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Moral Hazard in the Diamond-Dybvig Model of Banking 
By David Andolfatto and Ed Nosal 

 
 
 
 
We modify the Diamond-Dybvig  model studied in Green and Lin to incorporate a self-
interested banker who has a private record-keeping technology. A public record-keeping 
device does not exist. We find that there is a trade-off between sophisticated contracts 
that possess relatively good risk-sharing properties but allocate resources inefficiently for 
incentive reasons, and simple contracts that possess relatively poor risk-sharing 
properties but economize on the inefficient use of resources. While this trade-off depends 
on model parameters, we find that simple contracts prevail under a wide range of 
empirically plausible parameter values. Although moral hazard in banking may simplify 
the optimal structure of deposit liabilities, this simple structure does not enhance the 
prospect of bank runs.  
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1 Introduction

A distinguishing characteristic of banks is that they issue liabilities predom-
inantly in the form of demandable obligations. The option to redeem bank
deposits presumably serves an economic purpose (Diamond and Dybvig [3],
Calomiris and Kahn [2]). But potential bene�ts aside, it is commonly asserted
that demandable liabilities open the door to welfare-reducing runs driven by
non-fundamental factors. That is, even depositors without any pressing liq-
uidity need may �nd it privately optimal to exercise the redemption option if
they believe� for whatever reason� that others will behave similarly.

Despite its intuitive appeal and alleged empirical relevance, the bank-run phe-
nomenon has proved di¢ cult to rationalize in the context of a formal model.
Diamond and Dybvig [3] develop a tractable framework that attempts to do
so. However, Green and Lin [5], building on the work of Wallace [8], demon-
strate that when the bank is modeled as an optimal allocation mechanism,
the prospect of bank-run equilibria in the Diamond-Dybvig environment dis-
appear entirely. Andolfatto, Nosal, and Wallace [1] demonstrate that their
result generalizes considerably.

A striking feature of the Green and Lin [5] mechanism is that optimality is
achieved under a highly elaborate and unrealistic deposit contract. In particu-
lar, the returns to early redemptions vary in a complicated manner on histories
of information pertaining to depositor-types, including those depositors who
report no pressing liquidity need. While Peck and Shell [7] show that bank-run
equilibria may still emerge even in the presence of such sophisticated contracts,
it is not obvious that the mechanism that they consider is an optimal one. In
any case, it remains true that these sophisticated contracts are not observed
in practice. The purpose of our paper is to ask why this might be the case.
Speci�cally, we ask what features of the environment may be responsible for
rendering optimal contracts simple and to what extent might these features
contribute to our understanding of bank runs.

Both Green and Lin [5] and Peck and Shell [7] have noted the potential role of
moral hazard in banking. 1 Green and Lin [5] state the issue at hand succinctly

1 Calomiris and Kahn [2] also stress the role of moral hazard in banking. Their
analysis di¤ers from the standard Diamond-Dybvig [3] set-up along several dimen-
sions. First, demandability is not desired as a form of consumption insurance; rather,
it serves as a mechanism to discipline potentially fraudulant behavior. Second, their
sequential service constraint emerges endogenously for the same purpose. Finally,
a �bank run�in their model corresponds to bank liquidation based on a set of fun-
damental shocks (information pertaining to the quality of the bank�s assets). Oth-
ers have also stressed moral hazard in determining a bank�s capital structure (see
Diamond [4] and Krasa and Villamil [6], among others) but do not examine the
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as follows:

Another feature of a real banking industry which is absent in our model is the
incentive problem of banking executives whose objectives may be di¤erent from
that of a social planner. Suppose that the mechanism in our model is run by
a banker, instead of the planner. The traders report their realized types to the
banker who then distributes the resources to the traders, supposedly in the way
speci�ed by the mechanism. But, if the traders cannot observe each other�s re-
ports, then there is no guarantee that the banker allocates the resources based on
the true reported state of nature. The banker might keep part of the endowment
for his own consumption and then claim that a great deal of resources has been
withdrawn by a number of impatient traders that is larger than is actually the
case. Anticipating this possibility and its consequence that less resources will be
available at time 1, the patient traders may be tempted to withdraw early, in-
creasing the likelihood of a bank run. Such an incentive problem might be another
explanation of why the banking contract in our model is not observed, and why
runs have historically occurred.

Following this suggestion, we consider the environment as speci�ed by Green
and Lin [5] and modify it by introducing a self-interested banker. Rather than
have the mechanism run by the banker, we assume that it is designed by
a planner. The banker�s comparative advantage over all other agents in the
economy is that he possesses a complete and private record-keeping technology
concerning all aspects of his banking activities. Furthermore, this technology
is superior to any public record-keeping device. This comparative advantage is
the source of banker moral hazard in our model. In our analysis, we adopt the
extreme view that there is no public record-keeping technology. An implication
of this assumption is that while both the planner and banker can observe the
reports made by depositors, the planner must �forget�what it has seen in
the past. As a result, the planner is compelled to use the banker�s version of
recorded history to make recommendations regarding payments to depositors.

