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1 Introduction

A recent literature pioneered by Du¢ e, Gârleanu and Pedersen (2005) (DGP hereafter) uses

search theory to model the trading frictions characteristic of over-the-counter (OTC) markets.1

The search-based approach is appealing because it can parsimoniously rationalize standard

measures of liquidity such as bid-ask spreads, execution delays and trade volume, and can be

used to study how market conditions in�uence these measures. A virtue of DGP�s formulation

is that it is analytically tractable, so all these mechanisms can be well understood.

The literature spurred by DGP, however, keeps the framework tractable by imposing a

stark restriction on asset holdings, namely, that agents can only hold either 0 or 1 unit of the

asset. In e¤ect, the investors� ability to respond to changes in market conditions is limited

rather severely by this restriction. In this paper we develop a search-based model of liquidity in

asset markets with no restrictions on investors�asset holdings. The model is close in structure

and spirit to DGP, but captures the heterogeneous responses of individual investors to changes

in market conditions. From the broader perspective of search and matching theory, a striking

feature of the model we develop is that it remains analytically tractable despite the large degree

of heterogeneity among agents which is propagated endogenously by random matching with

unrestricted asset holdings.2 We provide a full characterization of the equilibrium� including

transitional dynamics and the endogenous distribution of investors�asset positions� and show

how it depends on all the details of the market structure.

Our methodological contribution provides new insights into how trading frictions a¤ect

outcomes in �nancial markets. We �nd that as a result of the restrictions they impose on asset

holdings, existing search-based theories neglect a critical feature of illiquid markets, namely the

fact that market participants can mitigate trading frictions by adjusting their asset positions to

reduce their trading needs.3 The key theoretical observation is that an investor�s asset demand

1The search-theoretic literature on �nancial markets also includes Du¢ e, Gârleanu and Pedersen (2006),
Gârleanu (2006), Miao (2006), Rust and Hall (2003), Spulber (1996) and Weill (2007).

2DGP restricted asset holdings for the same technical reasons why Kiyotaki and Wright (1993) restricted
money holdings to f0; 1g, i.e., to keep the endogenous distribution of asset holdings manageable. Aside from a
few exceptions, such as Green and Zhou (2002), the recent monetary literature, e.g., Lagos and Wright (2005),
allows for unrestricted portfolios and keeps the analysis tractable by making assumptions that render the equi-
librium distribution of money holdings degenerate. By way of comparison, the model we develop here allows for
unrestricted asset holdings and remains tractable even though we make no attempt to harness the heterogeneity
that is generated by the model dynamics.

3The importance of this mechanism in the context of another class of models� those with exogenous trans-
action costs� has been stressed by Constantinides (1986) for the case of proportional transaction costs, and by
Lo, Mamaysky and Wang (2004) for the case of �xed transaction costs.
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in an OTC market depends not only on his valuation for the asset at the time of the trade,

but also on his expected valuation over the holding period until his next opportunity to trade.

A reduction in trading delays makes investors less likely to remain locked into an undesirable

asset position and therefore induces them to put more weight on their current valuation. As a

result, reductions in trading frictions induce an investor to demand a larger asset position if his

current valuation is relatively high, and a smaller position if it is relatively low. We �nd that

these responses of individual asset demands are a key determinant of market e¢ ciency and asset

prices as well as bid-ask spreads, trade volume and trading delays� precisely the dimensions of

market liquidity that search-based theories of �nancial intermediation are designed to explain.

From an investor�s standpoint, bid-ask spreads constitute the main out-of-pocket transaction

cost in an illiquid market. We show that spreads depend not only on the ease with which

investors can �nd alternative trading partners (a mechanism identi�ed in the existing literature),

but also on the degree of mismatch between investors� endogenous asset positions and their

current valuations of the asset. Our model predicts a distribution of transaction costs, both

across trade sizes� with spreads that increase with the size of the trade� as well as within a

given trade-size category� across investors with di¤erent valuations.

Trade volume is a manifestation of the ability of the exchange mechanism to reallocate assets

across investors. We �nd that a reduction in trading delays shifts the equilibrium distribution

of asset holdings in a way that tends to increase trade volume. Our theory reveals that from an

investor�s point of view, an increase in the market power of dealers is isomorphic to an increase

in trading delays. Hence, trade volume will tend to be small in markets where dealers enjoy a

large degree of market power. These e¤ects are implicitly assumed away if asset holdings are

restricted to lie in f0; 1g.
Finally, we allow for free entry of dealers as a way to endogenize trading delays� a distin-

guishing feature of the microstructure of an OTC market. We �nd that when interacted with

investors�unrestricted asset holding decisions, the dealers�incentives to make markets generate

a liquidity externality that can give rise to multiple steady states. This �nding suggests that

all the symptoms of an illiquid market� large spreads, small trade volume and long trading

delays� can simultaneously arise as a self-ful�lling phenomenon in asset markets with an OTC

structure.
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2 Environment

Time is continuous, starts at t = 0 and goes on forever. There are two types of in�nitely-lived

agents: a unit measure of investors and a unit measure of dealers. There is one asset, one

perishable consumption good called fruit, and another consumption good de�ned as numéraire.

The asset is durable, perfectly divisible and in �xed supply, A 2 R+. Each unit of the asset
produces a unit �ow of fruit. There is no market for fruit, so holding the asset is necessary

to consume this good. The numéraire good is produced and consumed by all agents. The

instantaneous utility function of an investor is ui(a) + c, where a 2 R+ represents the fruit

consumption (which coincides with the investor�s asset holdings), c 2 R is the net consumption
of the numéraire good (c < 0 if the investor produces more of these goods than he consumes),

and i 2 X = f1; :::; Ig indexes a preference type. The utility function ui(a) is twice continuously
di¤erentiable, strictly increasing and strictly concave.4 Each investor receives a preference

shock with Poisson arrival rate �. This process is independent across investors. Conditional

on the preference shock, the probability the investor draws preference type i is �i > 0, withPI
i=1 �i = 1. These preference shocks capture the notion that investors will value the asset

di¤erently over time thereby generating the need to rebalance their asset positions.5 Dealers

do not hold positions and their instantaneous utility is c, their consumption of the numéraire

good.6 All agents discount at rate r > 0.

Dealers can trade the asset continuously in a competitive interdealer market. Investors

periodically contact dealers who can trade in this market on their behalf. Meetings with dealers

occur at random according to a Poisson process with arrival rate �.7 Once a dealer and an

4Just as in DGP, our speci�cation associates a certain utility to the investor as a function of his asset holdings.
The utility from holding an asset position could be simply the value from enjoying the asset itself, as would be
the case for real assets such as cars or houses. An alternative interpretation that leads to the same formulation
would be to assume that there is a single consumption good, that investors are risk-neutral and able to borrow
and lend freely at rate r, and regard the asset as physical capital used to produce the consumption good with
the production technology ui. As yet another possibility, one could adopt the preferred interpretation of DGP,
namely that ui is in fact a reduced-form utility function that stands in for the various reasons why investors may
want to hold di¤erent quantities of the asset, such as di¤erences in liquidity needs, �nancing or �nancial-distress
costs, correlation of asset returns with endowments (hedging needs), or relative tax disadvantages. By now,
several papers that build on the work of DGP have formalized the �hedging needs� interpretation. Examples
include Du¢ e, Gârleanu and Pedersen (2006), Gârleanu (2006) and Vayanos and Weill (2008).

5 In Lagos and Rocheteau (2008) (Appendix B) we allow preference shocks to follow a general continuous-time
Markov chain and �nd that most of the substantive results generalize under appropriate regularity conditions.

6The restriction that dealers cannot hold assets is immaterial when analyzing steady-state equilibria. Lagos,
Rocheteau and Weill (2007) study dynamic equilibria where dealers may choose to hold asset positions.

7While our description of the trading process is stylized, it captures the salient features of the actual trading
arrangements in OTC markets. We refer the interested reader to Schultz (2001) as well as the discussion in
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investor have contacted each other they negotiate over the quantity of assets that the dealer

will acquire for the investor and the intermediation fee that the dealer charges for his services.

After the transaction has been completed, the dealer and the investor part ways.

Asset holdings and preference types lie in the sets R+ and X, respectively, and vary across
investors and over time. We describe this heterogeneity with a probability space (S;�;Ht),
where S = R+ � X, � is the �-�eld generated by the sets (A; I), where A � R+ and I � X,
and Ht is a probability measure on � which represents the distribution of investors across asset

holdings and preference types at time t.

3 Equilibrium

Let Vi (a; t) denote the maximum expected discounted utility attainable by an investor who has

preference type i and is holding a assets at time t. The value function Vi (a; t) satis�es

Vi(a; t) = Ei
�Z T�

t
e�r(s�t)uk(s)(a)ds

+ e�r(T��t)fVk(T�)[ak(T�)(T�); T�]� p(T�)[ak(T�)(T�)� a]� �k(T�)(a;T�)g
�
; (1)

where T� denotes the next time the investor contacts a dealer and k(s) 2 X the investor�s

preference type at time s. The expectations operator, Ei, is over the random variables T� and

k(s) and is indexed by i to indicate that it is conditional on k(t) = i. The �rst term on the

right side of (1) contains the expected discounted utility �ows over the time interval [t; T�],

whose length is exponentially distributed with mean 1=�. The �ow utility is indexed by the

preference type, k(s), which follows a compound Poisson process. The second term on the right

side of (1) is the expected discounted utility from the time when the investor next contacts a

dealer, T�, onwards. At this time T�, the dealer purchases ak(T�)(T�) � a in the market (or
sells if this quantity is negative) at price p(T�) on behalf of the investor; the investor readjusts

his asset holdings from a to ak(T�)(T�) and pays the dealer an intermediation fee �k(T�)(a; T�).

Both the fee and the asset price are expressed in terms of the numéraire good.8

Section 2.1 in Lagos and Rocheteau (2006).
8Since the intermediation fee is determined in a bilateral meeting, it may depend on the investor�s preference

type and asset holdings. Our notation for the investor�s new asset position, ak(T�)(T�), makes explicit that it
may depend on time and on the investor�s preference type at the time of the trade. Below (condition (3)), we
will �nd that the investor�s new asset position is independent of the asset position he was holding at the time
of the trade. To simplify the notation we anticipate this result and do not include a as an argument of his new
asset position.
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LetW (t) denote the maximum expected discounted utility attainable by a dealer. It satis�es

W (t) = E
�
e�r(T��t)

�Z
S
�i(a; T�)dHT� +W (T�)

��
;

where the expectations operator, E, is over the next time the dealer meets an investor, T�.
Random matching implies that the investor whom the dealer meets is a random draw from

HT� , the distribution of investors across preference types and asset holdings at time T�.

We turn to the determination of the terms of trade in a bilateral meeting at time t between

a dealer and an investor of type i who is holding a. Let a0 denote the investor�s post-trade

asset holdings and � the intermediation fee. We take (a0; �) to be the outcome corresponding

to the Nash solution to a bargaining problem where the dealer has bargaining power � 2 [0; 1].
The utility of the investor is Vi(a0; t)� p (t) (a0 � a)� � if an agreement (a0; �) is reached, and
Vi(a; t) in case of disagreement. Therefore, the investor�s gain from trade is Vi(a0; t)�Vi(a; t)�
p (t) (a0 � a) � �. Analogously, the utility of the dealer is W (t) + � if an agreement (a0; �) is

reached and W (t) in case of disagreement, so the dealer�s gain from trade is the fee, �. The

bargaining outcome is

[ai(t); �i(a; t)] = arg max
(a0;�)

[Vi(a
0; t)� Vi(a; t)� p (t) (a0 � a)� �]1����; (2)

where the maximization is subject to a0 � 0.9 The solution (2) can be written as

ai (t) = argmax
a0�0

�
Vi(a

0; t)� p(t)a0
�

(3)

�i (a; t) = � fVi [ai (t) ; t]� Vi(a; t)� p(t) [ai (t)� a]g : (4)

We now turn to the investor�s problem. Substitute (3) and (4) into (1) to obtain

Vi(a; t) = Ei
�Z T�

t
e�r(s�t)uk(s)(a)ds

+ e�r(T��t)f(1� �)max
a0�0

�
Vk(T�)(a

0; T�)� p(T�)(a0 � a)
�
+ �Vk(T�)(a; T�)g

�
: (5)

It is apparent from (5) that the investor�s payo¤ is the same he would get in an alternative

environment where he meets dealers according to a Poisson process with arrival rate �, but
9 It would be equivalent to set � = (p̂�p (t))(a0�a) in (2) and reformulate the bargaining problem as a choice

of (a0 � a; p̂). If a0 > a the investor is a buyer and p̂ > p (t) can be interpreted as the ask price he is charged by
the dealer. Conversely, if a0 < a the investor is a seller and p̂ < p (t) is the bid price he is paid by the dealer. In
Lagos and Rocheteau (2008) (Appendix C), we formulate several strategic bargaining games, each with a unique
subgame perfect equilibrium outcome that coincides with the axiomatic Nash solution we have adopted here.
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instead of bargaining, he readjusts his asset position and extracts the whole surplus with prob-

ability 1��, whereas with probability � he cannot readjust his asset position and enjoys no gain
from trade. Therefore, from the standpoint of the investor, keeping the paths of the aggregate

variables unchanged, the environment we are analyzing is payo¤-equivalent to an alternative

one in which he meets dealers according to a Poisson process with arrival rate � = �(1��) and
has all the bargaining power in bilateral negotiations. Based on this observation, the following

lemma o¤ers an equivalent formulation of the investor�s choice of asset holdings that appears

on the right side of (5).

Lemma 1 An investor with preference type i and asset holdings a who readjusts his asset

position at time t solves

max
a0�0

�
�ui(a

0)� q(t)a0
�

(6)

where

�ui(a) =
(r + �)ui(a) + �

P
j �juj(a)

r + �+ �
(7)

q(t) = (r + �)

�
p(t)� �

Z 1

0
e�(r+�)sp(t+ s)ds

�
: (8)

In Lemma 1, �ui(a)= (r + �) is the expected discounted utility and q (t) = (r + �) = p(t) �
E[e�r(T��t)p(T�)] the present value of the expected capital loss to the investor from holding

a from t until the next (e¤ective) time T� when he readjusts his holdings, where T� � t is
exponentially distributed with mean 1=�. A choice of asset holdings, ai (t), must satisfy

�u0i [ai(t)] � q(t), �= � if ai(t) > 0. (9)

Given q (t), the following lemma shows how to recover p (t).10

Lemma 2 If limt!1 e�rtp(t) = 0, the price of the asset is

p(t) =

Z 1

t
e�r(s�t)

�
q(s)� _q(s)

r + �

�
ds: (10)

At this point we can simplify the expression for the intermediation fee. From (4), �i(a; t) =

� fVi [ai(t); t]� Vi(a; t)� p(t) [ai(t)� a]g, with ai(t) characterized by (9). If we substitute the
value functions (e.g., (27) from the appendix) we arrive at

�i(a; t) =
� f�ui [ai(t)]� �ui (a)� q(t) [ai(t)� a]g

r + �
: (11)

10 In Lagos and Rocheteau (2008) (Appendix D) we show that p (t) must satisfy limt!1 e
�rtp(t) = 0 in any

equilibrium, so we can appeal to this condition without loss of generality.
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Since each investor contacts a dealer with equal probability, the quantity of assets supplied

in the interdealer market over a small interval of time dt is �dtA.11 Similarly, the measure of

type-i investors who contact dealers is �dtni(t), where

ni(t) = e
��tni(0) + (1� e��t)�i (12)

is the measure of investors with preference type i at time t, so the demand for assets in the

interdealer market is �dt
PI
i=1 ni(t)ai(t). The clearing condition for the asset market is

IX
i=1

ni(t)ai(t) = A: (13)

At any point in time investors di¤er in asset holdings and preference types. Consider a set

of asset holdings A and a set of preference types I, then for all (A; I) 2 �, Ht (A; I) gives the
measure of investors whose asset holdings and preference types lie in A and I, respectively. We
characterize this probability measure in the following lemma, where Ifa2Ag denotes an indicator
function that equals 1 if a 2 A.

