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1 Introduction

Minority preference policies have been a part of government procurement programs in the

United States since the late 1960�s. Their goal is to enhance the opportunities of minority

businesses and counter the e¤ects of past discrimination. Critics of these policies claim that

they result in reverse discrimination, limit competition, and raise project costs.1 Two incentive

schemes have been used widely thus far �rules requiring participation of minority �rms as

subcontractors and bid preference programs.2 Our analysis focuses on the former, policies that

set minority �rm participation goals. Speci�cally, these rules require that prime contractors

subcontract out a set percentage of the overall value of a project to minority �rms. Such a

requirement could a¤ect the prime contractor�s make-or-buy decisions in two ways. First, it

may in�uence the overall level of subcontracting a �rm uses on a project and, second, it may

in�uence who the �rm subcontracts with on a project. Both instances impose constraints on

the prime contractors, potentially raising projects costs.

This paper examines whether project costs di¤er between auctions that have subcontract-

ing goals and auctions without such goals. The paper employs a structural auction model

to infer contractors� costs from observed bids in order to compare the costs across project

types. Nonparametric methods developed by Guerre, Perrigne, and Vuong (2000) and Haile,

Hong and Shum (2006) are used to estimate the distribution of latent costs, allowing us to

control for project heterogeneity and selection. Papers by Marion (2007) and Krasnokutskaya

and Seim (2007) also use a structural auction approach to examine bid preference schemes for

small businesses; however, these papers do not examine environments where subcontracting

goals are implemented. To be sure, our empirical analysis is not an evaluation of the program

itself, as the program has been in place for several decades. Rather the structural model

1See Holzer and Neumark (2000) for an overview of a¢ rmative action programs and how they a¤ect small
and disadvantaged businesses.

2Bid preference programs give explicit advantage to small and minority bidders in auctions. For example,
in the case of California state highway contracts with bid preferences analyzed by Krasnokutskaya and Seim
(2007), small business are awarded a contract if they are within 5% of the low bid.
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is employed to quantify di¤erences in costs across projects with and without subcontracting

goals.

The empirical setting is �rst-price sealed bid auctions for highway construction projects let

in Texas over the period 1998-2007.3 Our �ndings show that, once project heterogeneity and

bidder participation are controlled for, there is little di¤erence in costs between projects that

are assigned subcontracting goals and projects that are not assigned such goals. When we

examine an even more homogeneous sample of projects, we �nd even greater similarity in costs

between the two project groups. We also construct estimates of the markup of the bid above

the cost and �nd that the magnitude of the markup is consistent with that reported in the

literature and varies little between auctions with and without subcontracting requirements.

The e¤ect of minority preference policies on bidding and costs have been examined in

recent studies. Several papers deal with bid preference schemes. Denes (1997) compares bids

submitted between solicitations restricted to small businesses and unrestricted solicitations.

He �nds that bids are no higher in restricted solicitations.4 Krasnokutskaya and Seim (2007)

analyze bid preference programs in California highway procurement by examining how bidding

and participation decisions are a¤ected by a program that provides preferential treatment to

small �rms. They �nd that the preferential treatment of small businesses creates losses in

e¢ ciency (since the small �rms have higher costs on average) but no change in the overall cost

of procurement. In a related study of the California state procurement auctions, Marion (2007)

found that the distortion in participation patterns in bid preference programs is responsible

for a 3.8 percent increase in the cost of the winning �rm. Despite this evidence, the e¤ect of

such programs on the state�s cost is ambiguous. By invoking bid preferences the state gives an

advantage to minority bidders and compels the non-minority bidders to bid more aggressively

3Our structural analysis only includes asphalt paving projects, as we focus on a relatively homogeneous set
of projects and include those that best match the assumptions of the independent private value environment.
Papers such as Bajari and Ye (2003) also focus on subsets of construction projects in order to achieve greater
homogeneity in the items under study.

4Other studies that have been done focus on whether companies that bene�t from a¢ rmative action in
procurement continue to succeed after the programs are no longer in e¤ect (Holzer and Neumark, 2000).
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and win contracts at a lower bid. At the same time, since the competitive pressure is reduced

for minority bidders they bid less aggressively than otherwise; and when the item is awarded

to them, they impose additional cost on the state (McAfee and McMillan, (1989) and Maskin

and Riley, (2000)).

The potential for e¢ ciency distortions is di¤erent for programs setting minority subcon-

tracting goals. These programs are widely used in federal procurement contracts and may

constrain the make-or-buy decision of prime contractors. E¢ ciency distortions could be in-

troduced due to potentially less e¢ cient production of tasks by subcontractors compared to

the prime contractor, to the use of less e¢ cient subcontractors on subcontracted tasks, or

to changes in competition intensity in the subcontracting market. Marion (2009) using data

from the California Department of Transportation spanning the period between 1996 and

1999 shows that the subcontracting goals set for highway construction contracts in California

raise disadvantaged business enterprise usage signi�cantly, so that the constraints appear to

bind.

The paper proceeds as follows. The next section describes the disadvantaged business

enterprise program and provides an overview of the data. Section 3 presents the model and

structural empirical analysis. Section 4 concludes.

2 Texas Auctions and Bidding Patterns

2.1 Data Description

Our analysis utilizes data on auctions and bidding from the state of Texas. The Texas Depart-

ment of Transportation (TxDOT) holds regularly scheduled highway procurement auctions

that incorporate goals for the awarding of subcontracts to disadvantaged business enterprises

(DBEs). DBEs are small businesses that are owned and controlled by members of a minority

group including women-owned businesses. For selected federally-funded projects, TxDOT as-

signs a proportion of the contract value that must be performed by DBEs. Figure 2.1 presents

the distribution of the DBE goals for two groups of federally-funded projects let between 1998
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Figure 2.1: Distribution of DBE goals for All Projects and Paving Projects.
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and 2007 - all projects and paving projects.5 Since paving projects are the focus of the em-

pirical analysis that follows, we provide a separate breakout for this group of projects. Across

all projects, the DBE goals range from zero to 15 percent with about two-thirds of projects

having DBE goals above zero. Paving projects make up about one half of the overall number

of projects.

As in other states, the Department of Transportation in Texas chooses which projects

to assign DBE status and the level of the DBE goal for each project. The state makes

its decisions by considering a number of factors including � the type of project (asphalt,

bridgework, etc.), the geographic location of the project, and the availability of pre-quali�ed

DBE subcontractors in locations that can do speci�c tasks. TxDOT has a separate o¢ ce that

manages these assignments, which is distinct from the o¢ ces that design, cost out, and let

5The sample is restricted to federally-funded projects that are estimated to cost in excess of $400,000, as
TxDOT only considers projects that are estimated to cost at least $400,000 for assignment of DBE goals. State
funded projects do not have DBE goals.
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Figure 2.2: Average Relative Bid for Paving Projects by DBE intensity
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the projects.

