random walk and model 2 includes variables subject to predictable

revisions. But even with predictable revisions that make F non-zero, asymptotic normality

fails to hold when F (−JB1J
� + B2) (and hence Ω) equals zero. In both cases Clark and

McCracken (2009) establish that the MSE-t statistic (from (46)) is bounded in probability

under the null. However, in each instance the asymptotic distributions are non-standard in

much the same way as the results in Clark and McCracken (2005a). Moreover, conducting

inference using these distributions is complicated by the presence of unknown nuisance

parameters. A complete characterization of these distributions has yet to be delineated.

9 Why Do Out-of-Sample Forecast Evaluation?

As indicated in the Introduction, forecast evaluation has long been an important tool for

evaluating models. While modern usage seems to have picked up since the pioneering work

of Fair and Shiller (1989, 1990) and Meese and Rogoff (1983, 1988), West (2006) observes

that Wilson (1934) represents an early example of a long tradition of using predictive ability

to assess models.

This common reliance on forecast evaluation likely reflects several considerations. First,

many individuals and institutions (such as central banks) have need of out-of-sample fore-

casts. In these cases, forecast evaluation is intended to be a useful tool for assessing past

performance and gauging the potential for future effectiveness — for example, identifying

the model that has been best in the past for the purpose of using it to forecast going for-

ward, in the hope of forecasting as accurately as possible in the future. Second, for some

practitioners and researchers, forecast evaluation is viewed as useful for guarding against

structural instabilities and model overfitting. By now, based on evidence in studies such

as Stock and Watson (1996, 2003), many empirical relationships are thought to be unsta-

ble over time. In light of the common finding that that in-sample predictive ability fails

to translate into out-of-sample predictive ability (e.g., Stock and Watson 2003, Goyal and

Welch 2008), out-of-sample forecast comparisons may be useful for avoiding models that

are unstable.

As to overfitting, it is widely believed that empirical modeling is prone to overfitting (see,
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for example, Ashley, Granger, and Schmalensee (1980), Chatfield (1995), Leamer (1978), Lo

and MacKinlay (1990), and Lovell (1983)). In particular, various forms of data mining may

lead a researcher to falsely conclude that some variable x has explanatory power for another

variable y. As discussed by Hoover and Perez (1999) and Lovell (1983), the data mining

may take the form of a search across candidate models for y. For example, a researcher

might search across 10 different x variables to find the one that has the most explanatory

power for y. The data mining may also more generally reflect the results of a profession–

wide search that has affected the set of candidate variables, a possibility noted by West

(1996) and considered in some detail by Denton (1985) and Lo and MacKinlay (1990).

The hope of reducing the probability of overfitting appears to lead some researchers to

examine out–of–sample forecasts for evidence of predictive power. In the simplest case, if

in–sample evidence suggests some x has explanatory power for y, a researcher may construct

competing forecasts of y, using one model of y that includes x and another that does not.

If x truly has explanatory power for y, forecasts from the model including x should be

superior. Accordingly, Ashley, Granger, and Schmalensee (1980) advocate using out–of–

sample forecast comparisons to test Granger causality.

Notwithstanding these rationales and the large literature on forecast evaluation, the

question of why one should conduct out-of-sample analysis has remained a source of some

controversy. Some studies explicitly steer away from the question by simply taking the

interest in forecasts as given: for example, Hubrich and West (2010) report “...we do not

attempt to explain or defend the use of out-of-sample analysis. As is usual in out-of-sample

analysis, our null is one that could be tested by in-sample tools.... Our aim is not to

argue for out-of-sample analysis, but to supply tools to researchers who have concluded

that out-of-sample analysis is informative for the application at hand.”

Of the various rationales for forecast evaluation, the intention of evaluating the forecasts

to assess the models for their actual value in forecasting should be the least controversial.

If one’s goal is to use a model for out-of-sample forecasting, it seems reasonable to use

historical forecast performance to judge the model. Logically, for this line of reasoning, the

challenge is that, with nested forecasting models, many of the existing testing methods —

for population-level predictive ability — are equivalent to testing exclusion restrictions on

the larger forecasting model. Of course, as emphasized in Inoue and Kilian (2004), these

same restrictions could be tested with conventional in-sample methods (e.g., conventional
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Wald tests), which will often have better power than the available forecast-based tests.