Even in the context of this relatively simple environment, the analysis be-
comes increasingly complicated as the number of depositors becomes large.
To keep the analysis tractable, we ultimately resort to a special case involving
only two depositors. We discover that there is a trade-o¤ between sophisti-
cated contracts that render relatively good risk-sharing properties and simple
contracts that economize on the ine¢ cient use of resources. Not surprisingly,
this trade-o¤depends on parameters; but we �nd that simple contracts prevail
under a wide range of empirically plausible parameter values. We �nd that al-
though the introduction of banker moral hazard may simplify bank contracts,
it does not appear to expand the possibility of a bank-run. Indeed, we �nd
that the exact opposite is true.

implications for bank runs.
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The paper is organized as follows. In section 2, we describe the environment.
Here, we temporarily depart from the standard assumption that depositors
possess private information; a simpli�cation that allows us to focus on the
moral hazard associated with the banker�s informational advantage. We de-
scribe mechanisms in section 3. Section 4 describes a special case, the one
studied in Green and Lin [5], in which there exists a complete public-recording
technology. This optimal allocation in this case serves as a benchmark in what
is to follow. Section 5 develops the restrictions that must be placed on any
allocation to elicit truth-telling behavior on the part of the banker and section
6 characterizes the optimal allcation. Depositor moral hazard in introduced
in section 7 and the implications for bank runs are examined. The paper con-
cludes with section 7.

2 The Environment

The economy is populated by one banker and N depositors, where N � 2 is
a �nite integer. There are two dates� date-1 and date-2� and one good per
date. All agents have access to a constant returns to scale storage technology
that converts one unit of date-1 goods into R > 1 units of date-2 goods. Each
depositor is endowed with 0 < y < 1 units of the date-1 good; the banker
has no endowment of goods.

A depositor�s utility is denoted U (c; c0; !), where c is date-1 consumption, c0 is
date-2 consumption, and ! is the depositor�s type. Assume that ! 2 fp; ig � 
;
where p denotes �patient�and i denotes �impatient.�Following Green and Lin
[5], preferences are restricted to be:

U (c; c0; !) =

8><>: u(c+ c0) if ! = p;

u(c) if ! = i;
(1)

where u (x) = (1 � �)�1 [x1�� � 1] and � > 1. Hence, a patient depositor
views date-1 and date-2 consumption as perfect substitutes, while an impatient
depositor only values date-1 consumption. The banker has linear preferences
de�ned over his date-2 consumption, which we denote as b0.

Depositors do not know their type ex ante. Depositor types are generated
by an exogenous i.i.d. across depositors process, where realizations occur at
date-1 and 0 < � < 1 denotes the probability that any given depositor is
patient. Hence, the probability that k patient depositors are patient, denote
�k, is �k =

�
N
k

�
�k (1� �)N�k, for k 2 f0; 1; 2; :::; Ng � N: There is a second

exogenous stochastic process that determines a depositor�s place-in-line n 2
f1; 2; :::; Ng at date-1. Assume that any given place-in-line is equally likely
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for all depositors. Together, these processes determine a date-1 queue !N =
(!1; !2; :::; !N); where !n 2 
 denotes the type of a depositor with place-in-
line n = 1; 2; :::; N: We will at times refer to !N as the state of the world.

Depositors know their own type, !, but they do not observe !N or their place-
in-line n. The depositor�s type is observable to the banker, subject to a timing
restriction, to be described below.

The timing of events is as follows. First, prior to observing their types, deposi-
tors give their endowment to the banker. Nature then selects a queue !N 2 
N
according to the stochastic processes described above. Depositors then interact
with the banker at date-1 sequentially according to their realized place-in-line.
The date-1 payouts to depositors are subject to a sequential service constraint ;
i.e., the date-1 payout to depositor !n can only depend upon type realizations
!j, j � n, and cannot depend on subsequent type realizations !j for j > n:
After these N sequential meetings, any remaining output is invested by the
banker in the storage technology. The banker then interacts with all depositors
simultaneously at date-2, with terminal payouts made at this stage.

Green and Lin [5] make the standard assumption of the existence of a costless
and complete public record-keeping technology. We assume that there is no
such technology available. The banker, however, is endowed with a costless,
complete, and private record-keeping technology. Hence, the banker is able to
record all of his interactions and observations concerning all depositors.

3 Mechanisms

We consider mechanisms in which the banker�s strategy is to make a sequence
of N reports at date-1 (one for each depositor) and one report at date-2.
Associated with each depositor n > 1; there is a true history of types that
we denote !n�1 = f!1; !2; :::; !n�1g 2 
n�1: There is no history of types for
n = 1; but it will be convenient, in what follows, to denote this �null�history
as !0 = 
0 � ?:

The banker is required to send a report of this history for each depositor.
Since the banker is the only agent in the economy that has access to a record
keeping device, this history constitutes private information for the banker.
Hence, the banker�s report associated with depositor n may be an element of
any conceivable history �
 � [N�1j=0 


j. The banker also makes a date-2 report,
which will be described shortly.

The mechanism requires that the banker�s date-1 report associated with de-
positor n be made before the banker observes the depositor�s type. The report
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is made after depositor n� 1 departs and before depositor n arrives. 2 Thus,
a date-1 strategy for the banker is a set of functions:

mn : 

n�1 ! �
 for n = 1; 2; :::; N:

A date-1 allocation or outcome function for depositors is a recommendation
Cn(�) made by the mechanism, made contingent on the banker�s date-1 reports
and each depositor�s type; i.e.,

Cn : �
n � 
n ! R+ for n = 1; 2; :::; N;

where 
n = fi; pg. Note that the mechanism�s date-1 recommendation is made
contingent on the depositor�s true type, which is observable by the mechanism,
together with the banker�s version of the historical record.