Lemma 3 The measure of investors across individual states at time t satis�es

Ht (A; I) =
X
i2I

IX
j=1

�
n0ji(A; t) +

Z t

0
Ifaj(t��)2Agnji(�; t)d�

�
(14)

for all (A; I) 2 �, where

n0ji(A; t) = e��t
h�
1� e��t

�
�i + e

��tIfi=jg
i
H0(A; fjg) (15)

and

nji(�; t) = �e
���

h�
1� e���

�
�i + e

��� Ifi=jg
i
nj(t� �): (16)

At time 0, the market starts with investors distributed across preference types and asset holdings

according to the initial probability measure H0. Subsequently there are two types of investors,

those who have not contacted a dealer since time 0 and those who have. The time-t measure

of those who started at time 0 with preference type j and assets in A, whose preference type
is i at the current time t, and who have never traded (so their asset holdings are still in A)
is n0ji(A; t) as given in (15). Analogously, nji (�; t) in (16) gives the time-t density of investors
11See Du¢ e and Sun (2007) for a derivation of the Law of Large Numbers in random-matching environments.
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whose last trade was at time t � � when their preference type was j and who have preference
type i at time t.

We are now ready to de�ne equilibrium.

De�nition 1 An equilibrium is a time-path hfai(t)g; q(t); p(t); f�i(a; t)g;Hti that satis�es (9),
(10), (11), (13) and (14), given an initial condition H0.

Proposition 1 There exists a unique equilibrium.

To illustrate how a reduction in trading delays a¤ects the equilibrium, consider the limiting

case � ! 1. From (7), �ui(a) ! ui(a) and from (8) and (9), u0i [ai (t)] � q(t) = rp(t) � _p(t)

for all i. From (13), q (t) ! q�(t), which solves
P
i2I+t

ni (t)u
0�1
i [q�(t)] = A, where I+t =

fi 2 X : ai (t) > 0g. From (11), �i(a; t)! 0 for all a, i and t. With regards to the distribution

of investors, � ! 1 implies that every investor holds his desired asset position at all times.12

Thus, as frictions vanish, investors choose ai (t) continuously by equating their current marginal

utility from holding the asset to its e¤ective cost q� (t), and the equilibrium fees, asset price

and distribution of asset holdings are the ones that would prevail in a Walrasian economy.

3.1 E¢ ciency

Consider a social planner who wishes to maximize the sum of all agents�expected discounted

utilities, subject to the same meeting frictions that they face in the decentralized formulation.

Speci�cally, over a small time interval of length dt the planner can only reallocate assets among

a measure �dt of investors chosen at random from the population.

Since the utility of consumption and the disutility of production of the numéraire good net

out to zero across agents, the planner solves

max
fai(t)gIi=1

(
K0 +

Z 1

0

IX
i=1

e�rt�ni(t)Ûi [ai(t)] dt

)

s.t.
IX
i=1

�ni(t)ai(t) � �A, (17)

12To see this, �rst note that (15) implies the measure of agents who have not contacted a dealer since time 0
vanishes; i.e., n0ji(A; t)! 0 for all i and j, all t and all A � R+ as �!1. The time-t density of agents who have
not contacted a dealer since time t� � > 0 is n (�; t) =

PI
i;j=1 nji (�; t). From (16), �!1 implies n (�; t)! 0

for all � > 0, i.e., investors can �nd a dealer instantly when � is arbitrarily large, so the measure of investors who
have not met a dealer between t� � and t is zero for all � > 0. As for those investors who have met a dealer this
�instant,� from (16), nji (0; t) = 0 for i 6= j and nii (0; t) = ni (t). Therefore, Ht (A; I) !

P
i2I Ifai(t)2Agni(t)

as �!1, i.e., every investor of type i holds ai (t) at every t.
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(12), and ai (t) � 0 for i 2 X, where

Ûi [ai(t)] = Ei
�Z T�

t
e�r(s�t)uk(s) [ai(t)] ds

�
;

K0 �
R
S Ûi(a)dH0, and H0 is given. The constant K0 captures the utility of all investors before

they trade for the �rst time. The second term in the objective states that over a time interval

of length dt there is a measure �ni(t)dt of investors of type i whose asset holdings can be

rebalanced.

Proposition 2 The equilibrium is e¢ cient if and only if � = 0.

When an investor conducts a trade, he anticipates that the fee he will be charged to rebalance

his asset holdings in his next encounter with a dealer will be increasing in the gains from that

future trade. Hence, � > 0 ine¢ ciently discourages investors from taking positions that tend

to lead to large asset reallocations in the future.

3.2 Steady state

Next, we characterize the limit of the equilibrium allocations and prices as t!1.13

Proposition 3 For any H0, the equilibrium allocations and prices described in De�nition

1, hfai(t)g; q(t); p(t); f�i(a; t)g;Hti, converge to the unique steady-state allocations and prices
hfaig; q; p; f�i(a)g;Hi, that satisfy p = q=r,

�u0i (ai) � q �= � if ai > 0; (18)
IX
i=1

�iai = A; (19)

�i(a) =
� [�ui (ai)� �ui (a)� q (ai � a)]

r + �
(20)

H(faig; fjg) =
��i�j + ��iIfi=jg

�+ �
(21)

and H (A; I) = 0 for all (A; I) 2 � such that
IS
j=1

fajg \ A = ?.

In what follows, when we analyze the steady state we will denote an individual investor�s state

(ai; j) 2 faigIi=1�X by (i; j) 2 X2 and H(faig; fjg) by nij . Also, at times we use �ji to denote
�i (aj) for (i; j) 2 X2.
13We omit the �t�argument in an endogenous variable when we refer to its steady-state value.
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4 Asset holdings, prices and trade volume

In this section we focus on the steady state to study the e¤ects of trading frictions on individual

asset holdings, asset prices and trade volume. Hereafter we assume u0i (1) = 0 and u0i (0) =1
for each i.14 Condition (18) becomes

�u0i(ai) = rp. (22)

Let ai = gi(�; p) denote the choice of asset holdings characterized by (22). Then

@gi(�; p)

@�
=
�
h
u0i (ai)�

PI
j=1 �ju

0
j (ai)

i
��u00i (ai) (r + �+ �)

2 (23)

has the sign of u0i (ai)�
PI
j=1 �ju

0
j (ai), i.e., an investor whose current marginal valuation exceeds

his expected marginal valuation over the expected holding period increases his demand when

� increases. If u0i (ai) >
PI
j=1 �ju

0
j (ai), the investor anticipates that his valuation is likely to

revert toward
PI
j=1 �ju

0
j (ai) in the future, and that when this happens, he may be unable to

rebalance his asset position for some time. Consequently, from (22), his choice of ai is lower

than u0�1i (rp), what he would choose in a world with no trading delays. If � increases, the

investor is more likely to �nd a dealer faster; if � decreases, it will be cheaper for the investor

to readjust his asset holdings once he �nds a dealer. In both cases the investor assigns more

weight to current marginal utility from holding the asset relative to the expected value, so his

demand increases. Conversely, an investor with a current marginal valuation which is below his

expected marginal valuation over the holding period reduces his demand when � increases.15

Next, we show how these reallocation e¤ects shape the implications of trading frictions for asset

prices and trade volume.

Standard frictionless models emphasize two sets of factors that a¤ect the determination of

equilibrium asset prices, i.e., intrinsic properties of the asset and the characteristics of investors
14These conditions imply that the investor�s problem has a solution for all q > 0, and that the nonnegativity

constraints in (6) are slack at every date for every investor in the unique equilibrium. This will simplify the
notation but is otherwise inessential for our results. See Lagos and Rocheteau (2006) for utility speci�cations
that do not satisfy the Inada conditions.
15 In Lagos and Rocheteau (2008) (Appendix B) we show that this insight does not rely on preference shocks

being i.i.d. We derive an expression analogous to (23) when preference shocks follow a general Markov process
and provide several su¢ cient conditions that allow us to sign @gi(�; p)=@�. We show, for instance, that for �
su¢ ciently large, @gi(�; p)=@� > 0 if and only if u0i(ai) <

PI
j=1 �iju

0
j(ai), where �ij is the probability that an

investor with preference type i draws type j conditional on his receiving a preference shock. This condition is
equivalent to the condition in part (i) of Proposition 2 in Gârleanu (2006). See Proposition 10 in Lagos and
Rocheteau (2008) for details.
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who buy it. Search theory identi�es a third element: the manner in which the asset is traded,

i.e., the details of the micro structure of the asset market, such as the rate at which investors

contact dealers and the market power of dealers. The following proposition characterizes the

e¤ects of these trading frictions on asset prices.

Proposition 4 Let ui(a) = "iu(a). If [u0(a)]
2 =u00(a) is strictly decreasing in a, then dp=d� > 0.

If [u0(a)]2 =u00(a) is increasing in a, then dp=d� � 0 (with �=� if [u0(a)]2 =u00(a) is constant).

For the class of preferences in Proposition 4, �ui (a) = �"iu(a), where �"i =
(r+�)"i+��"
r+�+� and �" =PI

j=1 �j"j , and (22) becomes �"iu
0(ai) = rp. For a given p, the demands of investors with

relatively low valuations ("i < �") fall, while those of investors with high valuations ("i > �")

rise as � increases. Whether an increase in � causes the asset price to rise depends on the

curvature of the individual demand for the asset as a function of �"i, i.e., on the slope of

@ai=@�"i = � [u0(ai)]2 = [u00(ai)rp]. If u is not too concave, ai is a convex function of �"i. For
this case, Jensen�s inequality implies that the increases in ai for relatively large values of "i

outweigh the decreases in ai for relatively low values of "i and the aggregate demand for the

asset increases in response to an increase in �. In turn, this implies that the equilibrium price

of the asset increases with �. Conversely, the asset price is decreasing in � if u is su¢ ciently

concave. For example, if u(a) = a1��=(1 � �) with � > 0, then dp=d� < 0 (> 0) if � > 1

(< 1).16

It is clear from (23) that regardless of the ultimate e¤ect of trading frictions on the asset

price, an increase in � induces high-valuation investors to take larger positions and low-valuation

investors to take smaller positions. This seems to suggest that the distribution of asset holdings

will spread out if frictions are reduced. However, this intuition is only partial because (23) keeps

the equilibrium asset price constant. In the following proposition we characterize the general

equilibrium e¤ect of trading frictions on the dispersion of the distribution of asset holdings.

Proposition 5 (i) Let ui(a) = "ia
1��=(1 � �) with � > 0. An increase in � causes the

equilibrium distribution of asset holdings to become riskier, in the second-order stochastic sense.

(ii) For all i 2 f1; ::; Ig, ai ! A as r + �! 0.

16 If u (a) = log a, then ai is linear in �"i and dp=d� = 0. This particular result is reminiscent of the �ndings
in Constantinides (1986), Gârleanu (2006) and Heaton and Lucas (1996) that the equilibrium asset price is not
(much) a¤ected by transaction costs. In Lagos and Rocheteau (2008) (Appendix B) we show that this �nding
generalizes to the more general case of Markovian preference shocks.
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Part (i) of Proposition 5 con�rms that for a particular class of preferences, the distribution

of asset holdings spreads out if frictions are reduced. According to part (ii), the dispersion

of the distribution of asset holdings approaches zero as trading frictions become very severe,

provided that investors are su¢ ciently patient. This result holds for general preferences and

will be useful in our analysis of transaction costs and trade volume.17

Let V denote trade volume, de�ned as

V = �

2

IX
i;j=1

nij jaj � aij : (24)

An increase in � has three distinct e¤ects on V. First, the measure of investors in any individual
state (i; j) 2 X2 who gain access to the market and are able to trade increases, which tends
to increase V. Second, the proportion 1 �

PI
i=1nii of agents who are mismatched to their

asset position� the fraction of agents who wish to trade� decreases, which tends to decrease

V. Finally, the distribution of asset holdings spreads out, which tends to increase the quantity
of assets traded in many individual trades. With (21) and (24), it is possible to show that the

�rst two e¤ects combined lead to an increase in V. While it is di¢ cult to sign the third e¤ect in
general due to the general equilibrium e¤ects of the price on the distribution of asset holdings,

we provide analytical results for three special cases. First, with I = 2 it is possible to show that

an increase in � unambiguously leads to an increase in V. The second special case allows for
richer heterogeneity in types, but adopts a speci�cation of preferences for which the equilibrium

asset price is independent of trading frictions. The third case considers the limiting economy

where trading frictions become very severe and investors are patient.

Proposition 6 (i) Let ui(a) = "ia
1��=(1 � �) with � > 0, and assume that I = 2. Trade

volume increases with �.

(ii) Let ui(a) = "i ln a. Trade volume increases with �. Moreover, for any pair (�; �0) such

that �0 > �, the distribution of trade sizes associated with �0 �rst-order stochastically dominates

the one associated with �.
17 In Lagos and Rocheteau (2008) (part (iii) of Proposition ??)) we show that part (ii) of Proposition 5 also

holds for more general preference shock processes. The proof of part (i) of Proposition 5 relies on the assumption
of i.i.d. preference shocks and its immediate mean-reverting property. The i.i.d. speci�cation, however, is without
loss of generality for the case I = 2. (This is the case analyzed by DGP and much of the subsequent literature.)
For I > 2, an increase in trading frictions need not compress the cross-sectional distribution of asset holdings.
As pointed out by Gârleanu (2006), it is possible that for certain ranges of �, an investor with a high current
valuation (relative to the cross-section of current valuations) may increase his asset holdings in response to an
increase in trading frictions. The general insight, however, is that investors always react to more severe trading
frictions by choosing asset positions that reduce the expected sizes of their future asset reallocations.
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(iii) Trade volume approaches zero as r + �! 0.