The development of methods for testing equal accuracy in the finite sample (by Clark and

McCracken (2011a) and Giacomini and White (2006)) can help to ameliorate this concern.

As described in section 3.2, these tests address predictive ability in a finite sample, which

seems closer to the question of focus for those interested in actual value in forecast models.

In this case, at a minimum, tests for predictive ability in population can have value as first-

pass screens. With a test for finite-sample predictive ability representing a higher bar than a

test for population-level predictive ability, if a population-level comparison doesn’t indicate

a larger model is better than a smaller model, neither will a finite-sample comparison.

The value of forecast-based tests for avoiding instabilities and overfitting remains some-

what more controversial, although we would argue there can indeed be important value.

For picking up instabilities, Clark and McCracken (2005b) show (with asymptotic theory

and Monte Carlo evidence) that in-sample explanatory power is readily found because the

usual F -test indicates Granger causality or predictive ability if it existed at any point in

the sample. Out-of-sample predictive power can be harder to find because the results of

out-of-sample tests are highly dependent on the timing of the predictive ability — whether

the predictive ability existed at the beginning or end of the sample, and where a break oc-

curred relative to the start of the forecast sample. Overall, out-of-sample tests are effective

at revealing whether one variable has predictive power for another at the end of the sample.

More recently, Inoue and Rossi (2005) and Giacomini and Rossi (2009) have developed a

variety of tools for detecting breakdowns in predictive content.

As to overfitting, Monte Carlo evidence in Clark (2004) confirms what may be inter-

preted as the original logic of Ashley, Granger, and Schmalensee (1980). If a researcher uses

a given data sample to search across model specifications, the resulting model is likely to

be overfit. However, evaluating forecasts in a subsequent sample that was not part of the

sample used to determine the model specification is not subject to distortions, in the sense

that the forecast-based tests are correctly sized. However, Kilian and Inoue (2004) empha-

size that the out-of-sample analysis can also be subject to data mining. If a researcher also

searches across forecast model performance, both out-of-sample and in-sample inference are

subject to overfitting (size distortions). In this case, out-of-sample tests have no advantage

over in-sample tests, and can be at a power disadvantage. That said, the recently developed

methods for evaluating multiple forecasting models (reviewed in section 7) and evaluating
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forecasts across multiple sample splits (reviewed in section 5) provide additional tools for

ensuring that forecast-based inferences avoid contamination from data mining.

10 Asymptotic Derivations for Out-of-Sample Inference: Ex-
amples

In this chapter we have provided an overview of recent developments in forecast evaluation

with an emphasis on how to conduct inference in a variety of applications. One thing we

have purposefully avoided is the detailed mathematics behind most of the results. In this

section we take a middle ground and provide some simple examples of how the asymptotic

theory is derived.

In the first two subsections we provide step-by-step guides as to how the analytics work

when we follow the style of proof used in West (1996) and Clark and McCracken (2001),

where both P and R are allowed to diverge with the total sample size T. In the final

subsection we follow the style of proof used in Giacomini and White (2006), where P is

allowed to diverge with the total sample size T but R is a finite constant. To make the

presentation as clear as possible, in the first two sections we focus exclusively on the fixed

scheme and hence β̂t = β̂R, while in the final section we use the rolling scheme.

10.1 Test of zero mean prediction error: West (1996)

Suppose we are forecasting with a linear OLS-estimated regression model of the form yt+1 =

x
�
tβ

∗+ut+1, where the vector of predictors contains an intercept and hence the first element

of xt is 1. Using this model, a sequence of 1-step ahead forecast errors ût+1 = yt+1 − x
�
tβ̂R

are constructed. Based on these forecast errors we wish to test the null hypothesis H0 :

E(ut+1) = 0 for all t. To do so we follow the analytics of West (1996) and base our statistic

on the scaled out-of-sample average of the forecast errors P−1/2�T−1
t=R ût+1. To derive the

asymptotic distribution of this scaled average note that

P
−1/2

T−1�

t=R

ût+1 = P
−1/2

T−1�

t=R

(yt+1 − x
�
tβ̂R) = P

−1/2
T−1�

t=R

(yt+1 − x
�
tβ

∗)− P
−1/2

T−1�

t=R

x
�
t(β̂R − β

∗)