The banker�s date-2 reporting strategy is a function m0 : 
N ! 
N , where the
domain represents the set of true histories. At date-2, all depositors reconvene;
but since they have no record keeping device at their disposal, they are unable
to report the banker�s date-1 announcement, mn, or the amount that they
consumed at date-1. The planner too has no record-keeping technology; while
the planner can observe depositor types at date-2, he cannot observe their
place-in-line. Hence, we can summarize the planner�s date-2 information with
a function k : 
N ! N, where k(!N) reveals the number of patient depositors
at date-2. Hence, a date-2 allocation or outcome function for depositors is
a recommendation C 0n(�) made contingent on the banker�s date-2 report and
k(!N); i.e.,

C 0n : 

N � N! R+ for all n = 1; 2; :::N:

Let C � fCn; C 0ng
N
n=1 represent an allocation (for depositors) and let m �

fmn;m
0gNn=1 represent a strategy pro�le for the banker.

In what follows, we restrict the banker�s date-2 report to be consistent with
what the planner can observe at date-2; since the banker would otherwise be
making a report that would be known to be false.

De�nition 1 The date-2 strategy m0 is said to be consistent if k(m0(!N)) =
k(!N) for all !N 2 
N :

Note that consistency does not imply truth-telling. If consistency is imposed,
then we can reduce notation by making the date-2 allocation solely a function
of the banker�s consistent date-2 report. Through a slight abuse of notation,
we now let C 0n : 


N ! R+ for all n = 1; 2; :::N:

2 If the mechanism has the banker making his date-1 report after he observes
the depositor�s type, then it can be easily shown that risk-sharing possibilities are
destroyed and autarky will be the only outcome. Such a mechanism cannot be
optimal.
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Now �x an allocation C and a consistent strategy m: Then, conditional on a
realization !N 2 
N , the ex post payo¤ or outcome function for the banker is
given by:

B0(C;m) � R

"
Ny �

NX
n=1

Cn(mn(!
n�1); !n)

#
�

NX
n=1

C 0n(m
0(!N)): (2)

A mechanism (
;C) is a collection of strategy sets, 
, and an outcome func-
tion, C. The collection of strategy sets is 
 =

�
�
;
N ;
1; :::;
N

�
, where �


and 
N represents the banker�s date-1 and date-2 strategy sets, respectively;
and 
n, n = 1; :::; N represent the depositors�type set. Note that we do not
include the outcome function for the banker in the de�nition of a mechanism
since, for any given allocation C; the banker�s payo¤ is determined residually
from (2).

De�nition 2 The strategy pro�le m for mechanism (
;C) is said to be fea-
sible if:

B0(C;m) � 0 (3)

for all !N 2 
N :

LetM (
;C) denote the set of feasible and consistent strategy pro�les that
are available to the banker for mechanism (
;C). We are e¤ectively imposing
a form of commitment on the banker by requiring him to choose his strategy
pro�le m 2M (
;C). Since the economy is �nite, some form of commitment
must be imposed on the banker; otherwise, he would simply refuse to make any
date-1 pay outs and would consume RNy output in date-2. We assume that
the banker can commit to make pay outs consistent with his announcements;
this implies that m 2M (
;C).

De�nition 3 The strategy pro�lem� 2M (
;C) constitutes an equilibrium
if:

E!N2
N [B
0(C;m�)] � E!N2
N [B

0(C;m)] (4)

for all m 2M (
;C).

Note that our de�nition of equilibrium satis�es the notion of sequential ra-
tionality for the banker even though the banker�s expected payo¤ in (4) is
calculated in an ex ante sense. To see this, suppose the proposed equilibrium
strategy pro�le for the banker m� satis�es (4). Now, consider some history
!̂n 2 
n and suppose that the banker can increase his expected payo¤ relative
to the proposed equilibrium by playing the feasible and consistent continu-
ation strategy m̂n for the remainder of the game. De�ne a new strategy m
that is identical to m� for all histories, except following history !̂n, where the
continuation strategy m̂n is played instead. Clearly then, m� cannot be an
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equilibrium strategy since the constructed strategy m 2 M (
;C) violates
inequality (4).

If strategy m 2 M (
;C) is an equilibrium, then associated with each state
!N 2 
N are payo¤ functions to depositors c = fcn; c0ng

N
n=1, where cn (!

n) �
Cn (mn (!

n�1) ; !n) and c0n(!
N) = C 0n(m

0
�
!N

�
); together with a banker payo¤

function b0(c; !N), where b0(c; !N) � B0(C;m(!N)). Hence, we can construct
an alternative mechanism (
; c) such that if m 2M (
;C) is an equilibrium
for mechanism (
;C), then t 2 M (
; c) is an equilibrium for mechanism
(
; c), where t is de�ned as the truth-telling strategy tn(!n�1) � !n�1 for all
n = 1; 2; ::; N and t0(!N) � !N .

De�nition 4 An allocation c is said to be truthfully implementable as an
equilibrium for mechanism (
; c) if t 2 M (
; c) is a truth-telling strategy
and

E!N2
N
h
b0(c; !N)

i
� E!N2
N

h
b0(c;m(!N))

i
(5)

for all m 2M (
; c).

