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Liquidity in Asset Markets with Search Frictions  
By Ricardo Lagos and Guillaume Rocheteau 

 
 
We study how trading frictions in asset markets affect the distribution of asset holdings, 
asset prices, efficiency, and standard measures of liquidity. To this end, we analyze the 
equilibrium and optimal allocations of a search-theoretic model of financial 
intermediation similar to Duffie, Gârleanu and Pedersen (2005). In contrast with the 
existing literature, the model we develop imposes no restrictions on asset holdings, so 
traders can accommodate frictions by varying their trading needs through changes in their 
asset positions. We find that this is a critical aspect of investor behavior in illiquid 
markets. A reduction in trading frictions leads to an increase in the dispersion of asset 
holdings and trade volume. Transaction costs and intermediaries’ incentives to make 
markets are nonmonotonic in trade frictions. With the entry of dealers, these 
nonmonotonicities give rise to an externality in liquidity provision that can lead to 
multiple equilibria. Tight spreads are correlated with large volume and short trading 
delays across equilibria. From a normative standpoint we show that the asset allocation 
across investors and the number of dealers are socially inefficient.  
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1 Introduction

Asset markets have traditionally been the realm of the Walrasian paradigm. Trade in these

markets, e.g., the matching of buyers and sellers, is typically regarded as an instantaneous and

costless process–and left unmodeled. The fact remains that the vast majority of real assets,

such as houses and cars, and a large volume of financial assets, such as derivative securities,

federal funds, unlisted stocks and most fixed-income securities, are traded in over-the-counter

(OTC) markets. OTC markets operate in a completely decentralized manner: trade is bilateral,

with prices and quantities negotiated by the parties involved in each trade.1 In this paper we

further the view that prying into the microstructure of decentralized asset markets by explicitly

modelling the trading process is important to understand and assess the performance of these

markets.

A recent literature pioneered by Duffie, Gârleanu and Pedersen (2005) (DGP hereafter)

uses search theory to model the trading frictions characteristic of OTC markets.2 The search-

based approach is appealing because it can parsimoniously rationalize standard measures of

liquidity–bid-ask spreads, execution delays and trade volume–and lends itself to study how

the market structure and market conditions influence these measures. A virtue of DGP’s search-

based theory of liquidity is that it is analytically tractable, so that all these effects can be well

understood.

The literature spurred by DGP, however, keeps the framework tractable by imposing a

stark restriction on asset holdings, namely, that investors can only hold either 0 or 1 unit of the

asset. In effect, the ability of market participants to respond to changes in market conditions

is limited rather severely by this restriction. In this paper we develop a search-based model

of liquidity in asset markets with no restrictions on investors’ asset holdings. The model is

close in structure and in spirit to DGP, but captures the heterogeneous responses of individual

investors to changes in market conditions. From the broader perspective of search and matching

1For a description of OTC markets for corporate and municipal bonds, see Schultz (2001), Saunders, Srini-
vasan and Walter (2002) and Harris and Piwowar (2005). The functioning of the OTC market for federal funds
is described in Hamilton (1996) and Ashcraft and Duffie (2007). Even in equity markets, where trading arrange-
ments are often well developed, trading frictions exist and can be significant, see Boehmer (2005, Table 6), and
Stoll (2006b).

2The search-theoretic literature on financial markets includes Duffie, Gârleanu and Pedersen (2005), Gârleanu
(2006), Miao (2006), Rust and Hall (2003), Spulber (1996) and Weill (2007). There is also a large related
literature, not search-based, which studies how exogenously specified transaction costs affect the functioning of
asset markets. Recent examples include Lo, Mamaysky and Wang (2004) and Vayanos (1998). See Heaton and
Lucas (1995) for a survey of this body of work.
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theory, a striking feature of the model we develop is that it remains analytically tractable

despite the large degree of heterogeneity among agents which is propagated endogenously by

random matching with unrestricted asset holdings.3 We provide a full characterization of the

equilibrium–including the endogenous distribution of investors’ asset positions–and are able

to show how it depends on all the details of the market structure. The methodology we put

forward allows us to analyze both steady-state and dynamic equilibria. Although we emphasize

the application to OTC markets for financial securities, the structure and solution techniques

we have developed should also prove useful for other applied issues in search theory and other

macroeconomic models with idiosyncratic uncertainty.

Our methodological contribution provides new insights into how trading frictions affect

outcomes in financial markets. We find that as a result of the restrictions on asset holdings,

existing search-based theories of financial liquidity neglect a critical aspect of investor behavior

in illiquid markets, namely the fact that market participants can mitigate trading frictions

by adjusting their asset positions so as to reduce their trading needs.4 The key theoretical

observation is that an investor’s asset demand in an OTC market depends on a weighted average

of his current marginal utility from holding the asset at the time of the trade and his expected

marginal valuation over future random trading times. A reduction in trading delays makes high

valuation investors who subsequently draw low preference shocks less likely to remain locked

into holding an undesirably large position for a long period of time. Thus, reductions in trading

frictions induce investors with high valuations to put more weight on their current valuation and

therefore to choose larger asset positions. The converse is true for investors with low valuations.

This asset reallocation mechanism implies that reductions in trading frictions tend to increase

the distribution of trade sizes (in the first-order stochastic sense). These endogenous responses

of individual investors’ asset demands have a significant impact on market efficiency and asset

3One can think of DGP as being to the search-based theory of financial markets what Kiyotaki and Wright
(1993) is to search-based monetary theory. DGP restricted asset holdings for the same technical reasons why
Kiyotaki and Wright restricted money holdings to {0, 1}, i.e., to keep the endogenous distribution of asset holdings
manageable. The recent monetary literature, e.g., Lagos and Wright (2005), allows for unrestricted portfolios and
keeps the analysis tractable by making assumptions that render the equilibrium distribution of money holdings
degenerate. By way of comparison, the model we develop here allows for unrestricted portfolios and remains
tractable even though we make no attempt to harness the heterogeneity that is generated by the model dynamics.
In fact, we are even able to provide a closed-form characterization of the endogenous distribution of asset holdings
not only in the steady state, but also along the dynamic equilibrium path.

4The importance of this mechanism in the context of another class of models–those with exogenous trans-
action costs–has been stressed by Constantinides (1986) (for the case of proportional transaction costs) and by
Lo, Mamaysky and Wang (2004) (for the case of fixed trading costs).
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prices as well as trade volume, bid-ask spreads and trading delays–precisely the dimensions of

market liquidity which search-based theories of financial liquidity were designed to explain.

Trade volume is a manifestation of the extent to which the exchange mechanism is able to

reallocate assets across investors. According to the theory, large trade volumes are characteristic

of liquid markets, i.e., markets where investors are able to switch in and out of asset positions

relatively fast. We find that trading frictions have a direct as well as two indirect general

equilibrium effects on trade volume. If investors find trading opportunities more frequently, the

number of investors who are able to trade rises, but the number of investors who are mismatched

with their current portfolio falls. These two opposing effects of trading frictions on trade volume

can be found in the existing literature. In addition, we find that a reduction in trading frictions

shifts the equilibrium distribution of investors across desired and actual asset holdings in a way

that tends to increase trade volume. This general equilibrium effect is implicitly shut off if one

restricts asset holdings to lie in {0, 1}, which is why our model has different predictions for
the behavior of trade volume in response to changes in the microstructure of the market. For

example, in its basic formulation, DGP predicts that trade volume is independent of dealers’

market power. In contrast, our model implies that trade volume will be lower in markets where

dealers have more power to set the terms of trade.

From an investor’s standpoint, bid-ask spreads represent the out-of-pocket transaction costs

of trading in an illiquid market. In a search-based theory with bilateral bargaining, the bid-

ask spread is increasing in the investor’s value to immediate trade and decreasing in his value

of searching for an alternative trade opportunity. In DGP, for example, where there is a

unique trade size which is fixed and equal to unity, a decrease in trading frictions increases

investors’ value of searching for alternative trades, and the bid-ask spread narrows. We find

that endogenizing investors’ choices of asset holdings yields a richer set of empirical predictions

for transaction costs. The fees or spreads that dealers charge still depend on the ease with

which investors can find alternative trading partners, but in addition, they also depend on the

extent of the mismatch between investors’ endogenous asset positions and their valuations for

the asset. Our model predicts a distribution of transaction costs, both across trade sizes–with

spreads that increase with the size of the trade–as well as within a given trade-size category–

across investors with different valuations. We also show that investors who are better informed

about trading opportunities or have a higher bargaining power will trade larger quantities at a

lower cost per dollar traded.
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Trading delays, i.e., the fact that a counterpart for trade cannot be found instantaneously,

is perhaps the fundamental distinguishing feature of the microstructure of an OTC market.

The time it takes to execute a trade not only influences measures of liquidity such as trade

volume and spreads, but it is often also used as a measure of market liquidity in itself. We

endogenize trading delays by allowing free entry of dealers. This is a simple and natural

financial market structure, yet one whose implications have not been explored so far.5 In this

context we again find that the model with unrestricted asset holdings bears new theoretical

predictions, including a fundamental change of the equilibrium set. When interacted with the

investors’ unrestricted asset holding decisions, the dealers’ incentives to make markets generate

a liquidity externality which can give rise to multiple equilibria. Tight spreads are correlated

with large volume and short trading delays across equilibria. Scarce liquidity can arise naturally

as a self-fulfilling phenomenon in asset markets and a reduction in trading frictions can remove

the multiplicity. Thus, perhaps counter to intuition, it is possible that a regulatory reform or

a technological innovation that gives investors more direct access to the asset market (such as

Electronic Communication Networks) leads to a relatively large increase in market liquidity and

a higher volume of intermediated trades.

Finally, our model uncovers some novel insights regarding the welfare costs and inefficiencies

associated with illiquid asset markets. With exogenous contact rates, the search equilibrium

is efficient in the basic model of DGP. In particular, the dealers’ market power has no effect

on welfare: transaction costs are a pure transfer from investors to dealers. In contrast, the

same ex-post bargaining protocol implies that asset holdings tend to be inefficient in our model

because the dealers’ market power distorts the investors’ incentives to hold different asset po-

sitions. Investors with high valuations tend to invest too little, while those with low valuations

tend to invest too much so the resulting equilibrium distribution of asset holdings is too concen-

trated. This inefficiency is eliminated if and only if dealers have no market power. With entry,

dealers will not participate in market-making unless they have some market power. Thus, the

inefficiencies on the intensive margin (investors’ asset holdings) and the extensive margin (the

number of dealers) cannot be corrected simultaneously: the size of the intermediation sector

and investors’ choices of asset holdings are generically inefficient.

The rest of the paper is organized as follows. We describe the basic environment in Section

2 and the equilibrium and its normative properties in Section 3. In Section 4 we analyze

5The practical relevance of this microstructure is described in Section 14.1 in Harris (2003).
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the effects of trading frictions on the equilibrium distribution of asset holdings, trade volume

and asset prices. Section 5 studies the effects of trading frictions on spreads. Section 6 deals

with free entry. In Section 7 we use a parametrized version of the model to discuss some

additional empirical predictions. In Section 8 we use the theory to analyze the effects of some

recent technological and regulatory reforms in financial markets. Section 9 contrasts our main

theoretical predictions to those of the related literature. Section 10 concludes.

2 Environment

Time is continuous, starts at t = 0 and goes on forever. There are two types of infinitely-lived

agents: a unit measure of investors and a unit measure of dealers. There is one asset, one

perishable consumption good called fruit, and another consumption good defined as numéraire.

The asset is durable, perfectly divisible and in fixed supply, A ∈ R+. Each unit of the asset
produces a unit flow of fruit. There is no market for fruit, so holding the asset is necessary

to consume this good. The numéraire good is produced and consumed by all agents. The

instantaneous utility function of an investor is ui(a) + c, where a ∈ R+ represents the fruit
consumption (which coincides with the investor’s asset holdings), c ∈ R is the net consumption
of the numéraire good (c < 0 if the investor produces more of these goods than he consumes),

and i ∈ X = {1, ..., I} indexes a preference type.6 The utility function ui(a) is continuously

differentiable, strictly increasing and strictly concave.7 Each investor receives a preference shock

6The fact that we assume a single type of asset is without loss of generality. As long as all assets are traded
in the interdealer market we describe below, it would be easy to allow for any finite number of asset types.
Formally, with m asset types an investor’s asset holdings and utility function would be a ∈ Rm+ and ui : Rm+ → R,
respectively, but the analysis would essentially remain unchanged.

7Our specification associates a certain utility to the investor as a function of his asset holdings. This is a
feature that we have borrowed from DGP. The utility the investor gets from holding a given asset position could
be simply the value from enjoying the asset itself, as would be the case for real assets such as cars or houses.
Alternatively, we can also think of the asset as being physical capital. Then, if each investor has linear utility
over a single consumption good (as is the case in most search models), we can interpret ui (·) as a production
technology that allows the agent to use physical capital to produce the consumption good. The idiosyncratic
component “i” can then be interpreted as a productivity shock that induces agents with low productivity to sell
their capital to agents with high productivity in an OTC market. As yet another possibility, one could adopt
the preferred interpretation of DGP, namely that ui(a) is in fact a reduced-form utility function that stands
in for the various reasons why investors may want to hold different quantities of the asset, such as differences
in liquidity needs, financing or financial-distress costs, correlation of asset returns with endowments (hedging
needs), or relative tax disadvantages (as in Michaely and Vila (1996)). By now, several papers that build on
the work of DGP have formalized the “hedging needs” interpretation. Examples include Duffie, Gârleanu and
Pedersen (2006), Gârleanu (2006) and Vayanos and Weill (2007). (See also Lo, Mamaysky and Lang (2004).)
These derivations typically start with investors who have CARA preferences, and then show that the risk-neutral
approximation to this economy is essentially identical to the economy with linear reduced-form utility for the
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with Poisson arrival rate δ. This process is independent across investors. Conditional on the

preference shock, the probability the investor draws preference type i is πi, with
PI

i=1 πi = 1.
8

These preference shocks capture the notion that investors will value the fruit from the asset

differently over time thereby generating a need for investors to rebalance their asset positions.

Dealers do not hold positions and their instantaneous utility is c, their consumption of the

numéraire good.9 All agents discount at rate r > 0.

There is a competitive market for the asset and dealers have continuous access to it. In-

vestors do not have access to this competitive market but they contact dealers who can trade

in this market on their behalf. Meetings with dealers occur at random according to a Poisson

process with arrival rate α.10 Once they have contacted each other, the dealer and the investor

negotiate over the quantity of assets that the dealer will acquire for the investor and over the

intermediation fee that the investor will pay the dealer for his services. After the transaction

has been completed, the dealer and the investor part ways.

