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1. Introduction.   
The fundamental function of credit markets is to channel funds from savers to 

entrepreneurs who have some valuable capital investment project.  These efforts are hindered by 

agency costs arising from asymmetric information.  A standard result in a subset of this 

literature, the costly state verification (CSV) framework, is that risky debt is the optimal contract 

between risk-neutral lenders and entrepreneurs. The modifier risky simply means that there is a 

non-zero chance of default.  In the CSV model external parties can observe the realization of the 

entrepreneur’s idiosyncratic production technology only by expending a monitoring cost.  

Townsend (1979) demonstrates that risky debt is optimal in this environment because it 

minimizes the need for verification of project outcomes.  This verification is costly but necessary 

to align the incentives of the firm with the bank.   

Aggregate conditions will also affect the ability of the borrower to repay the loan.  But 

since aggregate variables are observed by both parties, it may be advantageous to have the loan 

contract indexed to the behavior of aggregate variables. Although Townsend’s (1979) CSV 

structure did not include aggregate risk, we constrain our analysis to the class of debt contracts 

and explore the effect of indexing this debt to aggregate variables. How is the financial 

accelerator affected by the degree of indexation?  What are the welfare consequences of 

alternative indexation schemes?  What indexation scheme is optimal?  We explore these issues in 

the celebrated financial accelerator model of Bernanke, Gertler, and Gilchrist (1999), hereafter 

BGG.   

Such state-contingent contracts have recently received more attention. For instance, one 

prominent proposal for the reform of the financial system is to require large financial institutions 

to issue debt that is automatically converted to equity under certain aggregate conditions. 
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Similarly, Shiller and Weiss (1999) suggest indexing home mortgages to movements in 

aggregate house prices.  

Our principle results include the following.  First, the agency cost model is isomorphic to 

a real business cycle (RBC) model with an endogenous and time-varying distortion on total 

capital accumulation.  Second, this agency cost distortion arises because entrepreneurs do not 

internalize the effect of their behavior on aggregate conditions generally and household 

consumption in particular.  Third, for TFP shocks, the optimal level of indexation is typically 

close to the loan repayment being fully indexed to movements in aggregate conditions.  This 

indexation rate implies that bankruptcy rates are largely pre-determined, ie., under optimal 

indexation, bankruptcy rates are largely unresponsive to innovations in aggregate shocks.   

 Our final result is that under optimal indexation the financial accelerator is significantly 

muted.   This suggests that theoretical studies that find large accelerator effects do so because 

they restrict the degree of indexation.  For example, the agency cost model of BGG can produce 

amplification of technology shocks, while the agency cost model of Carlstrom and Fuerst (1997) 

typically delivers a dampening of shocks.  This difference does not arise from the underlying 

model of agency costs, but is instead a consequence of the fact that in BGG the intertemporal 

loan contract is suboptimal as it is not indexed to innovations in observable conditions.  In 

Carlstrom and Fuerst (1997) the loan contract is intratemporal and is similar to assuming full 

indexation in BGG.  Hence, the financial accelerator does not arise from agency costs per se, but 

from the nature of contract indexation.   

The key variable in the analysis is leverage, defined to be the ratio of project size to the 

borrower’s net worth.  The underlying distortion is linked to leverage, suggesting that optimal 

debt-indexation will dampen movements in leverage.  When debt contracts are not indexed, 
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borrowers’ net worth absorbs all of the innovation in the project’s return so that leverage 

fluctuates too much.  First-best behavior is achievable if the borrower’s net worth and the first-

best project size move together over the cycle so that leverage remains constant.  But this first-

best behavior is not achievable because entrepreneurs do not internalize the effect of their net 

worth levels on the future level of leverage.   

The paper most closely related to ours is Krishnamurty (2003). Krishnamurty introduces 

insurance markets into a three period model where borrowing is secured by collateral as in 

Kiyotaki and Moore (1997). These insurance markets allow for state contingent debt that is 

indexed to aggregate shocks as in our framework. Krishnamurty shows that such insurance 

eliminates any feedback from collateral values onto investment and thus reduces the collateral 

amplification to zero.  While our main findings are consistent with Krishnamurty, there are 

important differences in the analysis.  First, we study state contingent debt in a fully calibrated 

DSGE model. This allows us to examine how debt indexation schemes interact with the 

endogenous net worth accumulation of borrowers, an effect which is not present in the three-

period setup of Krishnamurty. Endogenity of net worth is important in order to examine the 

welfare consequences of different indexation schemes. Second, we choose the CSV framework 

rather than collateral constraints for generating financial frictions. The BGG model is often the 

preferred model of financial frictions, because default occurs in equilibrium and credit spreads 

arise endogenously.  Thus, our contribution is to show how to introduce indexation in this widely 

used model of credit spreads. 

  The paper proceeds as follows.  Section 2 presents the basic model.  Section 3 examines 

the efficiency gains of contract indexation.  Section 4 provides a qualitative analysis of the link 

between contract indexation and the financial accelerator.  Section 5 presents the quantitative 
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analysis on the optimal level of indexation and the effect that this indexation has on the model’s 

behavior.  Section 6 concludes. 

 
2. The Model. 
Households.   

The typical household consumes the final good (Ct) and sells labor input (Nt) to the firm 

at real wage wt.  Preferences are given by  

 ,  . 