The TxDOT bid data that we have access to contain information on all road construction

projects o¤ered for bid letting in Texas for the period from September, 1998 through August,

2007.6 Our empirical analysis focuses on paving projects, a relatively homogeneous group of

projects that previous studies have shown �t the independent private values framework well.

Projects are auctioned o¤ on a monthly basis using a �rst-price, sealed-bid format. For each

project, we have the date of the bid letting, information on the location of the project, an

overall description of the project, a detailed list of the tasks involved, the estimated length

of the project (in calendar days), the state�s engineering estimate of the project�s total cost,

whether the project is federally or state funded, and the DBE participation requirement. State

6The structure of the DBE program changed during our sample period, as the U.S. Federal Highway
Administration (FHWA) moved toward more race-neutral approaches to meet DBE subcontracting objectives.
In an earlier version of the paper, we tested for di¤erences in bidding behavior associated with changes in how
the DBE program was administered. We found no evidence of a change in bidding in DBE vs. non-DBE
auctions in response to such program changes.
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Variable Without DBE Goals With DBE Goals
Number of projects 1839 1220
Number of state projects 1241 -
Average number of bidders 3.805 3.892

(1.774) (1.922)
Average engineer�s cost estimate 2.969 4.240
(in millions of dollars) (2.824) (3.913)
Average relative bid 1.035 1.066

(0.192) (0.176)
Average number of bid components 40.506 81.560

(30.181) (49.509)

Table 2.1: Summary statistics. DBE denotes disadvantaged business enterprises. Standard
deviations are in parentheses.

projects and federally funded projects of less than $400,000 do not have DBE goals. From the

bid letting, we know the identity of the plan holders - the �rms that purchase the plans for

a project, which plan holders submit bids, and the dollar value of each bid submitted. Our

paving contract data contain 11,745 bids from 3,059 auctions.7

Figure 2.2 shows bid statistics for state and federal paving projects of more than $400,000,

breaking out the federal projects into four DBE utilization categories: 0%, 4-5%, 6-7%, or

greater than 7%. The average relative bids �the bid submitted by a �rm divided by TxDOT�s

engineering cost estimate (ECE) for a project �is higher in projects with DBE goals. However,

there are marked di¤erences in the characteristics of state, DBE and non-DBE projects as

shown in Table 2.1. Projects without DBE goals are generally smaller than DBE projects and

contain a smaller number of bid components.

2.2 Bidding Regression Results

To further explore the patterns related to DBE status, we present a set of descriptive regres-

sions where the dependent variable is the log of the bid submitted by an individual bidder.

All models include a common set of basic project characteristics, including controls for the

7We also restrict our sample to projects under $20 million dollars. This excludes 69 projects and we make
these restrictions to be consistent with the sample employed in the structural model. The results in Table 3.3
are similar with or without this restriction.
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DBE status of the auction, project size (measured as the log of the engineering estimate),

project location and time e¤ects.8 In some speci�cations, we also control for project charac-

teristics including �project length (log of the calendar days to complete a project), project

type (shares of speci�c material components), and the number of project components. The

last variable has been used in a number of studies to proxy for the complexity of the project.

To control for bidder cost heterogeneity, variables that measure a bidder�s backlog of projects

and the distance to a project are included. A list of variable de�nitions is presented in Table

A.1 in the appendix. Two alternative DBE speci�cations are presented for the bid regressions

�one version includes a simple indicator variable that identi�es auctions with positive DBE

goals, while the second version includes a set of dummy variables that control for DBE goal

percentage.

The �rst column of Table 2.2 provides the estimates from a model that includes an indicator

variable for whether a federal project has a DBE goal or not and controls for engineering cost

estimate, whether the project is a state or federal project, location and time e¤ects. The

coe¢ cient on the DBE variable in this parsimonious speci�cation is positive and statistically

signi�cant indicating that DBE auctions had higher average bids than those observed in non-

DBE auctions (including both federal and state projects). There is no di¤erence in the average

bid between state projects and federal projects that do not have DBE goals. The second

column adds one additional control variable � the log of the number of bid components �

the complexity variable. Adding this variable to the regression moves the coe¢ cient on the

DBE variable close to zero and it is no longer statistically signi�cant, while the complexity

variable enters the regression with a positive and statistically signi�cant coe¢ cient. This

indicates that projects with more tasks generally have higher bids, even after controlling for

project size. Column 3 incorporates additional controls for project and bidder characteristics.

Project length, bidder backlog and bidder distance to project location all increase bids, while

8Project location is modeled using 24 indicator variables that identify which construction district a project
is in. Time e¤ects are controlled for by a set on 119 indicators variables that identify the month and year of
the project letting.
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Variable Log of Bids
(1) (2) (3) (4) (5)

DBE projects 0.051* 0.003 0.001
(0.008) (0.008) (0.008)

State projects -0.010 -0.002 0.004
(0.008) (0.008) (0.008)

DBE: 0% (Fed projects) -0.003 0.003
(0.008) (0.036)

DBE : 1% - 5% 0.001 0.008
(0.009) (0.038)

DBE : 6% - 7% -0.004 0.003
(0.010) (0.039)

DBE : > 7% -0.009 -0.001
(0.010) (0.039)

Log ECE 0.973* 0.954* 0.943* 0.944* 0.944*
(0.004) (0.003) (0.005) (0.005) (0.005)

Log complexity 0.073* 0.054* 0.055* 0.054*
(0.005) (0.008) (0.008) (0.009)

Log complexity � state projects 0.002
(0.010)

Log days to complete the project 0.022* 0.022* 0.022*
(0.006) (0.006) (0.006)

Log backlog 0.001* 0.001 0.001
(0.000) (0.000) (0.000)

Log distance 0.010* 0.010* 0.010*
(0.002) (0.002) (0.002)

Division e¤ects (24) Yes Yes Yes Yes Yes
Time e¤ects (119) Yes Yes Yes Yes Yes
Material shares (11) No No Yes Yes Yes
Number of observations 11745 11745 11745 11745 11745

Table 2.2: Descriptive bid regressions. While DBE here is an indicator variable denoting
disadvantaged business enterprises, ECE denotes the value of the engineer�s cost estimate.
The symbol � denotes statistical signi�cance at the 5 percent level. Standard errors (in
parentheses) are clustered at the auction level.
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the coe¢ cient on the DBE variable is close to zero.