In what follows, we can, without loss of generality, restrict attention to allo-
cations that are truthfully implementable.

Under a truth-telling strategy t for mechanism (
; c), the ex ante utility payo¤
for depositors is given by:

W (c) =
X

!N2
N
Pr(!N)

"
NX
n=1

U
�
cn
�
!n�1; !n

�
; c0n

�
!N

�
; !n

�#
: (6)

De�nition 5 An optimal allocation cmaximizesW (c) subject to: [1] b0(c; !N) �
0 for all !N 2 
N [feasibility]; and [2]E!N2
N

h
b0(c; !N)

i
� E!N2
N

h
b0(c;m(!N))

i
for all m 2M (
; c) [equilibrium].

4 Complete Public Record

In this section, we consider the bench-mark case in which there is a complete
public record. The resulting allocation corresponds to that of Green and Lin
[5]. We will refer to this allocation as the �rst-best allocation as there are no
informational asymmetries in a complete public record environment.

Since there is a complete public record, the mechanism need not rely on the
banker�s private record keeping device. Equivalently, we can just assume here
that the bank automatically adopts a truth-telling strategy. Hence, the �rst-
best allocation maximizes W (c) subject to feasibility only; i.e., b0(c; !N) � 0
for all !N 2 
N .
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Owing to the speci�cation of a depositor�s utility function (1), a number of
properties associated with the �rst-best allocation immediately emerge. First,
since impatient depositors do not value date-2 consumption, they do not re-
ceive any in the �rst-best allocation, i.e., c0n(!

N) = 0 if !n = i for all !N 2 
N .
Second, since patient depositors view date-1 and date-2 consumption as per-
fect substitutes, but one unit of date-1 consumption can be converted into
R > 1 units of date-2 consumption, patient depositors do not receive any
date-1 consumption in the �rst-best contract, i.e., cn(!n�1; !n) = 0 if !n = p
for all !n�1 2 
n�1, n = 1; : : : ; N . And �nally, since depositor types are ob-
servable and they are risk-averse, optimal risk-sharing implies that patient
depositors receive the same levels of date-2 consumption, independent of their
place in line, i.e., c0n(!

N) = c0j
�
!N

�
> 0 for all n; j where !n = !j = p.

To better understand other aspects associated with risk-sharing, we solve the
above maximization problem explicitly. For this purpose, it will be su¢ cient
to consider the case where N = 2.

Feasibility implies c02(i; p) = R [2y � c1(i)] ; c
0
1(p; i) = R [2y � c2(p; i)] and

c2(i; i) = 2y � c1(i): Substituting these conditions into (6) results in the fol-
lowing maximization problem,

max
c1(i);c2(p;i)

�22u (Ry) + (1� �)�fu (c1(i)) + u(R[2y � c1(i))]g

+� (1� �) fu (c2(p; i)) + u (R[2y � c2(p; i)])g+
(1� �)2 fu (c1(i)) + u (2y � c1(i))g:

The date-1 payo¤s to impatient depositors are given by:

c2(p; i) =
�

2y

1 + A1=�

�
; c1(i) =

�
2y

1 +B1=�

�
; c2(i; i) =

"
2yB1=


1 +B1=


#
:

Since R > 1 and � > 1; it follows that A � R1�� < 1 with B � [�A+ 1� �] <
A: It is straightforward to establish that:

0 < c2(i; i) < y < c1(i) < c2(p; i)

y < c0(p; i) < c0(i; p) < Ry = c0(p; p):

The inequalities above describe the nature of optimal risk-sharing in this envi-
ronment. In particular, note that in the event that there is only one impatient
depositor, this agent receives a date-1 consumption that exceeds the autarkic
level y; this is evidence of risk-sharing between impatient and patient deposi-
tors. Note further that an impatient depositor receives a larger payo¤ if he is
second in line and follows a patient depositor; i.e., c2(p; i) > c1(i): Intuitively,
if the �rst depositor is patient, the planner is better able to share risks with
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a subsequent impatient depositor and the patient depositor, than if the �rst
depositor is impatient, i.e., in the former case, no payment is made, leaving the
banker with greater resources. Although the �rst impatient depositor receives
an amount in excess of y, if the second depositor turns out to be impatient,
he will receive a date-1 payo¤ that falls below the autarkic level.

As N becomes large, the date-1 payo¤s to impatient depositor n associated
with the �rst-best allocation becomes a complicated function of the history
!n�1. One motivation for our paper was the conjecture that this complicated
allocation structure is an artifact of the assumption that the banker is a benev-
olent agent. We now explore the validity of this conjecture.

5 Incentive-Feasible Allocations

Before we characterize the set of incentive-feasible allocations in the absence
of a public record, it is instructive to demonstrate that the �rst-best allocation
cannot be truthfully implemented as an equilibrium. To see this, note that the
truth-telling strategy (t1; t2) = (?; !1); t0 = !2 delivers a zero payo¤ to the
banker under every realization !2: Consider the following deviation (m1;m2) =
(i; !1); m

0 = !2: That is, the banker announces to the �rst depositor that he
is second in line and that the previous depositor was impatient and thereafter
tells the truth. Since m0 = t0, the deviant strategy is consistent.