Asset holdings and preference types lie in the sets R+ and X, respectively, and vary across
investors and over time. We describe this heterogeneity with a probability space (S,Σ,Ht),

where S = R+ × X, Σ is a σ-algebra on the state space S and Ht is a probability measure on

Σ which represents the distribution of investors across asset holdings and preference types at

time t.

asset–a special case of our specification. For our purposes, the bottom line is that our preference structure
is consistent with these formalizations, but moreover, that it is general enough to possibly accommodate other
formalizations as well. Finally, notice that investors in DGP, and therefore the investors in our paper, are akin to
the liquidity traders which are commonplace in the large body of the finance microstructure literature that uses
asymmetric information instead of search frictions to rationalize bid-ask spreads, such as Glosten and Milgrom
(1985) and Easley and O’Hara (1987).

8The assumption that the draw of the new preference shock is independent of the old preference shock allows
us to solve for the value functions and the joint stationary distribution of portfolios and preference types in
closed form. The assumption is otherwise inessential for our main results. See Gârleanu (2006) for an alternative
formulation of these preference shocks.

9The restriction that dealers cannot hold assets is immaterial when analyzing steady-state equilibria. See
Weill (2007) and Lagos, Rocheteau and Weill (2007) for dynamic equilibria where dealers can choose to hold
positions.
10While our description of the trading process is stylized, it captures the salient features of the actual trading

arrangements in OTC markets. We refer the interested reader to the discussion in Section 2.1 in Lagos and
Rocheteau (2006).
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3 Equilibrium

Let Vi (a, t) denote the maximum expected discounted utility attainable by an investor who has

preference type i and is holding portfolio a at time t. The value function Vi (a, t) satisfies

Vi(a, t) = Ei
∙Z Tα

t
e−r(s−t)uk(s)(a)ds

+ e−r(Tα−t){Vk(Tα)[ak(Tα)(Tα), Tα]− p(Tα)[ak(Tα)(Tα)− a]− φk(Tα)(a,Tα)}
¸
, (1)

where Tα denotes the next time the investor contacts a dealer and k(s) ∈ X denotes the investor’s
preference type at time s. The expectations operator, Ei, is taken with respect to the random
variables Tα and k(s) and is indexed by i to indicate that the expectation is conditional on

k(t) = i. The first term on the right side of (1) contains the expected discounted utility flows

enjoyed by the investor over the interval of time [t, Tα]. The length of this interval, Tα − t,

is an exponentially distributed random variable with mean 1/α. The flow utility is indexed

by the preference type of the investor, k(s), which follows a compound Poisson process. The

second term on the right side of (1) is the expected discounted utility of the investor from the

time when he next contacts a dealer, Tα, onwards. At this time Tα the investor readjusts his

asset holdings from a to ak(Tα)(Tα). In this event the dealer purchases ak(Tα)(Tα) − a in the

market (or sells if this quantity is negative) at price p(Tα) on behalf of the investor. At this

time the investor pays the dealer an intermediation fee φk(Tα)(a, Tα). Since the intermediation

fee is determined in a bilateral meeting, it may depend on the investor’s preference type and

asset holdings.11 Both the fee and the asset price are expressed in terms of the numéraire good.

LetW (t) denote the maximum expected discounted utility attainable by a dealer. It satisfies

W (t) = E
½
e−r(Tα−t)

∙Z
S
φi(a, Tα)dHTα +W (Tα)

¸¾
,

where the expectations operator, E, is taken with respect to Tα, which denotes the next time at
which the dealer meets an investor. The random variable Tα−t is exponentially distributed with
mean 1/α. Random matching implies that the investor whom the dealer meets is a random

draw from the population of investors at time Tα. Thus, the dealer calculates the expected
11Our notation for the investor’s new asset position, ak(Tα)(Tα), makes explicit that it may depend on time

and on the investor’s preference type at the time of the trade. In Lemma 1 we will show that the investor’s
new asset position is independent of the asset position he was holding at the time of the trade. To simplify the
notation we anticipate this result and do not include the investor’s asset holding at the time of the trade, a, as
an argument of his new asset position.
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intermediation fee using the measure of investors across preference types and asset holdings at

time Tα, denoted HTα .

We turn to the determination of the terms of trade in bilateral meetings between dealers

and investors. Consider a meeting at time t between a dealer and an investor of type i who is

holding a. Let a0 denote the investor’s post-trade asset holdings and φ the intermediation fee.

We take the pair (a0, φ) to be the outcome corresponding to the Nash solution to a bargaining

problem where the dealer has bargaining power η ∈ [0, 1]. The utility of the investor is Vi(a0, t)−
p (t) (a0−a)−φ if an agreement (a0, φ) is reached, and Vi(a, t) in case of disagreement. Therefore,
the investor’s gain from trade is Vi(a0, t)− Vi(a, t)− p (t) (a0 − a)− φ. Analogously, the utility

of the dealer is W (t) + φ if an agreement (a0, φ) is reached and W (t) in case of disagreement,

so the dealer’s gain from trade is the fee, φ.12 The bargaining outcome is

[ai(t), φi(a, t)] = arg max
(a0,φ)

[Vi(a
0, t)− Vi(a, t)− p (t) (a0 − a)− φ]1−ηφη, (2)

where the maximization is subject to the short-selling constraint a0 ≥ 0. The following lemma
characterizes the bargaining solution taking the investor’s value function as given.

Lemma 1 The outcome of the bargaining problem (2) is

ai (t) = argmax
a0≥0

£
Vi(a

0, t)− p(t)a0
¤
, (3)

φi (a, t) = η {Vi [ai (t) , t]− Vi(a, t)− p(t) [ai (t)− a]} . (4)

According to Lemma 1, the quantity of assets the investor buys, ai (t) − a, maximizes the

total surplus of the match (the sum of the dealer’s and the investor’s gains from trade). The

intermediation fee is set to divide the total surplus according to each agent’s bargaining power.

From (3), it is immediate that the investor’s new asset position, ai (t), is independent of a.

Next, we use Lemma 1 to recast the investor’s problem.

Substitute the terms of trade (3) and (4) into (1) to obtain

Vi(a, t) = Ei
∙Z Tα

t
e−r(s−t)uk(s)(a)ds

+ e−r(Tα−t){(1− η)max
a0≥0

£
Vk(Tα)(a

0, Tα)− p(Tα)(a
0 − a)

¤
+ ηVk(Tα)(a, Tα)}

¸
. (5)

12 It would be equivalent to set φ = (p̂ − p)(a0 − a) and reformulate the bargaining problem as a choice of
(a0 − a), the size of the order, and p̂, the transaction price charged or paid by the dealer. So if a0 > a then the
investor is a buyer and p̂ > p can be interpreted as the ask price charged by the dealer. Conversely, if a0 < a
then the investor is a seller and p̂ < p is the bid price paid by the dealer.
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It is apparent from (5) that the investor’s payoff is the one he would get in an economy where he

meets dealers according to a Poisson process with arrival rate α, but instead of bargaining, he

readjusts his asset position and extracts the whole surplus with probability 1−η, whereas with
probability η he cannot readjust his asset position and enjoys no gain from trade. Thus, from

the investor’s standpoint, the stochastic trading process and the bargaining solution are payoff-

equivalent to an alternative trading arrangement in which he has all the bargaining power in

bilateral negotiations with dealers, but only gets to meet dealers according to a Poisson process

with arrival rate κ = α(1 − η). Let Tκ denote the next time the investor contacts a dealer in

this economy. We can rewrite (5) as

Vi(a, t) = Ūi(a) + Ei[e−r(Tκ−t){p(Tκ)a+max
a0≥0

[Vk(Tκ)(a
0, Tκ)− p(Tκ)a

0]}], (6)

where

Ūi(a) = Ei
∙Z Tκ

t
e−r(s−t)uk(s)(a)ds

¸
. (7)

The expectations operator, Ei, is taken with respect to the random variables Tκ and k(s), where
Tκ− t is exponentially distributed with mean 1/κ.13 From (6), the problem of an investor with

preference shock i who gains access to the market at time t is given by

max
a0≥0

h
Ūi(a

0)− {p(t)− E[e−r(Tκ−t)p(Tκ)]}a0
i
. (8)

The investor chooses his asset holdings in order to maximize the expected present discounted

value of his utility flow net of the expected present discounted value of the cost of holding

the asset from time t until the next effective time Tκ when he can readjust his holdings. The

following lemma offers a simpler, equivalent formulation of the investor’s choice of asset holdings.

Lemma 2 An investor with preference type i and asset holdings a who readjusts his asset

position at time t solves

max
a0≥0

£
ūi(a

0)− q(t)a0
¤
, (9)

where

ūi(a) =
(r + κ)ui(a) + δ

P
j πjuj(a)

r + κ+ δ
(10)

q(t) = (r + κ)

∙
p(t)− κ

Z ∞

0
e−(r+κ)sp(t+ s)ds

¸
. (11)

13As our notation makes explicit, Ūi(a) is independent of t. This follows from the time-homogeneity of the
Poisson meeting process and the Markovian process for k(s). The right side of (7) only depends on t through
the conditioning k(t) = i, which is captured by the “i” subscript.
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Intuitively, q (t) = (r + κ)
©
p(t)− E[e−r(Tκ−t)p(Tκ)]

ª
is the opportunity cost plus the ex-

pected discounted capital loss, and ūi(a) = (r + κ)Ūi(a) the expected discounted utility (both

expressed in flow terms) that the investor experiences by holding a from time t until his next

opportunity to trade. Note that ūi (a) is a weighted average of the utilities in the various pref-

erence states. These weights depend on the transition rates α and δ, the discount rate r, the

dealer’s bargaining power, η, and the probability distribution {πk}Ik=1. It follows from Lemma

2 that an optimal choice of asset holdings ai (t) satisfies

ū0i [ai(t)] ≤ q(t), “ = ” if ai(t) > 0. (12)

Notice that we do not need to know the path for the price of the asset, p (t), to solve for the

investor’s optimal asset holdings; q (t) suffices. The following lemma establishes the relationship

between p (t) and q(t).

Lemma 3 (a) Condition (11) implies

rp (t)− ṗ (t) = q (t)− q̇ (t)

r + κ
. (13)

(b) If limt→∞ e−rtp(t) = 0, then the price of the asset is

p(t) =

Z ∞

t
e−r(s−t)

∙
q(s)− q̇(s)

r + κ

¸
ds. (14)

Part (a) of Lemma 3 provides additional insights into the investor’s problem. Together with

(12), (13) implies that if the investor holds the asset, his demand will satisfy ū0i [ai(t)] + ṗ (t)−
q̇(t)
r+κ = rp (t). For example, if q̇ (t) > 0, then the investor will choose a smaller asset position

than he would if he were not subject to trading delays (e.g., if he faced a very large κ for a

given price trajectory). Part (b) shows how to recover the path of asset prices from the path of

capital gains, q (t). In Appendix B we show that p (t) must satisfy limt→∞ e−rtp(t) = 0 in any

equilibrium, so we can appeal to this condition without loss of generality.

We can now simplify the expression for the intermediation fee that an agent in state i

with asset holdings a pays the dealer who readjusts his asset position. From (4), φi(a, t) =

η {Vi [ai(t), t]− Vi(a, t)− p(t) [ai(t)− a]}, with ai(t) characterized by (12). If we use (6) to

substitute for the value functions we arrive at

φi(a, t) =
η {ūi [ai(t)]− ūi (a)− q(t) [ai(t)− a]}

r + κ
. (15)
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The intermediation fee depends on the dealer’s bargaining power, η, the discount factor, r, and

the transition rates α and δ. It also varies with the investor’s asset holdings at the time the

trade is executed, a, as well as with his desired asset holdings, ai.

Next, consider the determination of investors’ effective cost of holding the asset, q(t). Since

each investor faces the same probability of trade irrespective of his asset holdings, we appeal to

the Law of Large Numbers to assert that over a small interval of time dt, the quantity of assets

supplied in the interdealer market equals αdtA.14 Let ni(t) denote the measure of investors

with preference type i at time t. The process for preference shocks implies ṅi(t) = δπi − δni(t)

for all i. Hence,

ni(t) = e−δtni(0) + (1− e−δt)πi, for i ∈ X. (16)

The measure of type-i investors who trade through a dealer over a small interval of time dt is

αni(t)dt, so the demand for assets is αdt
PI

i=1 ni(t)ai(t). The clearing condition for the asset

market is
IX

i=1

ni(t)ai(t) = A. (17)

If we use (12) to substitute ai (t) from (17), it becomes clear that this condition determines a

unique q(t).

Investors differ in their preference types and in their asset holdings. The heterogeneity in

preference types is induced by the stochastic preference shocks and the heterogeneity in asset

holdings is induced by the random trading process. Specifically, because prices vary over time,

an investor’s current asset holdings depend on the time that has elapsed since his last trade,

as well as on his preference type at the time of his last trade. At every point in time there

is a nondegenerate distribution of last contact times and of preference types at the last time

of contact, and hence a nondegenerate distribution of asset holdings. Consider a set of asset

holdings A ⊆ R+ and a set of preference types I ⊆ X, then for all (A, I) ∈ Σ, Ht (A,I) defines
the measure of investors whose asset holdings lie in A and whose preference types lie in I. We
characterize this probability measure in the following lemma, where we use I{a∈A} to denote an
indicator function that equals 1 if a ∈ A and 0 otherwise.

Lemma 4 The measure of investors across individual states at time t satisfies

Ht (A,I) =
X
i∈I

IX
j=1

∙
n0ji(A, t) +

Z t

0
I{aj(t−τ)∈A}nji(τ, t)dτ

¸
(18)

14For a derivation of the Law of Large Numbers in random-matching environments, see Duffie and Sun (2007).
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for all (A, I) ∈ Σ,

nji(τ, t) = αe−ατ
³
1− e−δτ

´
πinj(t− τ) if i 6= j, (19)

nii(τ, t) = αe−ατ
h³
1− e−δτ

´
πi + e−δτ

i
ni(t− τ) (20)

and

n0ji(A, t) = e−αt
h³
1− e−δt

´
πi + e−δtI{i=j}

i
H0(A, {j}). (21)

At time 0, the market starts off with investors distributed across preference types and asset

holdings according to the initial probability measure H0. At any subsequent time t > 0, there

are two types of agents, those who have not contacted a dealer since time 0 and those who

have. Among the former, the measure whose asset holdings and preference types lied in the set

(A, {j}) at time 0 is e−αtH0 (A, {j}). At time t all these investors are holding the same asset
position they were holding at time 0, but their preference types may have changed. The time-t

measure of investors who started off with preference type j and assets in A, whose preference
type is i at the current time t, and who have never traded (so their asset holdings are still in

A) is n0ji(A, t) as given in (21). Analogously, nji (τ, t) in (19) and (20) give the time-t density
of investors who are holding asset position aj (t− τ); i.e., those investors whose last trade was

at time t− τ when their preference type was j, and who have preference type i at time t. We

are now ready to define equilibrium.

