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I. Introduction 
 

How uncertainty influences the decisions of firms to undertake investment projects is a 

fundamental issue in the investment literature. Theory offers models that predict increases in 

uncertainty can either raise or lower investment with a particularly influential line of research 

being the real options theory.TPF

1
FPT  Specifically, Dixit and Pindyck [1994] describe a theory of 

investment that focuses on the irreversibility inherent in many capital projects and the effect of 

uncertainty on the timing of irreversible investment projects.  In their model, uncertainty in the 

future profitability of an investment project that is irreversible, or partially irreversible, may cause 

a firm to delay the investment in order to obtain additional information on the profitability of the 

project.  Dixit and Pindyck [1994] refer to this as ‘the option value of waiting to invest’ and firms 

consider this ‘option’ when making investment decisions.  Increases in uncertainty, increase the 

option value of waiting in this environment.  The result of which is a delay in investment. In this 

paper, we empirically examine the uncertainty-investment relationship by investigating how the 

timing of capital projects responds to changes in the volatility of input and output prices.TPF

2
FPT 

Although there exists a large empirical literature looking at the uncertainty-investment 

relationship, relatively few studies have investigated the effect of uncertainty on the timing of 

specific investment projects (Favero et al [1994], Hurn and Wright [1994] and Bulan, Mayer and 

Somerville [2006]).  This paper examines uncertainty and the timing of investment projects at 

individual US oil refineries.  We believe this is a good testing ground of the uncertainty-

investment relationship for three reasons.  First, investments that involve refinery expansion will 

include a significant fraction of sunk costs.  The investment in capacity expansion in refineries is 

largely composed of structures that are usually engineered and integrated into an existing 

production facility. Once in place a refinery cannot easily divest itself of such a capacity 

                                                 
TP

1
PT Hartmann [1972] and Abel [1983] develop models where greater uncertainty in input or output prices 

actually increases the likelihood a firm invests. 
TP

2
PT For a complete survey on recent development in the investment under uncertainty literature, see Carruth et 

al. [2000]. 
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expansion project without bearing significant costs. Thus, it is reasonable to believe that a 

significant fraction of such investment is irreversible.  Second, firms in the industry change their 

capacity in discrete investment and disinvestment bursts. Episodes of high investment activity are 

interspersed with episodes of zero investment activity. This pattern in US refineries is similar, 

though more stark, to those found in recent empirical papers that document the lumpy nature of 

plant and firm-level investment (Cooper, Haltiwanger and Power (hereafter CHP [1999], Doms 

and Dunne [1998], and Nilsen and Schiantarelli [2003]).TPF

3
FPT  The discrete nature of investment in 

this industry allows us to look at the timing of capital projects and thus we will be able to see if 

firms delay investment when uncertainty rises.  Third, the industry has well developed 

commodity future markets for its main input, crude oil, and its main outputs, heating oil and 

gasoline.  We compute a forward refining margin from these futures prices and use the volatility 

of the forward refining margin to proxy for uncertainty in the economic environment in which 

refiners must make investment decisions.    

Our data include annual observations on refining capacities for almost all US refineries in 

existence over the period 1985-2003.  We use year-to-year changes in capacities to identify when 

firms undertake capital projects. The data measure only investment activities that affect refinery 

capacity. These capacity-based data omit maintenance-driven investment and non-capacity 

changing investments such as investment in pollution control equipment.  In the case of 

environmental investments which are important in this industry, the timing of these kinds of 

investment is likely to be quite unrelated to the firm’s optimal capital adjustment problem 

discussed in the literature.  By using physical capacity measures, we reduce these types of 

measurement problems and improve our ability to measure the timing of capital projects.TPF

4
FPT   

The first part of our empirical analysis documents capital adjustment patterns in the US 

petroleum refining industry.  We find that capacity adjustments by refiners are very infrequent.  

                                                 
TP

3
PT An early discussion of nonconvex adjustment costs is provided in Rothschild [1971]. 

TP

4
PT Two other recent studies use capacity changes to measure investment in the literature, Bell and Campa 

[1997] and Goolsbee and Gross [2000]. 
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Approximately three-quarters of the year-to-year changes in capacity are zero.  This pattern of 

inactivity in the investment data is consistent with models of irreversibility, as well as models that 

stress the presence of fixed adjustment costs (CHP [1999] and Cooper and Haltiwanger (hereafter 

CH [2006])). The second part of the empirical analysis explores the relationship between 

uncertainty in oil markets and capacity adjustment.  We estimate a hazard model to examine the 

relationship between uncertainty, as measured by the volatility of forward refining margins, and 

the probability a refinery undertakes an investment project.  We find that increases in uncertainty 

are associated with delays in capital investment projects.   Our results are robust to a variety of 

adjustment thresholds and hazard specifications.   

The remainder of this paper proceeds as follows. Section II describes some basic features of 

the refining industry and the data that we use in the paper. In section III we discuss our measures 

of uncertainty. Section IV provides a description of the empirical methods used and presents our 

findings. Section V concludes the paper. 

 
II. Investment in the Refining Industry 

In order to examine how uncertainty affects the timing of investment, we utilize data on 

changes in capacity at US refineries to identify when investment projects are undertaken.  

Typically, studies use accounting data on investment expenditures as the basis of their empirical 

analyses. However, relying on such accounting data is not without drawbacks. Accounting data 

on new investment contain a mix of capital expenditures that include expansion-driven spending, 

maintenance-driven spending and non-capacity enhancing investments such as pollution control 

and occupational safety equipment.  In the latter case, these may be mandated investments due to 

regulatory requirements – a situation common in the refining sector.  Mandated investments and 

maintenance-driven investments are driven by forces distinct from the firm’s decision to expand 

or contract its capacity to produce output. Accounting data rarely allow the researcher to 

discriminate among these alternative investment categories.  Caballero [2000] emphasizes the 
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importance of distinguishing between maintenance-driven and expansion-driven investments 

when modeling investment dynamics.  In addition, accounting data on firm- and plant-level 

investments almost always show that producers make investments in every time period, even if at 

a very low level.  Investment spikes are often surrounded by periods of positive but low levels of 

investment activity.  This makes measuring the timing of the investment spike more difficult and 

potentially obscures the discrete nature of the investment process. In this work, we reduce some 

of these problems by studying changes in actual capacities.  

We use the petroleum refinery capacity data from the ‘Petroleum Supply Annual’ published 

by the Energy Information Administration (EIA), Department of Energy.  Beginning in 1980, the 

EIA implemented a mandatory annual survey of refinery capacities except for the period of 1995-

1997 during which the survey was done biennially. It surveys both crude oil processing 

(distillation) capacity and downstream capacities for all operable refineries located in the 50 U.S. 

states, Puerto Rico, the Virgin Islands, Guam and other U.S. possessions. To fill in the missing 

data in 1995 and 1997, we supplement the EIA data by a private survey of refining capacities in 

1995 and 1997 from the Oil & Gas Journal (OGJ). TPF

5
FPT  Because our primary uncertainty measure is 

derived from commodity futures market and unleaded gasoline futures markets did not exist 

before December 1984, our time period of analysis runs from 1985 to 2003. The final data set 

contains 224 refineries with a total of 3307 refinery-year observations.  