Column 4 includes all the regressors in Column 3 but replaces the zero-one indicator

variable for DBE with a set of dummy variables that capture di¤erences in the level of DBE

goals across projects. The model includes four dummy variables for the DBE groupings

reported in Figure 2.2 and the omitted category represents the state projects. None of the

DBE coe¢ cients is statistically signi�cant and all are close to zero in magnitude. Moreover,

there is no rise in the coe¢ cients as the DBE goal increases, as one might expect if higher DBE

goals were forcing prime contractors to subcontract more activity to less e¢ cient producers

of a task.9

How should we interpret the results on complexity and DBE status of projects? TXDOT

assigns DBE goals based, in part, on the tasks involved in a project. Projects with a large

number of tasks are more likely to have tasks appropriate for DBE subcontracting. Thus, if

the state always assigned DBE status to complex projects, then our regressions would not be

able to distinguish the di¤erences in bidding due to complexity from di¤erences in bidding due

to DBE requirements. One way to see if the positive e¤ect of complexity is merely proxying

for DBE status is to examine complexity�s correlation with bids in state projects. State

projects are not assigned DBE goals but we can still measure the number of tasks for these

projects. Column (5) of Table 2.2 presents the results of a model that includes an interaction

term between a state project indicator variable and the log of complexity. This interaction

term tests whether there is any di¤erence in the relationship between bids and complexity

for state versus federal projects. The coe¢ cient on the interaction term is essentially zero

(0.002) and not statistically signi�cant. This shows that the relationship between complexity

and bids is similar in state and federal projects, suggesting that the correlation between bids

and complexity is not being driven by the DBE assignment process. Rather the correlation

likely re�ects the increase in costs associated with doing more complicated projects.

9We also estimated a set of models where the dependent variables were the number of bidders and the
winning bids. There was no di¤erence in participation patterns or winning bids between auctions with and
without DBE goals.
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One potential problem with the above analysis is that it requires that the engineer�s cost

estimate not be in�uenced by DBE assignment. In Texas, the o¢ ce that assigns DBE goals to

auctions is clearly distinct from the parties responsible for designing and costing out a project.

In addition, the setting of a project�s DBE goal occurs only after a project�s cost is estimated.

So, DBE assignment of a project does not in�uence the engineer�s cost estimate for the project.

However, in estimating project costs, TXDOT can use information from prior bid submissions

to estimate the costs of speci�c project components.10 A problem with our analysis would

arise if some project tasks are only performed by DBE �rms and only occur in DBE auctions.

E¤ectively there would be no cost di¤erential to estimate in this circumstance, as di¤erences

in costs due to DBE subcontracting would simply be re�ected in the engineer�s cost estimate

in DBE projects. Moreover, we do know that the o¢ ce that makes DBE assignments does

consider the task list in making DBE assignments. The tasks considered most suited to DBEs

in Texas are listed in Table A.2 in the appendix. Table A.2 shows the frequency of each

task broken out by federal auctions with DBE goals, federal auctions without DBE goals,

and state projects. The speci�c bid items presented center around landscape, tra¢ c control

and miscellaneous construction activities.11 Importantly, the frequency data show that these

DBE tasks are not limited to DBE auctions. State projects that are not assigned DBE goals,

also incorporate these tasks, and so do federal non-DBE projects. In general, we see that

roughly 57% of these DBE tasks are in DBE projects while 43% are in non-DBE projects.

These project percentages are similar to the overall percentage of bid items across DBE and

non-DBE projects (60% vs. 40%). Thus, there does not appear to be a specialized group of

tasks that only occur in DBE projects.

10For example, many projects require the use landscaping services. TXDOT may use past seed, planting
and fertilizer prices to generate an estimate of landscape costs for a project to be let.
11Most projects also incorporate a Mobilization bid component. Mobilization tasks "include establishing and

removal of o¢ ces, plants, facilities and moving personnel, equipment, and supplies to (or from) the project area
to begin (or complete) work." Mobilization is given as a lump sum �gure for a project and averages around
8 percent of a project�s total estimated cost. The interquartile range is from 7% to 9%. DBE subcontractors
can also be paid to perform these tasks and are; however, since mobilization tasks do not have speci�c price
components (they are really an overhead type cost), they are not subject to the potential bias discussed here.
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Overall, the bidding patterns suggest little di¤erence in bids submitted in auctions with

DBE goals compared to auctions without DBE goals. However, these descriptive regressions

do not control for the competitive environment or for such features as selection into the

auctions. In the next section, we employ a structural approach that will allow us to control

for competition, entry into the auctions and generate estimates of the latent cost distributions

for bidders participating both in DBE and non-DBE auctions.

3 Structural Analysis

This section uses nonparametric estimation methods to uncover the cost of �rms bidding

in procurement auctions. Before proceeding to the empirical analysis, we outline a simple

bidding model.

3.1 Model

There are n risk neutral bidders who compete for a government contract in a �rst price sealed

bid auction where the low bidder is awarded the contract. There are two types of projects,

indexed by j, those that have no subcontracting goals and those that do (i.e., j = f0; 1g).

The cost of contract j to a bidder i, is private and denoted by cij . The density of the private

cost cij is fj and is strictly positive on the support [cLj ; cHj ]. In a procurement auction, a

bidder who is awarded contract j at a bid of bij receives a net pro�t of bij � cij . Each bidder

is maximizing expected pro�t given by:

E[�ij(b1j ; b2j ; :::; bnj ; cij)] = (bij � cij) (1� Fj ('(bij)))n�1 :

In the symmetric independent private value (IPV) case, the equilibrium bid function is

�(cij jFj ; n) = cij +
�0(cij)[1� Fj (cij)]
(n� 1)fj (cij)

(3.1)

where bij = �(cij) and '(bij) = cij :

Notice that the cost of the contract consists of the sum of the cost of various tasks compris-

ing the project, some or potentially all of which may be undertaken by the primary contractor.
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In projects having subcontractor participation goals, a number of tasks representing a min-

imum percentage of the estimated cost, have to be undertaken by DBE subcontractors. We

ask if there is a di¤erence in bidding distributions between projects that have subcontracting

goals in place and those that do not and whether the combined cost of the project is di¤erent

across j0s. It is obvious that, if the minority subcontractors are less e¢ cient they will impose

a cost to the state agency.

Within the symmetric independent private value framework, we use the equilibrium bid-

ding function (3.1) to obtain the cost distribution of �rms undertaking projects either with

subcontracting goals or without subcontracting goals. Let G0(b) be the distribution function

of bids in projects without subcontracting goals and G1(b) the distribution function of bids

in projects with subcontracting goals. Let g0(b) and g1(b) be the associated densities. Con-

sidering the standard monotonicity condition imposed on the equilibrium bid function �(c),

we write F (c) = F (��1(b)) = G(b), and f(c) = g(b) �0(c): If we substitute these expressions

into the equilibrium bidding function, we �nd that the latent cost of undertaking a project

without subcontracting goals can be written as,

c0 = b0 �
1

n0 � 1
1�G0(b0)
g0(b0)

; (3.2)

where n0 is the number of �rms bidding in projects without subcontracting goals. Similarly,

the latent cost associated with a project that has subcontracting goals is,

c1 = b1 �
1

n1 � 1
1�G1(b1)
g1(b1)

; (3.3)

where n1 is the number of �rms bidding in projects with subcontracting goals. The right

hand side of these equations can be estimated with nonparametric methods using the observed

vector of bids.