Definition 1 An equilibrium is a time-path h{ai(t)}, q(t), p(t), {φi(a, t)},Hti that satisfies (12),
(14), (15), (17) and (18), given an initial condition H0.

Proposition 1 There exists a unique equilibrium.

The equilibrium can be found as follows. Equations (12) and (17) determine {ai(t)} and
q(t). Given {ai(t)} and q(t), (14) and (15) imply p(t) and φi(a, t), respectively. Finally, from

{ai(t)} the distribution of investors’ states is given by (18).
To illustrate how a reduction in trading frictions affects the equilibrium, consider the limiting

case where trading delays vanish, i.e., α → ∞. From (10), ūi(a) → ui(a) and from (12) and

(13), assuming an interior solution, we get u0i [ai (t)] = q(t) = rp(t)−ṗ(t) for all i. Using (17) the
effective cost of holding the asset converges to q∗(t), which solves

PI
i=1 ni (t)u

0−1
i [q∗(t)] = A.

From (15) we see that φi(a, t) → 0 for all a, i and t. With regards to the distribution of

13



investors, (21) implies that the measure of agents who have not contacted a dealer since time

0 vanishes; i.e., n0ji(A, t)→ 0 for all i and j, all t and all A ⊆ R+ as α→∞. Also, as α→∞,
Ht (A,I) →

P
i∈I I{ai(t)∈A}ni(t); i.e., every investor of every type i holds his desired portfolio

ai (t) at all times.15 Summarizing, as frictions vanish, investors choose ai (t) continuously by

equating their current marginal utility from holding the asset to its effective cost–the flow

opportunity cost minus the capital gain. The equilibrium fees, asset price and distribution of

asset holdings are the ones that would prevail in a Walrasian economy.16

3.1 Efficiency

We now turn to the efficiency properties of the equilibrium. We study the problem of a social

planner who maximizes the expected discounted sum of all agents’ utilities. When choos-

ing allocations, the planner is subject to the same frictions that investors and dealers face

in the decentralized formulation studied above. Specifically, these frictions imply that over a

small interval of time of length dt the planner can only reallocate assets among a measure αdt

of investors chosen at random from the population. The planner chooses among allocations

{ai(t)}Ii=1 that specify how to distribute the measure αdtA of assets among the measure αdt of
investors whose asset positions he can reallocate at t.

Since the numéraire good enters linearly in the utility function of all agents, the consumption

and production of these goods net out to 0 and can be ignored by the planner. Therefore, the

planner only maximizes the investors’ direct utilities from holding the asset. Given the initial

measure H0 of investors over asset holdings and preference types, the planner solves

max
{ai(t)}Ii=1

(
K0 +

Z ∞

0

IX
i=1

e−rtαni(t)Ûi [ai(t)] dt

)

s.t.
IX

i=1

αni(t)ai(t) ≤ αA, (22)

ṅi(t) = δ [πi − ni(t)] (23)

15To see this, note that the time-t density of agents who have not contacted a dealer since time t− τ > 0 is
n (τ, t) = I

i,j=1 nji (τ, t). From (19) and (20), α→∞ implies n (τ, t)→ 0 for all τ > 0, i.e., investors can find a
dealer instantly when α is arbitrarily large, so the measure of investors who have not met a dealer between t− τ
and t is zero for all τ > 0. As for those investors who have met a dealer this “instant,” we see from (19) and
(20) that nji (0, t) = 0 for i 6= j and nii (0, t) = ni (t).
16For related limiting results, but in stationary environments, see Duffie, Gârleanu and Pedersen (2005) and

Miao (2006). In a different context, see Spulber (1996).
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and ai (t) ≥ 0 , for i ∈ X, where

Ûi [ai(t)] = Ei
∙Z Tα

t
e−r(s−t)uk(s) [ai(t)] ds

¸
and K0 ≡

R
S Ûi(a)dH0. The expectations operator, Ei, is taken with respect to the random

variables Tα and k(s), where Tα − t is exponentially distributed with mean 1/α. The constant

K0 captures the utility of all investors before they trade for the first time. The second term

in the objective function states that over an interval of time of length dt, there is a measure

αni(t)dt of investors of type i who can have their asset holdings rebalanced. An investor of

type i is assigned a quantity of assets ai(t). The planner’s choices must satisfy the resource

constraint (23) and the law of motion for the measure of investors of each preference type.17

The following proposition summarizes the efficiency properties of the equilibrium.

Proposition 2 The equilibrium is efficient if and only if η = 0.

The equilibrium with bargaining is efficient if and only if dealers have no bargaining power.

This bargaining inefficiency is reminiscent of the traditional holdup problem emphasized in

the investment literature. There is, however, a subtle difference. In our model the investor

and the dealer bargain over both an intermediation fee and the quantity of the asset that the

dealer trades on behalf of the investor. Hence, taking the behavior of the rest of the market

as given, the investment decision is pair wise Pareto-efficient. The inefficiency arises because

when conducting a trade, the investor anticipates that the intermediation fee he will have to

pay to rebalance his asset holdings in his next encounter with a dealer will be increasing in the

gains from that future trade. As a result, at the margin, investors are discouraged from taking

positions that tend to lead to large asset reallocations in the future.

3.2 Steady state

Here we consider the limit of the equilibrium prices and allocations as t→∞.

17Since investors access the market according to independent stochastic processes with identical distributions,
the measure of assets that can be reallocated among the α randomly drawn investors is α adHt = αA. Thus,
the quantity of assets that can be reallocated among investors depends only on the mean of Ht, i.e., A, which
is given. Consequently, the planner’s decision of how to allocate assets at time t affects neither the measure of
investors he will draw in the future nor the total measure of assets that these investors hold. In other words, Ht

is not a state variable for the planner’s problem.
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Proposition 3 For any H0, the equilibrium allocations and prices described in Definition

1, h{ai(t)}, q(t), p(t), {φi(a, t)},Hti, converge to the unique steady-state allocations and prices
h{ai}, q, p, {φi(a)},Hi, that satisfy

ū0i (ai) ≤ q “ = ” if ai > 0, (24)
IX

i=1

πiai = A, (25)

p =
q

r
, (26)

φi(a) =
η [ūi (ai)− ūi (a)− q (ai − a)]

r + κ
, (27)

H (A, I) =
X
i∈I

IX
j=1

∙Z ∞

0
I{aj∈A}nji (τ,∞) dτ

¸
, (28)

for all (A, I) ∈ Σ, where

nji (τ,∞) = αe−ατ
h³
1− e−δτ

´
πi + e−δτ I{i=j}

i
πj . (29)

Our notational convention is to omit the “t” argument in an endogenous variable whenever

we refer to its steady-state value. The expressions (24), (25) and (26) are the steady-state

counterparts of (12), (17) and (13), respectively.

In general, the individual state of an investor is a pair (a, j) ∈ R+×X, where a is his current
portfolio and j his current preference type. But according to (24), investors are only distributed

among I levels of asset holdings in the steady state. The reason is that any level of asset holdings

a such that a 6= ai for i ∈ X is transient, since whenever an investor adjusts his portfolio he
chooses a ∈ {ai}Ii=1. Thus, the set of ergodic states is {ai}Ii=1 ×X. In other words, the steady-
state measure H (A, I) is characterized by I2 mass points. When analyzing the steady state

we simplify the exposition and denote an individual investor’s state (ai, j) ∈ {ai}Ii=1 × X by
(i, j) ∈ X2. Hence, for state (i, j), i represents the portfolio the investor currently has (i.e.,
the one corresponding to the preference shock he had at the time he last rebalanced his asset

holdings), and j represents his current preference shock. We use nij to denote the steady-state

measure of investors in state ij, i.e., nij = H({ai}, {j}) =
R∞
0 nij (τ,∞) dτ . From (28) and

(29),

nij =
δπiπj
α+ δ

, for j 6= i, (30)

nii =
δπ2i + απi
α+ δ

. (31)
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Notice that ∂nij/∂α < 0 if j 6= i and ∂nii/∂α > 0, i.e., the measure of investors who are matched

to their desired asset positions increases with the rate at which investors get to rebalance their

asset holdings.

4 Asset positions, prices and trade volume

In this section we study the effects of search frictions on individual asset holdings and derive

their implications for asset prices and trade volume. We focus on the steady state and specialize

the analysis to utility functions of the form ui(a) = εiu(a). For this class of preferences,

ūi (a) = ε̄iu(a), where ε̄i =
(r+κ)εi+δε̄
r+κ+δ and ε̄ =

PI
j=1 πjεj and (24) becomes

18

ε̄iu
0(ai) = rp. (32)

Let ai = gi(κ; p) denote the choice of asset holdings characterized by (32) and differentiate

it to get
∂gi(κ; p)

∂κ
=

δ (ε̄− εi)

(r + κ+ δ)2
[u0(ai)]

2

rpu00(ai)
. (33)

The asset price, p, is kept fixed in this calculation, so we are isolating the partial equilibrium

effect of κ on individual demand. Note that ∂gi(κ; p)/∂κ has the same sign as εi − ε̄. That is,

investors with a preference shock above average increase their demand when κ increases. An

agent with εi > ε̄ anticipates that his preferences are likely to revert toward ε̄ in the future,

and that when this happens, he may be unable to rebalance his asset position for some time.

Consequently, from (32), his choice of ai is lower than u0−1 (rp/εi), his choice of asset holdings

in a world with no trading delays. A larger α means that it will be easier for the investor to find

a dealer in the future; a lower η implies that it will be less costly to readjust his asset holdings

in the future. In both cases the investor assigns more weight to his current marginal utility

from holding the asset relative to its expected value. Conversely, investors with a preference

shock below average reduce their demand when κ increases. These endogenous responses of

individual investors’ asset demands have important implications for the way illiquid markets

operate. In Proposition 2 we have shown that this mechanism leads to allocative inefficiency

if dealers have any degree of bargaining power. Next, we show how these reallocation effects

shape the implications of search frictions for asset prices and trade volume.

18For notational simplicity, we focus on interior solutions unless otherwise specified.
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Standard frictionless models emphasize two sets of factors that affect the determination of

equilibrium asset prices, i.e., intrinsic properties of the asset and the characteristics of investors

who buy it. Search theory identifies a third element: the manner in which the asset is traded,

i.e., the details of the micro structure of the asset market, such as the rate at which investors

meet dealers and the bargaining power of dealers. For example, suppose that the same asset

is traded in two segmented OTC markets that differ only in the degree of market power of

the dealers that participate in each market. All else equal, would we expect the asset price to

be higher or lower in the market where dealers have more market power? In order to answer

these types of questions we offer following proposition, which characterizes the effects of search

frictions on asset prices.

Proposition 4 If − [u0(a)]2 /u00(a) is strictly increasing in a, then dp/dκ > 0. If − [u0(a)]2 /u00(a)
is strictly decreasing in a, then dp/dκ < 0. If − [u0(a)]2 /u00(a) is independent of a, then
dp/dκ = 0.

For a given p, the demands of investors with relatively low valuations (εi < ε̄) fall, while

those of investors with high valuations (εi > ε̄) rise. Whether an increase in κ raises the asset

price depends on the curvature of the individual demand for the asset as a function of ε̄i,

i.e., ∂ai/∂ε̄i = − [u0(ai)]2 / [u00(ai)rp], and hence on the curvature of the utility function. If
u(a) = log a then ai is linear in ε̄i, and as one aggregates the individual changes in demands

induced by an increase in κ, the increases in ai (for investors with values of εi larger than ε̄)

and the decreases in ai (for investors with values of εi lower than ε̄) cancel each other out. As

a result, κ has no effect on the aggregate demand for assets nor on the equilibrium price. This

finding is consistent with the idea that trading frictions need not be reflected in asset prices.19

If u is not too concave, ai is a convex function of ε̄i. For this case, Jensen’s inequality implies

that the increases in ai for relatively large values of εi outweigh the decreases in ai for relatively

low values of εi and the aggregate demand for the asset increases in response to an increase in

κ. In turn, this implies that the equilibrium price of the asset increases with κ. Conversely, the

asset price is decreasing in κ if u is sufficiently concave. By specializing preferences further we

obtain the following corollary to Proposition 4.

Corollary 1 Let ui(a) = εia
1−σ/(1− σ) with σ > 0. If σ > 1 (< 1) then dp/dκ < 0 (> 0) and

if u (a) = log a then dp/dκ = 0.
19For a related result, see Constantinides (1986), Gârleanu (2006) and Heaton and Lucas (1996).
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It is clear from (33) that regardless of the ultimate effect of search frictions on the asset

price, an increase in κ makes high-valuation investors take on larger positions and low-valuation

investors take smaller positions. This seems to suggest that the distribution of asset holdings

will spread out if frictions are reduced. But this intuition based on (33) is only partial, because

(33) keeps the equilibrium asset price constant. We characterize the full equilibrium effect of

search frictions on the distribution of asset holdings in the following proposition.

Proposition 5 Let ui(a) = εia
1−σ/(1−σ) with σ > 0. An increase in κ causes the equilibrium

distribution of asset holdings to become riskier, in the second-order stochastic sense.

Proposition 5 confirms that the equilibrium distribution of asset holdings across investors

becomes more disperse when trading frictions are reduced. This result is important to under-

stand the relationship between search frictions and trade volume.

Trade volume is a manifestation of the extent to which the market mechanism is able to

reallocate assets across investors. Large trade volumes are characteristic of liquid markets, i.e.,

markets where investors are able to switch in and out of asset positions relatively fast. Let V
denote the volume of trade, defined as

V = α

2

IX
i,j=1

nij |aj − ai| . (34)

An increase in κ has three distinct effects on trade volume. First, the measure of investors

in any individual state (i, j) ∈ X2 who gain access to the market and are therefore able to
trade increases, which tends to increase trade volume. Second, the proportion 1 −

PI
i=1nii

of agents who are mismatched to their asset position–and hence the fraction of agents who

wish to trade–decreases, which tends to reduce trade volume. Finally, the distribution of asset

holdings spreads out, which tends to increase the quantity of assets traded in many individual

trades. With (30) and (34), it is possible to show that the first two effects combined lead to

an increase in V. While it is difficult to sign the third effect in general due to the general
equilibrium effects of the price on asset holdings, we provide analytical results for two special

cases.