5 Transaction costs

Intermediation fees and the implied bid-ask spreads constitute the out-of-pocket transaction

costs borne by investors and are commonly used measures of market liquidity.18 At the same

time, these spreads determine the revenue of dealers, and hence are a key determinant of their

incentives to make markets and provide liquidity, a theme we explore in Section 6.

Intermediation fees depend on the rate at which investors can contact alternative dealers,

on their bargaining power in bilateral negotiations and on the size of the trade. The following

result shows that, keeping the characteristics of an investor and a dealer constant, transaction

costs� both total and per unit of asset traded� increase with the size of the trade.19

Lemma 4 Consider an investor who holds asset position a � 0 and wishes to trade jai � aj > 0.
Both @�i(a)

@a and @
@a

h
�i(a)
jai�aj

i
have the same sign as a� ai.

In the general equilibrium, trading frequencies and bargaining power a¤ect transaction costs

through three channels. Consider for example �i (aj), the fee paid by an investor who currently

has preference type i, and whose preference type was j at the time of his last trade. A larger �

tends to reduce the fees that dealers can extract for any given trade size (e.g., it increases the

denominator of (20)). Intuitively, a larger � implies better search options for the investor�

the competition e¤ect of reduced trading frictions emphasized in the previous literature. But

here an increase in � also changes the investor�s expected utility from holding his current asset

position, aj , relative to the expected utility from holding his desired asset position, ai (i.e., it

changes �ui in (20)). This e¤ect may decrease or increase the intermediation fee depending on the

speci�c values of aj and ai. Finally, � a¤ects the actual and desired asset positions, aj and ai,

themselves. A larger � can induce investors to conduct larger asset reallocations (Proposition

18See footnote 9 for the theoretical link between intermediation fees and bid-ask spreads.
19The theory generates a distribution of transaction costs, not only across trade-size categories, but also among

trades of equal size, which is in accordance with the evidence from the OTC market for municipal bonds (Green,
Holli�eld and Schurho¤, 2007). The increasing relationship between trade size and transaction cost for given �
is consistent with the empirical evidence on foreign exchange markets (Burnside Eichenbaum, Kleshchelski and
Rebelo, 2006, Table 12). In contrast, empirical studies on municipal and corporate bond markets document that
larger trades tend to be executed at a discount (Harris and Piwowar, 2006). Our model can rationalize this
observation if we allow for heterogenous investors, some of which can contact dealers faster than others. See
Lagos and Rocheteau (2006).
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6) and by Lemma 4 this translates into larger fees for dealers, on average� the reallocation

e¤ect of reduced trading frictions. These three e¤ects can give rise to nonmonotonicities in the

dealers� incentives to make markets in response to changes in the degree of trading frictions.

We prove this result for the case of patient traders, both for intermediation fees for individual

trades (Proposition 7) and for market-wide measures of transaction costs (Corollary 1).

Proposition 7 For each (i; j) 2 X2, there exists �r > 0, such that for all r < �r and � 2 (0; 1),
�ji is non-monotonic in � and it is largest for some � 2 (0;1).

In very illiquid markets (as r + � ! 0) investors hedge against future preference shocks by

choosing asset holdings that re�ect their average utility from holding the asset rather than

their current utility at the time they trade. Thus, trade sizes and fees are small. In very

liquid markets (as �!1) investors trade large quantities but the fees they pay are also small
because of favorable search options. For intermediate values of �, trade sizes are considerable

and dealers have a degree of market power that results in larger intermediation fees.

The average fee charged by dealers across the various types of trades is � =
PI
i;j=1 nji�ji,

or using (20),

� = �
IX

i;j=1

nji
�ui (ai)� �ui (aj)

r + �
: (25)

This average fee is the expected revenue of an individual dealer conditional on meeting an

investor, and is therefore a key determinant of the dealers� incentives to make markets. The

following corollary of Proposition 7 characterizes how trading frictions a¤ect these incentives,

which will play a key role in the following section.

Corollary 1 There exists r̂ > 0, such that for all r < r̂ and � 2 (0; 1), � is non-monotonic in
� and it is largest for some � 2 (0;1).

Corollary 1 says that dealers are better o¤ when they trade in markets which are neither too

liquid nor too illiquid. If � is very large, dealers would �nd it pro�table to shift the trading

activity to markets with larger � or smaller �. Conversely if � is very small, perhaps surprisingly,

dealers would bene�t from reductions in � or increases in �.
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6 Endogenous execution delays

In this section we allow for free entry of dealers in order to endogenize the supply of liquidity

services and the length of the trading delays. We formalize the notion that a dealer�s pro�t

depends on the competition for order �ow that he faces from other dealers.

Suppose that � is a continuously di¤erentiable function of the measure of dealers in the mar-

ket, �, with @�(�)=@� > 0 and @ [�(�)=�] =@� < 0. We also specify �(0) = 0, lim�!1 �(�) =1
and lim�!1 �(�)=� = 0. Since all matches are bilateral and random, the Poisson rate at which

a dealer contacts an investor is �(�)=�. For larger �, each investor contacts dealers faster, but

the order �ow decreases for each individual dealer.

There is a large measure of dealers who can choose to participate in the market. Dealers

who choose to operate incur a �ow cost  > 0 that represents the ongoing costs of running the

dealership.20 With (25), the free-entry condition, �(�)� � = , can be written as

�(�)

�
�

IX
i;j=1

nji
�ui (ai)� �ui (aj)
r + �(�) (1� �) = : (26)

A steady-state equilibrium with free entry is a list hfaig; q; p; f�i(a)g; fnjig ; �i that satis�es
(18)�(21) and (26), with � = � (�). It can be shown (see Lagos and Rocheteau, 2006) that for

any � > 0 there exists a steady-state equilibrium with free entry of dealers, and it has � > 0.

The steady-state equilibrium with free entry need not be unique. While the measure of

dealers, �, is strictly increasing in �, according to Corollary 1 the dealers�expected revenue,

�, can itself be a non-monotonic function of �(�). On the one hand faster trade means more

competition among dealers, which tends to reduce intermediation fees. But an increase in � (�)

also induces investors to take on more extreme asset positions which means that on average,

dealers will intermediate larger trades and earn higher fees. For the case of patient traders,

the following result shows that the model necessarily exhibits multiple steady-state equilibria

if �(�)=� is not too elastic (the e¤ect of an additional dealer on existing dealers�order �ow is

not too large) and  is in an intermediate range.

Proposition 8 Assume � 2 (0; 1) and � (�) = ��, with � 2 (0; 1). There exist ~r > 0, ~� 2 (0; 1),
 > 0 and  2 (0; ) such that for all (r; �) 2 (0; ~r) � (~�; 1), there are multiple steady-state
equilibria if  2 (; ).
20Our formulation of the free entry of dealers is analogous to the free entry of �rms in Pissarides (2000).
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In the case of multiple equilibria, the market could be trapped in a low-liquidity equilibrium

where few dealers enter and investors engage in relatively small transactions.21 Regarding the

e¢ ciency properties of equilibrium with entry, investors� asset holdings are e¢ cient only if

dealers have no bargaining power, just as in the formulation with a �xed population of dealers.

Therefore, since there is no equilibrium with � > 0 when � = 0, an equilibrium with entry is

always ine¢ cient.22

7 Conclusion

We have developed a model of trade in asset markets that contributes to a growing literature

that uses search theory to model the trading frictions characteristic of OTC markets. A novel

aspect of our theory is that it does not assume restrictions on asset holdings and therefore allows

market participants to accommodate trading frictions by adjusting their asset positions so as to

reduce their trading needs. We have found that this mechanism has important implications for

market e¢ ciency and the way in which trading frictions shape asset prices as well as standard

measures of �nancial liquidity. Although we have emphasized the application to OTC markets

for �nancial securities, the structure and solution techniques we have developed should prove

useful for applications of search theory to other contexts where idiosyncratic uncertainty and

random matching give rise to nontrivial distributions of asset holdings.

21The strategic complementarity that leads to multiple equilibria in this model depends crucially on the
endogenous distribution of asset holdings. The multiplicity is not due to increasing returns in the meeting
technology, as in Diamond (1982) or Vayanos and Weill (2008), or to the cost of holding the liquid asset, as in
Rocheteau and Wright (2005).
22As r ! 0, it can be shown that an equilibrium with free-entry is e¢ cient if and only if � = 0 and

��0(�)=�(�) = �. Entry introduces a negative externality on other dealers� order �ow, and this externality
is internalized if and only if the elasticity of the contact technology �(�) coincides with dealers� bargaining
power� the so-called Hosios (1990) condition.
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A Proofs

Proof of Lemma 1. We can rewrite (5) as

Vi(a; t) = �Ui(a) + Ei[e�r(T��t)fp(T�)a+max
a0�0

[Vk(T�)(a
0; T�)� p(T�)a0]g]; (27)

where
�Ui(a) = Ei

�Z T�

t
e�r(s�t)uk(s)(a)ds

�
= Ei

�Z T��t

0
e�rsuk(t+s)(a)ds

�
: (28)

From (27), the problem of an investor with preference shock i who gains access to the market

at time t is given by

max
a0�0

h
�Ui(a

0)� fp(t)� E[e�r(T��t)p(T�)]ga0
i
: (29)

We proceed in two steps: (i) calculate �Ui(a), and (ii) calculate E
�
e�rT�p(t+ T�)

�
.

Step (i). Equation (28) can be written recursively as

(r + �) �Ui(a) = ui(a) + �
IX
j=1

�j
�
�Uj(a)� �Ui(a)

�
: (30)

(We provide an alternative, more detailed, derivation in Lagos and Rocheteau (2007).) Multiply

(30) through by �i, sum over i, solve for
P
j �j

�Uj(a) and substitute this expression back into

(30) to obtain �Ui(a) =
�ui(a)
r+� , where �ui (a) is as in (7).

Step (ii). The expected discounted price of the asset at the next time when the investor

gets an opportunity to trade is

E[e�r(T��t)p(T�)] = �
Z 1

0
e�(r+�)sp (t+ s) ds: (31)

Finally, substitute �Ui(a) =
�ui(a)
r+� and (31) into (29) and multiply through by (r + �) to obtain

the formulation of the investor�s problem in the statement of the lemma.

Proof of Lemma 2. Rewrite (8) as

q(t) = (r + �)

�
p(t)� �

Z 1

t
e�(r+�)(s�t)p(s)ds

�
and di¤erentiate with respect to t to obtain

rp (t)� _p (t) = q (t)� _q (t)

r + �
:

Integrate this expression forward and use limt!1 e�rtp(t) = 0 to arrive at (10).
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Proof of Lemma 3. We proceed in three steps: (i) derive nji(�; t), (ii) derive n0ji(A; t) and
(iii) obtain Ht(A; I) for an arbitrary (A; I) 2 �.

Step (i). The density measure of investors who last readjusted their asset holdings at

time t � � > 0 is �e��� . The probability that an investor who last contacted a dealer

at time t � � has a history of preference types involving k(t � �) = j and k(t) = i is�
1� e���

�
�i + Ifi=jge��� . Since the measure of investors with preference type j at time t� �

is nj(t � �), and the Poisson process for meeting dealers and the compound Poisson process
for preference shocks are independent, the density measure of investors who last traded at

time t � � and who have a history of preferences involving k(t � �) = j and k(t) = i, is

nji (�; t) = �e
��� ��1� e�����i + Ifi=jge��� �nj (t� �), as given by (16).

Step (ii). The measure of investors who have not contacted a dealer up to time t is e��t.

Since the Poisson meeting process is independent of investors� individual states, the time-t

measure of investors whose asset holdings and preference types lied in the set (A; fjg) at time 0
and who have not yet met a dealer at time t is e��tH0 (A; fjg). The measure of investors who
were of preference type j at time 0 and are of type i at time t is

�
1� e��t

�
�i+e

��tIfj=ig. Thus,
the time-t measure of investors who at time 0 had preference type j and assets in A, whose
preference type is i at the current time t, and who have never traded (so their asset holdings

are still in A) is n0ji(A; t) = e��t
��
1� e��t

�
�i + e

��tIfj=ig
�
H0(A; fjg), as given in (15).

Step (iii). Ht(A; I) is the measure of investors who have an individual state (a; i) 2 (A; I)
at time t. The �rst term in Ht(A; I) is

P
i2I
PI
j=1 n

0
ji(A; t), namely those investors who never

contacted dealers but who were holding asset positions in the set A at time 0 and whose

preference types at t lie in I. The time-t measure of investors of type i who chose an asset
position in the set A the last time they traded, given that their preference type at that time

was j, is
R t
0 Ifaj(t��)2Agnji(�; t)d� . Thus, the second term in Ht(A; I), namely the measure

of investors who the last time they traded chose asset positions that belong to the set A and

whose preference types at time t lie in I, is
P
i2I
PI
j=1

R t
0 Ifaj(t��)2Agnji(�; t)d� .

Proof of Proposition 1. For all t � 0, the distribution fni(t)gIi=1 is unique and given by
(12). De�ne Adt (q) �

nPI
i=1 ni(t)ai(q) : ai(q) 2 argmaxa0�0 [�ui(a0)� qa0]

o
for q 2 (q(t);+1),

where q(t) = maxi2X �u0i(1)Ifni(t)>0g. (If q � q(t) then (9) has no solution for some i such that
ni(t) > 0.) Given that ui (and hence �ui) is strictly concave and continuously di¤erentiable, ai(q)

is uniquely determined for all q 2 (q(t);+1) and all i such that ni(t) > 0, and it is continuous.
Consequently, Adt (q) is singled-valued and continuous for q 2 (q(t);+1). Moreover, (9) implies
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that any interior choice ai(t) is a strictly decreasing function of q(t) for every i. Thus, Adt (q) is

strictly decreasing for all q 2 (q (t) ; �q(t)), where �q(t) = maxi2X �u0i(0)Ifni(t)>0g, and Adt (q) = f0g
for all q � �q(t). As q # q(t), Adt (q) ! +1, and as q " �q(t), Adt (q) ! 0. So for each

t there is a unique q(t) 2 (q (t) ; �q(t)) such that Adt [q (t)] = fAg or equivalently, such thatPI
i=1 ni(t)ai [q (t)] = A. Given this q(t), there is a unique fai(t)gIi=1 that solves (9). Given

q(t), (11) gives the fee �i(a; t) for every i and a. Finally, given fai(t)gIi=1 the distribution Ht is
given by (14).