We now check to see if the banker�s new strategy is feasible and pro�table.
If the state of the world turns out to be either !2 = (p; i) or !2 = (p; p),
then the �rst depositor will receive a zero payo¤. Since the banker announces
the truth after the �rst depositor in line, all depositors will receive their
�rst-best allocation payo¤s; this outcome is feasible since the banker�s pay-
o¤ is zero. If the state of the world turns out to be !2 = (i; i) or !2 =
(i; p), then the �rst depositor receives the payo¤ c2 (i; i), instead of c1 (i) >
c2(i; i). In both cases the resource constraints are satis�ed since, in the for-
mer, R [2y � c2(i; i)]� c0(i; p) > R [2y � c1(i)]� c0(i; p) = 0, and in the latter,
2y � c2(i; i) � c2(i; i) > 2y � c1(i) � c2(i; i) = 0. In both cases, the banker
receives a strictly positive date-2 payo¤. Since the banker�s deviant strategy
is both feasible and consistent, and provides a higher expected payo¤ than
truth-telling, the �rst-best allocation cannot be an equilibrium outcome.

We now characterize the set of feasible allocations that elicit truth-telling. To
keep matters simple, we restrict attention to the case in which N = 2; in which
case there are four possible states of the world, !2 2 f(p; p); (p; i); (i; p); (i; i)g.
Here, we are interested characterizing the set of incentive-feasible allocations
for the direct revelation mechanism (
; c). To do this, we work recursively,
starting with date-2 announcements.
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5.1 Date-2

Consider �rst the states !2 = (p; p) and !2 = (i; i). In these states, the
banker will announce m0 = (p; p) and m0 = (i; i), respectively, because consis-
tency demands it. However, if the state of the world is either !2 = (i; p) or
!2 = (p; i), consistency requires only that the banker�s announcement satisfy
k(i; p) = k(i; p) = 1, i.e., the banker�s announcement contains one i and one
p. Independent of what has happened in the past, the banker maximizes his
payo¤ by minimizing the required date-2 payout to depositors. If the state of
the world is !2 = (p; i), then truth-telling requires,

c01(p; i) + c02(p; i) � c01(i; p) + c02(i; p)

and if the state of the world is !2 = (i; p), then truth-telling requires,

c01(i; p) + c02(i; p) � c01(p; i) + c02(p; i):

Together, these two conditions imply,

c01(p; i) + c02(p; i) = c01(i; p) + c02(i; p): (7)

For notational convenience, de�ne X � c01(i; p) + c02(i; p).

Let b0(!2) denote the banker�s payo¤associated with truth-telling for a feasible
allocation in state !2; i.e.,

b0(p; p) = R[2y � c1 (p)� c2 (p; p)]� c01(p; p)� c02(p; p) � 0;

b0(p; i) = R[2y � c1 (p)� c2 (p; i)]�X � 0;

b0(i; p) = R[2y � c1 (i)� c2 (i; p)]�X � 0;

b0(i; i) = R [2y � c1(i)� c2 (i; i)])� c01 (i; i)� c02 (i; i) � 0:

(8)

In what follows, we will restrict attention to feasible, truth-telling allocations
that provide some risk-sharing features for depositors; since otherwise, autarky
would be preferred by depositors. In particular, we assume that:

c2(p; i) � c1(i) > y > c2(i; i): (9)

Since condition (7) completely characterizes truth-telling at date-2, we now
move back to date-1 and characterize the restrictions that imply truth-telling
beginning with the last depositor in line, and then the �rst.

11



5.2 Date-1

We provide conditions for truth-telling starting with the second depositor in
line, moving next to the �rst depositor in line. Beginning with the second
depositor, it is su¢ cient to assume that the banker has at this point told
the truth to the �rst depositor; i.e., m1 = ?: Conditional on this being the
case, we must then consider the banker�s problem for each conceivable history
!1 2 fi; pg : Of course, since condition (7) is assumed to hold, the banker will
always weakly prefer to tell the truth at date-2.

5.2.1 Depositor 2: History !1 = p

Conditional on the banker having announced m1 = ?, having then observed
p; and having paid out c1(p); the banker is now in a position to make one of
three reports m2 2 f?; i; pg : The expected payo¤ to m2 = p is given by:

� fR[2y � c1(p)� c2 (p; p)]� c01(p; p)� c02(p; p)g (10)
+(1� �) fR[2y � c1(p)� c2 (p; i)]�Xg :

The expected payo¤ to m2 = ? is given by:

� fR[2y � c1(p)� c1 (p)]� c01(p; p)� c02(p; p)g (11)
+(1� �) fR[2y � c1(p)� c1 (i)]�Xg :

The expected payo¤ to m2 = i is given by:

� fR[2y � c1(p)� c2 (i; p)]� c01(p; p)� c02(p; p)g (12)
+(1� �) fR[2y � c1(p)� c2 (i; i)]�Xg :

By construction, truth-telling is always feasible. However, any given lie may
or may not be feasible. If these lies are feasible, then by comparing the three
payo¤s above, the solution to the banker�s problem entails minimizing the
expected payout to the second depositor, i.e.,

min

8><>: �c2(p; p) + (1� �)c2(p; i);

�c1(p) + (1� �)c1(i); �c2(i; p) + (1� �)c2(i; i)

9>=>; : (13)

Notice that if c2(p; p) = c1(p) = c2(i; p) = 0 and c2(p; i) � c1(i) > c2(i; i); then
truth-telling cannot be an equilibrium; this observation is an alternative proof
that the �rst-best allocation is not truthfully implementable.