= P
−1/2

T−1�

t=R

ut+1 + (
P

R
)1/2(−P

−1
T−1�

t=R

x
�
t)(R

1/2(β̂R − β
∗)) (48)

= P
−1/2

T−1�

t=R

ut+1 + (
P

R
)1/2(−P

−1
T−1�

t=R

x
�
t)(R

−1
R−1�

s=1

xsx
�
s)

−1(R−1/2
R−1�

s=1

us+1xs).
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So far we have used only algebra. In order to derive the asymptotic distribution of

P
−1/2�T−1

t=R ût+1 we need to fall back on the assumptions in West (1996) loosely presented

in section 3.1.1. Specifically we need to assume that the sequence (us+1, xs)� is covariance

stationary, mixing, and has bounded fourth moments. With these assumptions in hand it

is clear that if we let both P and R diverge such that limP,R→∞ P/R = π, we obtain

P
−1/2

T−1�

t=R

ût+1 = P
−1/2

T−1�

t=R

ut+1 + π
1/2(−Ex

�
t)(Exsx

�
s)

−1(R−1/2
R−1�

s=1

us+1xs) + op(1).

If we let both P and R tend to infinity, both P
−1/2�T−1

t=R ut+1 and R
−1/2

�R−1

s=1
us+1xs

are asymptotically normal with zero mean and asymptotic variances Sff and Shh, respec-

tively. Since a linear combination of normal random variates is normally distributed we

immediately find that

P
−1/2

T−1�

t=R

ût+1 →d
N(0,Ω), (49)

with

Ω = Sff + π(−Ex
�
t)(Exsx

�
s)

−1
Shh(Exsx

�
s)

−1(−Ext) (50)

= Sff + π(Ex
�
t)(Exsx

�
s)

−1
Shh(Exsx

�
s)

−1(Ext),

which matches exactly with the formula for Ω under the fixed scheme in equation (2) of

section 3.1.1.

The formula for Ω simplifies even further if we are willing to assume that the errors ut+1

are serially uncorrelated and conditionally homoskedastic. If this is the case we know that

Sff = σ
2 and Shh = σ

2
Exsx

�
s. Moreover, if we note that since the first element of xt is 1,

we have (Ex
�
t)(Exsx

�
s)

−1 = (1, 0�), and hence

Ω = σ
2 + πσ

2(Ex
�
t)(Exsx

�
s)

−1(Ext) (51)

= σ
2(1 + π).

In this special case an asymptotically valid test of zero mean prediction error is con-

structed as
P

−1/2�T−1
t=R ût+1�

(1 + (PR ))(P
−1

�T−1
t=R û

2
t+1)

(52)

and inference can be conducted using standard normal critical values.

This last statistic also provides a simple foil for giving intuition on how the sample

split-robust asymptotics in Rossi and Inoue (2011) work when implemented using the fixed
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scheme. For example, suppose we construct this statistic for each Rj = Rl, ..., Ru satisfying

Rj + Pj = T. Their proposed statistic takes the form

sup
R=Rl,...,Ru

P
−1/2�T−1

t=R ût+1�
(1 + (PR ))(P

−1
�T−1

t=R û
2
t+1)

. (53)

The statistic is not asymptotically normal but is instead the supremum of a Gaussian

process for which critical values can be simulated. Interestingly, this specific statistic is

very closely related to one designed by Wright (1997) in the context of tests for structural

change.

10.2 Test of equal predictive ability for nested models: Clark and Mc-
Cracken (2001)

Suppose we are forecasting with two linear OLS-estimated regression models of the form

yt+1 = x
�
i,tβ

∗
i + ui,t+1, where the vector of predictors x2,t contains the predictors in model

1 as well as an additional set of predictors xw,t and hence x2,t = (x�1,t, x
�
w,t)

�. Using this

model a sequence of 1-step ahead forecast errors ûi,t+1 = yt+1 − x
�
i,tβ̂i,R are constructed.