Proof of Proposition 2. Calculations similar to those contained in part (i) of the proof of

Lemma 1 imply (r + �)Ûi(a) = r+�
r+�+�ui (a) +

�
r+�+�

PI
j=1 �juj (a). Substitute this expression

into the planner�s objective functional to get

max
fai(t)g

Z 1

0

�

r + �

8<:
IX
i=1

24 r + �

r + �+ �
ui[ai(t)] +

�

r + �+ �

IX
j=1

�juj [ai(t)]

35ni(t)
9=; e�rtdt

subject to
PI
j=1 nj(t)aj(t) � A and ai(t) � 0 for all i. Let

L(t) =
IX
i=1

"
r + �

r + �+ �
ui[ai(t)] +

�

r + �+ �

IX
k=1

�kuk[ai(t)]

#
ni(t) + �(t)

"
A�

IX
i=1

ni(t)ai(t)

#
;

where �(t) is the Lagrange multiplier associated with the resource constraint. Since L(t) is
strictly jointly concave in fai(t)gIi=1, the �rst-order necessary and su¢ cient conditions for the
problem maxfai(t)g L(t) are

(r + �)u0i [ai(t)] + �
PI
k=1 �ku

0
k [ai(t)]

r + �+ �
� �(t), �= � if ai(t) > 0, (32)

for i = 1; :::; I. The resource constraint (17) at equality is

IX
i=1

ni(t)a
�
i [�(t)] = A (33)

where a�i [�(t)] is the ai that satis�es (32). Comparing (33) with (13), (32) with (9), and setting

q(t) = �(t), it becomes clear that (9) coincides with (32) if and only if � = 0.

Proof of Proposition 3. From (12), limt!1 ni(t) = �i for each i. By an argument similar to

the one in the proof of Proposition 1, one can establish that there is a unique, time-invariant, q

that clears the asset market. Given this q, (9) implies a unique set of time-invariant optimal asset
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holdings faigIi=1. Thus, faig
I
i=1 and q satisfy (18) and (19). Given the fact that q (t) = q for all t,

(10) implies p = q=r. Given q and faigIi=1, (11) implies (20), which determines the time invariant
fees f�i (a)gIi=1. To derive (21), start from Lemma 3 and note that limt!1 n0ji(A; t) = 0 for

all i, j 2 X and all A � R+. Also, limt!1 nji (�; t) = �e���
��
1� e���

�
�i + e

��� Ifi=jg
�
�j �

nji (�;1) and limt!1 aj (t� �) = aj , so

lim
t!1

Ht (A; I) =
X
i2I

IX
j=1

�Z 1

0
Ifaj2Agnji (�;1) d�

�
� H (A; I)

for all (A; I) 2 �. To conclude, observe that H(faig; fjg) =
R1
0 nij (�;1) d� and carry out the

integration to obtain (21).

Proof of Proposition 4. Di¤erentiate (19) to obtain

dp

d�
=

PI
i=1 �i@ai=@�

�
PI
i=1 �i@ai=@p

:

The denominator of this expression is strictly positive (from (22)), so focus on the sign of the

numerator. Di¤erentiate (22) to obtain @ai=@�, multiply by �i, and add over all i to arrive at

IX
i=1

�i
@ai
@�

=
�

(r + �+ �)2 rp

IX
i=1

�i
[u0(ai)]

2

�u00(ai)
("i � �") :

Suppose� [u0(a)]2 =u00(a) is strictly increasing in a. Let �a denote the a that solves (22) for �"i = �".
Then, note that � [u0(ai)]2 ("i � �") =u00(ai) � � [u0(�a)]2 ("i � �") =u00(�a) for each i, with strict
inequality for all i such that "i 6= �". Thus,

PI
i=1 �i

@ai
@� > 0 and consequently,

dp
d� > 0. Similar

reasoning implies dpd� < 0 if � [u
0(a)]2 =u00(a) is strictly decreasing and dp

d� = 0 if � [u
0(a)]2 =u00(a)

is constant in a.

Proof of Proposition 5. (i) Let ai (�) denote the individual demand of an investor with

preference type i in a market with e¤ective contact rate �. With ui(a) = "ia1��=(1� �),

ai (�) =
API

j=1 �j

h
(r+�)"j+��"
(r+�)"i+��"

i1=� : (34)

Consider �0 > �. We have a1 (�0) < a1 (�), since
(r+�0)"j+��"
(r+�0)"1+��"

>
(r+�)"j+��"
(r+�)"1+��"

for all j > 1, and

aI(�
0) > aI(�), since

(r+�0)"j+��"
(r+�0)"I+��"

<
(r+�)"j+��"
(r+�)"I+��"

for all j < I. The di¤erence ai(�0) � ai(�) is
continuous in "i, so there exists ~" 2 ("1; "I) such that ai (�0) = ai (�) � ~a. Moreover, from (34),

@ai (�
0)

@"i

����
"i=~"

=
(r + �0)~a

� [(r + �0)~"+ ��"]
>

(r + �)~a

� [(r + �)~"+ ��"]
=
@ai (�)

@"i

����
"i=~"

;
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so ai(�0) as a function of "i intersects ai(�) from below. Hence ~" is unique, and ai (�0) < ai (�)

for all "i < ~" and ai (�0) > ai (�) for all "i > ~". With (21), the cumulative distribution of

assets indexed by �, is G�(a) =
PI
j=1 Ifaj(�)�ag�j . The fact that ai (�

0) < ai (�) for "i < ~"

implies G�0(a) � G�(a) for all a < ~a. Thus,
R a
0 G�0(x)dx �

R a
0 G�(x)dx for all a < ~a. Moreover,R aI(�0)

0 G�0(x)dx =
R aI(�0)
0 G�(x)dx, so

R a
0 G�0(x)dx�

R a
0 G�(x)dx =

R1
a G�(x)dx�

R1
a G�0(x)dx.

The right side of this expression is nonnegative for a � ~a because ai (�0) � ai (�) for "i � ~".

Thus,
R a
0 G�0(x)dx �

R a
0 G�(x)dx for all a � ~a. We conclude

R a
0 G�0(x)dx �

R a
0 G�(x)dx for all

a � 0, i.e., G� second-order stochastically dominates G�0 .
(ii) From (7), as r+�! 0 then �ui(a)! �

PI
j=1 �juj(a) which is independent of i. Together

with market clearing, this implies that ai ! A for all i 2 f1; ::; Ig as r + �! 0.

Proof of Proposition 6. (i) For I = 2, we have X = f1; 2g and

V = ���1�2
�+ �

[a2 (�)� a1 (�)] ;

where ai (�) is given by (34). Since "1 < "2, we have a1 (�) < a2 (�), and by part (i) of Propo-

sition 5, da1(�)d� < 0 < da2(�)
d� . To �nd dV

d� , we consider two cases. (a) An increase in � caused by

a decrease in � (keeping � constant). For this case, dVd� =
���1�2
�+�

h
da2(�)
d� � da1(�)

d�

i
> 0. (b) An

increase in � caused by an increase in �, which implies dV
d� =

�
�

�+�

�2
�1�2 [a2 (�)� a1 (�)] +

���1�2
�+�

h
da2(�)
d� � da1(�)

d�

i
> 0.

(ii) Since ui (a) = "i ln a, we have ai > 0 for all i, and ai 6= aj unless i = j. From (21),

the proportion of trades that involve buying ai and selling aj or vice versa (for i 6= j) is

(nij + nji) =(1�
PI
i=1 nii) = 2�i�j=(1�

PI
i=1 �

2
i ), which is independent of �. From Proposition

4, dp=d� = 0, so di¤erentiating (22),

d [gi(�; p)� gj(�; p)]
d�

=
� ("i � "j)

rp (r + �+ �)2
:

Thus, jai � aj j = jgi(�; p)� gj(�; p)j increases with � for all i 6= j. The measure of trades of

size less than z � 0 is
IX
i=1

X
j 6=i

�i�j

1�
PI
i=1 �

2
i

Ifjai�aj j�zg;

which is decreasing in �. This establishes that the distribution of trade sizes associated with �0

�rst-order stochastically dominates the one associated with � if �0 > �. Since every trade size

is larger in the market with a larger �, we conclude that V increases with �.
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(iii) This follows immediately from (24) and part (ii) of Proposition 5.

Proof of Lemma 4. Di¤erentiate (20) to obtain

@�i(a)

@a
= � �

r + �

�
�u0i (a)� q

�
:

Suppose that the nonnegativity constraint on ai is slack. Then, since �ui is strictly concave and

�u0i (ai) � q = 0, we know that �u0i (a) � q < 0 if and only if a � ai > 0, and
@�i(a)
@a has the same

sign as a� ai. If ai = 0, then a > ai and �u0i (a)� q < �u0i (ai)� q � 0, so
@�i(a)
@a > 0 which is the

same sign as a � ai = a > 0. This establishes the �rst part. To show the second part, divide
(20) by (ai � a) and di¤erentiate the resulting expression to get

@

@a

�
�i (a)

ai � a

�
=

�

r + �

�
�ui (ai)� �ui (a)� �u0i (a) (ai � a)

(ai � a)2

�
;

which strictly negative since �ui is strictly concave.

Proof of Proposition 7. Let q (�; r), ai (�; r) and �ji (�; r) denote, respectively, the equilib-

rium q, ai and �ji that solve (18), (19) and (20) for all i; j 2 X. We proceed in three steps:
(i) show that �ji (�; r) > 0 for all � 2 (0;1) and all r 2 [0;1) provided ai (�; r) 6= aj (�; r)

and � > 0; (ii) establish that lim�!1 �ji (�; r) = 0 for any r � 0 and all (i; j) 2 X2; (iii) show
that for each � 2 (0;1) there is �r > 0 such that �ji (0; r) < �ji (�; r) for all r 2 (0; �r). The
nonmonotonicity of �ji (�; r) with respect to � for all r 2 [0; �r) will then follow from steps (i)

through (iii).

(i) From (20), �ij =
�
r+� fmaxa0 [�ui (a

0;�; r)� qa0]� [�ui (aj ;�; r)� qaj ]g, so �ij (�; r) > 0

for all � 2 (0;1) and all r 2 [0;1) provided � > 0 and aj 6= argmaxa0�0 [�ui (a
0)� qa0] (i.e.,

provided the investor trades).

(ii) lim�!1 q (�; r) = q� and lim�!1 ai (�; r) = argmaxa0�0 [ui (a
0)� q�a0] � h1i (q

�),

where q� is independent of r and solves
PI
i=1 �ih

1
i (q

�) = A, which in turn implies q� 2 (0;1),
h1i (q

�) <1, and hence jui (aj)� q�aj j <1 for all (i; j) 2 X2. Therefore lim�!1 �ij (�; r) = 0
for any r � 0 and all (i; j) 2 X2.

(iii) Let � ! 0 to obtain q (0; r) = ~q(r) and ai (0; r) = argmaxa0�0 [~ui (a0)� ~qa0] � h0i (~q),
where ~ui (a; r) =

rui(a)+�~u(a)
r+� , ~u (a) =

PI
k=1 �kuk (a) and ~q solves

PI
i=1 �ih

0
i (~q) = A. From

(20),

�ji(0; r) = �

n
r [ui(ai)� ui(aj)] + �

PI
k=1 �k [uk(ai)� uk(aj)]

o
� (r + �) ~q(r) (ai � aj)

(r + �) r
: (35)
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Observe that limr!0 ai (0; r) = ~u0�1 [~q (0)] = A, for each i 2 X. Totally di¤erentiate (18)

and (19) with respect to r and evaluate at � = r = 0 to �nd @ai(0;0)
@r =

~q(0)+�~q0(0)�u0i(A)
�
PI
k=1 �ku

00
k(A)

andPI
i=1 �i

@ai(0;0)
@r = 0. Combine these conditions to get ~q(0)+�~q0(0)�~u0(A)

�
PI
k=1 �ku

00
k(A)

= 0 which together

with the investor�s �rst-order condition, ~u0 (A) = ~q(0), implies ~q0(0) = 0 and hence @ai(0;0)
@r =

~q(0)�u0i(A)
�
PI
k=1 �ku

00
k(A)

. With this, apply L�Hôpital�s rule to (35) to �nd limr!0 �ji (0; r) = 0.

Our assumptions on primitives imply that q (�; r) and ai (�; r) are continuous functions, so

�ji (�; r) is continuous. Hence, for each (i; j) with i 6= j and each � 2 (0;1), there is some
�r > 0 such that for all r 2 [0; �r), we have lim�!1 �ji (�; r) = 0 < �ji (�; r) (by (i) and (ii))

and �ji (0; r) < �ji (�; r) (by (i) and (iii)), which establishes the nonmonotonicity of �ij with

respect to �.

Proof of Corollary 1. Write � (�; �; r) =
PI
i;j=1 nji (�)�ji [� (1� �) ; r], where nji (�) is

given by (21). Fix an arbitrary (�; �) 2 (0;1)�(0; 1). From part (i) of the proof of Proposition
7, �Ij [� (1� �) ; r] > 0 for j < I and all r 2 [0;1). Hence � (�; �; r) > 0 for all � (1� �) 2
(0;1) and all r 2 [0;1). Following a similar reasoning as in part (iii) of the proof of Proposition
7, for each (i; j) 2 X2, there is �rji > 0 such that for all r 2 [0; �rji), �ji (0; r) < � (�; �; r). Then
� (0; �; r) < � (�; �; r) for any r 2 [0; r0), where r0 = min(i;j)2X2 �rji. Finally, from part (ii)

of the proof of Proposition 7, for any r � 0 we have lim�0!1� (�0; �; r) = 0 < � (�; �; r),

which establishes the nonmonotonicity of � with respect to �, and therefore with respect to

� = � (1� �).

Proof of Proposition 8. In an equilibrium with entry the measure of dealers satis�es

� [� (�) ; �; r] = �1��: (36)

From Corollary 1, there is ~r > 0 such that  � � (0; �; r) < sup� � [� (�) ; �; r] �  for all

r 2 [0; ~r), and lim�!1� [� (�) ; �; r] = 0 < . Note that as � ! 1, �1�� converges uniformly

to  on any closed interval [�0; �1] � (0;1). Thus, for any  2 (; ), there is a ~� such that for
for all � 2 (~�; 1), there are multiple values of � > 0 that satisfy (36).
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B Generalized preference shocks

Continuous-time Markov chain

Consider an homogeneous, ergodic, continuous-time Markov chain with a �nite number I of

states. The transitions between the states f1; :::; Ig are described by an in�nitesimal generator
matrix � = [�ij ]. The time that an investor spends in the preference state i is exponentially

distributed with parameter
P
k 6=i �ik > 0. Conditional on a transition, the probability to

move to state j is �ij=
P
k 6=i �ik 2 [0; 1] where �ij is referred to as the transition intensity. By

convention, �ii = �
P
k 6=i �ik so that the rows of the generator matrix sum to 0. The formulation

studied in the body of the paper corresponds to �ki = ��i if k 6= i and �ii = �(�i � 1).
Denote �ij(t) = Pr [k(t) = j jk(0) = i ] where k(t) is the investor�s preference type at time t.