First, consider the model with I = 2–the case analyzed by DGP. In this case it is possible

to show that an increase in κ unambiguously leads to an increase in overall trade volume. This

is formalized in the following result, which is a corollary of Proposition 5.
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Corollary 2 Let ui(a) = εia
1−σ/(1 − σ) with σ > 0, and I = 2. Trade volume, V, increases

with κ.

The second special case allows for richer heterogeneity in types, but adopts a specification

of preferences for which the equilibrium asset price is independent of trading frictions. In this

case, we can get a sharp characterization of the effects of market structure on the distribution

of trade sizes and on trade volume.

Proposition 6 Let ui(a) = εi ln a. For any pair (κ, κ0) such that κ0 > κ, the distribution of

trade sizes associated with κ0 dominates the one associated with κ in the first-order stochastic

sense.

The proof of Proposition 6 consists of showing that with logarithmic preferences, a reduction

in trading frictions increases the size of every trade, |ai − aj |. As a result, the volume of trade
unambiguously increases with κ.

5 Transaction costs

The transaction costs borne by investors in OTC markets include the intermediation fees they

are charged by the dealers who intermediate their trades.20 In this section we study how

changes in trading frictions affect intermediation fees. Our interest in these relationships is

twofold. First, intermediation fees and the implied bid-ask spreads are among of the most

common measures of market liquidity, since they quantify the out-of-pocket costs borne by the

investors who trade in illiquid markets.21 Second, these fees are an important source of revenue

to the dealers who operate in these markets, and hence a key determinant of their incentives

to make markets and provide liquidity, a theme that we will explore in detail in Section 6.

Intermediation fees depend on the rate at which investors can contact alternative dealers,

on their bargaining power in bilateral negotiations and on the size of the trade (see (27)).

The following lemma shows that, keeping the characteristics of an investor and a dealer con-

stant, transaction costs–both total and per unit of asset traded–increase with the size of the

trade. As it turns out, this link between intermediation fees and trade size shapes the general

equilibrium effects of changes in trading frictions on transaction costs.

20Transaction costs in OTC markets also include trading delays, which are the focus of Section 6.
21See footnote 12 and Section 7 for the theoretical link between intermediation fees and bid-ask spreads.
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Lemma 5 Consider an investor who holds asset position a ≥ 0 and wishes to trade ai−a > 0.

(i) ∂φi(a)/∂a has the same sign as a− ai and (ii) ∂
∂a

h
φi(a)
ai−a

i
< 0.

In the general equilibrium, trading frequencies and bargaining power affect transaction costs

through three channels. Consider, for example, the fee paid by an investor who currently has

preference type i, and whose preference type was j at the time of his last trade. A larger α tends

to reduce the fees that dealers can extract for any given trade size (it increases the denominator

of (27)). Intuitively, a larger α implies better search options for the investor–the competition

effect of reduced trading frictions. An increase in α also changes the investor’s expected utility

from holding his current asset position, aj , relative to the expected utility from holding his

desired asset position, ai (it changes ūi in (27)). This effect may decrease or increase the fee

he pays depending on the specific values of aj and ai. Finally, α affects the equilibrium levels

of the actual and desired asset positions aj and ai themselves. A larger α induces investors to

conduct larger asset reallocations every time they trade (see, e.g., Corollary 2 or Proposition 6).

By Lemma 5, this translates into larger fees for dealers, on average–the reallocation effect of

reduced trading frictions. These three effects can give rise to nonmonotonicities in the dealers’

incentives to make markets in response to changes in the degree of trading frictions. We

prove this result analytically for the case of “patient” traders, both for intermediation fees for

individual trades (Proposition 7) and for average intermediation fees (Corollary 3). Notice that

along a stationary equilibrium the only transactions that investors carry out involve trading

ai−aj , for (i, j) ∈ X2. We use this observation to simplify the exposition and use φji to denote
φi (aj).

Proposition 7 For each (i, j) ∈ X2, there exists r̄ > 0, such that for all r < r̄ and η ∈ (0, 1),
φji is non-monotonic in κ and it is largest for some κ ∈ (0,∞).

To interpret the finding in Proposition 7 consider the fees, φji, borne by investors who

currently have preference type i, and whose preference type was j at the time of their last

trade. Notice that such an investor holds asset position ai and engages in a trade that leaves

him with asset position aj , and that these asset positions are themselves functions of the

degree of trading frictions, κ. In very illiquid markets (κ → 0) investors hedge against future

preference shocks by choosing asset holdings that reflect their average utility from holding the

asset rather than their current utility at the time they trade. Consequently trade sizes are

small, which makes the intermediation fees that these agents pay, φji, also small. In very liquid
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markets (κ→∞) investors trade large quantities but the intermediation fees that they pay are
still small, because of favorable search options. For intermediate values of κ, trade sizes are

considerable and dealers effectively have a significant degree of market power which results in

relatively large intermediation fees.

Proposition 7 has implications for measures of market-wide transaction costs. Consider,

for instance, the average fee charged by dealers across the various types of trades, denoted Φ.

This average fee is also the expected revenue of an individual dealer conditional on meeting an

investor; it equals
PI

i,j=1 njiφji, or using (15),

Φ = η
IX

i,j=1

nji
ūi (ai)− ūi (aj)

r + κ
. (35)

The average fee, Φ, depends on the mismatch between investors’ desired and actual asset

positions, as measured by ūi (ai) − ūi (aj), as well as on the frequency with which they gain

access to the asset market. The following corollary of Proposition 7 is useful to understand the

dealers’ incentives to make markets, which will be the focus of the following section.

Corollary 3 There exists r̂ > 0, such that for all r < r̂ and η ∈ (0, 1), the dealers’ expected
revenue, Φ, is non-monotonic in κ and it is largest for some κ ∈ (0,∞).

According to Corollary 3, dealers are better off when they trade in markets which are neither

too liquid nor too illiquid, i.e., when κ is neither to large not too small. If κ is very large, dealers

would find it profitable to shift the trading activity to more illiquid markets, i.e., markets with

larger η or smaller α. Conversely if κ is very small, perhaps surprisingly, dealers would benefit

from reductions in η and increases in α.

6 Endogenous execution delays

In the previous sections we have shown how investors’ endogenous choices of asset positions

determine their effective demand for liquidity. For instance, if frictions are severe (κ small),

desired and actual asset positions, {ai}, tend to be very close to each other, so investors’ trading
needs, and hence their demand for liquidity services, are small. In this section we allow for free

entry of dealers in order to endogenize the supply of liquidity services and the length of the

trading delays. We formalize the notion–common in the finance microstructure literature–
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that a dealer’s expected profit depends on the competition for order flow that he faces from

other dealers.22

Suppose that the Poisson rate at which an investor contacts a dealer, α, is a continuously

differentiable function of the measure of dealers in the market, υ, with α(υ) a strictly increasing

and α(υ)/υ a strictly decreasing function of υ. We specify that α(0) = 0, limυ→∞ α(υ) = ∞
and limυ→∞ α(υ)/υ = 0. Since all matches are bilateral and random, the Poisson rate at which

a dealer serves an investor is α(υ)/υ. For larger υ, each investor contacts dealers faster, but

the order flow decreases for each individual dealer.

There is a large measure of dealers who can choose to participate in the market. Dealers

who choose to operate incur a flow cost γ > 0 that represents the ongoing costs of running

the dealership, e.g., exchange membership dues, the cost of searching for investors, advertising

their services and so on. Free-entry implies α(υ)
υ Φ = γ, i.e., that the expected instantaneous

profit of a dealer equals his flow operation cost.23 With (35), the free-entry condition becomes

α(υ)

υ
η

IX
i,j=1

nji
ūi (ai)− ūi (aj)

r + α(υ) (1− η)
= γ. (36)

A steady-state equilibrium with free entry is a list h{ai}, q, p, {φi(a)}, {nji} , υi that satisfies
(24)—(27), (30), (31) and (36), with α = α (υ).

Proposition 8 Assume η > 0. There exists a steady-state equilibrium with free entry of deal-

ers, and it has υ > 0.

Proposition 8 establishes the existence of a steady-state equilibrium with free entry provided

that dealers have some bargaining power. (Otherwise, intermediation fees would equal 0 in every

trade and dealers would be unable to cover their operation costs.) Figure 1 provides a typical

representation of a dealer’s expected profit net of operation costs, α(υ)
υ Φ − γ, as a function of

22See, for example, Harris (2003, p. 298):

“In competitive dealer markets, dealer spreads ultimately depend on the costs that dealers incur
in running their business. The free entry and exit of dealers ensures that spreads will adjust so
that dealers just earn normal profits. When spreads are too high, their competition for order flow
will cause spreads to fall, and as spreads fall, so do expected profits.”

23Our free entry of dealers is akin to the free entry of firms in Pissarides (2000). Rubinstein and Wolinsky
(1987) also assume free entry of dealers (or middlemen). See Wahal (1997) or Weston (2000) for an empirical
study of the determinants of entry and exit of market-makers in NASDAQ and their impact on spreads and the
level of trading activity, e.g., trade volume and the number of trades.
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the measure of dealers in the market. The average fee, Φ, is positive and bounded for all values

of υ, while the dealers’ contact rate goes to infinity as υ approaches 0 and to zero as υ goes to

infinity. Therefore, a dealer’s expected profit is strictly positive for small υ and approaches −γ
for large υ, so continuity ensures it must equal zero somewhere in between.

γφ
υ
υα

−∑ jijin
)(

Figure 1: Multiple steady-state equilibria

The steady-state equilibrium with free entry need not be unique. While the measure of deal-

ers, υ, is strictly increasing in Φ, according to Corollary 3 the dealers’ expected revenue, Φ, can

itself be a non-monotonic function of α(υ). Faster trade means more competition among deal-

ers, which tends to reduce intermediation fees. But an increase in α (υ) also induces investors

to take on more extreme asset positions which means that on average, dealers will interme-

diate larger asset reallocations and earn larger fees. The model will exhibit multiple steady

states if the second effect is strong enough. (But for a given value υ, the rest of the equilibrium,

h{ai}, q, p, {φi(a)}, {nji}i, is uniquely determined as in the previous sections.) Generically there
is an odd number of steady-state equilibria.24

The type of strategic complementarity that leads to multiple equilibria in this model is of

a different kind than the one often found in other models of search equilibrium. In particular

it is not due to increasing returns to scale in the meeting technology, as in Diamond (1982) or

24 In our numerical examples we typically find either one or three equilibria. (See Lagos and Rocheteau (2007)).
Note that the lowest and highest steady states in Figure 1 are “stable” in the following heuristic sense: if one
perturbates slightly the measure of dealers from its steady-state value, free entry tends to bring the measure of
dealers back towards its steady-state value.
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Vayanos and Weill (2007). In fact, our assumption ∂ [α (υ) /υ] < 0 implies that dealers reduce

the rate at which other dealers contact investors. What is key in our model is the liquidity

externality generated by the way in which the dealers’ incentives to make markets interact with

the investors’ unrestricted asset holding decisions. The equilibrium would be unique without

this general equilibrium effect that operates through the endogenous shifts in investors’ asset

holdings in response to changes in the degree of trading frictions.

In the case of multiple equilibria, the market can be stuck in a low-liquidity equilibrium

where few dealers enter and investors engage in relatively small transactions. The low-liquidity

equilibrium exhibits large spreads, small trade volume and long trade-execution delays. Thus,

tight spreads are correlated with large volume and short trading delays across equilibria. Steady-

state welfare across equilibria increases with the measure of dealers. The high and low equilibria

share the following comparative statics: a decrease in the participation cost of dealers raises

the measure of dealers in the market. If the decrease in the participation cost is large enough,

the multiplicity of equilibria can be removed. (The expected profits curve in Figure 1 shifts

upward.) For the case of patient traders, the following proposition shows that the model

necessarily exhibits multiple steady-state equilibria if α(υ)/υ is not too elastic and the dealer’s

cost of operation is in some intermediate range.

Proposition 9 Assume η ∈ (0, 1) and α (υ) = υθ, with θ ∈ (0, 1). There exist r̃ > 0, θ̃ ∈ (0, 1),
γ > 0 and γ ∈ (0, γ) such that for all (r, θ) ∈ (0, r̃) × (θ̃, 1), there are multiple steady-state
equilibria if γ ∈ (γ, γ).

The presence of multiple equilibria due to the strategic interactions between investors and

intermediaries may not be a mere theoretical curiosity. Biais and Green (2005), for example,

document that the liquidity of the bond market on the NYSE dried up in the 1920’s for municipal

bonds and in the 1940’s for corporate bonds, and attribute the ensuing shift in the structure of

the market for bonds to “externalities in liquidity provision and strategic behavior by financial

intermediaries.”25

25Pagano (1989) provides a well-known model of multiple equilibria in a financial market. Both the model and
the economic mechanisms that can give rise to multiplicity in his setup are quite different from the ones we are
presenting here.
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6.1 Efficiency

We investigate the efficiency properties of equilibrium with free entry of dealers. The dynamic

planner’s problem is complex since the measure of dealers at any point in time will typically

depend on the whole distribution Ht(a, i), not just its mean. To keep the analysis manageable,

here we consider the case where the discount rate is close to 0, i.e., we characterize the allocation

chosen by a social planner who maximizes steady-state welfare. In this case, the planner solves

max
{ai},υ

X
i,j

nijuj(ai)− υγ

s.t.
X
i,j

nijai = A, (37)

where the steady-state distribution {nij} satisfies (30) and (31). The planner maximizes the
population-weighted sum of investors’ utilities from holding the asset, net of the participation

costs of the dealers and taking into account that the stationary distribution {nij} depends on
the measure of dealers, υ.

Proposition 10 Assume r ≈ 0. An equilibrium with free-entry is efficient if and only if η = 0

and υα0(υ)/α(υ) = η.

As before, investors’ asset holdings are efficient if and only if dealers have no bargaining

power. Entry introduces an additional inefficiency: when a dealer enters the market, he imposes

a negative externality on other dealers’ order flow. As it is well-known since Hosios (1990), these

externalities are internalized if and only if the elasticity of the contact technology α(υ) coincides

with dealers’ bargaining power. Since there is no free-entry equilibrium with υ > 0 when η = 0,

an equilibrium with entry is always inefficient.