Again, to simplify exposition, we assume a fixed estimation scheme. Based on these forecast

errors we wish to test the null hypothesis H0 : E(u21,t+1 − u
2
2,t+1) = 0 for all t. To do so we

follow the analytics of Clark and McCracken (2001) and base our statistic on the scaled out-

of-sample average of the loss differential
�T−1

t=R

�
û
2
1,t+1 − û

2
2,t+1

�
. To derive the asymptotic

distribution of this scaled average note that

T−1�
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(û21,t+1 − û
2
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t=R

((yt+1 − x
�
1,tβ̂1,R)

2 − (yt+1 − x
�
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2)

=
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�
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1)− x
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1,t(β̂1,R − β

∗
1))

2 − ((yt+1 − x
�
2,tβ

∗
2)− x

�
2,t(β̂2,R − β

∗
2))

2).

This simplifies significantly since, under the null, x�1,tβ
∗
1 = x

�
2,tβ

∗
2. If we square the terms
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inside the summation and define J = (I, 0)� and ut+1 = u1,t+1 = yt+1 − x
�
1,tβ

∗
1 we obtain
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So far we have used only algebra. In order to derive the asymptotic distribution of
�T−1

t=R (û
2
1,t+1 − û

2
2,t+1) we need to fall back on the assumptions in Clark and McCracken

(2001) loosely presented in section 3.1.2, which for this simple case are closely related

to those in West (1996): we need to assume that the sequence (us+1, xs)� is covariance

stationary, mixing, and has bounded fourth moments. With these assumptions in hand it

is clear that

T−1�

t=R

(û21,t+1 − û
2
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If we let both P andR tend to infinity, then P
−1/2�T−1

t=R ut+1x2,t andR
−1/2

�R−1

s=1
us+1x2,s

converge in distribution to S
1/2
hh W̃1 and S

1/2
hh W̃2, respectively, where W̃1 and W̃2 denote

(k× 1) independent standard normal variates and Shh denotes their (common) asymptotic

variance. We therefore conclude that the asymptotic distribution of
�T−1

t=R
(û21,t+1− û

2
2,t+1)
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takes the form

T−1�

t=R
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Note that, under the recursive and rolling estimation schemes, the test statistics consist of

partial sums that make the asymptotic distributions functions of Brownian motion instead

of normal variates.

The above distribution is non-standard and involves the application-dependent (un-

known, although estimable) parameters Ex2,sx
�
2,s and Shh. For that reason Clark and

McCracken (20011b) recommend the bootstrap laid out in section 3.1.3 when conducting

inference. However, in the special case in which the model errors ut+1 are conditionally

homoskedastic and serially uncorrelated, a slightly modified version of this statistic has an

asymptotic distribution that simplifies considerably, such that

(
T−1�

t=R

û
2
1,t+1 − û

2
2,t+1)/σ̂

2
2 →d 2Γ1 − Γ2 (56)

= 2π1/2
W

�
1W2 − πW

�
2W2 (57)

where Wi, i = 1, 2, denote (kw × 1) independent standard normal vectors. While this

distribution remains non-standard, it is free of nuisance parameters and can be readily

simulated for a given value of π and dimension of xw. The fact that this distribution does

not involve stochastic integrals (as discussed in section 3.1.2) is a by-product of having used

the fixed scheme to estimate model parameters. Were we to use the recursive scheme we

would obtain the results presented in equation (5) of section 3.1.2.

10.3 Test of zero mean prediction error: Giacomini and White (2006)

Consider again the test of zero mean prediction error described in the previous section but

now suppose that the parameter estimates used to construct the forecasts come from the

rolling scheme and henceR1/2(β̂t−β
∗) = (R−1

�t−1

s=t−R+1
xsx

�
s)

−1(R−1/2
�t−1

s=t−R+1
us+1xs).

Straightforward algebra give us
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So far this is just algebra. For this to be asymptotically normal we need to refer back to

the assumptions made in Giacomini andWhite (2006). First recall that R is finite regardless

of the overall sample size T , whereas P is assumed to diverge to infinity. This is crucial to

their asymptotics because it implies that we can treat the sequence β̂t − β
∗ as just another

sequence of random variables without the added property that it is converging to zero. A

central limit theorem can then be applied directly to P
−1/2

�T−1

t=R
(ut+1−x

�
t(β̂t−β

∗)) if we

are willing to assume that the sequence ut+1−x
�
t(β̂t−β

∗) (on average) has a zero mean, and

satisfies mild mixing and moment conditions. With these assumptions in hand we have

P
−1/2

T−1�

t=R

ût+1 →d
N(0, Sf̂ f̂ ), (58)

where Sf̂ f̂ = limV ar(P−1/2
�T−1

t=R
ût+1). Note that this is not the same asymptotic dis-

tribution as that given in equations (49) and (50) above. The difference arises due to the

difference in the two null hypotheses as well as the difference in the type of assumptions

being made on the data. The results in equations (49) and (50) are based on the null

hypothesis H0 : Eut+1 = 0 for all t. The “all t” part is imposed by the additional assump-

tions that the observables are covariance stationary and the model includes an intercept.