Refining capacity (atmospheric distillation capacity) is measured as the ‘the maximum 

number of barrels of input (mainly crude oil) that a distillation facility can process within a 24-

hour period when running at full capacity under optimal crude and product slate conditions with 

no allowance for downtime’ (EIA [2000], pp 165-166).  Under this definition, a refiner’s capacity 

is measured as barrels per stream day (B/SD).  Figure 1 presents the total refining capacity and 

the number of refineries in the US from 1985 to 2004. The number of refineries falls steadily 

                                                 
TP

5
PT The OGJ data only reports capacities measured in calendar days (barrels per calendar day or B/CD). We 

multiply the EIA 1994 data (B/SD) by the percentage change in OGJ data to obtain the 1995 data, and 
similarly for 1997 data.  
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while the overall US refining capacity increases by 8%.  Smaller refineries have closed while 

larger refiners have, on average, expanded their size over time.   

Year-to-year changes in refinery capacity are used to define our investment events. 

Refiners increase their capacities through conventional capital project (e.g., adding a catalytic 

cracking unit) and through debottlenecking investments which are smaller investments that 

increase refining capacities but do not alter the number of processing units (EIA Staff report, 

[1999]).   Debottlenecking is usually accomplished at the same time as maintenance and repair. 

The additional capacity gained through debottlenecking is termed ‘capacity creep’ in the industry. 

Given that debottlenecking can be done at small cost, one might expect refineries to frequently 

adjust their capacities.   However, as depicted below, this is not the case. Capacity reductions at 

ongoing refineries also occur in our data but at a much lower frequency than capacity expansions 

with a significant number of such events being refinery closures.  In the empirical work that 

follows we focus primarily on the decision of a refinery to expand capacity.TPF

6
FPT   

The distribution of refinery-level capacity changes are shown in Figure 2.   The underlying 

data represent the percentage change in capacity between two years in the data.  The large spike 

in the middle of the distribution indicates that 74 percent of the time refineries make no change in 

capacity between years.  In addition, a significant number (11 percent) of non-zero observations 

are in the interval of (-0.05, +0.05). These patterns in capacity adjustment are even ‘lumpier’ than 

those reported in CHP [1999], Doms and Dunne [1998], and Nilsen and Schiantarelli [2003].   

For example, Nilsen and Schiantarelli [2003] report zero investment episodes in Norwegian 

manufacturing account for 21 percent of total observations for equipment and 61 percent for 

buildings and Doms and Dunne [1998] state “…while a significant portion of investment occurs 

in a relatively small number of episodes, plants still invest in every period.”  Moreover, the 

                                                 
TP

6
PT We also estimate hazard models that use two-sided changes in capacity to identify the end of an 

investment inactivity spell.  The results on uncertainty carry through to that analysis as well and are 
reported in Table IV below. However, using capacity expansion episodes to define the end of a spell is 
more line with the recent work reported in CHP [1999] and Nilsen and Schiantarelli [2003]. 
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additional capacity added in the industry is concentrated in a few investment episodes.  Thirty-

three projects account for roughly 30 percent of the total addition to capacity that occurred in the 

industry throughout the period of study.  These additions occur in ongoing refineries since no new 

refineries have been built in the US during our period of analysis.  Alternatively, the large 

reductions in capacity observed in the data are due largely to the closure of refineries –– 83 

refineries shut down during the 1985-2003 period.  

While it is plausible that a refinery may increase its capacity by a small amount through 

debottlenecking and incremental investment activity, we suspect that some of the small changes 

in capacities might be a result of either reporting errors or may reflect the fact that refinery 

engineers adjust the estimates of the capacity levels at their refinery based upon their ongoing 

review of the data. TPF

7
FPT   To test the sensitivity of our results to the presence of these small 

adjustments in capacity, we employ two sets of alternative thresholds to identify whether an 

investment episode has occurred.  The first set includes three relative thresholds based on the 

annual percent change in capacity at a refinery: a zero percent threshold, a five percent threshold, 

and a ten percent threshold. The second set includes two absolute capacity change thresholds: a 

2000 B/SD threshold and a 4000 B/SD threshold.TPF

8
FPT   Investment episodes are then identified as 

investments events that cross these thresholds.  For example, under the zero percent threshold 

there are 835 investment episodes in our data, while under the more restrictive ten percent 

threshold, there are only 400 investment episodes. 

Theories emphasizing the role of irreversibility imply that a refiner will put off investment 

decisions at times of high uncertainty. To shed light on the timing of investments, Figure 3 

presents a histogram of durations from completed investment spells using the zero and the five 

                                                 
TP

7
PT We owe this point to Stephen Patterson, Survey Manager at EIA and Sidney Gale, Managing Director of 

EPIC Inc. 
TP

8
PT While somewhat arbitrary, the 2000 B/SD and 4000 B/SD thresholds correspond roughly to a five percent 

and ten percent investment in the median sized refinery in 1985 – the first year of our sample.  Moreover, 
it’s unlikely that a capacity increase over 2000 B/SD would simply due to reporting errors while a 4000 
B/SD capacity change would represent a substantial investment.   
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percent thresholds.TPF

9
FPT  The duration is defined as the length of time, in years, between investment 

episodes in a refinery.  If a refinery invests in both year k and year k+1, the duration is zero. If it 

does not invest in year k+1 but invests in year k and k+2, the duration is one.  Several points are 

worth making. First, consistent with the large number of zero observations in Figure 2, the 

majority of the durations are above zero and the median duration for the five percent threshold 

series is 3.5 years.  Second, there are a significant number of zero duration events.  This may be 

due to the fact that refinery investment episodes may span calendar years in the data.  In this case, 

refiners would report back-to-back years of capacity expansions.  These back-to-back capacity 

additions represent a substantially lower fraction of durations under the five percent definition 

perhaps indicating that refineries may undergo some additional capacity fine-tuning in the wake 

of an initial capacity expansion.  These additional fine-tunings in capacity would appear under a 

zero percent threshold definition but not register as a capacity expansion episode under the five 

percent threshold. 

 

III. Measuring Uncertainty 

A measure of uncertainty should gauge agents’ assessments of the distribution of future 

returns.  Prior industry-level studies have often used information on the volatility of industry-

level input and output prices to measure uncertainty in the economic environment (Ghosal and 

Loungani [1996] and Bell and Campa [1997]). Alternatively, firm-level studies often rely on 

stock price volatility as a measure of the uncertainty facing the firm (Leahy and Whited [1996], 

Henly et al [2003], Bloom et al [2007]).  Our approach will focus on industry-level uncertainty 

using data on inputs and outputs that are related specifically to the future profitability of the 

refining sector.  