The matrix of transition probabilities over a time interval of length t is denotedR(t) = [�ij(t)].23

Then, the dynamics for the transition probabilities satisfy R0(t) = R(t)� with R(0) = I (where

I is the identity matrix).24 The solution to this di¤erential equation is

R(t) = et� = I+
1X
m=1

(t�)m

m!
: (37)

Equilibrium

Using a similar method as in the text, an investor with preference type i chooses his asset

holdings to solve

max
a�0

�
(r + �) �Ui(a)� q(t)a

�
; (38)

23For the i.i.d. speci�cation in the paper,

�ij(t) = (1� e��t)�j + e��tIfi=jg:

Suppose i 6= j. With probability 1� e��t at least one preference shock occurs over the time interval of length t.
Since shocks are i.i.d., k(t) = j with probability �j . If i = j one must also take into account the probability that
no shocks occur over the time interval of length t.
24The dynamics for the transition probabilities are as follows:

�ij(t+ dt) =

0@1�X
k 6=j

�jkdt

1A �ij(t) +X
k 6=j

�ik(t)�kjdt+ o(dt):

The �rst term on the right-hand side is the probability to reach state j at time t from state i at time 0 multiplied
by the probability that no preference shocks occur on a small intervall of time of length dt. The second term of
the right-hand side is the sum of the probabilities to reach state k 6= j at time t multiplied by the probabilities
to reach state j from state k in a small time interval of length dt. Rearrange, divide both sides by dt, and take
the limit as dt! 0 to get �0ij(t) =

PI
k=1 �ik(t)�kj .
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with

q(t) = (r + �)

�
p(t)� �

Z 1

0
e�(r+�)sp(t+ s)ds

�
(39)

�Ui(a) = Ei
�Z T�

0
e�rsuk(s)(a)ds

�
; i 2 f1; :::; Ig (40)

where T�, the next e¤ective contact time with a dealer, is exponentially distributed with para-

meter � = �(1� �). We obtain the following generalization of Lemma 1 in the text.

Lemma 5 An investor with preference type i and asset holdings a who readjusts his asset

position at time t chooses ai solution to

ai(t) = argmax
a�0

[�ui(a)� q(t)a] ; (41)

where

�ui(a) =
IX
k=1

zikuk(a); (42)

and

zij =

Z 1

0
(r + �)�ij(s)e

�(r+�)sds: (43)

Proof. Reexpress �Ui(a) given by (40) as

�Ui(a) = Ei

24Z T�

0

IX
j=1

�ij(s)e
�rsuj(a)ds

35
=

Z 1

0
�e��t

Z 1

0
Ifs�tg

IX
j=1

�ij(s)e
�rsuj(a)dsdt

=

IX
j=1

�Z 1

0
�ij(s)e

�(r+�)sds

�
uj(a):

To obtain the second equality we use that T� is exponentially distributed with parameter �.

The third equality is obtained by changing the order of integration. Since �ui(a) = (r+�) �Ui(a),

we get (43). The maximization problem (41) is then derived from (38)

From (43) it is easy to check that zij � 0 and
PI
j=1 zij = 1. So, from (42), the investor

maximizes a weighted average of the utility �ows in the di¤erent states. The weight that an

investor of type i assigns to state j, zij , is a weighted average of the transition probabilities �ij(t).
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A reduction in trading frictions implies that investors care more about transitions occurring

over shorter time intervals.

It will also prove useful to have an alternative representation of the weights fzikg based
on the in�nitesimal generator matrix �. Let Z denote the I � I matrix with generic element
zij 2 [0; 1], and I is the identity matrix.

Lemma 6 The weights of the indirect utility function �ui(a) solve

Z =

�
I� �

r + �

��1
: (44)

Proof. Integrate (43) by parts and use that �0ij(t) =
PI
k=1 �ik(t)�kj (see footnote 24) to get

(r + �) [zij � �ij(0)] =
IX
k=1

zik�kj :

Since R(0) = I then (r + �) (Z� I) = Z�, which gives (44).25

The expression for the intermediation fee is similar to the one in the text, i.e.,

�i (a; t) =
� f�ui [ai (t)]� �ui(a)� q(t) [ai (t)� a]g

r + �
(45)

The measure of investors in preference state i at time t is

ni(t) =
X
j

�ji(t)nj(0): (46)

From (46) one can turn to the determination of q(t). From the same argument as in the text

market clearing requires
IX
i=1

ni(t)ai(t) = A: (47)

Finally, the distribution of investors across individual states at any time t satis�es

Ht (A; I) =
X
i2I

IX
j=1

�
n0ji(A; t) +

Z t

0
Ifaj(t��)2Agnji(�; t)d�

�
for all (A; I) 2 �; (48)

25The invertibility of the matrix (r + �) I �� can be proved as follows. Consider the set of bounded func-
tions B(f0; :::; Ig) with the sup norm. For some given u = [ui] 2 RI , let T : B(f0; :::; Ig) ! B(f0; :::; Ig)
be de�ned as (Tf)(i) =

�
ui +

P
k 6=i �ikf(k)

�
=
�
r + �+

P
k 6=i �ik

�
. The solution x 2 RI to (r + �)x =

�x + u is a �xed point of T . From the Blackwell�s su¢ cient conditions T is a contraction with modulus

� = maxi2f1;:::;Ig
P

k 6=i �ik=
�
r + �+

P
k 6=i �ik

�
2 (0; 1). From the Contraction Mapping Theorem, T has a

unique �xed point. Hence, ((r + �) I ��)x = u admits a unique solution for any u 2 RI , i.e., (r + �) I �� is
invertible.
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where

n0ji(A; t) = e��t�ji(t)H0(A; fjg) (49)

and

nji(�; t) = �e
����ji(�)nj(t� �): (50)

The interpretations for n0ji(A; t) and nji(�; t) are similar to the ones in the text. For instance,
n0ji(A; t) is the measure of investors who have not contacted a dealer on [0; t], an event oc-
curring with probability e��t, with initial state in A � fjg, there is a measure H0(A; fjg) of
such investors, and with preference type k(t) = i, an event occurring with probability �ji(t)

conditional on the initial state.

An equilibrium is a time-path hfai(t)g; q(t); f�i(a; t)g;Hti that satis�es (41), (45), (47) and
(48), given an initial condition H0. Despite the generalization of the process for the preference

shocks, the model keeps its simple recursive structure. The distribution fni(t)g solves (46).
Given fni(t)g, (41) and (47) yield q(t) and fai(t)g. Given q(t) and fai(t)g one can determine
the intermediation fees from (45). Proposition 1 in the text can be generalized to show existence

and uniqueness of the equilibrium.

Frictionless limit

We consider the limit when the trading frictions become small. From (44), as � ! 1 then

Z =
h
I� �

r+�

i�1
! I, �ui(a) ! ui(a), and (41) becomes maxa�0 [ui(a)� q(t)a]. (Alternatively,

from (43), zij ! �ij(0) = Ifi=jg as � ! +1.) As the trading frictions vanish, the allocations
and prices approach their Walrasian limit.

E¢ ciency

The planner solves

max
fai(t)gIi=1

(Z 1

0

IX
i=1

e�rt�ni(t)Ûi [ai(t)] dt

)
s.t.

IX
i=1

�ni(t)ai(t) � �A,

where

Ûi [ai(t)] = Ei
�Z T�

t
e�r(s�t)uk(s) [ai(t)] ds

�
: (51)

The solution is such that Û 0i [ai(t)] � �(t) for all i 2 f1; :::Ig, with a strict equality if ai(t) > 0,
where �(t) is the multiplier associated with the resource constraint. The comparison of (40)
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and (51) reveals the following di¤erence between the investors� problem and the planner�s

problem: the time horizon of the investors�problem is exponentially distributed with parameter

� = �(1� �) while the time horizon of the planner�s problem is exponentially distributed with

parameter �. The two coincide when � = 0.

Steady state

As t tends to in�nity, �ij(t) approaches �j where f�igIi=1 is the unique ergodic distribution
that solves [�1; :::; �I ]� = 0 and

PI
i=1 �i = 1. From (46), ni(t) ! �i and the market-clearing

condition (47) becomes
PI
i=1 �iai = A where, from (41), ai = argmaxa�0 [�ui(a)� qa]. Finally,

from (48)-(50) Ht ! H such that

H (A; I) =
X
i2I

IX
j=1

�Z t

0
Ifaj2Ag�e

����ji(�)�jd�

�
for all (A; I) 2 �:

Asset holdings, prices and volume

We focus on steady states and in order to guarantee the interiority and the existence of a

solution to (41) we also assume that u0i(0) =1 and u0i(1) = 0. From Lemma 5, the choice of

asset holdings of an investor with preference type i solves

IX
k=1

ziku
0
k(ai) = rp: (52)

We �rst investigate the e¤ects of a change in trading frictions (�) on investors�asset holdings

taking the asset price p as given. Let ai = gi(�; p) denote the solution to (52).

Lemma 7 @gi(�;p)
@� > 0 if and only if

IX
k=1

@zik
@�

u0k(ai) > 0 (53)

where
@zij
@�

=

Z 1

0
�ij(s)e

�(r+�)s [1� s(r + �)] ds: (54)

Proof. From (52),
@gi(�; p)

@�
=

PI
k=1

@zik
@� u

0
k(ai)

�
PI
k=1 ziku

00
k(ai)

: (55)
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Since the denominator is positive, (55) implies (53). The partial derivatives @zij@� are obtained

by di¤erentiating (43).

As trading frictions are reduced investors readjust the weights zij they assign to their mar-

ginal utilities from holding the asset in di¤erent states and put more weights on transitions

occurring over shorter time intervals.

The next Proposition investigates a class of preference shocks that encompasses the i.i.d.

shocks studied in the paper.

Proposition 9 If
PI
j=1 �ij(t)u

0
j(ai) is increasing (decreasing) in t then

@gi(�;p)
@� > 0 (< 0).

Proof. Substituting zik by its expression given by (43) and using the change of variable

x = (r + �)s, the �rst-order condition (52) can be rewritten asZ 1

0

IX
k=1

�ik

�
x

r + �

�
u0k(ai)e

�xdx = rp:

Then,

@gi(�; p)

@�
=

R1
0

@
PI
k=1 �ik(

x
r+�)u

0
k(ai)

@� e�xdx

�
R1
0

PI
k=1 �ik

�
x
r+�

�
u00k(ai)e

�xdx
:

So if
PI
k=1 �ik (t)u

0
k(ai) is increasing (decreasing) in t then

@gi(�;p)
@� < 0 (> 0).

Proposition 9 is intuitive. If the expected marginal utility from holding the asset is increasing

with the time horizon t (which implies u0i(ai) <
PI
j=1 �ju

0
j(ai)) then a reduction in the trading

frictions will induce agents to reduce their asset holdings. In the case of multiplicative preference

shocks, ui(a) = "iu(a), Proposition 9 implies that if
PI
j=1 �ij(t)"j is monotone then ai increases

as trading frictions are reduced if "i > �" =
PI
j=1 �j"j .

Proposition 9 has the following immediate implication for the case of i.i.d. shocks studied

in the paper.

Corollary 2 If preference shocks are i.i.d. then @gi(�;p)
@� > 0 if and only if u0i(ai) >

PI
j=1 �ju

0
j(ai).

Proof. For the i.i.d. speci�cation studied in the paper, �ij(t) = (1 � e��t)�j + e��tIfi=jg
so that

IX
j=1

�ij(t)u
0
j(ai) =

IX
j=1

�ju
0
j(ai) + e

��t

0@u0i(ai)� IX
j=1

�ju
0
j(ai)

1A :
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So
PI
j=1 �ij(t)u

0
j(ai) is increasing in t if and only if u

0
i(ai) <

PI
j=1 �ju

0
j(ai) and decreasing in t

if and only if u0i(ai) >
PI
j=1 �ju

0
j(ai).

The following proposition allows for general preference shocks but it focuses on economies

where trading frictions are small. With a small abuse of notation, rede�ne ai = gi(
1
r+� ; p) as

the choice of asset holdings characterized by (52).

Proposition 10 Consider the frictionless limit as � ! 1. Then, @gi( 1
r+� ; p)=@

�
1
r+�

�
> 0 if

and only if P
k 6=i �iku

0
k(ai)P

k 6=i �ik
> u0i(ai): (56)

Proof. Denote x = (r + �)�1. From (44),

IX
k=1

zik�kj = (r + �)(zij � Ifj=ig); j = 1; :::; I: (57)

Totally di¤erentiating (57), we obtain

@zij
@x

����
x=0

= �ij : (58)

Di¤erentiating the �rst-order condition associated with (41), taking rp as given, we get

@ai
@x

����
x=0

=

PI
k=1 �iku

0
k(ai)

�u00i (ai)
(59)

Then, @ai@x > 0 i¤
PI
k=1 �iku

0
k(ai) > 0, which gives (56).

In a liquid market (�!1) investors only care about their current preference type to choose
their asset holdings, i.e., zii = 1. As trading frictions increase investors increase the weights

they assign to their marginal utilities in future states. The increase of zij is proportional to the

transition intensity �ij from state i to state j.

For the case studied in the paper (�ij = ��j for i 6= j), (56) becomes
PI
k=1 �ku

0
k(ai) > u

0
i(ai).

In the case of multiplicative preference shocks, ui(a) = "iu(a), (56) givesP
k 6=i �ik"kP
k 6=i �ik

> "i: (60)

This condition is identical to the one in Gârleanu (2006, Proposition 2).26 It reveals that an

increase in the trading frictions does not necessarily result in asset holdings closer to the per-

capital supply. Indeed, an investor with a high valuation for the asset may have an even higher
26 In Garleanu�s model, the coe¢ cient "i is interpreted as the instantaneous correlation between the asset

dividend and the endowment of the investor. So when (60) holds the current correlation is less than the expected
future correlation and investors increase their positions as frictions are reduced.
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valuation in the near future in which case (60) holds. However, as a consequence of Proposition

10, the support of the distribution of asset holdings shrinks as trading frictions become more

severe.

Corollary 3 Suppose u01(a) < ::: < u0I(a). As � ! 1 then @g1( 1
r+� ; p)=@

�
1
r+�

�
> 0 and

@gI(
1
r+� ; p)=@

�
1
r+�

�
< 0.

Proof. From (56) and
P
k>1 �1ku

0
k(a1)P

k>1 �1k
> u01(a1) and

P
k<I �Iku

0
k(aI)P

k<I �Ik
< u0I(aI).

In Propositions 9 and 10, we have taken the asset price as given. In the next proposition we

show that some speci�cation for the utility function the asset price is una¤ected by the trading

frictions.

Proposition 11 Assume ui(a) = "i ln a. Then,

p =

PI
i=1 �i"i
rA

: (61)

Proof. From (41)-(42), the choice of asset holdings at the steady state is

ai =

PI
k=1 zik"k
rp

:

Use (47) to derive the market-clearing price,

p =

PI
k=1

PI
i=1 �izik"k
rA

; (62)

where f�ig is the steady state distribution of investors across preference types. From (43),

IX
i=1

�izik =

Z 1

0
(r + �)

IX
i=1

�i�ik(s)e
�(r+�)sds:

Since
PI
i=1 �i�ik(s) = �k (by de�nition of a steady-state distribution) then

PI
i=1 �izik = �k

and (62) gives (61).