3.2 Asphalt project data

The identi�cation and estimation of equations (3.2) and (3.3) rely on the assumptions as-

sociated to the IPV framework, which are tested in Section 3.4. We require a sample of
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projects that are relatively homogeneous and �t the IPV framework. From related literature

(see Bajari and Ye (2003), De Silva, Dunne, Kankanamge, and Kosmopoulou (2008)) and our

discussions with state highway and civil engineers, we believe that asphalt projects appear to

best match these requirements. Asphalt projects rely more on the individual �rm�s state of

equipment and internal e¢ ciency to determine the cost and are relatively homogeneous.

Although asphalt projects are less heterogeneous than the full sample of paving projects

used in Section 2, they may include work on non-asphalt components such as bridge, subgrade,

etc. We made two adjustments to the sample to obtain an even more homogeneous set

of projects. First, we restrict attention to asphalt paving projects with an estimated cost

between 1 million and 20 millions, with an asphalt material share higher than 50 percent

of the engineer�s cost estimate, and with bridge and earthwork components of less than 5

percent. Bridge and earthwork components introduce uncertainty in the cost that is likely

more common to all bidders. We also restricted the sample to projects with no subgrade and

base course tasks.12 Those tasks introduce common uncertainty in costs and appear most

often in the construction of new roads. We present descriptive statistics for this sample in the

�rst four columns of Table 3.1 (we call this sample Asphalt Projects). We consider the sample

for all levels of participation in the �rst two columns and a subsample with 3 and 4 bidders

in the next two columns. In the empirical analysis that follows, we will focus on samples

with similar number of bidders. Second, we construct a more selected sample of contracts

that relates exclusively to surface treatment.13 The descriptive statistics for this sample are

presented in the last four columns of Table 3.1. Notice that the size and number of tasks are

much more similar across DBE and non-DBE projects in these subsamples compared to the

12Subgrade tasks are associated with the top surface of a roadbed upon which the pavement structure,
shoulders, and curbs are constructed. Base course tasks are associated with the layers of speci�ed material
placed on a subgrade to support a surface course.
13Bajari and Ye (2003) analyze a model of independent private cost estimates using seal coating projects,

which is class of surface treatment projects. Surface treatment may be used for primary and secondary roads
that carry light tra¢ c, as part of the original construction, or to rejuvenate old roads. Examples include overlay
of asphalt, seal coats, single and multiple surface treatments. Surface treatments could be applied to concrete
roads or bituminous asphalt roads.

14



Asphalt projects Surface treatment projects

All Bidders 3 and 4 Bidders All Bidders 3 and 4 Bidders

Non DBE Non DBE Non DBE Non DBE

DBE DBE DBE DBE

Bid (millions 3.202 3.159 3.121 3.298 2.820 2.907 2.840 3.631

of dollars) (2.111) (2.009) (2.010) (1.874) (2.447) (2.590) (2.226) (3.275)

Engineer�s cost 3.203 3.169 3.075 3.332 2.822 2.875 2.772 3.620

estimate (1.920) (1.965) (1.793) (1.902) (2.423) (2.457) (2.030) (3.207)

Bridge work 0.006 0.007 0.005 0.009 0.004 0.005 0.005 0.009

(0.011) (0.013) (0.010) (0.013) (0.009) (0.011) (0.010) (0.014)

Earth work 0.011 0.011 0.011 0.012 0.012 0.008 0.012 0.011

(0.013) (0.014) (0.013) (0.015) (0.015) (0.013) (0.014) (0.016)

Pavement 0.058 0.036 0.049 0.025 0.006 0.014 0.007 0.025

(0.179) (0.131) (0.166) (0.095) (0.021) (0.061) (0.023) (0.092)

Concrete 0.006 0.006 0.005 0.007 0.004 0.004 0.005 0.007

(0.011) (0.011) (0.010) (0.012) (0.009) (0.011) (0.010) (0.013)

Subcontracting - 6.584 - 6.286 - 6.543 - 6.578

goals (2.358) (2.373) (2.436) (2.819)

Complexity 32.451 37.766 32.377 42.327 30.723 33.174 31.350 37.513

of the project (14.788) (18.504) (15.498) (19.603) (14.797) (17.274) (15.530) (18.674)

Days to complete 84.820 89.026 81.013 88.822 70.981 71.659 67.040 77.766

the project (61.082) (49.377) (61.029) (42.346) (62.592) (34.544) (49.821) (35.568)

Number of 4.230 4.644 3.413 3.443 4.207 4.851 3.469 3.416

bidders (1.821) (2.099) (0.493) (0.498) (1.757) (2.135) (0.500) (0.494)

Number of:

Auctions 206 175 112 76 134 126 68 50

Observations 751 664 368 248 473 475 226 126

Table 3.1: Summary statistics for the samples of asphalt projects and surface treatment
projects. The data set also includes �ve indicator variables for the geographic location of
the projects. DBE stands for disadvantage business enterprises. Standard deviations are in
parentheses.
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di¤erences observed in the overall paving sample used in Section 2.

3.3 Nonparametric estimation and auction heterogeneity

Standard non-parametric methods can be used to estimate (1 � G(bjx))=g(bjx), where the

vector x 2 X � Rp includes variables capturing observed project heterogeneity (e.g., Guerre,

Perrigne, and Vuong 2000). We incorporate auction speci�c characteristics replacing the un-

conditional distribution functions Gj(b) and gj(b) in equations (3.2) and (3.3) by conditional

distributions of a form Gj(bjx) and gj(bjx), where x includes the engineer�s cost estimate as in

Marion (2007). These conditional functions can be estimated by considering the empirical ver-

sion of standard de�nitions, ĝj(bj jxj) = ĝj(bj ;xj)=f̂j(xj) and Ĝj(bj jxj) = Ĝj(bj ;xj)=f̂j(xj),

and the following estimators de�ned in Guerre, Perrigne, and Vuong (2000):

ĝj(bj ;xj) =
1

nLjh2jg

LjX
l=1

nX
i=1

Kg

�
b� bjil
hjg

;
x� xjl
hjg

�
;

Ĝj(bj ;xj) =
1

nLjhjG

LjX
l=1

nX
i=1

KG

�
x� xjl
hjG

�
1 fbjil � bg ;

f̂j(xj) =
1

Ljhjf

LjX
l=1

Kf

�
x� xjl
hjf

�
;

where 1 f�g is an indicator function, Kg(�); KG(�); and Kf (�) are continuously di¤erentiable

kernel functions de�ned over a compact support, and hg; hG; and hf are the associated

bandwidths. Several kernels satisfy these conditions, including the triweight kernel,