The household budget constraint is given by 

  

The household chooses the level of deposits ( ) which are then used by the lender to fund the 

entrepreneurs (more details below).  The (gross) real rate  on these deposits is known at time-

t. The household owns shares in the final goods firms, capital-producing firms, and in the lender.  

The former two are standard, so we simply focus on the shares of the lender.  This share price is 

denoted by  with  denoting lender dividends, and  the number of shares held by the 

representative household (in equilibrium  = 1).  The optimization conditions include: 

 /          (1) 

 1           (2) 
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Final goods firms. 

Final goods are produced by competitive firms who hire labor and rent capital in 

competitive factor markets at real wage  and rental rate . The production function is Cobb-

Douglass where  is the random level of total factor productivity: 

          (3) 

The optimization conditions include: 

           (4) 

           (5) 

 

New Capital Producers. 

 The production of new capital is subject to adjustment costs.  In particular, investment 

firms take  consumption goods and transform them into  investment goods that are sold 

at price .  Their profits are thus given by , where the function  is convex with 

1 1, 1 0 and " 1 .  Variations in investment lead to variations in the price of 

capital. Variations in the price of capital are a key part of the aggregate uncertainty facing the 

entrepreneur.   

 

Lenders. 
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 The representative lender accepts deposits from households (promising sure return ) 

and provides loans to the continuum of entrepreneurs.  These loans are intertemporal, with the 

loans made at the end of time t being paid back in time t+1.  The gross real return on these loans 

is denoted by . Each individual loan is subject to idiosyncratic and aggregate risk, but since 

the lender holds an entire portfolio of loans, only the aggregate risk remains.  The lender has no 

other source of funds, so the level of loans will equal the level of deposits.  Hence, dividends are 

given by  .  The intermediary seeks to maximize its equity value which 

is given by: 

 ∑        (6) 

The FOC of the lender’s problem is:  

 0        (7) 

The first-order condition shows that in expectation, the lender makes zero profits, but ex-

post profits and losses can occur. We assume that losses are covered by households as negative 

dividends. This is similar to the standard assumption in the Dynamic New Keynesian (DNK) 

model, eg., Woodford (2003). That is, the sticky price firms are owned by the household and pay 

out profits to the household.  These profits are typically always positive (for small shocks) 

because of the steady state mark-up over marginal cost.  Similarly, one could introduce a steady-

state wedge (eg., monopolistic competition among lenders) in the lender’s problem so that 

dividends are always positive.  But this assumption would have no effect on the model’s 

dynamics so we dispense from it for simplicity. 
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Entrepreneurs and the Loan Contract. 

Entrepreneurs are the sole accumulators of physical capital.  The time t+1 rental rate and 

capital price are given by  and , respectively, implying that the gross return to holding 

capital from time-t to time t+1 is given by: 

.         (8) 

Agency costs imply a steady-state distortion on capital accumulation.  Below we will find it 

convenient to eliminate this steady-state distortion by adding a constant subsidy to capital 

accumulation so that the return to capital will be given by 1 . 

 At the end of period t, the entrepreneurs sell all of their accumulated capital, and then re-

purchase it along with any net additions to the capital stock.  This purchase is financed with 

entrepreneurial net worth ( ) and external financing from a lender.  The external financing is 

subject to a costly-state-verification (CSV) problem.  In particular, one unit of capital purchased 

at time-t is transformed into  units of capital in time t+1, where  is a idiosyncratic 

random variable with density  and cumulative distribution Φ .  The realization of  

is directly observed by the entrepreneur, but the lender can observe the realization only if a 

monitoring cost is paid.  Assuming that the entrepreneur and lender are risk-neutral, Townsend 

(1979) demonstrates that the optimal contract between entrepreneur and intermediary is risky 

debt in which monitoring only occurs if the promised payoff is not forthcoming.  Payoff does not 

occur for sufficiently low values of the idiosyncratic shock, .  Let  denote the 

promised gross rate-of-return so that  is defined by 

 1          (9) 
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where we have found it convenient to define  to be the leverage ratio: 

           (10) 

The CSV problem takes as exogenous the return on capital ( ) and the opportunity cost of the 

lender.  With   and  denoting the entrepreneur’s share and lender’s share of the 

project outcome, respectively, the lender’s ex post realized t+1 return on the loan contract is 

defined as:  

 1         (11) 

where  

 1 Φ       (12) 

 1 Φ 1      (13) 

Recall that the lender’s return is linked to the return on deposits via (7): 

 1 1          (14) 

The end-of-time-t contracting problem is thus given by1: 

 Max 1        (15) 

subject to 

 1 1 1  (16) 

                                                            
1 The participation constraint for the lender (16) differs from BGG in that the lender internalizes the marginal 
utility of consumption for households. Since the contracting problem takes 1  as given, the lender is 
still risk neutral. This internalization follows directly from the previous section.   
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The optimization conditions include: 

  1 1 0    (17) 

 1 1 1   (18) 

 1 1 1    (19) 

The contracting problem takes as given the deposit rate  and the random variables 1  

and .  Equation (17) can be solved for the multiplier so that (18) becomes 

1 1

1          (20) 

The contract is defined by   and leverage ratio    that satisfy (19)-(20).  If there 

were no aggregate uncertainty, then (20) implies that  would be a function only of the 

spread  .  For this reason below we consider indexation schemes in which  (and 

thus ) responds to innovations in  and a set of pre-determined variables2:   

 P .        (21) 

1 .        (22) 

                                                            
2 The indexation scheme (21) is a modest restriction on the contract space. 
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where P  is time-t variable chosen to satisfy (20).  As we vary χ, we trace out a variety of 

possible indexation schemes.  From (11), different indexation schemes then imply different 

behavior for the lender’s return.  For example, for χ = 1, the bankruptcy rate is predetermined, 

while the loan repayment  and lender’s return  are perfectly indexed to innovations in 

.  In sharp contrast, BGG assumed that the lender’s return is predetermined, .  