If preferences are logarithmic, the asset price at the steady state is independent of the extent

of the frictions. For this speci�cation, the partial equilibrium results for individual portfolios

obtained in Propositions 9 and 10 are also general equilibrium results.

From Corollary 3, starting from a liquid market, the support of the distribution of asset

holdings shrinks as trading frictions increase. The next proposition focuses on the limit when

trading frictions become in�nite and investors are patient.
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Proposition 12 If r + �! 0 then ai ! A for all i 2 f1; :::; Ig.

Proof. Take the limit of (57) as r + �! 0 to get:

IX
k=1

zik�kj = 0; j = 1; :::; I;

or, equivalently, Z� = 0. By de�nition of the ergodic distribution f�ig is the unique solution toPI
k=1 �k = 1 and [�1; :::; �I ]� = 0. Consequently, [zi1; :::; ziI ] approaches [�1; :::; �I ] for all i 2

f1; :::; Ig. Hence, (41) becomes maxa
hPI

k=1 �kuk(a)� q(t)a
i
and ai ! A for all i 2 f1; :::; Ig.

If investors are patient and trade in an illiquid market then they maximize their average

utility where the weight assigned to a state i is the fraction of the time that the investor will

spend in this state over his in�nite life horizon, �i. From Proposition 12, the distribution of

asset holdings becomes concentrated towards its mean as the trading frictions become very

severe. As a consequence, the trade volume goes to 0. For instance, if the dealer�s bargaining

power approaches 1 then all investors choose an asset position close to the per capital supply

of assets.
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C Strategic bargaining

In the body of the paper we assumed that when an investor and a dealer trade, the new asset

position of the investor, a0, and the fee, �, are the solution to a Nash bargaining problem where

the dealer has bargaining power � 2 [0; 1] and disagreement point W (t), and the investor has

disagreement point Vi (a; t). In this appendix we o¤er four strategic bargaining games, each

with a unique subgame perfect equilibrium outcome that coincides with the solution of the

axiomatic Nash bargaining problem we have adopted.

The four games we consider have the common feature that the relationship between the

investor and the dealer is short-lived in that the negotiation takes place in an �instant.�In the

�rst game, a proposer is chosen at random to make a take-it-or-leave-it o¤er. The second is a

standard bargaining game with alternating o¤ers and a random termination of the negotiation.

We take the limit of this game as the expected time horizon for the negotiation goes to zero.

The third is the o¤-the-shelf bargaining game of Binmore, Rubinstein and Wolinsky (1986)

incorporated into a discrete-time version of our model. Here we assume that the negotiation

takes place within a period but may involve an in�nite number of bargaining rounds. Finally,

we consider a payo¤-equivalent game that can involve at most two bargaining rounds. The fact

that the unique subgame perfect equilibrium outcome in each of these four games coincides

with the solution of the Nash problem as formulated in Section 3, is an indication that the

disagreement points we have adopted in our axiomatic formulation are the appropriate ones

when the relationship between dealers and investors is essentially instantaneous, as is the case

in our environment.

C.1 Take-it-or-leave-it o¤er by a randomly chosen proposer

Our theory is meant to model a fast moving market where investors and dealers don�t form

long-lasting relationships, but rather contact each other at relatively high frequencies and must

trade on the spot, instantaneously, before they part ways. With this in mind, consider the

following natural and simple strategic bargaining game. Upon contact, with probability �,

Nature selects the dealer to make an instantaneous take-it-or-leave-it o¤er which the investor

must either accept or reject on the spot. With complementary probability, Nature selects the

investor to make an instantaneous take-it-or-leave-it o¤er which the dealer must either accept

or reject on the spot. The whole process is instantaneous, and the dealer and the investor part
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ways regardless of the outcome.27

Let


a1i (t) ; �

1
i (a; t)

�
denote the proposal that the dealer makes to an investor of type i who

is holding a at time t, and


a2i (t) ; �

2
i (a; t)

�
denote the o¤er that the latter makes to the former.

The set of o¤ers that an investor of type i who is holding asset position a �nds acceptable at

time t is

A2i (a; t) =
�
(a0; �) : Vi

�
a0; t

�
� p (t)

�
a0 � a

�
� � � Vi (a; t)

	
:

Similarly, the set of o¤ers that a dealer �nds acceptable at time t is A1 = f(a0; �) : � � 0g. If
the dealer is selected as the proposer, he will o¤er


a1i (t) ; �
1
i (a; t)

�
= arg max

(a0;�)
� IA2i (a;t)(a

0; �)

where the maximization is subject to a0 � 0, and IA2i (a;t)(a
0; �) is an indicator function that is

equal to 1 if (a0; �) 2 A2i (a; t). It is easy to see that a1i (t) = ai (t), where ai (t) is as in (3), and
��1i (a; t) = �i (a; t), where �i (a; t) is as in (4). If the investor makes the o¤er, he chooses

a2i (t) ; �

2
i (a; t)

�
= arg max

(a0;�)

��
Vi
�
a0; t

�
� p (t)

�
a0 � a

�
� �

�
IA1(a0; �) +

�
1� IA1(a0; �)

�
Vi (a; t)

	
where the maximization is subject to a0 � 0, and IA1(a0; �) is an indicator function that is equal
to 1 if (a0; �) 2 A1. Hence, a2i (t) = ai (t) and �2i (a; t) = 0. Note that regardless of who gets

selected to make the o¤er, the outcome of the negotiation is that the investor exits the meeting

with asset position ai (t). The transaction fee equals �i (a; t) =� if the dealer makes the o¤er

and 0 if the investor makes the o¤er, so the expected fee (before Nature decides who will make

the o¤er) equals �i (a; t). It is easy to check that with these equilibrium outcomes the investors�

and dealers�value functions are just as in the body of the paper and all our results go through

(subject to the obvious reinterpretation of �i (a; t) as an expected intermediation fee, which is

inconsequential).

C.2 Alternating o¤ers in continuous time with random termination

Consider a strategic alternating o¤ers bargaining game similar to the one analyzed by Rubin-

stein (1982), but extended to allow for exogenous breakdown in negotiations as in Binmore,

Rubinstein and Wolinsky (1986). The game we analyze belongs to the class of stochastic se-

quential bargaining games studied by Merlo and Wilson (1995). Time is continuous and we

27This type of bargaining procedure has been used extensively in search models of money, e.g., Burdett, Trejos
and Wright (2001) as well as in search models of the labor market, e.g., Kiyotaki and Lagos (2007).

38



assume that negotiations between an investor an a dealer who meet at time t take place at

� = t, t+�, t+ 2�, ... , where � > 0 is the length of the period of time between two consec-

utive bargaining rounds. In every bargaining round, Nature selects a player to make an o¤er

(a0; �); the dealer is selected with probability � (which we will also denote �1) and the investor

with probability 1 � � � �2. If the recipient of the o¤er accepts it, the trade is consummated
instantaneously and the match is dissolved. If the recipient rejects the o¤er, the pair waits

for a period of length � until the next bargaining round. During this period of time between

bargaining rounds, the dealer-investor match is subject to a Poisson destruction process with

arrival rate �. (This process is independent across matches an also independent of the investor�s

process for preference shocks.) If the match survives until the next bargaining round, Nature

again selects the player who will make the next o¤er, and so on. To keep the analysis simple

we describe the negotiations that take place once the market has reached the long-run steady

state described in Proposition 3.

Consider an investor with asset holdings a who enters a negotiation round with a dealer.

The payo¤ to the dealer if an agreement (a0; �) is reached at time � � t is e�r(��t)W(�), where
W(�) � � + W and rW = �

R
�i(a)dH(a; i). Similarly, the payo¤ to the investor from an

agreement (a0; �) reached at time � � t when his preference type is i is e�r(��t)Ui(a0; �), where
Ui(a0; �) � Vi(a0)� p(a0 � a)� �, with

Vi(a) =
�ui (a) + �(pa+
i)

r + �
; (63)


i =
r+�
r+�+��i+

�
r+�+�

PI
j=1 �j�j and �i = maxa0�0 [�ui (a

0)� rpa0]. If no agreement is reached,
the (current value of) the payo¤ is W(0) to the dealer and Ui(a; 0) to the investor. There are
gains from trade between an investor with preference type i who holds a and a dealer if

�i (a) � max
a0�0

�
Vi(a

0)� pa0
�
� [Vi(a)� pa] > 0; (64)

i.e., as long as a 6= ai � argmaxa0�0 [Vi(a
0)� pa0]. For the time being we focus on the case

where (64) holds; the analysis will be completed toward the end of the section.

A strategy for a player is a contingent plan that indicates which o¤er to make following

every history after which it is the player�s turn to make an o¤er, and which o¤ers to accept or

reject after every history where it is the player�s turn to respond. The equilibrium concept we

adopt is subgame perfect equilibrium and we restrict attention to stationary strategies.28 The
28 In our context, a strategy pro�le is stationary if the actions prescribed at any history depend only on the
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fact that the investor�s preference type follows a stochastic process implies that the gains from

trade also follow a stochastic process. In this setting, Merlo and Wilson (1995) have shown that

agreement may turn out to be delayed in the subgame perfect equilibrium. We carry out the

analysis under the conjecture that an agreement will not be delayed, and later verify that this

is indeed the case for the particular parametrization of the game that we deem relevant for our

application.

Let (a1i ; �
1
i ) denote the proposal that the dealer makes to an investor of type i who is

holding a, and (a2i ; �
2
i ) denote the o¤er that the latter makes to the former.

29 Assuming the

o¤ers
�
(a2i ; �

2
i )
	I
i=1

are accepted by dealers, the set of o¤ers that an investor of type i who is

holding asset position a accepts is

A2i (a) =

8<:(a0; �) : Ui(a0; �) � 1���
1+r�

24�� IX
j=1

2X
k=1

�j�kUj(akj ; �kj )

+ (1� ��)
2X
k=1

�kUi(aki ; �ki )
#
+ ��
1+r�

24�� IX
j=1

�jUj(a; 0) + (1� ��)Ui(a; 0)

359=; :
On the left side of the inequality that de�nes the set A2i (a), is the utility to the investor with
preference type i and asset holdings a from immediate agreement to an o¤er (a0; �). On the

right side of the inequality is his discounted expected utility from rejecting such an o¤er: he

may receive a preference shock (with probability approximately equal to ��), negotiations may

break down (with probability approximately equal to ��), and in the event that negotiations

do not break down, he is selected to make an o¤er with probability �2 and to respond to the

dealer�s o¤er with probability �1. Similarly, the acceptance set of a dealer is

A1 =

8<:(a0; �) :W(�) � 1���
1+r�

24�� IX
j=1

2X
k=1

�j�kW(�kj ) + (1� ��)
2X
k=1

�kW(�ki )

35+ ��
1+r�W(0)

9=; :
current o¤er and the investor�s current asset holdings and preference type. A subgame perfect equilibrium in
stationary strategies is often referred to as a stationary subgame perfect equilibrium. Since we �nd a unique
stationary subgame perfect equilibrium outcome, the restriction to stationary strategies is innocuous for our
purposes because the subgame perfect equilibrium outcome of the bargaining game we are considering is unique
if and only if the stationary subgame perfect equilibrium outcome is unique. See Merlo and Wilson (1995).
29We could write aki = aki (a) and �

k
i = �ki (a) to emphasize the fact that the o¤ers may depend not only on

the investor�s preference type but also on his asset holdings. However, as we show below, the equilibrium o¤ers
a1i , a

2
i and �

2
i are independent of a for all i. The fee proposed by the dealer, �

1
i , will depend on the investor�s

asset holdings a, so when �1i appears, we really mean �
1
i (a).
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Under the conjecture that agreement is not delayed in equilibrium, when it is his turn to

propose, an investor of type i chooses the o¤er that maximizes his own payo¤ from the set of

o¤ers that are acceptable to the dealer, i.e.,

(a2i ; �
2
i ) = arg max

(a0;�)2A1
Ui(a0; �);

where the maximization is subject to a0 � 0. It is easy to show that a2i = ai and �2i satis�es

W(�2i ) = 1���
1+r�

24�� IX
j=1

2X
k=1

�j�kW(�kj ) + (1� ��)
2X
k=1

�kW(�ki )

35+ ��
1+r�W(0)

for i = 1; :::; I, which implies

�2i =
(1���)�1

1+r��(1���)(1���)�2

24(1� ��)�1i + (1+r�)��
1+r��(1���)�2

IX
j=1

�j�
1
j

35� r�
1+r��(1���)�2W: (65)

Similarly, the optimal acceptable o¤er made by a dealer to an investor of type i who is holding

a solves

(a1i ; �
1
i ) = arg max

(a0;�)2A2i (a)
W(�);

where the maximization is subject to a0 � 0. For all i, the solution has a1i = ai and �1i satis�es

Ui(ai; �1i ) = 1���
1+r�

24�� IX
j=1

2X
k=1

�j�kUj(aj ; �kj ) + (1� ��)
2X
k=1

�kUi(ai; �ki )

35
+ ��

1+r�

24�� IX
j=1

�jUj(a; 0) + (1� ��)Ui(a; 0)

35 ;
which implies

�1i =
1���
1+r�

24�� 2X
k=1

IX
j=1

�k�j�
k
j + (1� ��)

2X
k=1

�k�
k
i

35+Gi (a) ; (66)

where

Gi (a) =
1+r��(1���)(1���)

1+r� �i (a)� (1���)��
1+r�

�� (a) + (r+�)�
1+r� Vi (a)�

��
1+r�

�V (a) ;

with �� (a) =
PI
j=1 �j�j (a) and �V (a) =

PI
j=1 �jVj (a). Combine (65) and (66) to arrive at

�1i =
(1+r�)(1���)�1��

[1+r��(1���)(1���)][1+r��(1���)]

24 IX
j=1

�jGj (a)� r�(1���)�2
(1+r�)[1+r��(1���)�2]W

35
+ 1+r��(1���)(1���)�2

1+r��(1���)(1���)

h
Gi (a)� r�(1���)�2

(1+r�)[1+r��(1���)�2]W
i

(67)
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and

�2i =
(1+r�)(1���)�1��

[1+r��(1���)(1���)][1+r��(1���)]

24 IX
j=1

�jGj (a)� r�(1���)�2
(1+r�)[1+r��(1���)�2]W

35
+ (1���)(1���)�1

1+r��(1���)(1���)

h
Gi (a)� r�(1���)�2

(1+r�)[1+r��(1���)�2]W
i
� r�

1+r��(1���)�2W: (68)

Next, we follow Binmore (1987) and consider the case where the time between each o¤er and

countero¤er vanishes. This means that, no matter what the expected duration of the match

may be (i.e., for any �), the dealer and the investor may in principle engage in an in�nite

number of bargaining rounds before the negotiation terminates. As we let � ! 0, from (67)

and (68) we �nd lim�!0 �1i = lim�!0 �
2
i = 'i (a; �), where

'i (a; �) = �
n
�i (a) +

r
r+�Vi (a) +

��
(r+�)(r+�+�)

�
Vi (a)� �V (a)

�o
:

Our theory is intended as a model of a fast moving market with �eeting contacts between

dealers and investors. To capture this idea, we consider the limit case where the average

duration of the meeting between the dealer and the investor vanishes. As � ! 1, we �nd
'i (a; �) ! ��i (a). Then, since (64) and (63) imply �i (a) =

�ui(ai)��ui(a)�rp(ai�a)
r+� , we conclude

that lim�!1 'i (a; �) = �i (a), where �i (a) is as in (20).