7 More on spreads

The bid-ask spread is a key dimension of financial liquidity: it constitutes the investors’ main

out-of-pocket cost of trading and it determines the dealers’ incentive to make markets. In

this section we parametrize the steady state of the model of Section 2 and conduct numerical

simulations that complement our previous analysis of transaction costs.
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Consider an investor with asset holdings ai who trades quantity aj − ai 6= 0. The effective
transaction price he pays (or receives if aj − ai is negative) is

p̂ij = p+
φij

aj − ai

per unit of the asset. This effective transaction price can be interpreted as a bid price if the

investor sells (aj −ai < 0) and as an ask price if he buys.26 The price in the interdealer market

is a natural benchmark against which to assess the cost of a trade since it is the price that an

investor would pay if he had direct access to the market. The transaction cost to the investor

per dollar traded is then (p̂ij − p)/p = φij/p(aj − ai), which is sometimes referred to as the

liquidity premium.

In our model there is not a single bid-ask pair: bid and ask prices vary with an investor’s

asset holdings and preference type. The average effective spread, S, is a measure of marketwide
trading costs often used in empirical work. It averages the bid and ask prices (expressed as

a proportion of the asset price) across all trades, weighting each type of trade by its share in

trade volume:

S = 1

p

X
i,j

nij |ai − aj |P
k,c nkc |ak − ac|

φij
|ai − aj |

=
α

2

Φ

pV . (38)

We study the effects of changes in α on S by means of a numerical example. We normalize
the stock of assets by setting A = 1, let a unit of time correspond to a day and take the rate of

time preference to be 10 percent per year, i.e., r = 0.1/360. We set δ = 1/7 so that investors

receive one preference shock every week on average, and take the average execution delay to be

one day, i.e., α = 1.27 We assume that dealers and investors have equal bargaining power, i.e.,

η = 0.5. We let ui (a) = εi ln a.28 The support for the values of εi is {εi}Ii=1 = { i−1I−1}Ii=1 with
I = 50. The preference shock εi is drawn with probability

πi =
λi−1/(i− 1)!PI
j=1 λ

j−1/(j − 1)!
, (39)

with λ = 25, which approximates a Normal distribution.

26This is in line with the equivalent formulation of the bargaining problem discussed in footnote 12.
27Trading delays in corporate bond markets range from a minute to a day, according to Saunders, Srinivasan

and Walter (2002, p. 97).
28We know from Corollary 1 that in this case the asset price is independent of α. This specification is convenient

because it will allow us to interpret the results corresponding to different values of α as corresponding to different
markets with various degrees of trading frictions, or to different groups of investors with various individual contact
rates with dealers.
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Figure 2: Spreads

The left panel of Figure 2 plots S for values of α ranging from 0 to 5. The effective spread

decreases as trading delays are reduced. If we think of bond markets as being more “opaque”

(i.e., they have lower α and higher η) than equity markets, this is consistent with several studies

that have found that bond trades are substantially more expensive than equity trades.29 The

theoretical prediction is also in accordance with the observation that the adoption of electronic

trading in equity markets has led to smaller spreads.30

Our model also has a rich set of predictions for individual transaction costs. The middle

panel of Figure 2 displays the liquidity premium corresponding to each transaction, i.e., the

pairs {(aj − ai, φij/p |ai − aj |)}i,j=1,...,I . The right panel of Figure 2 plots the bid and ask prices
for all trades as a function of the size of the trade, i.e., the pairs {(|aj − ai| , p̂ij)}Ii,j=1, for two
different values of α (the crosses correspond to α = 1 and the circles to α = 5).

As illustrated in the middle panel of Figure 2, the liquidity premia, φji/p |ai − aj |, increase
with the distance between aj and ai. Similarly, the right panel shows that the model generates

an increasing relationship between trade size and the bid and ask prices for given α. These

results are consistent with the empirical evidence on equity markets (e.g., Boehmer (2005, Table

29See Harris and Piwowar (2006) and Edwards, Harris and Piwowar (2005) for evidence on municipal and
corporate bond markets, respectively.
30See Stoll (2006) and Section 8 below.
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7, Panel B)) and the foreign exchange markets (Burnside et al. ( 2006, Table 12)), where larger

trades pay larger transaction costs. These findings can be interpreted as instances of price

concession–the commonly recognized fact that traders in illiquid markets often move prices

against themselves in order to fill large orders.

Some empirical studies on municipal and corporate bond markets document that larger

trades tend to be executed at a discount (Harris and Piwowar (2006) and Edwards, Harris and

Piwowar (2004)). This pattern is often attributed to the fact that larger trades tend to be

conducted by more “sophisticated” traders, i.e., traders who are better informed about trading

opportunities or have stronger bargaining positions.31 One can interpret the right panel of

Figure 2 as a plot of the collection of individual spreads in an economy with heterogenous

investors, some of which can contact dealers faster than others. Interestingly, sophisticated

investors (here those who contact dealers with a larger Poisson intensity) trade larger quantities

but pay lower spreads than less sophisticated investors. So our model can rationalize the effects

on trade sizes and spreads that have been attributed to heterogeneity in the investors’ degree

of sophistication.32

Finally, note that the middle and right panels show that the model generates a distribution

of transaction costs, not only across trade size categories, but also among trades of equal size,

which is in accordance with the evidence from the market for municipal bonds (e.g., Green,

Hollifield and Schurhoff (2006a)). This heterogeneity arises in the model because–with the

two key features of OTC markets, trading delays and bargaining–two trades of equal size can

pay different per-unit fees since the associated gains from trade may be different for the two

trades.33

8 Market reforms

Over the last few years financial markets have been in the midst of a technological revolution.

The advent of Electronic Communication Networks (ECNs)–private electronic screen-based

31According to Green, Hollifield and Schurhoff (2006a, p.1), “... some buyers appear to know which bonds are
on ‘sale’ at a given point in time, and others do not.” Green, Hollifield and Schurhoff (2006b) estimate dealers’
bargaining power and find that it is higher for small to medium sized trades.
32 In the theories of the bid-ask spread based on informational asymmetries, informed traders tend to trade

larger quantities but they also face larger spreads. See, e.g., Easley and O’Hara (1987).
33Notice that in our parametrized example, |ai − aj | = |ak − ac| whenever |i− j| = |k − c|, so there are many

trades of identical size which have different associated gains from trade. Other parametrizations may have the
property that a different |ai − aj | corresponds to each (i, j) pair with i 6= j. But in such cases, analogously to
what we find here, there will typically be trades of similar size but very different gains from trade.
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trading systems built around computer algorithms that match buy and sell orders through

an open limit-order book–is allowing investors to find trading opportunities more rapidly, and

sometimes even directly, without the intervention of traditional intermediaries. The widespread

use of these new technologies has the potential to accelerate trade execution and drastically

reduce the transaction costs borne by investors.34

While these technological innovations were underway, several regulatory order-handling re-

forms were introduced in financial markets to foster competition among securities dealers and

reduce their market power.35 These reforms have in many cases effectively granted investors

direct access to interdealer markets, opening up the possibility that they may trade directly

with other investors, circumventing dealers.36 In this section we analyze the implications of

these technological and regulatory transformations and relate our theoretical findings to the

existing empirical literature. We first extend our model by allowing investors periodic direct

access to the interdealer market. We then discuss the effects of changes in the degree of market

power of dealers, which captures the effects of the various efforts (e.g., decimalization, pressures

to reduce spreads) to reduce their ability to charge large spreads.

8.1 ECNs

Suppose that in addition to periodically meeting dealers, investors get periodic direct access to

the competitive interdealer market. This formulation captures the increased competition for

order flow from ECNs faced by dealers as a result of the order-handling regulatory changes.

Specifically, suppose that investors can access the competitive market either through a dealer,

34See Stoll (2006) and Allen et al. (2001) for an account of the emergence of ECNs in U. S. equity and
fixed-income markets, respectively.
35See Barclay et al. (1999) for a detailed description of the New Order Handling Rules that were introduced by

the Securities Exchange Commission. These regulatory reforms followed the Christie and Schultz (1994) finding
that NASDAQ dealers avoided odd-eighth quotes in 70 of the largest 100 NASDAQ stocks in 1991, which led
them to argue that dealers tacitly colluded to keep bid-ask spreads wide.
36Before the implementation of the order-handling reforms, all NASDAQ order flow had to be routed to some

NASDAQ dealer who could trade through or ahead of the investors’ orders, so investors were unable to bypass
dealers who quoted wide spreads. In addition, NASDAQ dealers had exclusive access to an ECN (SuperMontage)
that effectively acted as an interdealer market outside the reach of regular investors, allowing dealers to quote
one set of prices for retail customers on NASDAQ while offering more favorable prices to other marketmakers
on the ECN. Under the new order-handling rules, if a dealer places an order on an ECN, the price and quantity
are incorporated in the ECN quote displayed on NASDAQ. Also, the investors’ orders can now be routed to
the interdealer ECN, and can compete directly with the NASDAQ dealers’ quotes. These days many other
interdealer markets are open to investors, examples include the trading platforms BrokerTec and E-Speed.
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whom they contact with Poisson rate α, or directly, with Poisson rate β.37 The Bellman

equation for Vi(a) can be shown to satisfy (6) with κ = α(1 − η) + β. The steady-state

distribution (nij)Ii,j=1 is given by (30)-(31) where α is replaced by α + β. Equilibrium exists

and is unique by Proposition 1.

From Proposition 7 and Corollary 3, we know that an increase in β can have non-monotonic

effects on transaction costs and dealers’ revenue. In particular, if the market is initially very

illiquid (α small or η large), then a regulatory or technological change that grants investors

direct access to the interdealer market will increase the dispersion of investors’ asset holdings

and increase the distribution of trade sizes. In turn, this can increase the dealers’ incentives to

make markets and hence the endogenous level of intermediation–despite the fact that they are

subjected to more intense competition for order flow. We formalize this as follows.

Proposition 11 If η = 1, there exists a unique equilibrium with entry, and it has υ > 0. There

is r̄ > 0 such that for all r < r̄, υ is nonmonotonic in β. Moreover, for all r < r̄, υ is largest

for some β ∈ (0,∞).

The proof follows immediately from Proposition 8 and Corollary 3, so we omit it.38 When β

is small, investors of all types choose asset holdings very close to A so dealers have no incentive

to participate in market-making. As β increases, the resulting increase in the dispersion of

the distribution of asset holdings leads to larger trades on average, which stimulates the entry

of dealers. So in contrast to what casual intuition might suggest, the level of intermediation

need not be decreasing in the degree of competition for order flow faced by dealers. This

finding is interesting because in the midst of the recent regulatory and technological changes,

concerns have been raised that increased competition from alternative trading networks could

37 In this formulation, whether a trade is conducted through a dealer or directly in the interdealer market is
determined exogenously. Notwithstanding, notice that the effects of competition between these modes of trading
manifest themselves in the equilibrium prices and allocations. For example, if β increases, this subjects dealers
to more competition and affects the distribution of trade sizes and bid-ask spreads. Miao (2006) studies a model
where investors can choose to trade in a centralized market intermediated by market-makers or in a decentralzied
market where traders search for counterparties, and therefore he makes the competition among these markets
explicit. Another difference is that in our model investors continuously cycle between being buyers and sellers,
while in Miao (2006) agents trade once, exit the market and get replaced by new agents.
38To highlight the main point, the proposition specializes to the case of η = 1 because equilibrium is unique

in this case. To see this notice that η = 1 implies that {ūi (·)} and {ai} are independent of α. In this case
the average fee only depends on α (υ) through the distribution of investors. As the number of dealers increases,
a larger measure of investors hold their desired portfolios, which reduces dealers’ opportunities to intermediate
trades. Thus, Φ is strictly decreasing in α (and υ) and the left side of (36) is strictly decreasing in υ, which
implies uniqueness of the steady-state equilibrium with entry.
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reduce dealers’ incentives to make markets, adversely affecting the liquidity of the market.

Weston (2000, 2002) finds that the increase in competition resulting from the growth of trading

through ECNs in NASDAQ has resulted in larger trade volumes, tighter bid-ask spreads per

dollar traded and net entry of market-makers, which can be rationalized by Proposition 11.39

Interestingly, in cases in which multiple equilibria exist (see Proposition 9), one can show

that a reduction in trading frictions can remove the multiplicity. Thus, perhaps counter to

intuition, it is possible that a mild regulatory reform or a technological innovation that gives

investors more direct access to the asset market leads to a relatively large increase in market

liquidity and even result in a higher volume of intermediated trades.

8.2 Dealers’ market power

As we mentioned above, many of the regulatory reforms implemented in the 1990’s were intended

to reduce the dealers’ ability to charge large spreads.40 Within the context of our model, η

captures the effects of regulations and other details of the market structure that determine a

dealer’s ability to extract a rent in their trades with investors. As we noted in the previous

section, κ = α (1− η)+β, so the effects of a decrease in η are essentially the same as the effects

of an increase in β, namely, a larger trade volume and a smaller effective spread.41

So far we have focused on the steady-state effects of changes in policy and market structure

on market liquidity. We now use the model with a fixed measure of dealers to illustrate how

market reforms, in particular changes in the degree of market power of dealers, affect the

dynamics of the different dimensions of market liquidity. We focus on the behavior of trade

39Barclay et al. (1999) also find that spreads fell significantly in NASDAQ in response to the order handling
reforms of the 1990’s without adversely affecting quality of execution. Similarly, Stoll (2006) documents that
the widespread use of electronic trading in stock markets has led to tighter bid-ask spreads per dollar traded,
larger trade volume and larger total revenue for securities firms. See Allen, Hawkins and Sato (2001) and Weston
(2002) for references to related work.
40Decimalization is an example of such a policy. Up to the 1990’s, US stocks had been priced in units of 1/8

of a dollar. Partly in response to the impact of the findings of Christie and Schultz (1994), Congress passed the
Common Cents Pricing Act of 1997, which required the minumum tick size to be a penny. The tick size sets
a floor on how narrow the spreads can become. So, in principle, this decimalization would foster competition
among dealers. During that period there were also more direct pressures on dealers to reduce spreads. For more
on this, see the accounts in Christie, Harris and Schultz (1994) and Hasbrouck (2004).
41 In Lagos and Rocheteau (2007) we use a special case of the model with free entry to show that a reduction in

η can lead to a decrease in effective spreads, an increase in trade volume and at the same time stimulate dealer
entry and reduce execution delays. There we also show that provided that the initial market power of dealers is
large enough, a reduction in η also increases welfare, which may lend some theoretical support for the regulatory
reforms of the 1990’s.
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volume and the effective spread, which in a dynamic context equal

V(t) = α

2

Z
S
|ai(t)− a| dHt and S(t) =

R
S φi (a, t) dHt

p(t)
R
S |ai(t)− a| dHt

.