This implies χ < 0, so that the loan repayment varies inversely with innovations in . 3  Below 

we will find the value of  that maximizes household utility.  

Entrepreneurs have linear preferences and discount the future at rate β.  Given the high 

return to internal funds, they will postpone consumption indefinitely.  To limit net worth 

accumulation and ensure that there is a need for external finance in the long run, we assume that 

fraction (1-γ) of the entrepreneurs die each period.  Their accumulated assets are sold and the 

proceeds transferred to households as consumption. As in Carlstom, Fuerst, and Paustian (2010), 

the assumption that dying entrepreneurs’ assets are transferred to households implies that the 

welfare criterion can be taken to be household utility.  Given the exogenous death rate, aggregate 

net worth accumulation is described by  

  NW γ 1        (23) 

Equivalently, we can use the definition of  and  and express net worth as:   

                                                            
3 BGG assumed that the lender’s return did not vary with innovations in .  Differentiating (11) yields 

 1 1  

Evaluating this at the efficient steady-state and imposing the BGG assumption that  0, we have: 

 1 

From (21) this implies that χ < 0. 
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 NW γ 1 1 1  (24) 

Equation (22) implies that NW  is determined by the realization of   and the contracted 

response of  and  to these realizations.   then enters the contracting problem in time t 

so that the realization of   is propagated forward. 

 

Market Clearing and Equilibrium. 

In equilibrium the household holds the shares of the lender, and the lender funds the 

entrepreneurs’ projects:  1 and .  For a given indexation parameter χ, 

the equilibrium is then defined by the variables , , , , , , , P ,  such that 

the following conditions are satisfied:  

 /         (25) 

 .        (26) 

 NW γ 1        (27) 

1 1

           (28) 

 1 1     (29) 

 P . .        (30) 
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,        (31) 

    (32)  

  1         (33) 

Time-t monitoring costs are given by    units of capital.  The calibration used 

below implies that these costs are quite small in the steady-state,   = .0004, 

compared to the calibrated value of δ = .02. 

 

3. Wedges and Inefficiency. 

Equilibrium behavior in the model is defined by the employment and investment 

decisions.  The marginal condition for employment (25) is not distorted relative to the condition 

in a RBC  model.  But capital accumulation is distorted.  The lender’s intertemporal condition in 

the agency cost model is given by: 

 1 1      (34) 

We can interpret this distortion in (34) as a particular tax or wedge in the corresponding RBC 

model. In particular, consider a RBC model with a tax  on total capital accumulation so that 

the household budget constraint is: 

 1 1       (35) 

The household’s capital accumulation choice is given by 
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 1 1 .       (36)  

This margin (36) is distorted in the same way as (34).  Hence, the agency cost model is 

isomorphic to an RBC model with a tax on total capital accumulation, but where this tax rate 

varies endogenously with net worth and other macroeconomic variables.   

We wish to compare (34) with the optimal or efficient behavior that would be chosen by 

a social planner.  We would like to concentrate on the distorted accumulation equation and 

abstract from any (small) income effects that arise from monitoring costs. Hence, consider an 

agency cost model in which the monitoring costs are eliminated from the societal resource 

constraint, but these monitoring costs still affect contracting.  That is, suppose that monitoring 

costs  , are paid for by a transfer from a party external to the 

economy. Recall that steady-state monitoring costs are quite small, 0.04% of steady-state capital, 

so that this is a modest abstraction.  We will call this the zero resource cost (ZRC) model of 

agency costs.  

The social planner in the ZRC agency cost model still must respect the financial contract  

and the resource constraints (33)-(34), but she can shift net worth between the lender and 

entrepreneur in such a way to achieve first best behavior. The planner’s optimal capital 

accumulation equation in the ZRC model is given by  

1         (37) 

Note that (37) is also the intertemporal condition in the RBC model.  We will say that the agency 

model achieves ZRC efficiency if it is consistent with (37).  Comparing (37) with (34), there is a 
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time-varying distortion on capital accumulation, 1  .   We first 

demonstrate that the agency cost model cannot achieve ZRC efficiency. 

 

Proposition 1:  A constant subsidy cannot make the agency cost model ZRC efficient.  

Proof:  See appendix. 

Remark 1:  If entrepreneurs lived forever but discounted the future more heavily at rate Г, then 

(27) would be replaced by 

 1 Γ 1        (38) 

In this case it is straightforward to show that this variant of the agency cost model is also unable 

to achieve ZRC efficiency.   