In contrast, the null hypothesis under the Giacomini and White framework is actually

limP→∞E(P−1/2
�T−1

t=R
ût+1) = 0, which is a much less stringent hypothesis. Note that

Giacomini and White do not assume that the observables are covariance stationary — only

that they are I(0). Hence it might be that the population-level model errors ut+1 are zero

mean but there is no requirement that is the case for the asymptotics to hold.

11 Conclusion

Taking West’s (2006) survey as a starting point, this paper reviews recent developments in

the evaluation of point forecasts. To put recent work in a broader context, we begin by

briefly covering the state of the literature as of the time of West’s writing. Our chapter ex-

tends West’s overview for practitioners by including a brief exposition of the derivations of

some of the key results in the literature. The bulk of the chapter focuses on recent develop-

ments, including advancements in the evaluation of forecasts at the population level (based

on true, unknown model coefficients), the evaluation of forecasts in the finite sample (based

on estimated model coefficients), and the evaluation of conditional versus unconditional

forecasts.
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In this chapter, we also hone in on two outstanding issues in the literature, and present

some original results on these issues. The first is the optimization of power in determining

the split of a sample into in-sample and out-of-sample portions. The second issue is obtain-

ing accurate inference in evaluation of finite samples of multi-step forecasts. We provide

a Monte Carlo assessment of options — alternative estimators of heteroskedasticity-and-

autocorrelation (HAC) consistent variances — for obtaining finite sample inferences more

reliable than those evident from some prior Monte Carlo work. We also present some original

analysis extending West’s (1996) results to include conditional forecasts.
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Table 4: Monte Carlo Results on Size, DGP 1: Equal Accuracy in Population
(nominal size = 10%)

horizon = 4
HAC source of R=40 R=40 R=80 R=80 R=80 R=80 R=120 R=120

statistic estimator critical values P̃=80 P̃=120 P̃=20 P̃=40 P̃=80 P̃=120 P̃=40 P̃=80

MSE-F NA FRBS: no pred. 0.105 0.104 0.103 0.106 0.108 0.108 0.103 0.108

MSE-t NW FRBS: no pred. 0.099 0.102 0.101 0.103 0.102 0.104 0.103 0.101

MSE-t NW normal 0.025 0.019 0.131 0.077 0.042 0.029 0.087 0.047

MSE-t rectangular normal 0.022 0.015 0.120 0.067 0.038 0.025 0.079 0.042

MSE-t HLN normal 0.020 0.013 0.088 0.055 0.033 0.023 0.065 0.036

MSE-t West normal 0.021 0.014 0.144 0.066 0.033 0.024 0.076 0.038

MSE-t QS normal 0.016 0.011 0.082 0.047 0.026 0.018 0.057 0.028

CW-t NW FRBS: no pred. 0.094 0.102 0.099 0.096 0.099 0.103 0.103 0.102

CW-t NW normal 0.096 0.093 0.188 0.136 0.106 0.097 0.139 0.111

CW-t rectangular normal 0.085 0.080 0.173 0.124 0.094 0.086 0.129 0.098

CW-t HLN normal 0.078 0.078 0.129 0.104 0.088 0.082 0.111 0.091

CW-t West normal 0.080 0.080 0.196 0.120 0.088 0.082 0.121 0.092

CW-t QS normal 0.066 0.067 0.121 0.089 0.071 0.068 0.094 0.071

horizon = 8
MSE-F NA FRBS: no pred. 0.110 0.104 0.106 0.109 0.111 0.100 0.107 0.102