                                                 
TP

9
PT Here we dropped the ‘censored’ observations. For example, if the last investment episode was observed in 

2000, then the observations of 2001-2003 are dropped.  
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TThe refining process involves distillation which ‘cracks’ crude oil into different 

components to make petroleum products such as gasoline and heating oil. C Trude oil, gasoline and 

heating oil are all actively traded in the futures market in the New York Mercantile Exchange 

(NYMEX). Our uncertainty measure is based on a daily forward refining margin (or crack spread, 

denoted as FRM), which is defined as  

(1) FRM P

d
P = 2*F BGOPB

M,d
P + 1*F BHOPB

M,d 
P - 3*FBCOPB

M,d
P                                                                            

where GO, HO, and CO stands for unleaded gasoline, heating oil, and crude oil 

respectively. F B(.) PB

M,d
P  denotes the price of the futures contract that is traded at day d and matures at 

month M. TPF

10
FPT  TT The 3-2-1 refining margin reflects the gross profit from processing three barrels of 

crude oil into two barrels of unleaded gasoline and one barrel of heating oil. Because the 3:2:1 

ratio approximates the real-world ratio of refinery output, it is commonly used in the oil industry 

to construct the refining margin. An EIA report (EIA [2002], pp. 21-22) notes that T “RTefinery 

managers are more concerned about the difference between their input and output prices than 

about the level of prices. Refiners’ profits are tied directly to the spread, or difference, between 

the price of crude oil and the prices of refined products. Because refiners can reliably predict their 

costs other than crude oil, the spread is their major uncertainty.” 

A common interpretation of commodity futures prices describes the futures prices as a 

forecast of the future spot price of a commodity that incorporates a risk premium (Fama and 

French [1987]).  In a recent study about predictive ability of commodity futures prices, Chinn, 

LeBlanc and Coibion [2005] show that futures prices for crude oil, gasoline and heating oil are 

unbiased predictors of future spot prices and outperform time-series models.TPF

11
FPT  These findings 

agree with earlier analysis by Ma [1989], Tomek [1997] and Fujihara and Mougoue [1997].  For 

this reason, the futures prices are generally considered as a benchmark price forecast by many 

industry observers and risk managers rely on these petroleum futures to hedge their price risks 

                                                 
TP

10
PT The deliveries of all petroleum futures are ratable over the entire delivery month (NYMEX website). 

TP

11
PT However, they also show that futures prices are not very accurate predictors of future spot prices. 
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(EIA [2002], pp. 20). Thus, we believe an uncertainty measure constructed from the forward 

refining margins is a reasonable proxy for the uncertainty faced by refiners in forecasting future 

profitability.  

Analogous to papers using the standard deviation of stock returns, this paper uses the 

annual standard deviation of the daily forward refining margin as our uncertainty indicator. The 

NYMEX began trading crude oil futures in March 1983, unleaded gasoline futures in December 

1984, and heating oil futures in January 1980. The daily forward refining margin of (1) is 

calculated using daily closing prices of all the three commodity contracts with six months time-

to-maturity. The six-month maturity is chosen because it is the longest time horizon with which 

we can obtain a consistent data series. The annual measures of forward refining margin and the 

associated uncertainty measure are the mean and the standard deviation, respectively, of daily 

forward margins as defined in (1) over a 12-month window and deflated with the implicit GDP 

deflator from the Bureau of Economic Analysis (BEA).  

To allow for construction lags and to check the robustness of our empirical results, we 

construct three alternative measures of the mean and standard deviation of the forward refining 

margin by varying the calculation window. The first definition is based on the mean and the 

standard deviation of daily margins in the contemporary year y. The second and the third 

definitions build in six- and three- month lags, respectively.  Throughout the analysis below we 

report the results from the six-month lag definition but the findings are generally robust across the 

alternative windows. 

Figure 4 plots the mean and standard deviation of the forward refining margin according to 

the six-month lag definition for the period 1985-2003. The uncertainty series appears to be 

heavily influenced by geopolitical events in the Middle East. The spike in 1991 which is the 

standard deviation of the FRM from July 1, 1990 to June 30, 1991 is related to the first Gulf-War. 

It rises again in 2003 surrounding the second Gulf War. Given the importance of Persian Gulf in 
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the world oil supply, it is not surprising that investors are less certain about future refining 

margins during periods when war threatens important supply sources. 

 

IV. Investment and Uncertainty 
 

U The Empirical Framework  

Given our data features discrete bursts of investment interspersed with periods of inactivity, 

we make use of econometric techniques for survival analysis and estimate the effect of 

uncertainty on the timing of investment projects.  Following the empirical approach of CHP 

[1999], Gelos and Isgut [2001] and Nilsen and Schiantarelli [2003], we estimate a discrete hazard 

model. Let T denote the length of a spell that a refinery stays in an inaction regime with the 

cumulative probability distribution function F(t). The probability that a refinery stays in an 

inaction regime longer than T is given by the survival function S(t)=1-F(t)=Pr(T>t). The hazard 

function gives the conditional probability that a refinery increases its capacity by more than the 

threshold value in the interval of ∆t after it stays in inaction until t. Using the notation of Kiefer 

[1988], the hazard function can be written as 

(2) 
t

tTttTtprt
Δ

≥Δ+<≤
=

→Δ

)|()( lim
0

λ                                                                             

And the survival function )(tS  is given by  

 (3)            ∏
−

=

−=≥=
1

1

))(1()|Pr()(
t

s

txtTtS λ  .                                                                      

In our application, an inaction spell is exited by an investment episode exceeding the 

relevant threshold. Spells that end through refinery closures are censored and capacity reductions 

of ongoing operations do not result in the exit of a spell. Most refineries have multiple investment 

episodes during the sample period and we reset an individual refinery’s clock to zero after each 

episode. Some refineries were in an ongoing inaction spell at the start of the sample period. For 
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these refineries, we identify their last investment episode before 1985 and use this information to 

initialize the current spell length in 1985.  

The recent literature on the cost of capital adjustments (CHP [1999], CH [2006]) argues 

that positive duration dependence is consistent with non-convex forms of adjustment costs.  The 

reason is that under the assumption of non-convex costs of adjustment (say, a fixed cost), the 

likelihood of net gains from a new investment being able to justify the fixed cost increases in the 

time since the last investment.  This is due to the fact that in the CHP [1999] model the difference 

in the productivity of a firm’s existing capital stock and new investment grows in time since the 

last investment.  When the productivity difference between the new capital and the firm’s existing 

vintage of capital becomes large enough, firms invest.  In contrast, under convex adjustment costs, 

the best response is to invest whenever there is a capital shortage. This yields positive correlation 

in producer-level investment series and the prediction of negative duration dependence in the 

hazard, though one should not observe lumpy investment.   Models with irreversibility also yield 

positive correlations in investment and the prediction of negative duration dependence in the 

hazard (Bigsten et al [2005]). However, there is a key difference between the irreversibility and 

convex adjustment cost models. Models of irreversibility imply episodes of investment inactivity 

interspersed with periods of investment and this is not the case in convex adjustment cost models 

where firms smooth investment across periods. 