K(u) =
35

32

�
1� u2

�3
1 fjuj � 1g :

We use this triweight kernel to estimate the density fj(xj) and the distribution function

Gj(bj ;xj). Moreover, we consider the product of two triweight kernels for estimating the den-

sity gj(bj ;xj). Both the rates in Guerre, Perrigne and Vuong (2000) and the factors associated

with the choice of the triweight kernel (see, e.g, Härdle 1991) suggest employing bandwidths

of the form hjG = c�̂(bj)(nLj)�1=5, hjg = c�̂(bj)(nLj)�1=6, and hjf = c�̂(xj)(nLj)�1=5; where

�(b) is de�ned as the standard deviation of b and c = 2:978� 1:06.
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Given the potential bene�ts of using the logarithm of bids rather than bids, we consider

the logarithmic transformation for the variable of interest cj (see Li, Perrigne and Vuong

(2000), and Marion (2007)). We de�ne the pseudo cost ĉ as follows:

ĉj =

�
exp(aj)(1�mj(aj ; zj)) if max fhjG; hjgg � ajil � ajmax �max fhjG; hjgg
+1 otherwise,

(3.4)

where the variables aj = log(bj); zj = log(xj), and

mj(aj ; zj) =
1

n� 1
1� Ĝj(aj jzj)
ĝj(aj jzj)

:

The upper bound of the support includes a variable ajmax de�ned as maxfaj1; :::ajnLjg: In

the �rst stage, we now use equation (3.4) to obtain ĉ0 and ĉ1; and in the second stage, we use

these pseudo costs and the engineer�s cost estimate to estimate the conditional distributions

ĝ0(ĉ0jx0) and ĝ1(ĉ1jx1):

Figure 3.1 presents the conditional densities evaluated at the median of the engineer�s cost

estimate. These empirical distributions were obtained considering the samples described in

Table 3.1. The continuous lines show kernel density estimates for the cost of �rms bidding

in projects without subcontracting goals (non-DBE), and the dashed line present estimates

for the cost of �rms bidding in projects with subcontracting goals (DBE). Because the bid�s

distributions are not comparable in cases of di¤erent number of bidders, we estimate the

vector of pseudo cost ĉj separately for 3 and 4 bidders. Then, we pool the values for di¤erent

number of bidders to estimate the conditional density of cost ĝj(ĉj jxj). The upper panel in

Figure 3.1 shows that the cost distributions of �rms bidding in asphalt projects when small

bridge and earthwork components are present in the project, and the lower panel presents

results from the sample of surface treatment projects. The distribution of �rms undertaking

DBE projects is shifted to the right, suggesting the possibility that the program generated

ine¢ ciencies. However, when we consider the more homogeneous sample of asphalt surface

treatment projects, the di¤erences in the cost distributions tend to disappear.
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Figure 3.1: Cost densities for DBE and non-DBE projects. The densities were obtained
considering a non-parametric method that uses trimming and the engineer�s cost estimate as
a conditioning variable. While the chart at the top is obtained using the sample of Asphalt
projects, the chart at the bottom is obtained considering the sample of Surface Treatment
projects.
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In our application, one needs to control for many auction-speci�c characteristics. Recall

that the e¤ects of project size, project complexity, and project length are statistically signi�-

cant in all variants of the model estimated in Table 2.2. It is natural then to use the estimation

method proposed by Haile, Hong and Shum (2006). The advantage of their approach relative

to the approach developed by Guerre, Perrigne, and Vuong (2000) is that it enables one to

control for many auction-speci�c characteristics without increasing the sample size. The basic

idea is to impose an additively separable structure on how observable factors x and latent

auction heterogeneity w a¤ect costs.

Consider the function �: X �W ! R, and 9(x0; w0) 2 X �W � Rp � R such that

E(�(x;w)) = �(x0; w0). Under assumptions of separability, the equilibrium bid function

can be written as,

�(cjn;x;w) = �(cjn;x0; w0) + �(x;w)

= �(n) + �(x0;w0) + ~�(x;w) + ~�(cjn;x0;w0)

where ~�(x;w) = �(x;w) � �(x0;w0), �(n) = E(�(cjn;x0;w0)), and ~�(cjn;x0;w0) is a condi-

tional zero mean term. Because in equilibrium we have that b = �(�), b0 � �(n)+�(x0;w0)+
~�(cjn;x0;w0) = b � ~�(x;w) is interpreted as the bid a �rm would have submitted in equilib-

rium to an auction with observables characteristics �(x;w) = �(x0;w0). Notice that we need

to control directly for the e¤ect of w. Assuming that �(x; z) = minfn2N : Pr(N�njx; z) ��g

for a quantile �2(0; 1), we write,

n = �(x; z) + w; (3.5)

where z is a vector of instruments and w is an index that includes unobserved factors inde-

pendent of x. In this paper, we take a control variate approach, estimating w = n � �(x; z)

as suggested in Haile, Hong and Shum (2006).

We use a non-parametric approach to estimate (1�G(b̂0))=g(b̂0), where b̂0 = b� �̂(x; ŵ):

We obtain ŵ after estimating (3.5) by censored quantile regression. We use the number of

plan holders as an instrument. The vector x includes controls for project�s size (engineer�s
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cost estimate and a quadratic term on the engineer�s estimate), variables associated with

the complexity of the project (number of project�s component and a quadratic term on the

number of project�s component), controls for length of the project (calendar days to �nish the

project, and an interaction term between calendar days and engineer�s cost estimate), controls

for project�s type (percentage of earthwork, percentage of bridge work, percentage of asphalt

pavement work, and percentage of concrete work), and four variables indicating the location

of the projects.14 To control for asymmetries among bidders, it is standard to include the

distance to the project location and the capacity commitment of the �rm (backlog) in the

vector x (Jofre-Bonet and Pesendrofer 2003, Bajari and Ye 2003). Finally, we estimate (3.2)

and (3.3) using the homogenized bids, and the following estimators,

ĝj =
1

nLjhj

LjX
l=1

nX
i=1

K

 
b̂0 � b̂0jil
hj

!
;

Ĝj =
1

nLj

LjX
l=1

nX
i=1

1
n
b̂0jil � b̂0

o
;

where, as before, 1 f�g is an indicator function, L denotes the number of auctions, K(�) is a

continuously di¤erentiable kernel function de�ned over a compact support, and h is a properly

chosen bandwidth. We use the triweight kernel de�ned above.