12



The choice problem in (13) implies that truth-telling is weakly preferred when
the allocation satis�es:

[c1(p)� c2(p; p)]�
�
1� �

�

�
[c2(p; i)� c1(i)] ; (14)

[c2(i; p)� c2(p; p)]�
�
1� �

�

�
[c2(p; i)� c2(i; i)] : (15)

Conditions (14) and (15), along with the assumed risk-sharing features de-
scribed in (9), imply that necessary, but not su¢ cient, conditions for truth-
telling at this stage are:

c1(p)� c2(p; p) � 0; (16)
c2(i; p)>c2(p; p) � 0: (17)

Note that conditions (14)-(15) together with (9) imply that c2(i; p) > c1(p):

Lemma 1 If an allocation c satis�es b0(p; p) = 0 in (8), then conditions
(16) and (17) are both necessary and su¢ cient to induce truth-telling, i.e.,
m2 = p .

Proof Observe that b0(p; p) = 0 implies:

R[2y � c1(p)� c2 (p; p)]� c01(p; p)� c02(p; p) = 0:

In the event that the second depositor is patient, m2 = ? and m2 = i
generate the ex post payo¤s

R[2y � c1(p)� c1 (p)]� c01(p; p)� c02(p; p)� 0
R[2y � c1(p)� c2 (i; p)]� c01(p; p)� c02(p; p)< 0;

respectively, where the weak inequalities following from (16) and (17). Hence,
announcing m2 = i violates feasibility and announcing m2 = ? does not
increase the expected payo¤ to the banker and may violate feasibility.

5.2.2 Depositor 2: History !1 = i

We now repeat the above exercise, but supposing instead that the �rst deposi-
tor is impatient. Conditional on the banker having announcedm1 = ?, having
then observed i; and having paid out c1(i); the banker is now in a position to
make one of three reports m2 2 f?; i; pg : The expected payo¤ to m2 = i is
given by:

� fR[2y � c1(i)� c2 (i; p)]�Xg (18)
+(1� �) fR[2y � c1(i)� c2 (i; i)]� c01 (i; i)� c02 (i; i)g :

13



The expected payo¤ to m2 = ? is given by:

� fR[2y � c1(i)� c1 (p)]�Xg (19)
+(1� �) fR[2y � c1(i)� c1 (i)]� c01 (i; i)� c02 (i; i)g :

The expected payo¤ to m2 = p is given by:

� fR[2y � c1(i)� c2 (p; p)]�Xg (20)
+(1� �) fR[2y � c1(i)� c2 (p; i)]� c01 (i; i)� c02 (i; i)g :

If these lies are feasible, then, by comparing the three payo¤s above, the
solution to the banker�s problem entails minimizing the expected payout to
the second depositor, i.e.,

min

8><>: �c2(i; p) + (1� �)c2(i; i);

�c1(p) + (1� �)c1(i); �c2(p; p) + (1� �)c2(p; i)

9>=>; : (21)

The choice problem in (21) implies that truth-telling is weakly preferred when
the allocation satis�es:

[c2(i; p)� c1(p)]�
�
1� �

�

�
[c1(i)� c2(i; i)] ; (22)

[c2(i; p)� c2(p; p)]�
�
1� �

�

�
[c2(p; i)� c2(i; i)] : (23)

These two conditions assume that lying is feasible. As it turns out, one can
demonstrate the following result.

Lemma 2 If an allocation c satis�es b0(i; i) = 0 in (8), then the risk-sharing
conditions (9) are su¢ cient to induce truth-telling, i.e., m2 = i .

Proof Observe that b0(i; i) = 0 implies:

R [2y � c1(i)� c2 (i; i)])� c01 (i; i)� c02 (i; i) = 0:

In the event that the second depositor is impatient, m2 = ? and m2 = p
generate the ex post payo¤s,

R[2y � c1(i)� c1 (i)]� c01 (i; i)� c02 (i; i)< 0

R[2y � c1(i)� c2 (p; i)]� c01 (i; i)� c02 (i; i)< 0;

respectively, where the inequalities following from (9). Hence, announcing
either m2 = ? or m2 = p is infeasible.

14



5.2.3 Depositor 1

Assume that a feasible allocation satis�es the truth-telling conditions de-
scribed above for the second depositor and for all depositors at date-2. Fur-
thermore, consider an allocation such that the conditions in lemmas 1 and 2
are satis�ed; in particular, b0(p; p) = b0(i; i) = 0:

Now consider the banker�s choice problem when faced with the �rst depositor.
At this stage, a truthful bank report entails m1 = ?; which generates an
expected payo¤:

�2b0(p; p) + �(1� �)b0(p; i) + (1� �)�b0(i; p) + (1� �)2b0(i; i) � 0: (24)

There are two possible defections to consider: m1 = i and m1 = p: Either
of these defections will not in�uence date-2 truth-telling, since those condi-
tions continue to hold independent of previous announcements. But there is
a possibility that either of these defections alter subsequent banker behavior
away from truth-telling for depositor 2 at date-1. Recall that lemmas 1 and 2
assume that the banker announced the truth, m1 = ?, to the �rst depositor.