The inability of the agency cost model to achieve ZRC efficiency arises from the fact that 

entrepreneurs do not internalize the effects that their actions have on household consumption.  

We will demonstrate this by showing that if entrepreneurs did internalize this effect, then the 

agency cost model can achieve ZRC efficiency.  With  denoting the portion of the 

entrepreneur’s income that is not part of next period’s net worth, the entrepreneur’s time-t budget 

constraint is given by: 

   1      (39) 

The agency cost model assumes that entrepreneurs die at rate γ and pass on their estates to 

households so that 

 1 1 .       (40) 
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But instead of dying, suppose that entrepreneurs discount the future more heavily, and that they 

choose  to maximize the household’s valuation of the entrepreneur:  

  ∑ Г       (41) 

Similar to the death assumption, the additional discounting is needed to ensure that the agency 

costs bind in the steady-state.  The entrepreneur’s optimal accumulation equation is given by  

 Γ 1 1      (42) 

This implies that in the contracting problem we now need to discount the entrepreneur’s return 

with household marginal utility, that is, we replace  with Γ 1  in the 

contracting problem.   We can now state: 

Proposition 2:  If entrepreneurs internalize, a constant subsidy and  = 1 will make the agency 

cost model ZRC efficient.  

Proof:  See appendix. 

One immediate implication of Proposition 2 is that the inability of indexation to 

completely eliminate the distortion in the agency cost model is a result of an externality.  In 

particular, entrepreneurs do not internalize the effect of their behavior on aggregate conditions 

generally, and household consumption in particular.   

In addition, Proposition 2 provides an important theoretical benchmark.  Absent the 

externality of entrepreneurial decision-making, the agency cost model is ZRC efficient if the loan 

repayment is indexed to aggregate shocks in such a way as to make bankruptcy rates (and the 

risk premium) predetermined.  As part of the quantitative analysis below, we will demonstrate 

that this level of indexation is also necessary to achieve efficiency.  Further, we will calculate the 
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welfare cost of suboptimal levels of indexation, and the welfare cost of the entrepreneurial 

externality. 

 

4. Contract Indexation and the Financial Accelerator. 
The degree of contract indexation matters because it alters the behavior of entrepreneurial 

net worth which in turn alters the behavior of the capital accumulation distortion.  These effects 

can be most easily seen if we look at the contracting problem in log deviations (lower case 

variables).  (The appendix contains the linear approximation of the entire model.) Equations (11) 

and (21)-(22) become 

 Θ        (43) 

 1        (44) 

       (45)  

where Θ  < 1 and   is the log of . In a convenient 

abuse of notation we use κ to denote the steady state leverage ratio, .  To solve for , 

we need to make use of the linearized optimal contract (see equation A1 in the appendix):  

        (46) 

Using (46) and (43)-(44) to solve for , we can express (43)-(45) as: 

1 Θ 1         (47) 
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 1       (48) 

       (49) 

In summary, the contract is given by the promised repayment (49), the bankruptcy cut-off (48), 

and the lender’s return (47).  All of these are affected by the degree of indexation. 

 From (34), the agency cost distortion is given by the spread between the return on capital 

and the deposit rate.  In log deviations this distortion is given by (46).  Evidently an indexation 

parameter that minimizes the variance of   will be preferred. That is, an optimal indexation 

parameter will induce net worth to move with the efficient level of capital accumulation so that 

leverage remains constant.  From (24), net worth is given by 

    (50) 

The level of net worth in time-t is a function of lagged net worth and the behavior of the spread 

.  The behavior of the spread in turn depends on the nature of contract indexation.   

To gain intuition we focus on two cases. The first is the one chosen by BGG who assume 

that the real return  is pre-determined, .  This implies that Θ
Θ

0, so that  

and  are both decreasing in .  Alternatively suppose that 1, so that the promised 

repayment is fully indexed to aggregate shocks, while bankruptcy rates are predetermined. As 

shown in Proposition 2, full indexation is ZRC efficient in the special case where entrepreneurs 

internalize the effect of their behavior on household consumption.  With 1, the lender’s return 

moves one-for-one with innovations in  so that the first term in (50) is zeroed out and 
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innovations in  increase net worth with a coefficient of  1.  But under BGG indexation, 

there is an additional effect:   

 1      (51)  

The difference in net worth between full indexation and BGG is quantitatively important since 

the calibration implies 1 1.  Hence, the response of net worth to innovations is roughly 

double in BGG compared to the case of  1. More generally, net worth for various indexation 

schemes all differ from each other by a one-time innovation in net worth. These net worth 

innovations are then propagated forward via (50).   

Innovations in the return on capital are largely driven by innovations in the price of 

capital.  The interaction between net worth movements and the price of capital is a manifestation 

of the financial accelerator.  To gain some insight on this feedback loop, let us set the capital 

stock to its steady state, and assume that shocks are iid.  Appendix equations (A1) and (A10)-

(A11) then become 

         (52) 

This link between net worth and the price of capital comes from the market for capital and 

includes the capital supply curve and capital accumulation equation.  The entrepreneur’s demand 

for capital and thus the price of capital, varies positively with the future return to capital 

, and the entrepreneur’s net worth  .  If there were no agency costs ( 0), 

then (52) becomes 0, and the market for capital is unaffected by the level of 

net worth.  Hence, one manifestation of agency costs is that the price of capital varies positively 
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with net worth.  For the case of iid shocks, the response of   to the exogenous 

shocks is roughly proportional to the response of the capital price to innovations.4  Hence we can 

write .  Equation (52) then becomes: 

           (53) 

To provide a sense of magnitudes, for our baseline calibration we have 0.18, and 

5.5.   