The discrete hazard is parameterized using a complementary log-log function: 

(4) ))exp(exp(1),1|Pr(),,(
2

'∑
=

++−−=−>==
S

t
iytiyt xDxtttTxt βγϕβλ             

where φ is the intercept. γ’s and β’s are the coefficients to be estimated. DBtiy  Bis a set of duration 

dummies, equal to 1 if year y is the tth year from the last investment episode for refinery i. TPF

12
FPT S 

denotes the longest spell duration. DB1iy  Bis the omitted category. From the estimated γ’s, one can 

construct a non-parametric estimation of the baseline hazard. If the γ’s are increasing, then the 

                                                 
TP

12
PT For example, if an investment episode occurs in year y, then t is equal to 1 in year y+1.  
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baseline hazard has positive duration dependence. That is, the probability of exiting a spell 

increases as the time elapsed from the last investment episode increases. On the other hand, 

declining γ’s indicate negative duration dependence, meaning the probability of undertaking an 

investment project decreases as the duration of the inactivity spell rises.  xBiyB is a vector of 

explanatory variables. The marginal effect of x on the hazard is exp(-exp(x’β))·exp(x’β)β, so the 

sign of the estimated β gives the directional effect of the x variable on the hazard function. A 

positive β means the hazard increases in x, and vice versa.  

The variables contained in x include both the margin and uncertainty variables discussed 

above and a number of additional variables. We control for the overall capacity utilization rate in 

the refining district to proxy for supply conditions in an area.TPF

13
FPT The variable is measured as the 

ratio of average daily input (crude) to average daily capacity in a refining district and enters the 

empirical specification with a one year lag..  We expect that if supply conditions are tight in an 

area this may increase the probability that a refinery expands capacity. Since, Doms and Dunne 

[1998] find that smaller plants tend to have lumpier investment patterns than larger plants, a 

dummy variable that is equal to one for refineries with capacities less than 50,000 B/SD and zero 

otherwise is included in the model. TPF

14
FPT To control for geographic and institutional differences 

across regions, a set of dummy variables for refining districts is also included in the model.TPF

15
FPT  

The refining industry is one of the most heavily polluting industries and is subject to a 

number of environmental regulations. Using plant data from the Longitudinal Research Database, 

Becker and Henderson [2000] find that the differential air quality regulations reduce new plant 

                                                 
TP

13
PT A complete description and map for refining districts can be found in EIA’s annual publication 

Petroleum Supply Annual.  
TP

14
PT 50,000 B/SD is a standard industry definition for small refinery and is used by Kerr and Newell [2003]. 

TP

15
PT Doms and Dunne [1998] find that plants undergoing ownership change have lumpier investment patterns.  

However, we didn’t find the ownership change to have a significant effect on the hazard in our data. We 
also investigated the possible effect of business cycle on the hazard shape by including yearly dummies for 
the two recession years (1990 and 2001) during this period and find no evidence that the hazard in 
recession years differs significantly from other years. 
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births in ozone-nonattainment areas.TPF

16
FPT  Similarly, Greenstone [2002] finds that nonattainment 

counties have a lower plant-level growth rate relative to attainment counties. To control for the 

potential regulatory effect on refinery investments, we also make use of the data on air quality 

attainment status, and in particular, focus on the ozone attainment status.  Ozone is a major 

component of smog and is formed by the reaction of volatile organic compounds (VOC) and 

nitrogen oxides (NOx).  The refining industry emits both VOC and NOx and is ranked first and 

second, respectively, among 18 air polluting industries by the EPA [2004].  A dummy variable is 

constructed that is equal to 1 if a refinery is located in an ozone-nonattainment county in a 

particular year and zero otherwise. Since refineries located in ozone nonattainment areas are 

subject to stricter regulations which may require extra investment in pollution abatement 

associated with a capacity expansion project or a longer time to get a permit for their expansion 

plans, we expect the ozone-nonattainment variable to have a negative sign in the estimated hazard.  

To control for the unobserved heterogeneity, we also applied Heckman and Singer’s 

[1984] approach by allowing the intercept term φ in the hazard function (4) to differ. We model 

the distribution of the φ by a discrete distribution of Z mass points. Each mass point has 

probability α BzB. The hazard function for a spell belonging to type z is: 

(5) ))exp(exp(1),,(
2

'∑
=

++−−=
S

s
iysiysz xDxt βγϕβλ                                                   

Equations (4) and (5) are estimated using maximum likelihood methods.  

 

UEmpirical Results 

Table I reports the estimation result of equation (4) using the second definition (six months 

lag) of refining margin and uncertainty measures. The results using the first and third definitions 

                                                 
TP

16
PT According to the Clean Air Act and its amendments, the Environmental Protection Agency (EPA) uses 

four criteria pollutants -- carbon monoxide (CO), ozone (OB3 B), sulfur dioxide (SOB2B), and particulate matter – 
as indicator of air quality and establishes national air quality standards for each of them. A county is 
designated ‘nonattainment’ if its air pollution level of a particular pollutant persistently exceeds the 
relevant national standards.  
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of margin and uncertainty measures are very similar and therefore not reported for brevity’s sake. 

The first three columns in Table I present the results from the investment hazard using the relative 

thresholds (0%, 5% and 10%) while the remaining two columns provide the estimates using the 

absolute thresholds (2000 B/D and 4000 B/D). Across all five investment hazards, the estimated 

coefficient on the uncertainty variable is negative and statistically significant, indicating increases 

in uncertainty decrease the probability refiners make new investment. As with any nonlinear 

model, the magnitude of the marginal effect in a complementary log-log model varies with the 

point of evaluation.  Using the five percent threshold as an example, when the other control 

variables are evaluated at their mean values a one standard deviation increase in margin 

uncertainty lowers the hazard rate by about 11 percent.  Alternatively, a one standard deviation in 

uncertainty lowers the hazard by 18 percent when the 4000 B/SD threshold is used. Figures 5A 

and 5B show the shift in the hazard for this one standard deviation change in uncertainty for the 

five percent and 4000 B/SD thresholds.  Comparing the hazard results based on relative 

thresholds to the absolute thresholds, uncertainty has a stronger impact when the absolute 

thresholds are used and for projects that cross the ten percent threshold.  This suggests that 

initiation of larger projects is more sensitive to increased uncertainty. These results on uncertainty 

are consistent with the predications from the ‘real option’ theory that firms delay investment 

when uncertainty is high.  