Consider an economy where dealers have market power η0, which is initially at the corresponding

steady state. Let a0i denote the asset position chosen by an agent with preference type i when

he reallocates his asset holdings in this steady state. The initial measure of investors with asset

holdings a0i and preference type j is nij given by (30) and (31). We study an unanticipated

regulatory change at time t = 0 that permanently reduces the dealers’ market power from

η0 = 0.75 to 0.5 (the rest of the parameters are as in Section 7). Figure 3 shows the trajectories

for trade volume and the effective spread.42

Figure 3: Effects of a permanent and unanticipated change in η on market liquidity

Trade volume is higher in the new steady state, as illustrated in the left panel of Figure 3.

The reason is that the distribution of trade sizes associated with η dominates in a first-order-

stochastic-dominance sense the one associated with η0 > η (Proposition 6). Trade volume

overshoots its new steady-state level on impact. This is due to the evolution of the distribution

of trade sizes over time. At time 0 the support of the distribution of asset positions is {a0i }Ii=1,
42Since the distribution of preference types remains constant, ni(t) = πi for all t, the effective cost of holding

the asset typically jumps instantly to its new steady-state level. In the case with σ = 1, the asset price, p,
is independent of η, so it remains constant. Since p(t) is constant for all t > 0, ai(t) and φi (a, t) are also
independent of t.
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which coincides with the set of desired portfolios before the policy change, but the set of

investors’ desired portfolios becomes {ai}Ii=1 in response to the change in dealers’ bargaining
power. Hence, all investors adjust their asset holdings as they get access to the market, even

those who were holding their desired asset holdings before the market reform. Trade volume

approaches its new steady-state level as the measure of investors who have not contacted a dealer

since the market reform goes to 0. The right panel of Figure 3 shows the trajectory for the

effective spread. Along the transition, the effective spread undershoots its new, lower steady-

state level. This behavior is driven by the time-paths for trade volume and the distribution of

trade sizes.43 The adjustment process to the new steady state occurs fast in this example: the

equilibrium has essentially converged to the steady state after 5 days.

9 Related literature

Traders who operate in markets with OTC-style frictions will seek to mitigate these trading

frictions by adjusting their asset positions so as to reduce their trading needs. Our previous

analysis has shown that this a critical aspect of investor behavior in illiquid markets. To

illustrate this point, in this section we derive the main predictions of a version DGP’s model and

contrast them with those of a special case of our formulation. This comparison will underscore

the fact that the type of “liquidity hedging” that we have identified–and that only becomes

possible with unrestricted asset holdings–generates new insights on how trading frictions shape

the various dimensions of market liquidity, alters the empirical predictions of the theory, and

leads to a different assessment of their normative implications.

We will contrast the empirical predictions of DGP’s model with those of a special case of

our model with X = {1, 2} and ui (a) = εi
a1−σ

1−σ for i ∈ X and σ > 0. We focus on the version of

DGP’s model with no inter-investor meetings (e.g., the version that DGP use in their Theorem

4 and part (i) of Theorem 6). DGP restrict a ∈ {0, 1} and let uij denote the flow utility

of an investor with asset position i ∈ {0, 1} and preference type j ∈ {0, 1}.44 DGP assume

43To get a sense for the dynamics of the distribution of trade sizes, first note that all investors are mismatched
with their asset positions in the aftermath of the market reform. The trades conducted along the transition path
by investors who in the absence of the policy change would have been holding their desired asset position have
sizes ai − a0i , which tend to be smaller than the trade sizes |ai − aj |, i.e., the only ones that will be carried out
in the new steady state. Since spreads increase with trade size (Lemma 5), the dynamics of the distribution of
trade sizes tends to make the effective spread low initially.
44DGP state their restriction on asset holdings as a ∈ [0, 1] but only study equilibria in which agents hold

either 0 or 1 unit of the asset, which is effectively equivalent to imposing the restriction a ∈ {0, 1}.
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u00 = u01 = 0, so for comparison purposes, we do the same hereafter. To simplify the notation,

in both models we let π denote the steady-state fraction of investors with high valuation.45

Trade volume. Trade volume is V = α δπ(1−π)
α+δ

(ε̄2)1/σ−(ε̄1)1/σ
π(ε̄2)1/σ+(1−π)(ε̄1)1/σ

A in our model and VDGP =

α δπ(1−π)
α+δ min{Aπ ,

1−A
1−π } in DGP. The latter is independent of the dealers’ bargaining power, η,

and of all preference parameters and holding payoffs (e.g., r, k). In contrast, these parameters

are critical determinants of trade volume in our theory, as they influence the investors’ choices

of asset holdings (the second factor in V). As discussed in Section 8, our model predicts–in
accordance with available evidence–that markets in which dealers have less market power will

tend exhibit larger trade volume.46

Price. Since asset holdings are indivisible in DGP, equilibrium in the interdealer market

requires investors who are on the long side of the market to be indifferent between trading and

not trading. It is easy to show that in steady state investors who want to sell are on the short

side if and only if A < π. The equilibrium price in the interdealer market is

p =

(
1
r
(r+κ)u11+δū

r+κ+δ if A < π
1
r
(r+κ)u10+δū

r+κ+δ if π < A,
(40)

where ū ≡ π1u11 + π0u10.47

The asset holding restrictions in DGP are also the reason why the asset price in their theory

is independent of the stock of assets, A, for any A < π and for any A > π, with a discontinuity at

A = π. In contrast, the asset price in our model is smooth and decreasing in A. For example, in

the special case of our model that we are considering in this section, p =
³P

i πiε̄
1/σ
i

´σ
/rAσ.48

The behavior of the asset price in response to changes in the trading frictions in DGP depends

critically on the level of A. From (40), p is increasing in α (decreasing in η) if A < π but

decreasing in α (increasing in η) if A > π. In contrast, with unrestricted asset holdings these

extensive-margin considerations are irrelevant to assess the impact of trading frictions on the

asset price (recall Proposition 4).
45“High valuation” corresponds to the index “2” in our formulation and “1” in DGP.
46Apart from these qualitative differences, the theory with unrestricted portfolios also has different quantitative

implications for the relationship between trade volume and trading frictions. For example, DGP’s model has a
sharp empirical implication: the elasticity of trade volume with respect to trading frictions equals δ

α+δ ∈ (0, 1).
In contrast, in the model with unrestricted asset holdings the corresponding elasticity is larger by an amount that
equals the elasticity of (a2 − a1) with respect to α–which is positive, capturing the notion that each investor
wishes to conduct a larger trade when frictions are reduced.
47 If A = π, p ∈ (r+κ)u10+δū

r(r+κ+δ)
, (r+κ)u11+δū

r(r+κ+δ)
and the equilibrium price in the interdealer market is indeterminate.

48Notice that we obtain DGP’s formulation with A < π as a special case of ours when σ → 0.
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A paper that is closely related to ours is an independent contribution by Gârleanu (2006),

which studies the asset pricing implications of infrequent (Poisson) trading opportunities. Some

of our findings are similar: like us, he finds that investors take more extreme positions when

trading delays are short. Also, Gârleanu stresses that the asset price is not affected by the

trading frictions–which is true in our model for a particular specification of the utility function

(see Corollary 1). In terms of differences, trades in Gârleanu (2006) are not intermediated by

dealers (α = 0 in our formulation) so he could not consider the implications of execution delays

for transaction costs and dealers’ incentives to provide liquidity, which are at the center of our

analysis.

Transaction costs. DGP’s transaction costs can be expressed in terms of the intermediation

fees φ01 and φ10 that dealers charge investors who want to buy and sell, respectively. The equi-

librium spread is s = η(u11−u10)
r+κ+δ .49 Conditional on having contacted an investor, the expected

intermediation fee that accrues to a dealer in DGP is ΦDGP = δπ(1−π)
α+δ min{Aπ ,

1−A
1−π }s. This

key determinant of dealers’ incentives to make markets is decreasing in the investors’ contact

rate with dealers, α, and increasing in the dealers’ bargaining power, η. In contrast, as we

have shown analytically in Proposition 3, in our model with no restrictions on asset holdings

it is natural for the average fee to be nonmonotonic in α and η. Our theory suggests that

these nonmonotonicities can be important. From an applied standpoint, they help explain how

OTC markets have reacted to recent changes in their market structure (Section 8). From a

theoretical standpoint, they can generate self-fulfilling liquidity shortages in markets with free

entry of dealers (Section 6).50

Another key difference with DGP is the fact that since the equilibrium in the model with

unrestricted portfolios implies a nondegenerate distribution of trade sizes, our theory has pre-

dictions for the relationship between transaction costs and transaction sizes. As we showed

49Since asset holdings in DGP are restricted to lie in {0, 1}, every trade is of size 1 and hence φ01+φ10 = s. In
addition, the indivisibility assumption implies that dealers either charge a fee on asset sales or on asset purchases,
but not both. Specifically, if A < π then φ01 = 0 and investors only pay a fee φ10 = s when they sell. Conversely,
if π < A, φ10 = 0 and investors only pay a fee φ01 = s when they buy.
50The spread, s, is decreasing in α and increasing in η in this version of DGP with no inter-investor meetings.

One can also verify that the average effective spread weighted by the sizes of each trade and expressed as
a proportion of the price is also decreasing in α and increasing in η. The behavior of this measure of the
marketwide spread, i.e., (38), is much more complicated in our model, where the investors’ expected holding
payoffs, their individual asset demands, the asset price, and the whole distribution of asset holdings change in
response to a change in α. Our numerical work, some of which we have reported in Section 7, is in accordance
with the predictions of DGP.
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in Lemma 5 and illustrated in Section 7, transaction costs are increasing in the size of the

transaction. Thus, if ai−aj > ai−ak > 0, then the effective price at which the investor buys is
p̂ji > p̂ki, i.e., he effectively pays higher prices when he conducts larger purchases. Conversely,

p̂ji < p̂ki if ai − aj < ai − ak < 0, i.e., he effectively receives lower prices when he conducts

larger sales. In other words, the theory with unrestricted asset holdings naturally generates

instances of price concession which are commonplace in OTC markets.51

Execution delays. DGP endogenized trading delays by allowing a single monopolist dealer

to choose search intensity once-and-for-all at the beginning of time. Free entry of competing

dealers or market-makers is a feature of most OTC markets, however, the implications of this

microstructure have not yet been explored in the literature. We find that allowing for free entry

of dealers is a natural way to endogenize execution delays and the amount of liquidity supplied by

dealers, and that it provides an important channel through which changes in market conditions

affect transaction costs and trade volume (Section 8). In addition, the interaction between

free entry and unrestricted asset holdings leads to a natural kind of strategic complementarity

that can help rationalize self-fulfilling liquidity shortages in markets with OTC-style frictions

(Section 6).

Welfare. The equilibrium allocation is always constrained efficient in the baseline model

of DGP–regardless of the value of η–which stands in contrast to the finding we report in

Proposition 2. The reason is that in our model investors choose asset holdings, while this

intensive margin is absent in DGP. For the same reason, the inefficiency result we find in

Proposition 10 also has no counterpart in DGP.

10 Conclusion

We developed a search-theoretic model of an asset market and have used it to analyze the

relationship between the fundamental trading frictions characteristic of OTC markets (trading

delays, dealers’ market power) and standard measures of financial liquidity, such as the size of

bid-ask spreads, trade volume and execution delays. We have shown that the theory can be

used to analyze the positive and normative implications of recent regulatory and technological

innovations in trading.

51See Section 4.3 in Harris (2003).
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From a methodological standpoint, our work shows that by imposing severe restrictions on

asset holdings, existing search-based theories of financial liquidity neglect a critical aspect of

investor behavior in illiquid markets, namely the fact that market participants can mitigate

trading frictions by adjusting their asset positions so as to reduce their trading needs. We have

found that this mechanism, which effectively amounts to incorporating a demand for liquidity at

the investor level absent in previous work, has important implications for market efficiency and

the way in which trading frictions shape asset prices as well as trade volume, bid-ask spreads

and trading delays–precisely the dimensions of market liquidity which search-based theories

of financial liquidity were designed to explain.

The model we have developed allows for fairly general forms of investor heterogeneity and

it has relatively few parameters that map naturally into observables. One could easily imagine

calibrating or estimating the model using data on trade execution in OTC markets. We think

that much could be learned from such exercises. For example, one could quantify the welfare

gains associated with a given reduction in trading frictions, and the impact that the introduction

of electronic trading networks will have on bid-ask spreads, average execution times, trade

volume and other standard measures of liquidity. Various extensions are worth considering.

First, there are many issues, such as the dynamic provision of liquidity by dealers who can hold

asset positions, that would require a more detailed study of the model dynamics. Second, as

an alternative to bilateral bargaining, one could explore alternative trading mechanisms that

combine price-posting and directed search which would correspond to the more transparent

market structures in the OTC spectrum.
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A Proofs

Proof of Lemma 1. The Nash solution requires the outcome to be Pareto efficient. Since

agents’ payoffs are linear in φ, ai(t) must maximize the surplus from the match, namely

Vi [ai(t), t] − Vi(a, t) − p [ai(t)− a]. This gives (3). Differentiating the Nash product in (2)

with respect to φ and equating to zero gives (4).

Proof of Lemma 2. We proceed in two steps: (i) derive a simpler expression for Ūi(a) and

(ii) compute E
£
e−rTκp(t+ Tκ)

¤
.

(i). Changing variables, (7) can be written as

Ūi(a) = Ei
∙Z Tκ−t

0
e−rsuk(t+s)(a)ds

¸
. (41)

Let Tδ denote the next time the investor draws a new preference shock and Tδκ = min (Tδ, Tκ).