To conclude, we verify that the su¢ cient condition in Merlo and Wilson (1998) that en-

sures that agreement will not be delayed for any investor-dealer pair in the subgame perfect

equilibrium is satis�ed as � !1. The relevant condition is that the stochastic process for the
discounted gains from trade is a supermartingale, which in our application reduces to

�i (a) �
1� ��
1 + r�

24�� IX
j=1

�j�j (a) + (1� ��)�i (a)

35+ o (�) ;
where o (�) is a function with the property that lim�!0

o(�)
� = 0. If we rearrange this condition

and let � go to zero, it becomes

�i (a) �
�

r + � + �
�� (a) :

Since �i (a) � 0 for all i and a, this condition is satis�ed as � !1.

C.3 Alternating o¤ers in a discrete-time formulation of the model

Here we consider a discrete-time version of our model in which the terms of trade in a bilateral

match between a dealer and an investor correspond to the outcome of an alternating o¤ers
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bargaining game with exogenous risk of breakdown. The environment is similar to the one laid

out in the body of the paper, except that time is discrete and indexed by t = 0; 1; :::. The

sequence of events within a time period is as follows. First, each investor enjoys utility ui(a)

associated with his current preference type, i, and asset position, a. Second, investors receive

preference shocks, and new contacts between dealers and investors take place. An investor

receives a preference shock with probability � and contacts a dealer with probability �. We

assume that these events are mutually exclusive and that �+ � < 1. Third, the dealer-investor

pairs bargain over the terms of the trade. We assume that although the negotiation occurs

within the period, it can take place over an in�nite number of bargaining rounds indexed by

� 2 N. Lastly, the interdealer market opens and dealers execute trades on behalf of investors.
The interdealer market closes when the period ends, and at that point all trades between dealers

and investors are settled (assets are delivered and fees are paid) and all dealer-investor matches

are dissolved.

Let Vi (a; t) denote the maximum expected discounted utility attainable by an investor who

has preference type i and is holding a at the end of period t, after the interdealer market has

closed. It satis�es

(1 + r)Vi(a; t� 1) = ui(a) + � fVi [ai(t); t]� p(t) [ai(t)� a]� �i(a;t)g

+ �

IX
j=1

�jVj(a; t) + (1� �� �)Vi(a; t); (69)

where (1 + r)�1 denotes the discount factor. Similarly, letW (t) denote the maximum expected

discounted utility attainable by a dealer at the end of period t, after the interdealer market has

closed. It satis�es

(1 + r)W (t� 1) = �
Z
�i(a;t)dHt(a; i) + (1� �)W (t) : (70)

We now turn to the determination of the terms of trade. We adopt the strategic model with

exogenous risk of breakdown proposed by Binmore, Rubinstein and Wolinsky (1986). Consider

a meeting in period t between a dealer and an investor of type i who is holding a. The terms

of trade are determined through an alternating o¤ers bargaining game. The game takes place

within the period but it is composed of a large number of rounds. The dealer is the �rst

proposer: he makes an o¤er that is accepted or rejected by the respondent.30 An o¤er is a pair
30Below we will eliminate the dealer�s �rst-mover advantage by considering the limit of the game where the

probabilities of breakdown between two consecutive rounds approach zero.
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(a0; �) that speci�es the new asset position of the investor and the intermediation fee paid to

the dealer. If rejected, the game moves to the second round where the investor can make a

countero¤er. Between two consecutive rounds of negotiation the communication between the

investor and the dealer can break down. The probability of breakdown following an o¤er by

a dealer is �1� while the probability of breakdown following an o¤er made by an investor is

�2�. (The risk of breakdown acts as discounting between bargaining rounds and implies that

agents strictly prefer not to delay the agreement.) The payo¤ to an investor with preference

type i if an agreement (a0; �) is reached at time t is Ui(a0; �; t) � Vi(a
0; t) � p(t)(a0 � a) � �,

and the payo¤ to the dealer is W(�; t) � � +W (t). If no agreement is reached, the payo¤ of
the investor is Ui(a; 0; t) while the payo¤ of the dealer is W(0; t). There are gains from trade

between an investor with preference type i who holds a and a dealer as long as

�i (a; t) � max
a0�0

�
Vi(a

0; t)� p (t) a0
�
� [Vi(a; t)� p (t) a] > 0; (71)

i.e., as long as a 6= ai (t) � argmaxa0�0 [Vi(a
0; t)� p (t) a0]. In what follows we focus on the

case where a 6= ai (t) and assume that if a = ai (t), the dealer proposes the no-trade o¤er (a; 0)
which is accepted by the investor.

A bargaining strategy is a contingent plan that indicates which o¤er to make following every

history after which it is the player�s turn to make an o¤er, and which o¤ers to accept or reject

after every history where it is the player�s turn to respond to an o¤er. The equilibrium concept

we adopt is subgame perfect equilibrium and we restrict attention to stationary strategies.31

Whenever it is his turn to make an o¤er, the dealer proposes (a1; �1) while the investor proposes

(a2; �2). Assuming the o¤er (a2; �2) is accepted by dealers, the acceptance set at time t of an

investor with preference type i and asset holdings a is

A2i (a; t) =
�
(a0; �) : Ui(a0; �; t) � (1� �1�)Ui(a2; �2; t) + �1�Ui(a; 0; t)

	
: (72)

A buyer accepts all o¤ers that generate a payo¤ greater or equal than his expected payo¤

if he rejects the o¤er and takes the chance to make a countero¤er. In the latter case, the

investor makes the counter o¤er (a2; �2) with probability 1 � �1�, and with probability �1�
the negotiation breaks down. Similarly, the acceptance set of a dealer is

A1 (t) =
�
(a0; �) :W(�; t) � (1� �2�)W(�1; t) + �2�W(0; t)

	
: (73)

31This restriction is innocuous since the subgame perfect equilibrium of the bargaining game we are considering
is unique. See Proposition 3 in Binmore, Rubinstein and Wolinsky (1986) or Proposition 122.1 in Osborne and
Rubinstein (1994).
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When it is his turn to make a proposal, the investor chooses the o¤er that maximizes his

payo¤ among the set of o¤ers that lie in the dealer�s acceptance set, i.e., the investor�s o¤er is

a2i (t) ; �

2
i (a; t)

�
= arg max

(a0;�)2A1(t)
Ui(a0; �; t);

where the maximization is subject to a0 � 0. It is easy to show that a2i (t) = ai (t) and

�2i (a; t) = (1� �2�)�1i (a; t) : (74)

Similarly, the dealer�s optimal o¤er when it is his turn to propose is

a1i (t) ; �

1
i (a; t)

�
= arg max

(a0;�)2A2i (a;t)
W(�; t);

where the maximization is subject to a0 � 0. Hence, a1i (t) = ai(t) and �1i (a; t) satis�es

Ui
�
ai(t); �

1
i (a; t) ; t

�
= (1� �1�)Ui

�
ai(t); �

2; t
�
+ �1�Ui(a; 0; t) or, equivalently,

�i (a; t)� �1i (a; t) = (1� �1�)
�
�i (a; t)� �2i (a; t)

�
:

Use (74) to substitute �2i (a; t) into this last expression and rearrange to get

�1i (a; t) =
�1�

1� (1� �1�)(1� �2�)
�i (a; t) : (75)

One can check that the o¤ers


aki (t) ; �

k
i (a; t)

�
for k = 1; 2, satisfy both agents�participation

constraints.32

From (74) and (75), we see that lim�!0 �2i (a; t) = lim�!0 �
1
i (a; t) = �i(a;t), where �i(a;t)

is as in (4), with �1
�1+�2

� �. It is possible to work out the rest of the model in discrete time. In
particular, one could let the length of a period be given by �0, assume that the probabilities �

and �, the rate of time preference, r, and the utility, ui(a), are all proportional to �0, and then

let �0 approach zero to obtain the same expressions we have in the body of the paper.

32For the dealer, this only requires �ki (a; t) � 0 for k = 1; 2 and all i. From (75),

�i (a; t)� �1i (a; t) = �2�(1��1�)
1�(1��1�)(1��2�)�i (a; t) � 0;

where the inequality is strict provided a 6= ai (t). So


ai (t) ; �

1
i (a; t)

�
is preferred by the investor to no trade. It

can be easily checked that the same is true of


ai (t) ; �

2
i (a; t)

�
.
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C.4 A single bargaining round in a discrete-time formulation of the model

In the context of the model analyzed in Section C.3, we could, instead of considering a bargaining

game with a potentially in�nite number of rounds, adopt a simpler two-stage bargaining game

that delivers the same outcome. In the �rst stage the dealer makes an o¤er that the investor

accepts or rejects. Following the investor�s decision to accept or reject, the bargaining ends

with probability �. (As in Section C.3, the risk of breakdown acts as discounting between

bargaining rounds and implies that agents strictly prefer not to delay the agreement.) With

probability 1 � � one of two players can make a countero¤er without delay. Nature chooses

either the investor (with probability 1 � �) or the dealer (with probability �) to make the
countero¤er. The recipient of the countero¤er chooses whether to accept or reject it, and

regardless of his action, the game ends and the two players part ways.

If the investor is the proposer in the second stage, he o¤ers


a2i (t) ; �

2
i (a; t)

�
= hai(t); 0i,

where ai(t) � argmaxa0�0 [Vi(a0; t)� p (t) a0]. If the dealer is the proposer in the second stage,
he o¤ers hai(t);�i (a; t)i where �i (a; t) is as in (71). Thus, in the �rst stage the dealer o¤ers


a1i (t) ; �
1
i (a; t)

�
= arg max

(a0;�)
�

s.t. Vi(a0; t)� p(t)(a0 � a)� �� Vi (a; t) � (1� �)(1� �)�i (a; t)

and a0 � 0. It is easy to see that a1i (t) = ai(t) and �1i (a; t) = [1� (1� �)(1� �)] �i (a; t).
Therefore, also in this game we �nd lim�!0 �1i (a; t) = �i(a;t), where �i(a;t) is as in (4).
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D Transversality condition

In this appendix we show that an equilibrium, the asset price p (t) necessarily satis�es the

condition limt!1 e�rtp (t) = 0, used in Lemma 1. The proof we o¤er here is an adapted version

of a similar proof in Lagos, Rocheteau and Weill (2007).

Consider an investor who e¤ectively contacts the market with Poisson intensity �. Let

fTng1n=1 denote the sequence of contact times and Nt the number of contacts over the time
interval [0; t). We adopt the convention that T0 = 0 (but T0 is not a contact time). An asset

plan, a, for the investor speci�es his asset holdings as a function time, s, and his history of

preference shocks and contact times, hk (s) ; fTng1n=1i for s � 0. Let a = a (s) denote an asset
plan. An asset plan is feasible if a (s) = a (Tn) for all s 2 [Tn; Tn+1) and a (0) = a0 > 0, which is
given. Let V ti (a; 0) be the expected discounted utility over the time interval [0; t) of an investor

with preference type i at time 0 who follows an asset plan a. It satis�es

V ti (a; 0) = Ei

( 1X
n=0

�Z Tn+1

Tn

e�rsuk(s) [a(Tn)] IfTn+1�tgds+
Z t

Tn

e�rsuk(s) [a(Tn)] IfTn�t<Tn+1gds
�)

� Ei

( 1X
n=1

e�rTnp(Tn) [a(Tn)� a(Tn�1)] IfTn�tg

)
;

where the expectations operator, Ei, is taken with respect to the random variables hk (s) ; fTng1n=1i
for s � 0 and is indexed by i to indicate that the expectation is conditional on k(0) = i. Collect
terms to arrive at

V ti (a; 0) = Ei
�
If0�t<T1g

Z t

0
e�rsuk(s) (a0) ds+ IfT1�tg

�Z T1

0
e�rsuk(s) (a0) ds+ e

�rT1p(T1)a0

��
+ Ei

( 1X
n=1

IfTn+1�tg
Z Tn+1

Tn

e�rsuk(s) [a(Tn)] ds

)

� E
( 1X
n=1

IfTn+1�tge
�rTn

h
p(Tn)� e�r(Tn+1�Tn)p(Tn+1)

i
a(Tn)

)

+ Ei

(Z t

TNt

e�rsuk(s) [a(TNt)] ds

)
� E

�
e�rTNtp(TNt)a(TNt)

	
; (76)

where the expectations operator, E, is taken with respect to fTng1n=1. It is shown in Lagos,
Rocheteau and Weill (2007, Lemma 2) that V ti (a; 0) converges to a �nite limit V

1
i (a; 0) as
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t!1. After taking this limit we �nd

V1i (a; 0) = Ei
�Z T1

0
e�rsuk(s) [a(0)] ds+ e

�rT1p(T1)a(0)

�
+ Ei

( 1X
n=1

e�rTn
�
�Uk(Tn) [a(Tn)]� q(Tn)a(Tn)

	)
� lim
t!1

E
�
e�rTNtp(TNt)a(TNt)

	
: (77)

To arrive at (77), note that Tn =
Xn

k=1
(Tk � Tk�1) is the sum of n independent exponentially-

distributed random variables, so limt!1 IfTn�1�t<Tng = 0 and limt!1 IfTn�tg = 1 almost surely
for all �nite n � 1. The former implies that the �rst term on the right-side of (76) converges

to 0 as t ! 1. The latter implies that the second term of (76) converges to the �rst term of

(77) and that the second and third terms of (76) converge to the second term of (77). To see

that the �rst term on the last line of the right side of (76) goes to 0 as t!1, write it as

Ei
�
e�rTNt

Z t�TNt

0
e�rsuk(s+TNt ) [a(TNt)] ds

�
: (78)

Any asset plan that is consistent with equilibrium must be bounded, hence the integrand of

(78) is bounded above. This integrand is also bounded below, since either u is bounded below

or else it satis�es the Inada condition which ensures that any optimal plan has a(s) > 0 for

all s. The fact that t � TNt < 1 almost surely (because t � TNt is exponentially distributed)
implies that the integral in (78) is bounded. Finally, note that Pr (TNt < �) = e

��(t��) for any

� < t, so TNt !1 almost surely as t!1, which means that (78) goes to 0 as t!1.
Now consider an optimal asset plan, a, and scale it down by 1� ". De�ne �" � V1i (a; 0)�

V1i [(1� ")a; 0]; then,

�" = Ei

( 1X
n=1

e�rTn
�
�Uk(Tn) [a(Tn)]� �Uk(Tn) [(1� ") a(Tn)]� "q(Tn)a(Tn)

	)
� lim
t!1

E
�
"e�rTNtp(TNt)a(TNt)

	
:

Divide the previous expression by " to get

�"
"
= Ei

( 1X
n=1

e�rTn
�Uk(Tn) [a(Tn)]� �Uk(Tn) [a(Tn)(1� ")]� "q(Tn)a(Tn)

"

)
� lim
t!1

E
�
e�rTNtp(TNt)a(TNt)

	
:
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Since the asset plan a is optimal, we can take the limit as " ! 0, apply L�Hôpital�s Rule and

use the �rst-order condition for the investor�s problem (e.g., (29)) to �nd that it must satisfy

lim
"!0

�"
"
= � lim

t!1
E
�
e�rTNtp(TNt)a(TNt)

	
� 0:

Since e�rtp(t)a(t) � 0 for all t, the previous condition can be rewritten as

lim
t!1

E
�
e�rTNtp(TNt)a(TNt)

	
= 0 (79)

for each investor. We can use the market-clearing condition to writeZ


a!(t)d! = A; 8t;

where a!(t) is investor !�s asset demand at time t and 
 denotes the set of investors. Hence,

A lim
t!1

E
�
e�rTNtp(TNt)

	
= lim
t!1

E
�Z



e�rTNtp(TNt)a

!(TNt)d!