Looking at the other variables in the hazard, both the refining margin and utilization rate 

variables are generally positive though not always statistically significant in the hazard. The 

hazard is generally lower for smaller refineries indicating longer durations between investment 

episodes and this is especially true under the absolute thresholds.  For example, when other 

explanatory variables are evaluated at their mean values a small refinery is 67 percent less likely 

to exit an investment inactivity spell with 2000 B/D investment than a large refinery.  This 

reflects the fact that under the absolute definition an investment of 2000 B/D is quite large for 

small refineries but represents a relatively small investment for large refineries.  This illustrates 
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the key difference between using an absolute and a relative definition.  It changes the distribution 

of spells systematically across the size distribution of refineries -- lengthening the spells of small 

refineries. The variable that identifies whether a refinery is in an ozone nonattainment area has 

the expected sign although is only statistically significant under the five percent threshold.  

The duration dummies in Table I indicate that the hazard falls for the first three years 

following an investment episode, it then remains relatively flat, although there is some variation 

across thresholds. For example, in the 2000 B/SD case, the hazard bumps in the eighth year after 

an investment, but the overall shape after the third year is essentially flat. The pattern can also be 

seen in Figures 5A and 5B for the five percent and 4000 B/SD thresholds. A likelihood ratio test 

of the restriction that sets all the duration dummies equal to zero in each of the five models 

presented in Table I rejects the null hypothesis that all the duration dummies are jointly zero for 

all five models.   

However, the previous literature (e.g., CHP [1999]) has noted that the shape of the hazard 

can be quite sensitive to the modeling of the unobserved heterogeneity in the data. Table II 

presents the estimation results of equation (5) when the unobserved heterogeneity is controlled 

for by allowing the intercept term to vary with a discrete distribution of mass points.  The effect 

of uncertainty on the hazard is somewhat weaker in these models both in terms of magnitude and 

statistical significance.  In addition, the shape of the hazards generated from the model with 

heterogeneity varies more across models.  Three out of the five models have a downward slope 

but the remaining two (ten percent and 4000 B/SD thresholds) are essentially flat. In Figure 6A 

and 6B we plot the hazard curves for the five percent and 4000 B/SD cases allowing the 

intercepts to vary by our estimates of the mass points.  For the five percent case, the shape of the 

hazard (Figure 6A) clearly mirrors the shape in Figure 5. In the case of 4000 B/SD threshold, the 

hazard rate for the first three years is not significantly higher than other years. It flattens out 

almost immediately after an investment. The estimated coefficients for other variables are largely 

consistent with Table I. Comparing the log likelihoods in Table I and Table II, the log likelihood 
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improves little with the inclusion of the mass points. This may be due to the fact that the 

heterogeneity is less prominent in a well-defined industry like oil refining and that the inclusion 

of explanatory variables already controls for refinery-level heterogeneity. Cameron and Trivedi 

[2005] suggest the use of a penalized likelihood criterion for model selection, with a high penalty 

for more parameters. TPF

17
FPT  We report the Bayesian Information Criterion (BIC) in the last rows of 

Table I & 2.  A lower BIC indicates a preferred specification.  Based on this test, the model with 

discrete heterogeneity is clearly favored only in the 4000 B/SD case.  

Our data and the results in Tables I and II appear to be largely consistent with an 

environment where irreversibility is an important characteristic of the investment process. TPF

18
FPT  First, 

the timing of investment is affected by uncertainty as predicted by the Dixit and Pindyck [1994] 

model.  This framework emphasizes the importance of the irreversibility in the investment 

process.  Second, the lumpy pattern of investment observed in the refining industry is also in line 

with the irreversibility story.  Finally, the shape of the hazard, while sensitive to the choice of 

specification, is generally consistent with irreversibility.  A declining hazard could arise in 

models where either irreversibility or convex adjustment cost are present. However, given the 

large number of inaction spells and the significant uncertainty-investment relationship, we believe 

it is irreversibility rather than a convex cost story that best explains our data. In models that 

incorporate heterogeneity through the estimation of mass points, the results regarding the shape of 

the hazard are less clear.  In specifications where the threshold is high (ten percent or 4000 B/SD 

thresholds), the hazard is essentially flat.  Perhaps one interpretation is that a refiner may need to 

bear significant fixed costs, especially in terms of lost output, when undertaking a larger 

investment project.  The flat hazards could be consistent with a model that incorporates both the 

                                                 
TP

17
PT Cameron and Trivedi [2005] report on work by Baker and Melino [2000] that examines the issue of 

overparameterization in discrete duration models with unobserved heterogeneity.  Baker and Melino [2000] 
show that overparameterization of the unobserved heterogeneity leads to bias in the estimated coefficients 
for the explanatory variables and spurious duration dependence.   
TP

18
PT Bloom [2007] estimates a dynamic model of investment and finds an important role for irreversibility in 

explaining the patterns of capital adjustment in Compustat data. 
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irreversibility (a downward sloping hazard) and fixed cost components (an upward sloping 

hazard). TPF

19
FPT The two competing forces could yield a flat hazard.  

In addition to our main results presented above, we also estimate a model with an 

alternative measure of aggregate industry investment uncertainty. Table III present the results of a 

model where we replace the refining margin measure of uncertainty with a stock market index 

based measure of uncertainty (XOI uncertainty). The XOI uncertainty is constructed from the oil 

index (symbol: XOI) which is designed to represent the financial performance of publicly traded 

oil companies. XOI is comprised of 13 major oil companies (including independent refiners) and 

traded at the American Stock Exchange (AMEX).  Similar to the refining margin uncertainty, 

XOI uncertainty is the annual standard deviation of the daily return of this oil index.  Across 

alternative thresholds, there is no statistically significant effect of stock market uncertainty on the 

capacity expansion decision.  One interpretation of this weak correlation is that the share of an oil 

company’s profits derived from refinery operations is relatively small and that the majority of the 

fluctuations in the XOI are due to fluctuations in the profitability of the explorations and 

production divisions of the integrated oil companies.  Moreover, the XOI only reflects the large 

producers but many of our refineries are owned by smaller public and nonpublic companies. 

Our last set of estimates replaces the capacity expansion definition of an event with a 

capacity change definition.  Under this definition a spell can end because of a capacity expansion 

event that exceeds the threshold or a contraction event that exceeds the negative of the threshold.   

Table IV reports these results using the same empirical specifications used in Table I.  The main 

results hold from Table I.  The likelihood of making a capacity change falls as uncertainty 

increases and the shape of the hazard is downward sloping.  The uncertainty results are robust 

across the different thresholds. Most of the other variables are not statistically significant with the 

exception of the indicator variable on refining size.  The small refinery indicator now becomes 
                                                 
TP

19
PT The presence of a mix of fixed and convex adjustment costs is explored in CH [2006] and they find 

evidence that a model that incorporates both types of adjustments fit the data best. 
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positive and statistically significant under the five percent and ten percent thresholds, but remains 

negative under absolute thresholds.  This contrasts dramatically to the results in Table I to III 

where the small refinery dummy had a negative effect in all the estimated models.    This varying 

pattern in the size effects is likely due to the treatment of refinery closures.  In the analysis 

presented in Tables I to III, refinery closings were treated as censored observations. In the models 

presented in Table IV, refinery closings now end inactivity spells.  Figure 2 shows the spike of 

refinery closings in the data on the far left side of the chart.  This leftmost bar represents largely 

small refineries.  The implication is that small refinery closings make up a larger fraction of the 

five percent and ten percent spells compared to the 2000 B/SD and 4000 B/SD definitions where 

there are a larger number of spells.  However, even under the 2000 B/SD and 4000 B/SD 

thresholds, the magnitude of the refinery size parameter is greatly reduced in comparison to the 

results presented in Table I.  