The other link between capital prices and net worth comes from the evolution equation 

for net worth (50): 

  1 Θ 1 1 1  (54) 

where we have used (47) and 0.  The term  is an exogenous innovation to net worth (a 

one-time transfer of resources from the household to the entrepreneur).  Note that the evolution 

of net worth depends upon the value of χ.  The financial accelerator is evident in the feedback 

effect in (53)-(54):  higher levels of net worth increase the demand for capital and thus the price 

of capital (53); the higher price of capital then increases net worth (54), etc. 

Solving (53)–(54) we have 

      (55) 

         (56) 

                                                            
4 This approximation is exact for iid net worth shocks, but is only approximate for iid technology shocks.  However, 
even in this case the approximation is good for χ not too large. 
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where  

  ,        (57) 

denotes the multiplier effect at work here.  Innovations in net worth in (55) are multiplied into 

much larger changes in net worth ( ) by the financial accelerator feedback loop.  Note the 

interaction between leverage and indexation.  In expressions (55)-(57), only the product 

1 1  appears.   That is, up to a first-order approximation, what matters is the product 

1 1 , and not the individual value of κ or χ.  Suppose that the optimal level of 

indexation satisfies 1 1 DD, or 1 DD .  This suggests that the optimal χ 

will converge to unity as leverage (κ) increases.   

 The size of the financial accelerator depends critically upon the value of .  An important 

cut-off point is where M goes to unity or the net worth multiplier ( ) goes to plus (or minus) 

infinity. This  value is given by: 

         (58) 

Again, to provide a sense of magnitudes, the benchmark calibration implies 4. As  

approaches  from above, M approaches unity from below, and the slopes of (53) and (54) come 

together.  In this case the multiplier effect goes to positive infinity.5  Such large responses of net 

worth and prices are welfare-reducing so that optimal indexation will always satisfy .  

                                                            
5 As  moves below , M exceeds unity and the multiplier becomes negative.   
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Note that  is increasing in κ, so that the optimal degree of indexation will be increasing in the 

size of leverage.   

 Figure 1 demonstrates the effect of  on the financial accelerator by graphing (53) and 

(54) in nw-q space.  The figure demonstrates the effect of a one unit shock in net worth,  = 1.  

The figure ignores any modest effect of net worth on employment and thus the marginal product 

of capital by setting = 0 (this would be exactly correct, for example, if labor supply were 

inelastic).  Equation (53) cuts through the origin and is not shifted by shocks.  If there were no 

agency costs, then the price of capital would not depend upon net worth so that (53) would be a 

vertical line in Figures 1-2.  The remaining lines are equation (54) drawn under different values 

of .  The flat line is  = 2.06, and corresponds to the case where the multiplier is one (M = 0, or 

the slope of (54) is zero).  Full indexation (  = 1) and the BGG model ( .01) are also 

presented.  To illustrate the effect of a larger multiplier, Figure 1 also considers the case of  = -

1.  All four of these cut the vertical axis at unity because the shock is  = 1.  In each case the 

increase in net worth increases the price of capital.  This is the agency cost effect.  But the size of 

the feedback of this price change back on to net worth varies inversely with the degree of 

indexation.  In each case (except for the M = 0 case), the ultimate effect on net worth is 

magnified relative to the exogenous innovation, with the degree of this magnification decreasing 

in χ.   

 Figure 2 presents the complementary experiment for the case of an iid productivity shock 

that increases the marginal product of capital by 10%, = 10 and   = 0.  As before, 

equation (53) cuts through the axis and equation (54) is drawn for the four different values of .  

All four of these cut the horizontal axis at 10, because this is the movement in 
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asset prices that holds net worth fixed (see (54)).  The productivity shock increases the price of 

capital, but has differing effects on net worth depending upon the nature of the contract (this 

corresponds to their location on the vertical axis).  These net worth movements are then 

multiplied up into larger movements in net worth and the price of capital.  As before, this 

amplification is inversely related to the degree of indexation χ.   

 

5. Quantitative Analysis. 
Calibration 

Our calibration will largely follow BGG. The discount factor  is set 0.99. Utility is 

assumed to be logarithmic in consumption (σ=1), and the elasticity of labor is assumed to be 1/3 

(θ = 3).  The production function parameters include α = 0.35, investment adjustment costs  = 

0.25, and quarterly deprecation is δ = .025.  As for the credit-related parameters, we calibrate the 

model to be consistent with: (i) a spread between 1  and   of 200 bp (annualized), 

(ii) monitoring costs μ = 0.12, and (iii) a leverage ratio of κ = K/NW = 1.954.  These values 

imply a death rate of γ = 0.98, a standard deviation of the idiosyncratic productivity shock of 

0.28, and a quarterly bankruptcy rate of .75% (  = 0.486). This then implies ν = 0.041. 

We assume that total factor productivity follows an AR(1) process. We follow BGG and 

assume that technology shocks are nearly permanent with an AR coefficient very close to one, 

 = 0.99.  The net worth shocks are also serially correlated with  = 0.8. 