Figure 3.2 presents a comparison between the cost distributions of projects with subcon-

tracting goals and without subcontracting goals. We present the results for the sample of

asphalt projects in the top panel, and the results for the sample of surface treatment projects

in the bottom panel. The comparison of the cost distributions for asphalt projects presented

at the top of Figure 3.2 suggests slightly di¤erent locations and di¤erent scales. These dif-

ferences tend to disappear when we consider the sample of surface treatment projects. The

evidence presented in the bottom panel indicates that the di¤erences in the cost distributions

14We evaluated the sensitivity of our results to the choice of the mean function, letting �(�) to be a smooth
function. We estimated the function considering standard local polynomial regression and generalized additive
methods. In our application, the evidence suggests that the conclusions are not sensitive to the choice of the
conditional mean function.
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Figure 3.2: Cost densities for DBE and non-DBE projects. The densities were obtained using
non-parametric methods employed on a sample of homogenized bids. These bids were obtained
considering a parametric model that include auction speci�c characteristics as covariates and
a control variate function. While the chart at the top is obtained using the sample of asphalt
projects, the chart at the bottom is obtained using the sample of surface treatment projects.
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Quantiles of the Cost Distribution
1.000 2.000 3.000 4.000 5.000

Asphalt projects
Non-DBE [0.003, 0.068] [0.085, 0.309] [0.487, 0.753] [0.059, 0.285] [0.001, 0.052]
DBE [0.004, 0.094] [0.077, 0.323] [0.496, 0.867] [0.025, 0.274] [0.000, 0.034]

Surface treatment projects
Non-DBE [0.009, 0.118] [0.136, 0.726] [0.190, 0.806] [0.000, 0.148] [0.000, 0.028]
DBE [0.001, 0.119] [0.088, 0.656] [0.178, 0.908] [0.001, 0.197] [0.000, 0.029]

Table 3.2: Variability bands for the estimated densities in Figure 3.2. The intervals were
constructed considering a block bootstrap procedure. The quantiles are in millions, and we
considered 10,000 bootstrap repetitions. DBE stands for disadvantage business enterprises.

are negligible.15

At �rst glance, the results presented in Figure 3.2 indicate that the cost distributions may

not be signi�cantly di¤erent. To examine this further, we provide 95 percent variability bands

for several quantiles of the cost distributions in Table 3.2. Because the homogenized bids are

based on estimates obtained in a �rst stage, standard pointwise con�dence intervals for the

densities cannot be used. Alternatively, we can use the bootstrap to provide a measure of

the variability of the estimates (see, e.g., Pagan and Ullah 1999). Speci�cally, a bootstrap

procedure is implemented as follows.16 ;17We draw an auction from a sample of projects and we

include all bidders for that project. We continue sampling projects with replacement until we

obtain a sample of L projects. Using this sample, we estimate �(x;w). We then construct the

homogenized bids b̂0, separately for 3 and 4 bidders. Using these samples of bids, we compute

the estimates of the DBE and non-DBE densities. We iterate the procedure 10,000 times. We

�nally construct pointwise 95 percent variability bands from the quantiles of the empirical

distributions. The results of the table suggest that the DBE and non-DBE distributions are

15The motivation of controlling for endogenous participation is associated with projects with small bridge and
earthwork components. We also compared the pseudo-cost distributions assuming that unobserved heterogene-
ity does not a¤ect the identi�cation of equations (3.2) and (3.3). After controlling for observed heterogeneity
by estimating �(x), we obtained costs distributions that were similar to the ones presented in Figure 3.2.
16Other bootstrap procedures have been implemented in the literature (see, e.g., Hendricks, Pinkse, and

Porter (2003) and Krasnokutskaya (2010)). Hendricks, Pinkse, and Porter (2003) use a slightly di¤erent
bootstrap procedure.
17 In principle, we can use a simpler bootstrap procedure, because we might not need to account for depen-

dence of any form and/or heterocedastic errors. We evaluate the framework�s assumptions in Section 4.4.
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Figure 3.3: Bidder�s mark-up in projects with 3, 4, 5, and 6 bidders. The panels present the
median mark-up, de�ned as (b � ĉ)=b. While the left panel is obtained using the sample of
asphalt projects, the right panel is obtained using the sample of surface treatment projects.
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not statistically di¤erent, since the variability bands overlap at di¤erent quantiles of the cost

distributions.18

To investigate the performance of our empirical strategy, we construct estimates of the

median bidders�markup (b � ĉ)=b in auctions with 3, 4, 5, and 6 bidders. Extending the

previous analysis to include auctions with 5 and 6 bidders allows us to examine in more detail

the markups generated by the approach. Figure 3.3 shows continuous lines representing the

median markup in non-DBE projects, and dashed lines denoting the median markup in the

DBE projects. The panels show small di¤erences between the continuous line and the dashed

line, suggesting that the program did not generate considerable di¤erences in the levels of

the markups during our sample period. Moreover, these markups seem to be similar with

18 It is important to note that inference is based on estimated costs, and therefore, the limiting distribution
of the test may be a¤ected. To the best of our knowledge, the literature o¤ers one approach. An earlier version
of Haile, Hong and Shum (2006) investigated a Kolmogorov-Smirnov test based on a resampling approach.
According to the authors, the test performance was poor in small samples. Issues associated with inference
using estimated costs are out of the scope of the paper.
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n Asphalt projects Tests Surface treatment projects Tests
Median Mean SD (1) (2) Median Mean SD (1) (2)

non-DBE non-DBE
3 2.926 2.916 0.771 0.126 0.554 2.577 2.542 0.674 0.677 0.935
4 3.016 3.054 0.799 2.634 2.593 0.760

DBE DBE
3 2.946 2.797 0.813 0.787 0.540 2.579 2.601 0.656 0.259 0.286
4 2.911 2.903 0.638 2.735 2.666 0.598

Table 3.3: Tests for invariance to number of bidders. Columns (1) present p-values of Wilcoxon
tests. Columns (2) present the p-values of the standard Kolmogorov-Smirnov test.

the levels documented in the literature (see, e.g., Bajari and Ye (2003)), varying between 2

and 11 percent. Lastly, the downslopes show the e¤ect of competition on markups in these

procurement auctions.

3.4 Testing the IPV assumptions

Our analysis was performed using the symmetric independent private value framework, which

essentially implies that exchangeability of marginal distributions and independence (Athey

and Haile (2007)). Under exogenous variation of bidders, this framework suggests that the

marginal distributions for n = 3 and n = 4 must be equal, because the costs are invariant to

n (Lemma 1, Haile, Hong, and Shum (2006)).