 

V. Conclusion 

There are two main measurement contributions of the paper. First, the paper uses data on 

changes in the actual capacity of refineries to measure investment episodes.  We believe that 

these data offer a cleaner assessment of the capital stock changes of producers than those based 

on accounting data.  Second, the paper uses forward measures from financial markets on 

commodities to construct estimates of market uncertainty.  These measures of commodity price 

uncertainty reflect uncertainties in both input and output prices faced by the refiner.   

Using these data, we examine how refiners’ investment decisions are influenced by market-

level uncertainty.  Empirically, a one standard deviation increase in the margin uncertainty 

measure reduces the probability of investment by 11% under the 5% investment threshold (Table 

I). This finding, along with capital adjustment patterns that are present in the data, appears most 

consistent with an environment where irreversibility is important.  Our results generally conform 

to the predications that arise from the real-options approach developed by Dixit and Pindyck 
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[1994] where both irreversibility and uncertainty play key roles.   In particular, as uncertainty in 

the refining margin rises, refiners delay their investment decisions.  The paper, therefore, 

provides evidence of the wait-and-see response of investment to a rise in uncertainty in a setting 

where the timing of investment projects is measured in a relatively clean fashion.  
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Figure 1  
The Number of Refineries and Total Refining Capacity 1985-2003 
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Data Source: Petroleum Supply Annual of EIA, various issues. This figure depicts the number of refineries 
and total refining capacity at the end of each year.  
 
 
Figure 2 

Refinery Capacity Change Distribution 
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Note: The capacity change variable on the horizontal axis is defined as the capacity change relative to each 
refinery’s capacity at the end of last year. Each bar shows the percent of refinery-year observations with the 
depicted capacity change rate. The far left bar (-1) represents refinery closures. 
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Figure 3 
Distribution of Duration Lengths (Years) between Two Investment Episodes 
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Note: Only completed investment spells are used to construct this figure.  
 
 
 
Figure 4 

Forward Refining Margin and Uncertainty Measure  

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

R
ef

in
in

g 
M

ar
gi

n 
($

/B
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ar

gi
n 

U
nc

er
ta

in
ty

 ($
/B

)

Refining Margin Margin Uncertainty
 

Note: The refining margin and margin uncertainty in this figure are, respectively, the mean and standard 
deviation of the daily forward refining margin of equation (1) from July 1 of year t-1 to June 30 of year t. 
The underlying futures price data are obtained from the Commodity Research Bureau.  
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Figure 5A 
                        

Impact of Uncertainty on Investment Hazard
(5% Threshold)
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Figure 5B 
 
 

Impact of Uncertainty on Investment Hazard 
(4000 b/sd threshold)
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Note: This figure depicts the investment hazard rates at mean uncertainty and at mean plus one standard 
deviation of the uncertainty measure. Other control variables are set at their mean values. 
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Figure 6A 
 

Discrete Hazard with Heterogeneity for 5% Threshold
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Figure 6B 
 

Discrete Hazard with Heterogeneity for 4000 b/d Threshold
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Note: This graph depicts the hazard curve estimated from equation (5) with two mass points. Type 1 and 
type 2 correspond to φB1 B and φB2 B respectively. 
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Table I  Investment Hazard Results 
 Relative Thresholds (%)  Absolute Size Thresholds 
 0% 5% 10% 2000 B/D 

Threshold 
4000 B/D 
Threshold 

Margin 
Uncertainty 

-0.560*** 
(0.199) 

-0.508*  
(0.268) 

-0.690* 
(0.36) 

-0.694*** 
(0.224) 

-0.886*** 
(0.271) 

Refining Margin 0.057 
(0.076) 

0.125  
(0.101) 

0.220* 
(0.131) 

0.166* 
(0.086) 

0.130 
(0.101) 

Utilization rate 0.029*** 
(0.007) 

0.002*  
(0.01) 

0.004 
(0.013) 

0.021** 
(0.008) 

0.014 
(0.010) 

Small Refinery 
Dummy 

-0.800*** 
(0.105) 

-0.418***  
(0.13) 

-0.068 
(0.168) 

-1.168*** 
(0.134) 

-1.634*** 
(0.189) 

Ozone 
Nonattainment 

-0.134 
(0.094) 

-0.251* 
(0.131) 

-0.289 
(0.175) 

-0.093 
(0.106) 

-0.082 
(0.126) 

D2 -0.435*** 
(0.121) 

-0.234 
(0.198) 

-0.228 
(0.294) 

-0.279** 
(0.138) 

-0.301* 
(0.167) 

D3 -0.430*** 
(0.136) 

-0.267 
(0.207) 

-0.567* 
(0.328) 

-0.409*** 
(0.16) 

-0.362* 
(0.186) 

D4 -0.855*** 
(0.176) 

-0.788*** 
(0.257) 

-0.768** 
(0.357) 

-0.781*** 
(0.201) 

-1.021*** 
(0.263) 

D5 -1.021*** 
(0.202) 

-0.854*** 
(0.268) 

-0.980** 
(0.384) 

-0.854*** 
(0.222) 

-0.751*** 
(0.252) 

D6 -1.203*** 
(0.235) 

-0.778*** 
(0.274) 

-0.571* 
(0.337) 

-1.036*** 
(0.258) 

-0.938*** 
(0.287) 

D7 -0.950*** 
(0.226) 

-0.837*** 
(0.297) 

-0.868** 
(0.385) 

-0.924*** 
(0.265) 

-1.098*** 
(0.334) 

D8 -0.743*** 
(0.221) 

-0.885*** 
(0.316) 

-0.821** 
(0.385) 

-0.369* 
(0.223) 

-0.758** 
(0.297) 

D9 -0.904*** 
(0.253) 

-0.885*** 
(0.328) 

-1.627*** 
(0.536) 

-0.697** 
(0.273) 

-1.320*** 
(0.393) 

D10 -1.351*** 
(0.341) 

-0.836** 
(0.342) 

-1.316*** 
(0.487) 

-1.115*** 
(0.365) 

-0.918*** 
(0.351) 

D11 -0.701*** 
(0.261) 

-0.919*** 
(0.357) 

-1.150** 
(0.451) 

-0.695** 
(0.303) 

-1.035*** 
(0.37) 

D12 -0.696** 
(0.278) 

-0.943*** 
(0.357) 

-1.057** 
(0.423) 

-0.761** 
(0.316) 