 

Optimal Indexation. 
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We calculate the optimal indexation using unconditional household welfare as the metric.  

For a given level of indexation, we first compute a second-order perturbation solution using the 

methods of Schmitt-Grohe and Uribe (2004) as implemented in the software package DYNARE.  

Using these decision rules, the software computes the unconditional mean of the value function 

of households. We then search on a fine grid for the value of  that maximizes this welfare 

measure.  As a robustness check, we also include a conditional welfare measure in our analysis. 

Unconditional welfare neglects the transitional dynamics of the endogenous variables from a 

particular initial condition to their new long run distribution.  For simplicity and in line with 

many other studies, we assume that the initial state is the deterministic steady state.  

We conjecture that optimal indexation will come close to minimize the resulting 

movements in the spread, as the spread is a manifestation of the agency cost distortion.  Recall 

that the spread is given by  

   

Hence, to minimize movements in the spread, the movement in net worth must be comparable to 

the movement in Pareto efficient capital spending.  The indexation parameter determines the 

response of net worth to shock innovations.  But the subsequent behavior of net worth is 

independent of indexation as it is given by the savings behavior of entrepreneurs.  If 

entrepreneurs internalize the effects of their behavior on households, then the subsequent path of 

net worth will be optimal.  But if entrepreneurs do not internalize their behavior, then net worth 

decays at the exogenous death rate.  In this case optimal contract indexation is a second-best 

problem as it is typically not possible to achieve the necessary level of net worth both in the 

period of the shock and along an entire dynamic path.   
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Table 1 presents the optimal indexation parameters for the baseline calibration.  Recall 

that if entrepreneurs internalize the effects of their savings decision, then Proposition 2 

demonstrates that in a ZRC economy the optimal indexation is χ = 1.  More realistically, if we 

move away from the assumption of internalization, the optimal level of indexation exceeds unity.  

Positive productivity shocks increase  and shift wealth towards entrepreneurs, an effect that 

varies inversely with χ.  Since the movement in efficient capital levels is small, the needed 

movement in net worth is also small.  To prevent net worth from moving too much, optimal 

indexation is given by χ > 1.  For net worth shocks, the ZRC efficient capital accumulation 

response is zero, so that optimal indexation calls for an even larger χ to recoup this net worth 

movement. 

 Table 2 provides sensitivity analysis.  Note that for TFP shocks, the optimal level of 

indexation approaches unity as leverage increases.  This same behavior is illustrated in Figure 3 

which charts the optimal level of indexation (for TFP shocks only) as we vary steady-state 

leverage from κ = 1.5 to κ = 5.  The Figure presents the optimal level of indexation for three 

different metrics:  (i) unconditional welfare, (ii) conditional welfare, and (iii) the unconditional 

variance of the capital accumulation distortion.  Note that for all three metrics, the optimal level 

of indexation approaches unity as leverage increases.6   

Figure 3 illustrates an interesting phenomenon.  For low levels of steady-state leverage 

the difference between the conditionally-optimal χ and the unconditionally-optimal χ is 

significant.  The conditionally-optimal χ is the value that maximizes welfare assuming that the 

economy begins with all state variables at the steady-state, while the unconditionally-optimal χ 

                                                            
6 At the optimal level of indexation, we have numerically confirmed that there is no welfare gain to also indexing the 
contract to innovations in aggregate consumption. 
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integrates this conditional criterion over all possible combinations of the state variables, 

weighted by their likelihood.  In this model with several state variables it is difficult to isolate 

exactly the reason for the difference in conditional vs. unconditional analysis.  But for the case of 

iid net worth shocks, equation (55) is informative:   

      (55) 

The ZRC-efficient response of real activity to a net worth shock is “no response.”  Hence, if we 

assume that all state variables are at their steady state, then we can eliminate  from (55) by 

setting χ as large as possible (so that M goes to negative infinity).  This is the conditionally-

optimal χ for net worth shocks.  But if the initial states are not all at steady-state, then this is 

suboptimal.  From (55), suppose that the lagged share price is away from steady-state.  Then a 

large χ will eliminate the term, but will accentuate the  term.  To eliminate the  

term, we would need M = 0 or χ of about 2.   The unconditionally optimal criterion will choose 

the indexation parameter that maximizes welfare given these alternative initial states, weighted 

by their likelihood of occurrence.  As this net worth example suggests, the conditionally-optimal 

and unconditionally-optimal χ can vary substantially.  Our focus will be on the unconditional 

criterion.7 

 Figure 4 presents the welfare cost of alternative indexation schemes using unconditional 

welfare as the metric (again, for TFP shocks).  The level of welfare is reported as the welfare 

improvement over the BGG indexation (χ = -0.01).  Note that in the case of high leverage, κ = 4, 

                                                            
7 A similar effect arises for iid productivity shocks.  In this case the efficient response of asset prices and capital 
accumulation is essentially zero (for the benchmark parameter values).  This implies that net worth should not 
respond to these shocks.  From a conditional perspective this suggests that the optimal χ ≈ 2 so that M = 0.  But from 
an unconditional perspective, such an M value accentuates the initial level of net worth, , and is thus 
suboptimal. 
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the welfare costs can be substantial:  welfare under optimal indexation exceeds BGG by about 

2% of consumption.  These welfare costs are clearly asymmetric:  being below the optimal χ is 

significantly worse than being above the optimal χ.  Evidently this is because low levels of 

indexation approach the  cut-off (see (58)) where the financial accelerator becomes infinite and 

induces large and welfare-reducing responses to TFP shocks. 