In Table 3.3, we present evidence on estimates for the marginal distributions of projects

with di¤erent number of bidders. While the columns marked as (1) provide p-values corre-

sponding to Wilcoxon tests, the columns marked as (2) provide p-values corresponding to

Kolmogorov-Smirnov tests.19 The �rst statistic is a common test suggested in the literature

to evaluate di¤erence in location, and it is applied to evaluate if the costs distributions have

same locations. The second statistic is a test for independence, and it is applied in this case

to evaluate if the cost distributions in auctions with 3 and 4 bidders are signi�cantly di¤erent.

The testing procedures are described in the Appendix.
19The tests are based on estimated costs, which might lead to incorrect inference. The estimation of costs

may in�uence the limiting distribution of our tests. To the best of our knowledge, there is not well-established
correction to this di¢ cult problem. This issue is out of the scope of our paper.
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The tests seem to suggest that the sample of projects exclusively related to surface treat-

ment �ts the framework better. The costs distributions obtained using the surface treatment

projects vary less in the number of bidders, and therefore, they appear to satisfy the condition

on the marginal distributions associated to the IPV framework.

The IPV framework also relies on the independence of the bids submitted to an auction.

We employed three testing procedures to evaluate conditional independence on pairs of bids

(i; j) in auctions with 3 and 4 bidders: (i) the non-parametric test proposed by Blum et

al. (1961); (ii) Kendall � rank correlation coe¢ cient; (iii) a Kolmogorov-Smirnov test for

independence. The �ndings can be summarized as follows: (a) we failed to reject the null

hypothesis at 5 percent in 101 tests out of the 108 performed tests, and (b) surface treatment

projects provided a better �t to the assumptions of the model relative to the sample of asphalt

projects.

3.5 Additional Considerations on Selection Issues

The previous analysis shows that there is little di¤erence in project costs between projects that

are assigned subcontracting goals versus projects that are not assigned goals. This section

discusses a few additional issues associated with bidder�s participation and project hetero-

geneity. We previously addressed endogenous participation in�uenced by project unobserved

heterogeneity using the method proposed by Haile, Hong and Shum (2006). In the analysis

of the DBE program however, one needs to consider that the program may a¤ect costs, and

therefore, the participation of bidders in an auction. The DBE program might be a¤ecting

participation in auctions with and without DBE subcontracting goals. In order to address this

issue, we restricted attention to bidders participating in both DBE and non-DBE auctions.

25



Therefore, our previous results might not be a¤ected by bidder�s selection issues.20 ;21

A more important issue seems to be associated with DBE assignments. As we discussed

earlier, it is likely that the state would assign DBE status to a project with a large number

of tasks involved.22 ;23 The possibility of this type of selection bias could be incorporated into

the analysis by replacing the selection probability by a non parametric function (Das, Newey,

and Vella 2003). A more convenient approach for this setting with a relatively large number

of covariates, is to estimate the selection probability by the propensity score. The propensity

score s is the conditional probability of selection estimated by standard parametric models

(e.g., probit). We use the total number of bid items in a project, the number of days to

complete the project and indicators for the location of the project to estimate the conditional

probability of selection. We observe that these �rst two e¤ects have the expected sign and

are signi�cant at 5 percent. To obtain the homogenized bid, we now condition on ŝ, and

therefore the �rst stage regression is now b = ~�(x;ŵ; ŝ)+u. The panels in Figure 3.4 present

estimates of 3.2 and 3.3 that use these samples of bids b̂0. After controlling for observed and

unobserved heterogeneity and the possibility of selection bias, we again �nd that the costs

20The samples of asphalt projects and surface treatment projects presented in Table 3.1 exclude bidders who
participated in DBE or non-DBE auctions alone. The vast majority of bidders participate in both auctions. The
asphalt sample includes 84 percent of all bidders participating in the auctions throughout the period of analysis,
and the surface treatment sample includes 82 percent of all bidders. Although the sample sizes are reduced,
these sample re�nements minimize and potentially eliminate issues associated with bidder�s participation.
21As a robustness check, we also estimated the models including all bidders. Our �ndings revealed that the

results presented in this paper are not a¤ected dramatically. We continued to �nd small di¤erences in costs in
the asphalt sample and no apparent di¤erences in costs in the surface treatment sample. The mark-ups ranged
from 2 to 10 percent, as in Figure 3.3. We do not present the results to avoid repetition, but they are available
upon request.
22A natural concern in the �rst stage regression is the suspected endogenous indicator for DBE assignment

(see, e.g., Marion 2010). It is important to note that by the nature of the exercise, the �rst stage regression
does not include a suspected endogenous variable, but of course, the non-random assignment j = f0; 1g may
create biases.
23More formally, the state would assign DBE status to a project if 1fd0�+� > 0g, where 1f�g is an indicator

function. The vector d includes the total number of bid items (project components) in a project and the
availability of minority �rms given by the geographic location of the project. The variable � is assumed to
be an error term that could be correlated with the error term in the model for b but it is independent of d.
Because in the �rst stage b = ~�(x;ŵ) + u, it is then possible that Efujx; w;d0� > �g 6= 0 generates selection
bias even in the case that u ? x. Although they seem to represent two di¤erent issues, addressing observed
heterogeneity is related in our case to correcting for selection bias. For identical projects with characteristics
(x00;w0)

0, one would expect ~�(x;w) = �(x;w)� �(x0;w0) = 0, and also Efujx; w;d0� > �g = 0, simply because
d0� would tend to be constant.
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Figure 3.4: Cost densities for DBE and non-DBE projects. The densities were obtained con-
sidering non parametric methods employed on a sample of homogenized bids. The panels
were obtained from a model that address observed projects heterogeneity, endogenous partic-
ipation, and the possibility of selection bias. The upper panel is obtained using the sample
of asphalt projects and the lower panel is obtained using the sample of surface treatment
projects.
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distributions present small di¤erences, which turn out to be negligible when we consider the

sample of surface treatment projects.

4 Conclusion

This paper examines the di¤erences in bidding and costs between projects that have sub-

contracting goals and projects that do not. The analysis uses the nonparametric structural

approach developed by Haile, Hong and Shum (2006) that allows one to control for many

auction-speci�c characteristics and endogenous participation without increasing sample size.

This is particularly important in our setting as project size, complexity, materials use and

other characteristics vary markedly across projects. Our empirical results show little di¤erence

in the level of bids submitted or in the estimated costs between projects with subcontracting

goals and projects without such goals. When we utilize an even more homogeneous sample of

projects, the di¤erences are even less. Finally, we show that the implied markups generated

from the Haile, Hong and Shum approach are consistent with those reported in the literature

and do not di¤er substantially for auctions with and without subcontracting goals.