-0.906*** 
(0.351) 

D13 & above -1.327*** 
(0.179) 

-0.953*** 
(0.185) 

-1.426*** 
(0.247) 

-1.13*** 
(0.172) 

-1.120*** 
(0.179) 

φ -2.089*** 
(0.801) 

-1.734 
(1.094) 

-2.729* 
(1.471) 

-2.866*** 
(0.923) 

-2.238** 
(1.081) 

Log L -1457.84 -1016.53 -665.82 -1237.02 -971.205 
BIC 3126.38 2243.76 1542.34 2684.74 2153.11 

No. Spells 835 537 400 700 571 
Notes: (1) The model is estimated using a complementary log-log function. (2) n=3307. (3) Standard errors are in 
parenthesis. (4)*** (**, *) denotes significance at the 1 (5, 10) percent level. (5) D2-D13 are indicator variables that 
measure spell length in years. (6) Controls for refining districts are not reported. 
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Table II Investment Hazard Results with Heterogeneity  
 Relative Thresholds (%) Absolute Size Thresholds 
 0% 5% 10% 2000 B/D 

Threshold 
4000 B/D 
Threshold 

Margin 
Uncertainty 

-0.392* 
(0.233) 

-0.516* 
(0.271) 

-0.993*** 
(0.384) 

-0.529** 
(0.261) 

-0.801** 
(0.324) 

Refining Margin -0.038 
(0.098) 

0.131 
(0.104) 

0.381*** 
(0.142) 

0.082 
(0.106) 

0.057 
(0.128) 

Utilization rate 0.029*** 
(0.01) 

0.005 
(0.014) 

0.046** 
(0.020) 

0.033*** 
(0.012) 

0.040*** 
(0.016) 

Small Refinery 
Dummy 

-0.910*** 
(0.132) 

-0.440*** 
(0.157) 

-0.663** 
(0.306) 

-1.378*** 
(0.189) 

-2.486*** 
(0.399) 

Ozone 
Nonattainment 

-0.139 
(0.107) 

-0.264* 
(0.142) 

-0.602** 
(0.270) 

-0.100 
(0.122) 

-0.098 
(0.156) 

D2 -0.222 
(0.187) 

-0.217 
(0.209) 

-0.033 
(0.301) 

0.019 
(0.248) 

0.394 
(0.299) 

D3 -0.192 
(0.207) 

-0.235 
(0.242) 

-0.204 
(0.348) 

-0.073 
(0.273) 

0.379 
(0.336) 

D4 -0.614*** 
(0.243) 

-0.746** 
(0.305) 

-0.280 
(0.389) 

-0.429 
(0.307) 

-0.238 
(0.389) 

D5 -0.822*** 
(0.268) 

-0.814*** 
(0.311) 

-0.494 
(0.417) 

-0.527 
(0.328) 

0.044 
(0.391) 

D6 -1.002*** 
(0.293) 

-0.728** 
(0.334) 

0.062 
(0.387) 

-0.691* 
(0.358) 

-0.118 
(0.417) 

D7 -0.763*** 
(0.284) 

-0.783** 
(0.359) 

-0.112 
(0.453) 

-0.611* 
(0.363) 

-0.294 
(0.455) 

D8 -0.532* 
(0.275) 

-0.828** 
(0.382) 

-0.076 
(0.456) 

-0.034 
(0.328) 

0.071 
(0.431) 

D9 -0.671** 
(0.301) 

-0.826** 
(0.394) 

-0.848 
(0.607) 

-0.360 
(0.367) 

-0.544 
(0.502) 

D10 -1.086*** 
(0.381) 

-0.774* 
(0.412) 

-0.581 
(0.553) 

-0.732* 
(0.443) 

-0.124 
(0.469) 

D11 -0.479 
(0.312) 

-0.857** 
(0.425) 

-0.521 
(0.504) 

-0.365 
(0.402) 

-0.222 
(0.493) 

D12 -0.492 
(0.329) 

-0.883** 
(0.423) 

-0.400 
(0.501) 

-0.461 
(0.405) 

-0.148 
(0.468) 

D13 & above -1.079*** 
(0.243) 

-0.89*** 
(0.301) 

-0.735* 
(0.430) 

-0.746** 
(0.301) 

-0.301 
(0.347) 

φB1B 

-2.785*** 
(1.021) 

-2.154 
(1.656) 

-8.926*** 
(2.288) 

-4.013*** 
(1.308) 

-5.107*** 
(1.742) 

φB 2B 

[αB2B] 
0.376 

[0.092] 
-1.493 
[0.241] 

-5.722 
[0.494] 

-0.932 
[0.104] 

-2.227 
[0.211] 

Log L -1455.03 -1016.49 -661.60 -1234.11 -965.14 
BIC 3128.86 2251.78 1542.00 2687.02 2149.08 

No. of Spells 835 537 400 700 571 
Notes: (1) The hazard model is estimated using the Heckman-Singer approach including two mass points (φ’s). (2) 
n=3307. (2) Standard errors are in parenthesis. (3)*** (**, *) denotes significance at the 1 (5, 10) percent level. (4) D2-
D13 are indicator variables that measure spell length in years. (5) Controls for refining districts are not reported. 
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Table III  Investment Hazard Results with XOI Uncertainty  
 Relative Thresholds (%) Absolute Size Thresholds 
 0% 5% 10% 2000 B/D 

Threshold 
4000 B/D 
Threshold 

XOI Uncertainty 0.023 
(0.097) 

-0.174 
(0.162) 

-0.017 
(0.23) 

-0.095 
(0.112) 

-0.195 
(0.132) 

Refining Margin -0.035 
(0.067) 

0.011 
(0.095) 

0.121 
(0.126) 

0.028 
(0.072) 

-0.054 
(0.085) 

Utilization rate 0.020** 
(0.009) 

0.001 
(0.010) 

0.002 
(0.013) 

0.020 
(0.010) 

0.013 
(0.012) 

Small Refinery 
Dummy 

-0.796*** 
(0.117) 

-0.424*** 
(0.141) 

-0.067 
(0.176) 

-1.163*** 
(0.140) 

-1.628*** 
(0.21) 

Ozone 
Nonattainment 

-0.138 
(0.100) 

-0.262** 
(0.125) 

-0.289* 
(0.171) 

-0.105 
(0.111) 

-0.101 
(0.129) 

D2 -0.428*** 
(0.122) 

-0.218 
(0.197) 

-0.214 
(0.294) 

-0.265* 
(0.143) 

-0.288 
(0.167) 

D3 -0.425*** 
(0.151) 

-0.254 
(0.219) 

-0.556* 
(0.305) 

-0.398** 
(0.176) 

-0.361 
(0.204) 

D4 -0.850*** 
(0.193) 

-0.771*** 
(0.239) 

-0.751** 
(0.329) 

-0.779*** 
(0.201) 

-1.030*** 
(0.261) 

D5 -1.022*** 
(0.200) 