�
= 0;

since (79) holds for each !. Then TNt !1 almost surely as t!1, so limt!1 e�rtp(t) = 0.
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E Related literature

In this appendix we draw connections to some related literature.

E.1 Search models of over-the-counter markets

Traders who operate in markets with OTC-style frictions will seek to mitigate these trading

frictions by adjusting their asset positions so as to reduce their trading needs. Our analysis

has shown that this a critical aspect of investor behavior in illiquid markets. To illustrate this

point, in this section we derive the main predictions of a version DGP�s model and contrast

them with those of a special case of our formulation. This comparison will underscore the fact

that the type of �liquidity hedging� that we have identi�ed� and that only becomes possible

with unrestricted asset holdings� generates new insights on how trading frictions shape the

various dimensions of market liquidity, alters the empirical predictions of the theory, and leads

to a di¤erent assessment of their normative implications.

We will contrast the empirical predictions of DGP�s model with those of a special case of

our model with X = f1; 2g and ui (a) = "i a
1��

1�� for i 2 X and � > 0. We focus on the version of
DGP�s model with no inter-investor meetings (e.g., the version that DGP use in their Theorem

4 and part (i) of Theorem 6). DGP restrict a 2 f0; 1g and let uij denote the �ow utility

of an investor with asset position i 2 f0; 1g and preference type j 2 f0; 1g.33 DGP assume

u00 = u01 = 0, so for comparison purposes, we do the same hereafter. To simplify the notation,

in both models we let � denote the steady-state fraction of investors with high valuation.34

Price. Since asset holdings are indivisible in DGP, equilibrium in the interdealer market

requires investors who are on the long side of the market to be indi¤erent between trading and

not trading. It is easy to show that in steady state investors who want to sell are on the short

side if and only if A < �. The equilibrium price in the interdealer market is

p =

(
1
r
(r+�)u11+��u

r+�+� if A < �
1
r
(r+�)u10+��u

r+�+� if � < A;
(80)

where �u � �1u11 + �0u10.35

33DGP state their restriction on asset holdings as a 2 [0; 1] but only study equilibria in which agents hold
either 0 or 1 unit of the asset, which is e¤ectively equivalent to imposing the restriction a 2 f0; 1g.
34�High valuation�corresponds to the index �2�in our formulation and �1�in DGP.
35 If A = �, p 2

h
(r+�)u10+��u
r(r+�+�)

; (r+�)u11+��u
r(r+�+�)

i
and the equilibrium price in the interdealer market is indeterminate.
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The asset holding restrictions in DGP are also the reason why the asset price in their theory

is independent of the stock of assets, A, for any A < � and for any A > �, with a discontinuity at

A = �. In contrast, the asset price in our model is smooth and decreasing in A. For example, in

the special case of our model that we are considering in this section, p =
�P

i �i�"
1=�
i

��
=rA�.36

The behavior of the asset price in response to changes in the trading frictions in DGP depends

critically on the level of A. From (80), p is increasing in � (decreasing in �) if A < � but

decreasing in � (increasing in �) if A > �. In contrast, with unrestricted asset holdings these

extensive-margin considerations are irrelevant to assess the impact of trading frictions on the

asset price (recall Proposition 4).

Trade volume. Trade volume is V = � ��(1��)�+�
(�"2)1=��(�"1)1=�

�(�"2)1=�+(1��)(�"1)1=�
A in our model and VDGP =

� ��(1��)�+� minfA� ;
1�A
1�� g in DGP. The latter is independent of the dealers�bargaining power, �,

and of all preference parameters and holding payo¤s (e.g., r, k). In contrast, these parameters

are critical determinants of trade volume in our theory, as they in�uence the investors�choices

of asset holdings (the second factor in V). Our model predicts that markets in which dealers
have less market power will tend exhibit larger trade volume.37

Transaction costs. DGP�s transaction costs can be expressed in terms of the intermediation

fees �01 and �10 that dealers charge investors who want to buy and sell, respectively. The equi-

librium spread is s = �(u11�u10)
r+�+� .38 Conditional on having contacted an investor, the expected

intermediation fee that accrues to a dealer in DGP is �DGP =
��(1��)
�+� minfA� ;

1�A
1�� gs. This key

determinant of dealers�incentives to make markets is decreasing in the investors�contact rate

with dealers, �, and increasing in the dealers�bargaining power, �. In contrast, as we have

shown analytically in Proposition 1, in our model with no restrictions on asset holdings it is

natural for the average fee to be nonmonotonic in � and �. Our theory suggests that these

nonmonotonicities can be important. From an applied standpoint, they help explain how OTC
36Notice that we obtain DGP�s formulation with A < � as a special case of ours when � ! 0.
37Apart from these qualitative di¤erences, the theory with unrestricted portfolios also has di¤erent quantitative

implications for the relationship between trade volume and trading frictions. For example, DGP�s model has a
sharp empirical implication: the elasticity of trade volume with respect to trading frictions equals �

�+�
2 (0; 1).

In contrast, in the model with unrestricted asset holdings the corresponding elasticity is larger by an amount that
equals the elasticity of (a2 � a1) with respect to �� which is positive, capturing the notion that each investor
wishes to conduct a larger trade when frictions are reduced.
38Since asset holdings in DGP are restricted to lie in f0; 1g, every trade is of size 1 and hence �01+�10 = s. In

addition, the indivisibility assumption implies that dealers either charge a fee on asset sales or on asset purchases,
but not both. Speci�cally, if A < � then �01 = 0 and investors only pay a fee �10 = s when they sell. Conversely,
if � < A, �10 = 0 and investors only pay a fee �01 = s when they buy.
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markets have reacted to recent changes in their market structure (see Lagos and Rocheteau,

2006). From a theoretical standpoint, they can generate self-ful�lling liquidity shortages in

markets with free entry of dealers (Section 6).39

Another key di¤erence with DGP is the fact that since the equilibrium in the model

with unrestricted portfolios implies a nondegenerate distribution of trade sizes, our theory

has predictions for the relationship between transaction costs and transaction sizes. As we

showed in Lemma 4, transaction costs are increasing in the size of the transaction. Thus, if

ai � aj > ai � ak > 0, then the e¤ective price at which the investor buys is p̂ji > p̂ki, i.e.,

he e¤ectively pays higher prices when he conducts larger purchases. Conversely, p̂ji < p̂ki if

ai � aj < ai � ak < 0, i.e., he e¤ectively receives lower prices when he conducts larger sales. In
other words, the theory with unrestricted asset holdings naturally generates instances of price

concession which are commonplace in OTC markets.40

Execution delays. DGP endogenized trading delays by allowing a single monopolist dealer

to choose search intensity once-and-for-all at the beginning of time. Free entry of competing

dealers or market-makers is a feature of most OTC markets, however, the implications of this

microstructure have not yet been explored in the literature. We �nd that allowing for free entry

of dealers is a natural way to endogenize execution delays and the amount of liquidity supplied by

dealers, and that it provides an important channel through which changes in market conditions

a¤ect transaction costs and trade volume. In addition, the interaction between free entry and

unrestricted asset holdings leads to a natural kind of strategic complementarity that can help

rationalize self-ful�lling liquidity shortages in markets with OTC-style frictions (Section 6).

Welfare. The equilibrium allocation is always constrained e¢ cient in the baseline model

of DGP� regardless of the value of �� which stands in contrast to the �nding we report in

Proposition 2. The reason is that in our model investors choose asset holdings, while this

intensive margin is absent in DGP. For the same reason, the ine¢ ciency result we �nd in the

context of the model with free entry also has no counterpart in DGP.
39The spread, s, is decreasing in � and increasing in � in this version of DGP with no inter-investor meetings.

One can also verify that the average e¤ective spread weighted by the sizes of each trade and expressed as
a proportion of the price is also decreasing in � and increasing in �. The behavior of this measure of the
marketwide spread, i.e., (38) in Lagos and Rocheteau (2006) is much more complicated in our model, where the
investors�expected holding payo¤s, their individual asset demands, the asset price, and the whole distribution
of asset holdings change in response to a change in �. Our numerical work, some of which we have reported in
Lagos and Rocheteau (2006) is in accordance with the predictions of DGP.
40See Section 4.3 in Harris (2003).
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A paper that is closely related to ours is an independent contribution by Gârleanu (2006),

which studies the asset pricing and volume implications of infrequent (Poisson) trading oppor-

tunities. Some of our �ndings are similar: he also �nds that under certain conditions (e.g.,

a mean-reversion property of preference shocks) investors take more extreme positions when

trading delays are short. Also, Gârleanu stresses that the asset price is not a¤ected by the trad-

ing frictions� which is true in our model for a particular speci�cation of the utility function

(Proposition 4). In terms of di¤erences, trades in Gârleanu (2006) are not intermediated by

dealers so he could not consider the implications of execution delays for transaction costs and

dealers�incentives to provide liquidity, which are at the center of our analysis. Also, Gârleanu

(2006) formalizes the investors�motive for holding the asset by developing the �hedging needs�

motive we mentioned in footnote 4. Despite the di¤erences in the formulations, some of our

results on the e¤ects of � on trade volume are remarkably similar.41

E.2 Search models of money

Here we discuss the relationship between our theory and the search-theoretic literature on

monetary exchange. In contrast to the monetary literature our model does not have �at money

as an asset and it does not aim to explain the use or emergence of a medium of exchange.

However, it shares a common objective with modern monetary theory, which is to endogenize

some relevant dimensions of �liquidity.� We organize the comparison around four types of

results.

Endogenous distribution of asset holdings. Because of idiosyncratic (trading) shocks,

under incomplete markets, our model generates a nondegenerate distribution of wealth as Green

and Zhou (2002) and Molico (2006), but also Aiyagari (1994). The trading mechanism in our

model is closer to the one in Molico: the asset is traded in bilateral matches and the transaction

price is determined through bargaining. In terms of the methodology, both Aiyagari (1994) and

Molico (2006) solve their models numerically. Green and Zhou (2002) is closer to our analysis in

that they can characterize the equilibrium and its distribution of money holdings analytically.

Moreover, like us, they do not restrict their analysis to stationary equilibria. The pricing

mechanism is di¤erent (Green and Zhou consider a double auction).

Bargaining and the distribution of prices. A key insight of our model is that the interme-
41See the discussion around Proposition 10 in Appendix B for details.
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diation fee depends on the (endogenous) asset position of the investor. Similarly, in monetary

search models with bargaining, the transaction price depends on the traders�money balances.

This dependence occurs through (at least) two channels. First, the buyer can be constrained by

his money balances. This mechanism is present even in models with a degenerate distribution of

money balances, such as Shi (1997) and Lagos and Wright (2005). Second, the money holdings

of an agent a¤ect his marginal utility of wealth, and hence the terms of trade. These two e¤ects

are absent from our model since our investors never face binding borrowing constraints, and the

marginal utility of wealth is normalized to one due to the quasi-linear preferences. An investor�s

asset holdings in�uence the outcome of the bargaining in our model because this asset position

determines the size of the gains from trade that will be generated for readjusting the investor�s

asset holdings.

Uniqueness of the equilibrium. The equilibrium (not just the steady state) is unique

in our model. In contrast, the model of �at money of Green and Zhou can display multiple

equilibria. This indeterminacy is a general feature of models of �at money. Even in models with

a degenerate distribution of money balances, e.g., Lagos and Wright (2005), the equilibrium is

typically not unique, unless one restricts attention to steady-state monetary equilibria. Models

of monetary exchange consider environments where the asset being traded is �at money, whose

value emerges endogenously when it is valued as a medium of exchange that mitigates a double-

coincidence of wants problem. In contrast, in our model and the rest of the literature that deals

with the trading process in OTC markets, the asset being traded is not used to facilitate trades;

it is valued for its intrinsic characteristics (e.g., dividend �ow).

Endogenous trading delays and multiple equilibria. In our model, the multiplicity of

steady-state equilibria with dealer entry arises from complementarities between investors�asset

demands and dealers�entry decision. If more dealers participate in the market, it is easier for

investors to readjust their asset holdings which induces them to take more extreme positions,

and this in turn makes it pro�table for dealers to enter. Rocheteau and Wright (2005) consider

a monetary search model with free entry of sellers and �nd that the strategic complementarities

between the sellers�entry decision and the buyers�demand for real balances generates multiple

steady-state equilibria. If buyers accumulate more real balances, the buyer and the seller are

able to exploit larger gains from trade, which gives more incentives for sellers to participate in

the market. In both models, the multiplicity does not require increasing returns to scale in the
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matching function as in Diamond (1982) or as in most recent search models of �nancial markets,

e.g., Vayanos and Weill (2007). A key di¤erence between our model and Rocheteau and Wright

(2005) is the opportunity cost from holding real balances in the latter, which has no counterpart

in our formulation. If the opportunity cost from holding cash balances to make a purchase is

zero (e.g., if the nominal interest rate is zero) then the multiplicity of (active) steady-state

equilibria in that model disappears. In contrast, the multiplicity in our model obtains even

though investors do not bear any opportunity cost (e.g., forgone interest) while searching for

an asset to purchase (since they have access to a technology to produce the numéraire good).

Also, notice that the gains from trade in Rocheteau and Wright (2005) depend on the mean

of the distribution of real balances (since the distribution of real balances is degenerate as in

Lagos and Wright, 2005), which is independent of trading frictions when the nominal interest

rate is zero. In our model it is the second moment, which is endogenous and depends on the

trading frictions, what gives rise to multiple steady-state equilibria.
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