 Figure 5 presents the impulse response function to a TFP shock under three different 

levels of indexation for the benchmark calibration which includes monitoring costs in the 

resource constraint.  The three different indexation parameters are:  (1) the unconditionally 

optimal χ = 1.28, (2) the conditionally optimal χ = 0.51, and (3) BGG’s  χ = -0.01.  The behavior 

of output is amplified for the BGG indexation scheme. The TFP shocks increases the return to 

capital which raises the firm’s net worth and thus reduces borrowing costs, albeit by less than 10 

annualized basis points.  For the unconditionally optimal indexation, net worth is more insulated 

from the increase in the return to capital, because loan rates adjust nearly one-to-one with the 

return to capital. Thus, the behavior of output is significantly muted.  The counterpart to this 

muted response of output under optimal indexation is that credit spreads and bankruptcy rates 

move by less. 

Figure 6 shows the corresponding response to a net worth shock of size 1 percent which 

evolves an AR(1) with persistence of 0.8. Here, the indexation values have been re-optimized for 

this particular shock. The value for χ which maximizes unconditional welfare is 2.45, while it is 

60 for conditional welfare (see our earlier discussion of why this value is large for net worth 

shocks). Qualitatively, the results are similar as for TFP shocks: the BGG indexation scheme 

results in the largest aggregate fluctuations. There is a significant financial accelerator effect, as 

the 1 percent exogenous increase in net worth is scaled up threefold due to the feedback between 
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net worth and asset prices. The conditionally and unconditionally optimal indexation schemes all 

result in much smaller fluctuations of net worth and output. As with TFP shocks, no indexation 

scheme is able to fully undo the aggregate effects of the net worth shock. This arises because 

loan rates are indexed to the unforecastable components in the return to capital, which occur only 

in the first period. Thus, the optimal indexation must strike a balance between mitigating 

distortions in that particular period and in subsequent periods which it can only indirectly 

influence via the net worth accumulation equation of entrepreneurs.  

 

6. Conclusion. 
This paper examines the BGG model from the vantage point of contract indexation.  To 

reiterate our principle results:  First, the agency cost model is isomorphic to a real business cycle 

(RBC) model but with an endogenous and time-varying distortion on total capital accumulation.  

Second, this agency cost distortion arises because entrepreneurs do not internalize the effect of 

their behavior on aggregate conditions generally and household consumption in particular.  

Third, for TFP shocks, the optimal level of indexation is typically close to the loan repayment 

being fully indexed to movements in aggregate conditions.  Finally, under optimal indexation, 

the financial accelerator is significantly muted.   Of course, other models can be constructed in 

which financial frictions have large business cycle effects despite full indexation, see the highly 

stylized example in Suarez and Sussmann (1997).  

There are several interesting implications and extensions of the analysis.  First, our 

analysis could be extended to study whether there is a difference between the socially optimal 

degree of indexation and the indexation that is chosen by an atomistic private agent. Private 

agents take market prices as given and therefore do not internalize the impact that their 
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indexation has on aggregate net worth via this channel. The emerging literature on Pigouvian 

taxation in economies with financial frictions suggest that in general such pecuniary externalities 

imply that private allocations are not constrained efficient, see Jeanne and Korinek (2010) or 

Lorenzoni (2008).  

Second, future work could examine whether a simple scheme that makes debt contingent 

on a single statistic like the return to aggregate capital is performing reasonably well when the 

economy is hit by several different shocks.  

Third, our framework has empirical implications that could be studied. Since indexation 

is more important in economies with high leverage, one would anticipate that we would see more 

debt indexation in highly-levered sectors.  Further the analysis suggests that economies with 

suboptimal indexation would be more volatile compared to indexed economies.  An interesting 

question for future work is to include the estimation of the indexation parameter as part of a 

broader DSGE model estimation.  
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APPENDIX 
1. Linearized Model. 

          (A1) 

    (A2) 

1 Θ 1         (A3) 

1        (A4) 

        (A5) 

 1        (A6) 

         (A7) 

 1       (A8) 

            (A9) 

         (A10) 

 1         (A11) 

1   1     (A12) 

where  1 , the second equality holding because the ss is efficient.  

Also we have / , = 1, 1/ , Θ  < 1.  Finally, we set 

0 so that monitoring costs do not appear in (A12).    
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2. The Derivation of A1. 
Ignoring aggregate uncertainty in (20) we have 

        (A13) 

This implicitly defines a mapping 

 Ω .          (A14)  

Rearranging (19) we have: 

 1 Ω         (A15)  

For convenience let us define the spread as .  Linearizing (A15) we have:  

 Ω      (A16) 

Let us define  

 
Ω

         (A17)  

Hence we have (A1).   