We begin by considering the deviation m1 = p and assume that truth-telling
remains optimal thereafter; we subsequently verify that this will indeed be the
case. Let b0(!2 j m1) denote the banker�s ex post payo¤ in state !2 associated
with the announcingm1 to the �rst depositor and announcing the truth there-
after. If announcing m1 = p is feasible, then the banker�s expected payo¤ is
given by:

�2b0(p; p j p)+�(1��)b0(p; i j p)+(1��)�b0(i; p j p)+(1��)2b0(i; i j p); (25)

where,

b0(p; p j p) = R[2y � c2(p; p)� c2(p; p)]� c01(p; p)� c02(p; p);

b0(p; i j p) = R[2y � c2(p; p)� c2(p; i)]�X;

b0(i; p j p) = R[2y � c2(p; i)� c2(i; p)]�X;

b0(i; i j p) = R[2y � c2(p; i)� c2(i; i)]� c01 (i; i)� c02 (i; i) :

(26)

When the allocation c is characterized by c2 (p; i) = c1 (i) > c2 (i; i) and
c1 (p) = c2 (p; p), it is immediately apparent that each of these payo¤s are
equivalent to the truth-telling payo¤s, i.e., compare (26) with (8). Hence, an-
nouncing the truth, m2 = !1, to the second depositor following the announce-
ment m1 = p is a best response for the banker since announcing m1 = p is
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equivalent to announcing the truth, m1 = ?. Therefore, if c2 (p; i) = c1 (i) >
c2 (i; i) and c1 (p) = c2 (p; p), the banker weakly prefers truth-telling for the
�rst depositor, so that m1 = ?:

Consider now the case where c2 (p; i) > c1 (i) > c2 (i; i) and the defectionm1 =
p. Suppose that the true state of the world is !2 = (i; i). The �rst depositor
will receive a payo¤ c2 (p; i) : The second depositor will receive: c2 (i; i) if the
banker announcesm2 = i (truth); c2 (p; i) if the banker announcesm2 = p (lie);
or c1 (i) if the banker announces m2 = ? (lie). Since c2(i; i) is the smallest of
these three payments, the banker�s best response to the second depositor is
to announce m2 = i. But observe that if b(i; i) = 0; then b0(i; i j p) < 0 since
c2(p; i) > c1(i). Therefore, if b(i; i) = 0, then announcing m1 = p is infeasible
when c2 (p; i) > c1 (i) > c2 (i; i).

Finally, consider the defection m1 = i followed by truth-telling thereafter. In
this case, the banker�s ex post payo¤s are given by:

b0(p; p j i) = R[2y � c2(i; p)� c2(p; p)]� c01(p; p)� c02(p; p);

b0(p; i j i) = R[2y � c2(i; p)� c2(p; i)]�X;

b0(i; p j i) = R[2y � c2(i; i)� c2(i; p)]�X;

b0(i; i j i) = R[2y � c2(i; i)� c2(i; i)]� c01 (i; i)� c02 (i; i) :

(27)

Note that if c2 (i; p) � c1 (p), then each of these payo¤s weakly, and in some
cases strictly, dominate the truth-telling payo¤s, i.e., compared (27) with (8).
Hence, a necessary condition to induce truth-telling is

c2 (i; p) > c1 (p) : (28)

But this conditions implies that

b0(p; p j i) < b0(p; p);

so that if b0 (p; p) = 0, then announcement m1 = i is infeasible.

5.3 Section Summary

Above, we have described the restrictions necessary on any allocation that
possesses some degree of risk-sharing to induce truth-telling. These allocations
displayed either c2(p; i) > c1(i) > c2(i; i) or c2(p; i) = c1(i) > c2(i; i): For
convenience, we label the former class of allocations full risk-sharing and the
latter class partial risk-sharing.

Under full risk-sharing, the analysis above, i.e., conditions (16), (17) and (28),
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demonstrate that necessary conditions to induce truth-telling are:

c2(i; p) > c1(p) > c2(p; p) � 0; (29)

Hence, in order to align banker incentives correctly, some patient depositors
will receive some date-1 consumption. These payments are clearly ine¢ cient
relative to the �rst-best allocation; and the greater these payments, the greater
the ine¢ ciency. In addition, if b(p; p) = b(i; i) = 0, then (29) turns out to
be both necessary and su¢ cient to induce truth-telling (as it renders lying
infeasible).

Under partial risk-sharing, the necessary conditions truth-telling are:

c2 (i; p) > c1 (p) = c2 (p; p) � 0; (30)

Once again, if b (p; p) = b (i; i) = 0, then these conditions are also su¢ cient to
induce truth-telling. We summarize the main results of this section with the
following proposition.

Proposition 1 Under the conditions stated in lemmas 1 and 2, condition (29)
is both necessary and su¢ cient to induce truth-telling behavior under a full
risk-sharing allocation and condition (30) is both necessary and su¢ cient to
induce truth-telling behavior under a partial risk-sharing allocation.

We cannot, at this stage, determine whether an optimal allocation is charac-
terized by either full or partial risk-sharing. As it turns out, this will depend
on parameters. We now turn to characterizing an optimal allocation.