-0.849*** 
(0.239) 

-0.980*** 
(0.375) 

-0.859*** 
(0.205) 

-0.767*** 
(0.244) 

D6 -1.186*** 
(0.231) 

-0.763*** 
(0.276) 

-0.564 
(0.356) 

-1.021*** 
(0.247) 

-0.932*** 
(0.258) 

D7 -0.970*** 
(0.239) 

-0.856*** 
(0.282) 

-0.900** 
(0.400) 

-0.951*** 
(0.272) 

-1.160*** 
(0.320) 

D8 -0.765*** 
(0.23) 

-0.902*** 
(0.314) 

-0.851** 
(0.389) 

-0.392* 
(0.228) 

-0.800** 
(0.327) 

D9 -0.937*** 
(0.259) 

-0.915*** 
(0.324) 

-1.665*** 
(0.536) 

-0.736*** 
(0.278) 

-1.355*** 
(0.401) 

D10 -1.384*** 
(0.343) 

-0.889** 
(0.355) 

-1.363*** 
(0.501) 

-1.185*** 
(0.366) 

-1.015*** 
(0.348) 

D11 -0.695** 
(0.259) 

-0.937*** 
(0.341) 

-1.179** 
(0.462) 

-0.707** 
(0.305) 

-1.074*** 
(0.358) 

D12 -0.683** 
(0.281) 

-0.947*** 
(0.355) 

-1.056** 
(0.439) 

-0.769** 
(0.313) 

-0.926*** 
(0.339) 

D13 & above -1.318*** 
(0.187) 

-0.950*** 
(0.18) 

-1.416*** 
(0.239) 

-1.129*** 
(0.171) 

-1.132*** 
(0.191) 

φ -2.015** 
(0.950) 

-1.126*** 
(1.229) 

-2.436 
(1.605) 

-2.469** 
(1.072) 

-1.571 
(1.234) 

Log L -1461.8951 -1017.78 -667.723 -1241.69 -975.93 

BIC 3134.49 2246.26 1546.14 2694.08 2162.56 

No. of Spells 835 537 400 700 571 
Notes: (1) The model is estimated using a complementary log-log function. (2) n=3307. (3) Standard errors are in 
parenthesis. (4)*** (**, *) denotes significance at the 1 (5, 10) percent level. (5) D2-D13 are indicator variables that 
measure spell length in years. (6) Controls for refining districts are not reported. 
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Table IV   Hazard Results with Capacity Change Definition 
 Relative Thresholds (%)  Absolute Size Thresholds 
 0% 5% 10% 2000 B/D 

Threshold 
4000 B/D 
Threshold 

Margin 
Uncertainty 

-0.462*** 
(0.169) 

-0.516** 
(0.222) 

-0.561** 
(0.275) 

-0.538*** 
(0.190) 

-0.627*** 
(0.219) 

Refining Margin 0.047  
(0.064) 

0.069  
(0.081) 

0.067  
(0.098) 

0.117  
(0.072) 

0.086  
(0.081) 

Utilization rate 0.011* 
(0.006) 

-0.008  
(0.008) 

-0.008  
(0.01) 

0.008  
(0.007) 

0.007  
(0.008) 

Small Refinery 
Dummy 

-0.315*** 
(0.083) 

0.239** 
(0.104) 

0.754*** 
(0.133) 

-0.462*** 
(0.100) 

-0.447*** 
(0.117) 

Ozone 
Nonattainment 

-0.091  
(0.081) 

-0.136  
(0.108) 

-0.127  
(0.134) 

-0.055  
(0.091) 

-0.028  
(0.103) 

D2 -0.42*** 
(0.105) 

-0.222  
(0.164) 

-0.226  
(0.23) 

-0.261** 
(0.121) 

-0.296** 
(0.145) 

D3 -0.480*** 
(0.120) 

-0.310* 
(0.177) 

-0.626** 
(0.268) 

-0.39*** 
(0.139) 

-0.429*** 
(0.166) 

D4 -0.793*** 
(0.151) 

-0.781*** 
(0.216) 

-0.641** 
(0.273) 

-0.692*** 
(0.171) 

-0.827*** 
(0.209) 

D5 -0.903*** 
(0.170) 

-0.773*** 
(0.219) 

-0.764*** 
(0.284) 

-0.942*** 
(0.201) 

-0.632*** 
(0.204) 

D6 -0.770*** 
(0.174) 

-0.525** 
(0.21) 

-0.352  
(0.252) 

-0.896*** 
(0.211) 

-0.734*** 
(0.224) 

D7 -0.614*** 
(0.178) 

-0.584** 
(0.23) 

-0.546** 
(0.278) 

-0.635*** 
(0.204) 

-0.715*** 
(0.237) 

D8 -0.788*** 
(0.209) 

-0.944*** 
(0.279) 

-1.068*** 
(0.349) 

-0.574*** 
(0.215) 

-1.024*** 
(0.283) 

D9 -0.729*** 
(0.218) 

-0.739*** 
(0.264) 

-0.957*** 
(0.336) 

-0.442** 
(0.215) 

-0.837*** 
(0.267) 

D10 -0.896*** 
(0.266) 

-0.359  
(0.248) 

-0.667** 
(0.315) 

-0.845*** 
(0.289) 

-0.895*** 
(0.294) 

D11 -0.545** 
(0.239) 

-0.588** 
(0.279) 

-0.816** 
(0.336) 

-0.471* 
(0.250) 

-0.873*** 
(0.294) 

D12 -0.955*** 
(0.309) 

-1.381*** 
(0.393) 

-1.045*** 
(0.365) 

-1.164*** 
(0.344) 

-1.352*** 
(0.367) 

D13 & above -1.177*** 
(0.161) 

-0.741*** 
(0.157) 

-1.069*** 
(0.194) 

-0.961*** 
(0.149) 

-1.066*** 
(0.152) 

φ -1.296* 
(0.675) 

-0.628  
(0.878) 

-1.232 
 (1.096) 

-1.628** 
(0.766) 

-1.508* 
(0.876) 

Log L -1773.17 -1306.36 -961.29 -1549.73 -961.29 

BIC 3757.04 2823.42 2133.28 3310.16 2133.28 

No. of Spells 957 600 443 781 635 
 Notes: (1) The model is estimated using a complementary log-log function. (2) n=3307. (3) Standard errors are in 
parenthesis. (4)*** (**, *) denotes significance at the 1 (5, 10) percent level. (5) D2-D13 are indicator variables that 
measure spell length in years. (6) Controls for refining districts are not reported. 
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Appendix 

Summary Statistics 

 Mean Std. Deviation Minimum Maximum 

Utilization Rate (%) 86.98 7.66 60.71 102.80 

Refining Margin ($/B) 4.723 0.637 3.570 6.046 
Refining Margin 
Uncertainty, ($/B) 0.594 0.239 0.220 1.237 

XOI Uncertainty (%) 1.137 0.381 0.621 2.142 
                     

 
 