3. Steady-states and subsidies. 

The steady state is defined by the following three equations:  

1 1         (A18) 
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1 1         (A19)  

1 0       (A20) 

A18 comes from the lender’s participation constraint.  A19 comes from the entrepreneur’s 

accumulation.  A20 is an implication of the optimal contract.  The subsidy is chosen to make the 

steady-state efficient, 1, and γ is chosen to satisfy A19.  We can then express (18)-(A20) 

as 

1            (A21) 

1 1            (A22) 

1 0       (A23) 

These are three equations in five unknowns:  , , 1 , γ, and σ (the standard deviation 

of the idiosyncratic shock which defines the functions f and g).  Hence, we need two more 

restrictions to determine the equilibrium. These other two restrictions come from calibrating the 

model with “risk” premium = 1 1 , and  = 1.954.    These 

imply a quarterly bankruptcy rate of .03/4.  Hence, we can vary κ and hold the risk premium 

fixed, but allow γ and σ to vary.  Note that this implies a change in the bankruptcy rate. 

4. Proofs. 
 
Proposition 1:  A constant subsidy cannot make the agency cost model ZRC efficient.  

Proof:  We prove this by contradiction. The AC model will be consistent with (37) only if  
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 1 1 1   (A24) 

Recall that  is chosen in time-t.  Hence, for (A24) to hold,  must be given by: 

 
 
    

The level of net worth needed to support efficient capital accumulation is then given by  

    

where  is the level of capital accumulation from the ZRC agency cost model.  Notice that 

 is necessarily forward-looking.   But net worth accumulation in the agency cost model is 

given by the backward-looking (27) which is a contradiction.  QED. 

Proposition 2:  If entrepreneurs internalize, a constant subsidy and  = 1will make the agency 

cost model ZRC efficient.  

Proof:  Combining (34) and (41) we have: 

 1 1 Γ    (A25)  

With internalization, the counterpart to (18) is given by: 

 1 1 Γ    (A26) 

Consistency between these two equations imply that   = 1.  It is convenient to define  

   

 F Γ  
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Note that if the ZRC economy is efficient, then (39) is satisfied and 1.  Equations 

(17)-(19) are then given by 

 F 0         (A27) 

 F 1        (A28) 

 1       (A29) 

Consider ω-indexation schemes of the following form: 

 P          (A30) 

An indexation scheme (A30) is consistent with (37) if and only if it satisfies (A27)-(A29).  

Suppose that χ = 1.  Equation (A27) then becomes  F P 0 so that the contract is defined by a 

unique and constant value of  such that  F 0.  The needed subsidy then comes from 

(A28), and the constant level of κ then comes from (A29).  Net worth then evolves as 

           (A31) 

where  is the behavior consistent with (37).  Hence, χ = 1 and P  constant are sufficient 

for achieving optimal capital accumulation.  QED 
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FIGURE 1. 

 

Legend:  The figure demonstrates the effect of a one unit shock in net worth,  = 1.  The figure ignores any 
modest effect of net worth on  which are set to zero. Equation (53) cuts through the origin as it is not affected 
by shocks.  The remaining lines are equation (54) drawn under different indexation assumptions.  The four cases are:  
(i) no multiplier (  = 2.06), (ii)  FI (  = 1), (iii) BGG ( .01) , and (iv)  = -1.  All four of these cut the 
vertical axis at unity because the shock is  = 1. 
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FIGURE 2. 

 

 

 

Legend:  The figure demonstrates the effect of a 10% increase in the marginal product of capital, = 10.  
Equation (53) cuts through the origin as it is not affected by shocks.  The remaining lines are equation (54) drawn 
under different indexation assumptions.  The four cases are:  (i) no multiplier (  = 2.06), (ii)  FI (  = 1), (iii) BGG 
( .01) , and (iv)  = -1.  All four of these cut the vertical axis at different points because the innovation 
in the marginal product of capital has differing effects on net worth via the level of indexation.  All four of these cut 
horizontal axis at 10, because this is the movement in asset prices that holds net worth fixed (see (54)). 
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Figure 3. 
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Figure 4. 
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Figure 5 

 

Figure 6 



 

41 | P a g e  
 

Table 1: Optimal Indexation. 
 

  Optimal indexation 

TFP shocks, monitoring costs in 
resource constraint 

1.28  

TFP shocks, no monitoring 
costs in resource constraint 
(ZRC) 

1.23  

Net worth shocks, monitoring 
costs in resource constraint 

2.44  

Net worth shocks, no 
monitoring costs in resource 
constraint (ZRC) 

1.85  

 

Table 1: Optimal values for the indexation parameter based on unconditional welfare.  The table assumes 
the baseline parameter values.  
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Table 2: Optimal Indexation 

Sensitivity Analysis 
 

  TFP shocks  Net worth shocks 

Baseline calibration 
(κ = 1.954, ψ = 0.25) 

1.28   2.44 

Higher leverage 
(κ = 4, ψ = 0.25) 

1.22  0.98 

Extreme leverage 
(κ = 10, ψ = 0.25) 

1.08  0.77 

Higher adj. costs 
(κ = 1.954,ψ = 1.0) 

1.18  1.23 

Higher adj. costs 
(κ = 1.954,ψ = 2.0) 

1.03  0.86 

 

Table 2: Optimal values for the indexation parameter based on unconditional welfare.  This is for the case 
with monitoring costs in the resource constraint and no internalization by the entrepreneur. 

 

 