Since preference shocks and effective contacts with dealers follow independent Poisson processes,

Tδ − t, Tκ − t and Tδκ − t are exponentially distributed random variables with means 1/δ, 1/κ,

and 1/ (κ+ δ), respectively. We write (41) recursively,

Ūi(a) = Ei
∙Z Tδκ−t

0
e−rsuk(t)(a)ds+ I{Tδ<Tκ}e

−r(Tδ−t)Ūk(Tδ)(a)

¸
,

where the expectation is over the random variables Tδ − t, Tκ − t and Tδκ − t, conditional on

k (t) = i. Notice that

Ei
∙Z Tδκ−t

0
e−rsuk(t)(a)ds

¸
=

Z ∞

0

∙Z τδκ

0
e−rsui(a)ds

¸
(κ+ δ) e−(κ+δ)τδκdτδκ

=
ui(a)

r + κ+ δ
. (42)

Since Tδ − t and Tκ − t are independent random variables, and k (Tδ) = j with probability πj

for all Tδ − t ≥ 0, we have

Ei
h
I{Tδ<Tκ}e

−r(Tδ−t)Ūk(Tδ)(a)
i
=

Z ∞

0

Z ∞

0

IX
j=1

I{τδ<τκ}e
−rτδ Ūj(a)πjδe

−δτδκe−κτκdτδdτκ

=

∙Z ∞

0

Z τκ

0
e−rτδδe−δτδκe−κτκdτδdτκ

¸ IX
j=1

πjŪj(a)

=
δ

r + κ+ δ

IX
j=1

πjŪj(a). (43)
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Combine (42) and (43) to get

Ūi(a) =
ui(a)

r + κ+ δ
+

δ

r + κ+ δ

IX
j=1

πjŪj(a). (44)

Multiply (44) through by πi, add over i, solve for
P

j πjŪj(a) and substitute this is expression

back into (44) to obtain

Ūi(a) =
ūi (a)

r + κ
, (45)

where ūi (a) is as in (10).

(ii). The expected discounted price of the asset at the next time when the investor gets an

opportunity to trade is

E[e−r(Tκ−t)p(Tκ)] = κ

Z ∞

0
e−(r+κ)sp (t+ s) ds. (46)

Finally, substitute (45) and (46) into (8) and multiply through by (r + κ) to obtain the formu-

lation of the investor’s problem in the statement of the lemma.

Proof of Lemma 3. (a) To obtain (13), rewrite (11) as

q(t) = (r + κ) p(t)− κe(r+κ)t
Z ∞

t
(r + κ) e−(r+κ)sp(s)ds (47)

and differentiate with respect to t.

(b) To arrive at (14), integrate (13) forward using the condition limt→∞ e−rtp(t) = 0.

Proof of Lemma 4. We proceed in three steps: (i) derive nji(τ, t), (ii) derive n0ji(A, t) and
(iii) obtain Ht(A,I) for an arbitrary (A,I) ∈ Σ.

Step (i). Since investors meet dealers according to a Poisson process with arrival rate α,

the length of the time period between any time t and the next time the investor meets a dealer

is an exponentially distributed random variable with mean 1/α. Thus, the density measure of

investors who last readjusted their asset holdings at time t − τ > 0 is αe−ατ . The compound

Poisson process for preference shocks implies that the probability that an investor who last

contacted a dealer at time t − τ has a history of preference types involving k(t − τ) = j and

k(t) = i is
¡
1− e−δτ

¢
πi + I{i=j}e−δτ . Since the measure of investors with preference type j at

time t− τ is nj(t− τ), and the Poisson process for meeting dealers and the compound Poisson

process for preference shocks are independent, the density measure of investors who last traded
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at time t − τ and who have a history of preferences involving k(t − τ) = j and k(t) = i, is

nji (τ, t) = αe−ατ
£¡
1− e−δτ

¢
πi + I{i=j}e−δτ

¤
nj (t− τ), as given by (19) and (20).

Step (ii). Let Tα denote the first time an investor contacts a dealer. Since Tα is an ex-

ponentially distributed random variable, Pr (Tα > t) = e−αt. Thus, e−αt is the measure of

investors who have not contacted a dealer up to time t. Since the Poisson meeting process is

independent of investors’ individual states, the time-t measure of investors whose asset holdings

and preference types lied in the set (A, {j}) at time 0 and who have not yet met a dealer at
time t is e−αtH0 (A, {j}). The measure of investors who were of preference type j at time

0 and are of type i at time t is
¡
1− e−δt

¢
πi + e−δtI{j=i}. Thus, the time-t measure of in-

vestors who at time 0 had preference type j and assets in A, whose preference type is i

at the current time t, and who have never traded (so their asset holdings are still in A) is
n0ji(A, t) = e−αt

£¡
1− e−δt

¢
πi + e−δtI{j=i}

¤
H0(A, {j}), as given in (21).

(iii). Ht(A, I) is the measure of investors who have an individual state (a, i) ∈ (A, I) at
time t. The first term in Ht(A, I) is

P
i∈I
PI

j=1 n
0
ji(A, t), namely those investors who never

contacted dealers but who were holding asset positions in the set A at time 0 and whose

preference types at t lie in I. The time-t measure of investors of type i who chose an asset
position in the set A the last time they traded, given that their preference type at that time

was j, is
R t
0 I{aj(t−τ)∈A}nji(τ, t)dτ . Thus, the second term in Ht(A,I), namely the measure

of investors who the last time they traded chose asset positions that belong to the set A and

whose preference types at time t lie in I, is
P

i∈I
PI

j=1

R t
0 I{aj(t−τ)∈A}nji(τ, t)dτ .

Proof of Proposition 1. For all t ≥ 0, the distribution {ni(t)}Ii=1 is unique and given by
(16). Given that ui is strictly concave and continuously differentiable, (12) implies that any

interior choice ai(t) is a strictly decreasing, continuous function of q(t) for every i. Therefore,

the market-clearing condition (17) determines a unique q(t) for each t ≥ 0. Given q(t), there

is a unique {ai(t)}Ii=1 that solves (12). Given q(t), (15) gives the fee φi(a, t) for every i and a.

Finally, given {ai(t)}Ii=1 the distribution Ht is given by (18).

Proof of Proposition 2. Calculations similar to those contained in part (i) of the proof of

Lemma 2 imply Ûi(a) = ūi (a) /(r + α). Substitute this expression into the planner’s objective

function to get

max
{ai(t)}

Z ∞

0

α

r + α

⎧⎨⎩
IX

i=1

⎡⎣ r + α

r + α+ δ
ui[ai(t)] +

δ

r + α+ δ

IX
j=1

πjuj [ai(t)]

⎤⎦ni(t)
⎫⎬⎭ e−rtdt
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subject to
PI

j=1 nj(t)aj(t) ≤ A and ai(t) ≥ 0 for all i. Let

L(t) =
IX

i=1

"
r + α

r + α+ δ
ui[ai(t)] +

δ

r + α+ δ

IX
k=1

πkuk[ai(t)]

#
ni(t) + λ(t)

"
A−

IX
i=1

ni(t)ai(t)

#
,

where λ(t) is the Lagrange multiplier associated with the feasibility constraint. The planner’s

problem then reduces to finding, for each t, the sequence {ai(t)}Ii=1 that solves max{ai(t)}L(t).
Since L(t) is strictly jointly concave in {ai(t)}Ii=1, the first-order necessary and sufficient con-
ditions for this problem are

(r + α)u0i [ai(t)] + δ
PI

k=1 πku
0
k [ai(t)]

r + α+ δ
≤ λ(t), “ = ” if ai(t) > 0, (48)

for i = 1, ..., I. The resource constraint (23) at equality is

IX
i=1

ni(t)a
∗
i [λ(t)] = A (49)

where a∗i (λ) is the ai that satisfies (48). Comparing (49) with (17), (48) with (12), and setting

q(t) = λ(t), it becomes clear that (12) coincides with (48) if and only if η = 0.

Proof of Proposition 3. From (16), limt→∞ ni(t) = πi for each i. Thus, condition (17)

becomes
PI

i=1 πiai (t) = A, where according to (12), ai (t) = max
©
ū0−1i [q(t)] , 0

ª
. With this,

the market clearing condition can be written as
PI

i=1 πimax
©
ū0−1i [q(t)] , 0

ª
= A. Given that

ui is continuously differentiable for each i, this condition defines a unique q which is time-

invariant. Given this q, (12) implies a unique set of time-invariant optimal asset holdings

{ai}Ii=1. Thus, {ai}Ii=1 and q satisfy (24) and (25). Given the fact that q (t) = q for all

t, (13) implies (26). Given q and {ai}Ii=1, (15) implies (27), which determines the time in-
variant fees {φi (a)}Ii=1. To derive the time-invariant limit of the measure of investors across
individual states, note that limt→∞ n0ji(A, t) = 0 for all i, j ∈ X and all A ⊆ R+. Also,

limt→∞ nji (τ, t) = αe−ατ
£¡
1− e−δτ

¢
πi + e−δτ I{i=j}

¤
πj ≡ nji (τ,∞) and limt→∞ aj (t− τ) =

aj , so limt→∞Ht (A, I) = H (A, I) for all (A, I) ∈ Σ.

Proof of Proposition 4. Differentiate (25) to obtain

dp

dκ
=

PI
i=1 πi∂ai/∂κ

−
PI

i=1 πi∂ai/∂p
.
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From (32), we know that the denominator of this expression is strictly positive, so we focus on

the sign of the numerator. Differentiate (32) to obtain ∂ai/∂κ, multiply by πi, and add over all

i to arrive at
IX

i=1

πi
∂ai
∂κ

=
δ

(r + κ+ δ)2 rp

IX
i=1

πi
[u0(ai)]

2

−u00(ai)
(εi − ε̄) .

Suppose− [u0(a)]2 /u00(a) is strictly increasing in a. Let ā denote the a that solves (32) for ε̄i = ε̄.

Then, note that − [u0(ai)]2 (εi − ε̄) /u00(ai) ≥ − [u0(ā)]2 (εi − ε̄) /u00(ā) for each i, with strict

inequality for all i such that εi 6= ε̄. Thus,
PI

i=1 πi
∂ai
∂κ > 0 and consequently, dp

dκ > 0. Similar

reasoning implies dp
dκ < 0 if − [u0(a)]2 /u00(a) is strictly decreasing and dp

dκ = 0 if − [u0(a)]
2 /u00(a)

is constant in a.

Proof of Proposition 5. With ui(a) = εia
1−σ/(1 − σ), the model can be solved in closed

form:

ai =
ε̄
1/σ
iPI

j=1 πj ε̄
1/σ
j

A (50)

q =

³PI
j=1 πj ε̄

1/σ
j

´σ
Aσ

. (51)

From (50), the individual demand for the asset by an agent whose current preference shock is

εi in an economy where the direct effective access rate to the asset market is κ is

ai (κ) =
API

j=1 πj

h
(r+κ)εj+δε̄
(r+κ)εi+δε̄

i1/σ . (52)

Consider κ0 > κ. One can verify that there exists a unique ε̃ ∈ (ε1, εI) such that ai (κ0) > ai (κ)

for all εi > ε̃, ai (κ0) < ai (κ) for all εi < ε̃ and ai (κ
0) = ai (κ) ≡ ã if εi = ε̃. With (30)

and (31), the cumulative distribution of assets across investors for the economy indexed by κ,

is Gκ(a) =
PI

j=1 I{aj(κ)≤a}πj . This, and the fact that (κ
0 − κ) [ai (κ

0)− ai (κ)] > 0 iff εi > ε̃

implies that Gκ0(a) ≥ Gκ(a) for all a < ã and Gκ0(a) ≤ Gκ(a) for all a > ã. Thus, given that

both distributions have the same mean and that aI (κ0) > aI (κ), the fact that the cumulative

density functions cross only once implies that Gκ dominates Gκ0 in the second-order stochastic

sense.

Proof of Corollary 2. For I = 2, we have X = {1, 2} and

V = αδπ1π2
α+ δ

[a2 (κ)− a1 (κ)] ,
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where ai (κ) is given by (52). Since ε1 < ε2, we have a1 (κ) < a2 (κ), and differentiating (52)

with respect to κ implies da1(κ)
dκ < 0 < da2(κ)

dκ . To find dV
dκ , we consider two cases. (i) An increase

in κ caused by a decrease in η (keeping α constant). For this case, dVdκ =
da2(κ)
dκ − da1(κ)

dκ > 0. (ii)

An increase in κ caused by an increase in α, which implies dV
dκ =

³
δ

α+δ

´2
π1π2 [a2 (κ)− a1 (κ)]+

αδπ1π2
α+δ

h
da2(κ)
dκ − da1(κ)

dκ

i
> 0.

Proof of Proposition 6. Since ui (a) = εi ln a, we have ai > 0 for all i, and ai 6= aj unless

i = j. From (30), the proportion of trades that involve buying ai and selling aj or vice versa

(for i 6= j) is (nij + nji) /(1 −
PI

i=1 nii) = 2πiπj/(1 −
PI

i=1 π
2
i ), which is independent of κ.

From Corollary 1, dp/dκ = 0, so differentiating (32),

d [gi(κ; p)− gj(κ; p)]

dκ
=

δ (εi − εj)

rp (r + κ+ δ)2
.

Thus, |ai − aj | = |gi(κ; p)− gj(κ; p)| increases with κ for all i 6= j. The measure of trades of

size less than z ≥ 0 is
IX

i=1

X
j 6=i

πiπj

1−
PI

i=1 π
2
i

I{|ai−aj |≤z},

which is decreasing in κ.

Proof of Lemma 5. Differentiate (27) to obtain

∂φi(a)

∂a
= − η

r + κ

£
ū0i (a)− q

¤
.

Suppose that the nonnegativity constraint on ai is slack. Then, since ūi is strictly concave and

ū0i (ai)− q = 0, we know that ū0i (a)− q < 0 if and only if a− ai > 0, and ∂φi(a)
∂a has the same

sign as a − ai. If ai = 0, then a > ai and ū0i (a) − q < ū0i (ai) − q ≤ 0, so ∂φi(a)
∂a > 0 which is

the same sign as a − ai = a > 0. This establishes part (i). To show part (ii), divide (27) by

(ai − a) and differentiate the resulting expression to get

∂

∂a

∙
φi (a)

ai − a

¸
=

η

r + α (1− η)

∙
ūi (ai)− ūi (a)− ū0i (a) (ai − a)

(ai − a)2

¸
,

which is negative for all a 6= ai, since ūi is strictly concave.

Proof of Proposition 7. Let q (κ, r), ai (κ, r) and φji (κ, r) denote, respectively, the equi-

librium q, ai and φji that solve the system (24), (25) and (27) for all i ∈ X. We proceed

48



in three steps: (i) show that φji (κ, r) > 0 for all κ ∈ (0,∞) and all r ∈ [0,∞) provided
ai (κ, r) 6= aj (κ, r) and η > 0; (ii) establish that limκ→∞ φji (κ, r) = 0 for any r ≥ 0 and all
(i, j) ∈ X2; (iii) show that for each κ ∈ (0,∞) there is r̄ > 0 such that φji (0, r) < φji (κ, r)

for all r ∈ (0, r̄). The nonmonotonicity of φji (κ, r) with respect to κ for all r ∈ [0, r̄) will then
follow from steps (i) through (iii).