MSE-t NW FRBS: no pred. 0.112 0.098 0.100 0.112 0.108 0.095 0.108 0.098

MSE-t NW normal 0.048 0.025 0.189 0.117 0.060 0.033 0.125 0.067

MSE-t rectangular normal 0.049 0.028 0.147 0.113 0.061 0.032 0.119 0.067

MSE-t HLN normal 0.040 0.024 0.081 0.083 0.048 0.027 0.086 0.057

MSE-t West normal 0.057 0.026 0.254 0.151 0.068 0.033 0.157 0.073

MSE-t QS normal 0.027 0.015 0.098 0.063 0.036 0.023 0.072 0.043

CW-t NW FRBS: no pred. 0.103 0.097 0.105 0.103 0.106 0.095 0.103 0.093

CW-t NW normal 0.127 0.104 0.254 0.184 0.136 0.104 0.183 0.125

CW-t rectangular normal 0.127 0.101 0.199 0.179 0.133 0.104 0.172 0.122

CW-t HLN normal 0.109 0.091 0.117 0.136 0.115 0.091 0.131 0.104

CW-t West normal 0.133 0.101 0.320 0.217 0.140 0.102 0.216 0.129

CW-t QS normal 0.084 0.071 0.140 0.110 0.089 0.072 0.115 0.082

Notes:
1. The data generating process is defined in equation (10). In these experiments, the coefficients bij = 0 for all i, j, such

that the competing forecasting models are equally accurate in population, but not the finite sample.

2. For each artificial data set, forecasts of yt+τ (where τ denotes the forecast horizon) are formed recursively using estimates

of equations (11) and (12). These forecasts are then used to form the indicated test statistics, defined in Section 3.1.2, using

the indicated HAC estimator, defined in Section 4.3. R and P̃ refer to the number of in–sample observations and τ -step
ahead forecasts, respectively (where P̃ = P + τ − 1, and P denotes the sample size used in the paper’s theory).

3. In each Monte Carlo replication, the simulated test statistics are compared against standard normal critical values and

critical values bootstrapped using the no-predictability fixed regressor bootstrap, using a significance level of 10%. Section

3.1.3 describes the bootstrap procedure.

4. The number of Monte Carlo simulations is 5000; the number of bootstrap draws is 499.
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Table 5: Monte Carlo Results on Size, DGP 2: Equal Accuracy in Population
(nominal size = 10%)

horizon = 4
HAC source of R=40 R=40 R=80 R=80 R=80 R=80 R=120 R=120

statistic estimator critical values P̃=80 P̃=120 P̃=20 P̃=40 P̃=80 P̃=120 P̃=40 P̃=80

MSE-F NA FRBS: no pred. 0.108 0.097 0.111 0.104 0.102 0.107 0.102 0.107

MSE-t NW FRBS: no pred. 0.106 0.100 0.117 0.101 0.098 0.108 0.104 0.102

MSE-t NW normal 0.011 0.005 0.113 0.049 0.022 0.014 0.065 0.030

MSE-t rectangular normal 0.009 0.004 0.100 0.045 0.017 0.010 0.057 0.024

MSE-t HLN normal 0.007 0.004 0.071 0.035 0.014 0.009 0.045 0.021

MSE-t West normal 0.008 0.004 0.109 0.043 0.015 0.009 0.055 0.020

MSE-t QS normal 0.006 0.003 0.073 0.032 0.010 0.008 0.036 0.017

CW-t NW FRBS: no pred. 0.096 0.090 0.110 0.094 0.092 0.098 0.097 0.097

CW-t NW normal 0.119 0.101 0.205 0.147 0.116 0.112 0.149 0.120

CW-t rectangular normal 0.103 0.086 0.189 0.132 0.097 0.097 0.129 0.104

CW-t HLN normal 0.094 0.079 0.146 0.111 0.088 0.092 0.112 0.093

CW-t West normal 0.098 0.085 0.198 0.121 0.092 0.091 0.124 0.096

CW-t QS normal 0.074 0.065 0.140 0.092 0.072 0.073 0.092 0.075

horizon = 8
MSE-F NA FRBS: no pred. 0.111 0.111 0.118 0.117 0.114 0.100 0.120 0.114