A simple interpretation of the result is that the supply and quality of DBE subcontractors

was su¢ cient during our period of analysis so that prime contractors were e¤ectively unre-

stricted in their bidding due to the presence of DBE requirements. The Census Bureau�s 2002

Survey of Business Owners indicates that Texas has a relatively large number of minority-

owned construction �rms in comparison to the average state, re�ecting, at least in part, the

large minority population of the state. Moreover, our �ndings do not necessarily mean the

program has had no e¤ects on contracting. The program may have encouraged the formation

and success of minority and women-owned businesses increasing the supply of DBE subcon-

tractors, something that we cannot test with our data. Alternatively, the program may have

a¤ected project costs but the e¤ects may have occurred outside our window of observation.

Speci�cally, they may have occurred when the program was introduced � several decades
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before our period of analysis. That said, our results suggest that during the period under

study DBE subcontracting requirements did not substantially raise the bids or costs of prime

contractors.
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A Appendix

A.1 Testing Procedures

Let f(Zi; Vi)gni=1 be random samples with densities gZ , gV , and joint density f(z; v). Hájek,

�idák, and Sen (1999) suggest the following tests for independence and location.

1. B test: This test, which was employed in Campo, Perrigne, and Vuong (2003), was

proposed by Blum et al. (1961). The test statistic is equal to,

Bn =
RR
(F (z; v)�GZ(z)GV (v))2dF (z; v);

where F (z; v) = n�1
nP
i=1
I(Zi � z; Vi � v), GZ(z) = n�1

nP
i=1
I(Zi � z), and GV (v) =

n�1
nP
i=1
I(Vi � v). This test is consistent and distribution free.

2. Kolmogorov-Smirnov test: Using the previous de�nitions, we can write this test as

KSn = sup jF (z; v)�GZ(z)GV (v)j:

3. Wilcoxon rank test: We set Zn+j = Vj for j = 1; :::n and N = 2n. Let Ri (i = 1; :::N)

be the rank of the observation Zi in the ordered sequence Z(1) < Z(2) < ::: < Z(N).

This test is based on the statistic S =
nP
i=1
Ri. Another form of the test is called Mann-

Whitney statistic, which is based on the number of pairs (Zi; Vi) such that Zi < Vj .

Under the null hypothesis of no di¤erences in location, the standardized version of S is

asymptotically normal as n!1.

4. Kendall � rank correlation test: Let Ri (i = 1; :::n) be the rank of the observation Zi

in the ordered sequence Z(1) < Z(2) < ::: < Z(n) and Qi (i = 1; :::n) be the rank of the

observation Vi in the ordered sequence V (1) < V (2) < ::: < V (n):. This test is based on

the following statistic: � = (n(n�1))�1
P
i6=j

P
sgn(Ri�Rj)sgn(Qi�Qj), where sgn(A)

denotes the sign of A. Under H0, the standardized version of � tends to a Gaussian

distribution.
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Variable De�nition
Log of bids Log value of bids
Log of ECE The log value of the engineer�s cost estimate (ECE).
Bridge work percentage The value of the bridge work bid items relative to the ECE.
Earth work percentage The value of the earth work bid items relative to the ECE.
Pavement work percentage The value of the pavement work bid items relative to the ECE.
Concrete work percentage The value of the concrete work bid items relative to the ECE.
DBE projects Projects with DBE goals
State projects State funded projects
DBE: 0% (Fed projects) DBE goal dummy for goals: 0% (for federal projects.)
DBE : 1% - 5% DBE goal dummy for goals: 1% - 5%
DBE : 6% - 7% DBE goal dummy for goals: 6% - 7%
DBE : > 7% DBE goal dummy for goals: > 7%
Complexity The total amount of bid items (project components)

in a project described by TxDOT.
Calendar days Number of days to complete the project assigned by TxDOT
Division dummies TxDOT has 25 divisions, which are identi�ed by division dummies
Zone dummies TxDOT divides Texas into �ve major geographic zones. We identify

these zones using zone dummies
Material shares for They include mainly surfacing, earthwork, miscellaneous construction,
asphalt projects drainage and foundation structures, subgrade and base, and tra¢ c.
Distance to the project The distance between the county the project is located in and the
location distance to the county of the �rm�s location [log(distance+1)]
Backlog It is constructed by summing across the non-completed value of the

contract of existing contracts. The variable is similar to the variables
used by Bajari and Ye (2003) and Jofre-Bonet and Pesendorfer (2003).

Table A.1: Variable de�nitions.

33



Item description Federal projects State Projects
With DBE goals Without DBE goals

Preparing right of way 2,249 [59.01] 789 [20.70] 773 [20.28]
Embankment 2,835 [59.81] 970 [20.46] 935 [19.73]
Topsoil 888 [57.33] 287 [18.53] 374 [24.14]
Compost 244 [49.90] 114 [23.31] 131 [26.79]
Sodding for erosion control 1,064 [59.91] 316 [17.79] 396 [22.30]
Seeding for erosion control 5,020 [59.64] 1,718 [20.41] 1,679 [19.95]
Fertilizer 466 [61.48] 139 [18.34] 153 [20.18]
Vegetative watering 2,528 [56.62] 986 [22.08] 951 [21.30]
Soil retention blankets 851 [66.07] 218 [16.93] 219 [17.00]
Irrigation system 174 [40.47] 73 [16.98] 183 [42.56]
Wild�ower seeding 43 [44.79] 21 [21.88] 32 [33.33]
Landscape planting 1,791 [44.95] 521 [13.08] 1,672 [41.97]
Landscape establishment 142 [31.91] 33 [7.42] 270 [60.67]
Salvaging, stockpiling asphalt pavement 817 [72.36] 144 [12.75] 168 [14.88]
Barricades, signs, and tra¢ c handling 3,106 [39.83] 2,073 [26.58] 2,619 [33.59]
Erosion & environmental controls 6,664 [47.95] 3,300 [23.75] 3,933 [28.30]
Constructing detours 1,061 [78.59] 149 [11.04] 140 [10.37]
One-way tra¢ c control 148 [45.40] 42 [12.88] 136 [41.72]
Portable concrete tra¢ c barrier 3,996 [77.55] 576 [11.18] 581 [11.27]
Permanent concrete tra¢ c barrier 1,024 [81.66] 111 [8.85] 119 [9.49]
Textured concrete & landscape pavers 203 [61.70] 34 [10.33] 92 [27.96]
Concrete curb and gutte 2,366 [67.75] 440 [12.60] 686 [19.64]
Right of way markers 203 [66.78] 86 [28.29] 15 [4.93]
Crash cushion attenuators 1,181 [76.69] 188 [12.21] 171 [11.10]
Chain link fence 376 [79.49] 50 [10.57] 47 [9.94]
Wire fence 423 [60.52] 186 [26.61] 90 [12.88]
All DBE items 39,863 [56.95] 13,564 [19.38] 16,565 [23.67]
All items 300,680 [59.76] 88,459 [17.58] 114,035 [22.66]

Table A.2: Bid items in federal and state projects. Percentages are in brackets.
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