(i). Since φij =
η

r+κ {maxa0 [ūi (a0)− qa0]− [ūi (aj)− qaj ]}, we have φij (κ, r) > 0 for all

κ ∈ (0,∞) and all r ∈ [0,∞), provided η > 0 and aj 6= argmaxa0≥0 [ūi (a0)− qa0] (i.e., provided

the investor trades).

(ii). limκ→∞ q (κ, r) = q̄ and limκ→∞ ai (κ, r) = argmaxa0≥0 [ui (a
0)− q̄a0] ≡ h∞i (q̄), where

q̄ solves
PI

i=1 πih
∞
i (q̄) = A, which in turn implies q̄ ∈ (0,∞) and h∞i (q̄) < ∞. Therefore

limκ→∞ φji (κ, r) = 0 for any r ≥ 0 and all (i, j) ∈ X2.
(iii). Let κ → 0 to obtain q (0, r) = q̃ and ai (0, r) = argmaxa0≥0 [ũi (a0)− q̃a0] ≡ h0i (q̃),

where ũi (a) =
r

r+δui (a) +
δ

r+δ

PI
k=1 ui (a) and q̃ solves

PI
i=1 πih

0
i (q̃) = A. Observe that

limr→0 ai (0, r) = ũ0−1i (q̃) = A, for each i ∈ X. With this, apply L’Hôpital’s rule to find

limr→0 φji (0, r) = 0.

Our assumptions on primitives imply that q (κ, r) and ai (κ, r) are continuous functions, so

φji (κ, r) is continuous. Hence, for each (i, j) with i 6= j and an each κ ∈ (0,∞), there is some
r̄ > 0 such that for all r ∈ [0, r̄), we have limκ→∞ φji (κ, r) = 0 < φji (κ, r) (by (i) and (ii))

and φji (0, r) < φji (κ, r) (by (i) and (iii)), which establishes the nonmonotonicity of φij with

respect to κ.

Proof of Corollary 3. Write Φ (α, η, r) =
PI

i,j=1 nji (α)φji [α (1− η) , r], where nji (α) is

given by (30)—(31). Fix an arbitrary (α, η) ∈ (0,∞)× (0, 1). From Proposition 7,

min
{(i,j)∈X2:i6=j}

φji [α (1− η) , r] > 0

for all r ∈ [0,∞), and there is r0 > 0 such that for all r ∈ [0, r0), max(i,j)∈X2 φji (0, r) <

min{(i,j)∈X2:i6=j} φji [α (1− η) , r]. Then, for any r ∈ [0, r0), we have limα0→∞Φ (α0, η, r) = 0 <

Φ (α, η, r) (by (ii)) and Φ (0, η, r) < Φ (α, η, r) (by (iii)), which establishes the nonmonotonicity

of Φ with respect to α, and therefore with respect to κ = α (1− η).

Proof of Proposition 8. Using (10), we can write (35) as

Φ =
ηδ

(α+ δ) [r + α (1− η) + δ]

IX
i,j=1

πiπj [ui (ai)− ui (aj)] .
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From (24) we know that ai is a continuous function of υ and q, i.e., ai = ai (υ, q). From

(25), there is a unique q that clears the asset market and it is a continuous function of υ, i.e.,

q = q (υ). Thus, ai = ai [υ, q (υ)] is a continuous function of υ. Define the map Γ(υ) as

Γ(υ) ≡
[α(υ)/υ] ηδ

PI
i,j=1 πiπj {ui[ai(υ)]− ui[aj(υ)]}

[α(υ) + δ] [r + α(υ)(1− η) + δ]
. (53)

This is the left-hand side of the free-entry condition (36). First, we establish that limυ→0 Γ(υ) =

∞. Recall that ai = argmaxa0≥0 [ūi(a0)− qa0], therefore,

(r + κ)ui(ai) + δ
PI

k=1 πkuk(ai)

r + κ+ δ
− qai ≥

(r + κ)ui(aj) + δ
PI

k=1 πkuk(aj)

r + κ+ δ
− qaj (54)

holds for every i and j. Since (24) implies ai = aj if and only if ai = aj = 0, (54) holds with

strict inequality for any i such that ai > 0. Multiplying this inequality through by πiπj and

summing over all i and j implies
PI

i,j=1 πiπj {ui[ai(υ)]− ui[aj(υ)]} > 0. The inequality is strict
since for every υ we have ai > 0 at least for i = I. Then, limυ→0 Γ(υ) =∞ follows from η > 0

and the fact that

lim
υ→0

α(υ)/υ

[α(υ) + δ] [r + α(υ)(1− η) + δ]
=∞.

Next, note that the fact that
PI

i,j=1 πiπj {ui[ai(υ)]− ui[aj(υ)]} is bounded (because ai(υ) must
be bounded for (25) to hold), together with

lim
υ→∞

α(υ)/υ

[α(υ) + δ] [r + α(υ)(1− η) + δ]
= 0

implies that limυ→∞ Γ(υ) = 0. Finally, since Γ is continuous, there exists some υ ∈ R+ such
that Γ(υ) = γ.

Proof of Proposition 9. In an equilibrium with entry, the measure of dealers satisfies

Φ [α (υ) , η, r] = γυ1−θ. (55)

From Proposition 3, there is r̃ > 0 such that γ ≡ Φ (0, η, r) < supυ Φ [α (υ) , η, r] ≡ γ for all

r ∈ [0, r̃), and limυ→∞Φ [α (υ) , η, r] = 0 < γ. Note that as θ → 1, γυ1−θ converges uniformly

to γ on any closed interval [υ0, υ1] ⊆ (0,∞). Thus, for any γ ∈ (γ, γ), there is a θ̃ such that for
for all θ ∈ (θ̃, 1), there are multiple (at least three) values of υ > 0 that satisfy (55).

Proof of Proposition 10. The Lagrangian associated with this problem is

L = α

α+ δ

IX
i=1

πiui(ai) +
δ

α+ δ

IX
i,j=1

πiπjuj(ai)− υγ + λ

Ã
A−

IX
i=1

πiai

!
,
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where λ ∈ R+ is the Lagrange multiplier associated with the resource constraint
PI

i,j=1 nijai =

A. The first-order condition with respect to ai is

α

α+ δ
u0i(ai) +

δ

α+ δ

IX
k=1

πku
0
k(ai) ≤ λ, “ = ” if ai > 0. (56)

As r → 0, the left-hand side of (24) approaches α(1−η)
α(1−η)+δu

0
i(ai)+

δ
α(1−η)+δ

PI
k=1 πku

0
k(ai), which

coincides with the left-hand side of (56) if and only if η = 0. The first-order condition for the

measure of dealers is
α0 (υ)

α (υ) + δ

IX
i,j=1

δπiπj [ui(ai)− uj(ai)]

α (υ) + δ
= γ. (57)

From (53) we know that, as r → 0, the equilibrium condition for entry of dealers approaches

[α(υ)/υ] η

α(υ)(1− η) + δ

IX
i,j=1

δπiπj [ui (ai)− ui (aj)]

α(υ) + δ
= γ,

which converges to (57) as η → 0 if and only if α0(υ)υ/α(υ) = η.

Proof of Proposition 11. Define

Γ(υ) ≡
[α(υ)/υ] δ

PI
i,j=1 πiπj {ui[ai(β, r)]− ui[aj(β, r)]}
[α(υ) + β + δ] (r + β + δ)

,

where ai (β, r) = argmaxa0≥0 [ūi(a
0)− qa0] ≡ hi (q) for η = 1 and q solves

PI
i=1 πihi (q) = A.

Note that η = 1 implies ai (β, r) is independent of υ. Let υ (β, r) denote the equilibrium

measure of participating dealers; it solves Γ(υ)− γ = 0. With arguments similar to those used

in Proposition 8, it can be shown that such a υ (β, r) exists and υ (β, r) > 0 for r > 0. Moreover,

υ (β, r) is unique since Γ0(υ) < 0. Note that limβ→∞ υ (β, r) = 0, and since limr→0 ai (0, r) = A

for all i, limr→0 υ (0, r) = 0. Since Γ is continuous in r, for a given β there is r̄ > 0 such

that υ (0, r) < υ (β, r) and limβ0→∞ υ (β0, r) < υ (β, r) for all r ∈ (0, r̄). This establishes the
nonmonotonicity of υ with respect to β.
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B Transversality condition

In this appendix we show that an equilibrium, the asset price p (t) necessarily satisfies the

condition limt→∞ e−rtp (t) = 0, which we used in part (b) of Lemma 2. The proof we offer here

is an adapted version of a similar proof that appears in Lagos, Rocheteau and Weill (2007).

Consider an investor who effectively contacts the market with Poisson intensity κ. Let

{Tn}∞n=1 denote the sequence of contact times and Nt the number of contacts over the time

interval [0, t). We adopt the convention that T0 = 0 (but T0 is not a contact time). An asset

plan, a, for the investor specifies his asset holdings as a function time, s, and his history of

preference shocks and contact times, hk (s) , {Tn}∞n=1i for s ≥ 0. Let a = a (s) denote an asset

plan. An asset plan is feasible if a (s) = a (Tn) for all s ∈ [Tn, Tn+1) and a (0) = a0 > 0, which is

given. Let V t
i (a, 0) be the expected discounted utility over the time interval [0, t) of an investor

with preference type i at time 0 who follows an asset plan a. It satisfies

V t
i (a, 0) = Ei

( ∞X
n=0

∙Z Tn+1

Tn

e−rsuk(s) [a(Tn)] I{Tn+1≤t}ds+
Z t

Tn

e−rsuk(s) [a(Tn)] I{Tn≤t<Tn+1}ds
¸)

− Ei

( ∞X
n=1

e−rTnp(Tn) [a(Tn)− a(Tn−1)] I{Tn≤t}

)
,

where the expectations operator, Ei, is taken with respect to the random variables hk (s) , {Tn}∞n=1i
for s ≥ 0 and is indexed by i to indicate that the expectation is conditional on k(0) = i. Collect

terms to arrive at

V t
i (a, 0) = Ei

½
I{0≤t<T1}

Z t

0
e−rsuk(s) (a0) ds+ I{T1≤t}

∙Z T1

0
e−rsuk(s) (a0) ds+ e−rT1p(T1)a0

¸¾
+ Ei

( ∞X
n=1

I{Tn+1≤t}
Z Tn+1

Tn

e−rsuk(s) [a(Tn)] ds

)

− E
( ∞X
n=1

I{Tn+1≤t}e
−rTn

h
p(Tn)− e−r(Tn+1−Tn)p(Tn+1)

i
a(Tn)

)

+ Ei

(Z t

TNt

e−rsuk(s) [a(TNt)] ds

)
− E

©
e−rTNtp(TNt)a(TNt)

ª
, (58)

where the expectations operator, E, is taken with respect to {Tn}∞n=1. It is shown in Lagos,
Rocheteau and Weill (2007, Lemma 2) that V t

i (a, 0) converges to a finite limit V
∞
i (a, 0) as
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t→∞. After taking this limit we find

V∞i (a, 0) = Ei
½Z T1

0
e−rsuk(s) [a(0)] ds+ e−rT1p(T1)a(0)

¾
+ Ei

( ∞X
n=1

e−rTn
©
Ūk(Tn) [a(Tn)]− q(Tn)a(Tn)

ª)
− lim

t→∞
E
©
e−rTNtp(TNt)a(TNt)

ª
. (59)

To arrive at (59), note that Tn =
Xn

k=1
(Tk − Tk−1) is the sum of n independent exponentially-

distributed random variables, so limt→∞ I{Tn−1≤t<Tn} = 0 and limt→∞ I{Tn≤t} = 1 almost surely
for all finite n ≥ 1. The former implies that the first term on the right-side of (58) converges

to 0 as t → ∞. The latter implies that the second term of (58) converges to the first term of

(59) and that the second and third terms of (58) converge to the second term of (59). To see

that the first term on the last line of the right side of (58) goes to 0 as t→∞, write it as

Ei
½
e−rTNt

Z t−TNt

0
e−rsuk(s+TNt) [a(TNt)] ds

¾
. (60)

Any asset plan that is consistent with equilibrium must be bounded, hence the integrand of

(60) is bounded above. This integrand is also bounded below, since either u is bounded below

or else it satisfies the Inada condition which ensures that any optimal plan has a(s) > 0 for

all s. The fact that t − TNt < ∞ almost surely (because t − TNt is exponentially distributed)

implies that the integral in (60) is bounded. Finally, note that Pr (TNt < τ) = e−κ(t−τ) for any

τ < t, so TNt →∞ almost surely as t→∞, which means that (60) goes to 0 as t→∞.
Now consider an optimal asset plan, a, and scale it down by 1− ε. Define ∆ε ≡ V∞i (a, 0)−

V∞i [(1− ε)a, 0]; then,

∆ε = Ei

( ∞X
n=1

e−rTn
©
Ūk(Tn) [a(Tn)]− Ūk(Tn) [(1− ε) a(Tn)]− εq(Tn)a(Tn)

ª)
− lim

t→∞
E
©
εe−rTNtp(TNt)a(TNt)

ª
.

Divide the previous expression by ε to get

∆ε

ε
= Ei

( ∞X
n=1

e−rTn
Ūk(Tn) [a(Tn)]− Ūk(Tn) [a(Tn)(1− ε)]− εq(Tn)a(Tn)

ε

)
− lim

t→∞
E
©
e−rTNtp(TNt)a(TNt)

ª
.
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Since the asset plan a is optimal, we can take the limit as ε → 0, apply L’Hôpital’s Rule and

use the first-order condition for the investor’s problem (e.g., (8)) to find that it must satisfy

lim
ε→0
∆ε

ε
= − lim

t→∞
E
©
e−rTNtp(TNt)a(TNt)

ª
≥ 0.

Since e−rtp(t)a(t) ≥ 0 for all t, the previous condition can be rewritten as

lim
t→∞

E
©
e−rTNtp(TNt)a(TNt)

ª
= 0 (61)

for each investor. We can use the market-clearing condition to writeZ
Ω
aω(t)dω = A, ∀t,

where aω(t) is investor ω’s asset demand at time t and Ω denotes the set of investors. Hence,

A lim
t→∞

E
©
e−rTNtp(TNt)

ª
= lim

t→∞
E
½Z

Ω
e−rTNtp(TNt)a

ω(TNt)dω

¾
= 0,

since (61) holds for each ω. Then TNt →∞ almost surely as t→∞, so limt→∞ e−rtp(t) = 0.
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