MSE-t NW FRBS: no pred. 0.107 0.109 0.113 0.112 0.107 0.100 0.113 0.110

MSE-t NW normal 0.021 0.014 0.165 0.084 0.039 0.019 0.098 0.044

MSE-t rectangular normal 0.020 0.013 0.134 0.077 0.037 0.017 0.097 0.044

MSE-t HLN normal 0.017 0.011 0.073 0.053 0.030 0.014 0.069 0.034

MSE-t West normal 0.020 0.013 0.210 0.098 0.036 0.017 0.112 0.041

MSE-t QS normal 0.014 0.008 0.088 0.046 0.021 0.010 0.056 0.025

CW-t NW FRBS: no pred. 0.107 0.104 0.108 0.106 0.104 0.099 0.109 0.105

CW-t NW normal 0.150 0.130 0.277 0.194 0.155 0.126 0.202 0.152

CW-t rectangular normal 0.140 0.120 0.231 0.182 0.144 0.116 0.197 0.147

CW-t HLN normal 0.120 0.104 0.138 0.143 0.120 0.103 0.157 0.123

CW-t West normal 0.136 0.111 0.327 0.213 0.138 0.109 0.214 0.139

CW-t QS normal 0.100 0.086 0.159 0.124 0.095 0.082 0.122 0.097

Notes:
1. The data generating process is defined in equation (13), and the forecasting models are given in equations (14) and (15).

2. See the notes to Table 4.
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Table 6: Monte Carlo Results on Size, DGP 1: Equal Accuracy in Finite Sample
(nominal size = 10%)

horizon = 4
HAC source of R=40 R=40 R=80 R=80 R=80 R=80 R=120 R=120

statistic estimator critical values P̃=80 P̃=120 P̃=20 P̃=40 P̃=80 P̃=120 P̃=40 P̃=80

MSE-F NW FRBS 0.147 0.143 0.131 0.136 0.126 0.131 0.116 0.123

MSE-F rectangular FRBS 0.135 0.128 0.121 0.127 0.115 0.119 0.107 0.111

MSE-F West FRBS 0.106 0.101 0.100 0.111 0.097 0.096 0.090 0.094

MSE-F QS FRBS 0.112 0.101 0.103 0.107 0.095 0.096 0.088 0.091

MSE-t NW FRBS 0.133 0.130 0.112 0.117 0.110 0.119 0.107 0.112

MSE-t rectangular FRBS 0.123 0.115 0.107 0.113 0.102 0.108 0.101 0.105

MSE-t West FRBS 0.098 0.089 0.099 0.100 0.087 0.091 0.094 0.092

MSE-t QS FRBS 0.104 0.092 0.097 0.102 0.086 0.087 0.092 0.090

MSE-t NW normal 0.119 0.094 0.204 0.157 0.107 0.096 0.146 0.115

MSE-t rectangular normal 0.105 0.077 0.186 0.143 0.094 0.085 0.134 0.104

MSE-t HLN normal 0.097 0.072 0.141 0.122 0.086 0.079 0.115 0.094

MSE-t West normal 0.099 0.074 0.201 0.138 0.087 0.081 0.130 0.097

MSE-t QS normal 0.077 0.057 0.139 0.107 0.072 0.064 0.097 0.079

horizon = 8
MSE-F NW FRBS 0.153 0.149 0.131 0.147 0.143 0.132 0.123 0.129

MSE-F rectangular FRBS 0.151 0.145 0.128 0.141 0.141 0.124 0.118 0.122

MSE-F West FRBS 0.102 0.098 0.093 0.102 0.101 0.094 0.095 0.100

MSE-F QS FRBS 0.120 0.111 0.103 0.113 0.111 0.101 0.099 0.100

MSE-t NW FRBS 0.139 0.129 0.111 0.129 0.125 0.117 0.102 0.115

MSE-t rectangular FRBS 0.137 0.127 0.111 0.127 0.123 0.114 0.099 0.109

MSE-t West FRBS 0.096 0.089 0.092 0.103 0.097 0.092 0.084 0.094

MSE-t QS FRBS 0.109 0.097 0.097 0.109 0.104 0.097 0.087 0.097

MSE-t NW normal 0.149 0.116 0.270 0.219 0.143 0.117 0.182 0.144

MSE-t rectangular normal 0.146 0.109 0.216 0.199 0.142 0.113 0.171 0.141

MSE-t HLN normal 0.122 0.095 0.131 0.151 0.122 0.101 0.127 0.118

MSE-t West normal 0.147 0.108 0.322 0.240 0.141 0.110 0.207 0.145

MSE-t QS normal 0.101 0.080 0.158 0.133 0.096 0.080 0.112 0.095

Notes:
1. The data generating process is defined in equation (10). In these experiments, the coefficients bij are scaled such that the

null and alternative models are expected to be equally accurate (on average) over the forecast sample.

2. For each artificial data set, forecasts of yt+τ (where τ denotes the forecast horizon) are formed recursively using estimates

of equations (11) and (12). These forecasts are then used to form the indicated test statistics, defined in Section 3.1.2, using

the indicated HAC estimator, defined in Section 4.3. R and P̃ refer to the number of in–sample observations and τ -step
ahead forecasts, respectively (where P̃ = P + τ − 1, and P denotes the sample size used in the paper’s theory).

3. In each Monte Carlo replication, the simulated test statistics are compared against standard normal critical values and

critical values bootstrapped using the no-predictability fixed regressor bootstrap, using a significance level of 10%. Section

3.1.3 describes the bootstrap procedure.

4. The number of Monte Carlo simulations is 5000; the number of bootstrap draws is 499.
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Table 7: Monte Carlo Results on Size, DGP 2: Equal Accuracy in Finite Sample
(nominal size = 10%)

horizon = 4
HAC source of R=40 R=40 R=80 R=80 R=80 R=80 R=120 R=120

statistic estimator critical values P̃=80 P̃=120 P̃=20 P̃=40 P̃=80 P̃=120 P̃=40 P̃=80

MSE-F NW FRBS 0.191 0.185 0.133 0.154 0.160 0.174 0.135 0.154

MSE-F rectangular FRBS 0.165 0.160 0.118 0.137 0.142 0.151 0.118 0.135

MSE-F West FRBS 0.114 0.113 0.088 0.101 0.109 0.119 0.095 0.107

MSE-F QS FRBS 0.134 0.118 0.098 0.113 0.109 0.116 0.093 0.103

MSE-t NW FRBS 0.166 0.169 0.119 0.133 0.142 0.151 0.127 0.134

MSE-t rectangular FRBS 0.147 0.144 0.111 0.121 0.127 0.134 0.117 0.119

MSE-t West FRBS 0.100 0.105 0.096 0.100 0.105 0.105 0.104 0.099

MSE-t QS FRBS 0.121 0.111 0.101 0.106 0.107 0.107 0.102 0.096

MSE-t NW normal 0.125 0.111 0.214 0.163 0.132 0.120 0.169 0.136

MSE-t rectangular normal 0.108 0.091 0.187 0.146 0.115 0.102 0.153 0.115

MSE-t HLN normal 0.099 0.084 0.142 0.121 0.104 0.094 0.131 0.105

MSE-t West normal 0.106 0.086 0.197 0.137 0.105 0.095 0.141 0.106

MSE-t QS normal 0.075 0.062 0.139 0.101 0.081 0.071 0.107 0.079

horizon = 8
MSE-F NW FRBS 0.174 0.170 0.142 0.154 0.158 0.147 0.133 0.135

MSE-F rectangular FRBS 0.162 0.154 0.137 0.145 0.146 0.135 0.122 0.125

MSE-F West FRBS 0.091 0.091 0.099 0.098 0.096 0.090 0.090 0.092

MSE-F QS FRBS 0.135 0.132 0.128 0.129 0.129 0.115 0.112 0.109

MSE-t NW FRBS 0.150 0.157 0.125 0.135 0.142 0.131 0.119 0.120

MSE-t rectangular FRBS 0.142 0.141 0.121 0.129 0.134 0.121 0.113 0.115

MSE-t West FRBS 0.089 0.088 0.099 0.099 0.101 0.089 0.091 0.090

MSE-t QS FRBS 0.122 0.123 0.115 0.121 0.120 0.106 0.104 0.101

MSE-t NW normal 0.151 0.130 0.290 0.213 0.157 0.124 0.207 0.145

MSE-t rectangular normal 0.140 0.118 0.239 0.195 0.145 0.115 0.189 0.135

MSE-t HLN normal 0.119 0.104 0.142 0.147 0.125 0.101 0.136 0.118

MSE-t West normal 0.138 0.113 0.333 0.228 0.146 0.107 0.215 0.134

MSE-t QS normal 0.102 0.084 0.179 0.131 0.101 0.087 0.130 0.096

Notes:
1. The data generating process is defined in equation (13), and the forecasting models are given in equations (14) and (15).

2. See the notes to Table 6.
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