6 Optimal Allocations

Optimal allocations, whether they be characterized by full or partial risk-
sharing, will share a number of common features. Since impatient depositors
do not value date-2 consumption and since none of these consumptions have
implications for banker truth-telling, an optimal allocation will set

c01 (i; i) = c02 (i; i) = c01 (i; p) = c02 (p; i) = 0:

An implication of this is that date-2 truth-telling constraints in an optimal
mechanism simpli�es to

c01(p; i) = c02(i; p) � c0(p): (31)
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6.1 Partial Risk-Sharing

A partial risk-sharing solution is characterized by the simple date-1 withdrawal
schedule c2(p; i) = c1(i) > c2(i; i): Above, we established that a necessary con-
dition for truth-telling is c2(i; p) = " > 0: Note that restricting the allocation
such that c1(p) = c2(p; p) = 0 is both e¢ cient and in no way alters this neces-
sary condition. Nor is this necessary condition altered if we further restrict the
allocation to minimize the banker�s ex post payo¤s in the following manner:

b0(p; p) = R2y � c01(p; p)� c02(p; p) = 0;

b0(p; i) = R[2y � c1(i)]� c0 (p) = R" > 0;

b0(i; p) = R[2y � c1 (i)� "]� c0 (p) = 0;

b0(i; i) = R [2y � c1(i)� c2 (i; i)]) = 0:

(32)

Hence, it appears that an e¢ cient allocation that respects truth-telling can
deliver zero pro�t to the banker in all states of the world except !2 = (i; p);
where the banker earns R" > 0: Note further that since b0(p; p) = b0(i; i) = 0;
the condition necessary for truth-telling, c2(i; p) = " becomes both necessary
and su¢ cient.

It is straightforward to demonstrate that optimal risk-sharing entails setting
c01(p; p) = c02(p; p) = Ry: Imposing this condition, along with (32), the plan-
ner�s problem is given by:

W P (�; �) = max
c1(i)

�22u (Ry)+

(1� �)�fu (c1(i)) + u("+R[2y � c1(i)� "])]g+
� (1� �) fu (c1(i)) + u (R[2y � c1(i)� "])g+

(1� �)2 fu (c1(i)) + u (2y � c1(i))g:

The solution to this problem, c1(i); is characterized by:

[2� + 1� �]u0(c1(i))= �R fu0("+R[2y � c1(i)� "]) + u0(R[2y � c1(i)� "])g+
(1� �)u0(2y � c1(i)):

Setting " su¢ ciently close to zero so that it can e¤ectively be ignored, the
(approximate) solution for the date-1 payments to impatient depositors is
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given by:

c2(p; i) = c1(i) =
�

1

1 +D1=�

�
2y > c2(i; i) =

"
D1=�

1 +D1=�

#
2y;

where,

D �
 
2�R1�� + 1� �

2� + 1� �

!
2 (0; 1) :

Note that the date-1 payment to the patient depositor in state (i; p) vanishes
as "! 0, as does the pro�t earned by the banker. In what follows, we evaluate
the (approximate) maximum value of this program W P (�; �) for " = 0:

6.2 Full Risk-Sharing

A full risk-sharing solution is characterized by the sophisticated date-1 with-
drawal schedule c2(p; i) > c1(i) > c2(i; i): Above, we established that a neces-
sary condition for truth-telling is c2(i; p) > c1(p) = � > 0: Note that restricting
the allocation such that c2(p; p) = 0 is both e¢ cient and in no way alters this
necessary condition. Nor is this necessary condition altered if we further re-
strict the allocation to minimize the bank�s ex post payo¤s in the following
manner:

b0(p; p) = R[2y � c1(p)]� c01(p; p)� c02(p; p) = 0;

b0(p; i) = R[2y � c1(p)� c2 (p; i)]� c0 (p) = 0;

b0(i; p) = R[2y � c1(i)� c2(i; p)]� c0 (p) = 0;

b0(i; i) = R [2y � c1(i)� c2 (i; i)]) = 0:

(33)

Hence, it appears that an e¢ cient allocation that respects truth-telling can
deliver zero pro�t to the banker in all states of the world. Furthermore, since
b0(p; p) = b0(i; i) = 0; the condition necessary for truth-telling, c2(i; p) >
c1(p) = � > 0; becomes both necessary and su¢ cient.

Note that b0(p; i) = b0(i; p) = 0 implies:

c2(p; i)� c1(i) = c2(i; p)� c1(p): (34)

This condition makes clear the cost associated with full risk-sharing. In par-
ticular, c2(p; i) > c1(i) can only come at the expense of increasing date-1
payments to patient depositors, i.e., c2(i; p) > c1(p) > 0.

Under the full risk-sharing scenario, the planner�s problem can be stated as
follows:
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wF (�; �) = max
c2(p;i);c1(i);c1(p);c01(p;p)

�2 fu (c1 (p) + c01 (p; p)) + u (R (2y � c1 (p))� c01 (p; p))g

+(1� �)�fu (c1(i)) + u(c2(p; i) + c1(p)� c1(i) +R[2y � c1(p)� c2(p; i)])]g
+� (1� �) fu (c2(p; i)) + u (c1(p) +R[2y � c1(p)� c2(p; i)])g

+(1� �)2 fu (c1(i)) + u (2y � c1(i))g+ � [c1(p)� �] ;

where � � 0 is the Lagrange multiplier associated with the constraint c1(p) �
�: Note that the solution to this problem has economic content only as long
as c2(p; i) > c1(i) and c2(i; p) > c1(p):

A necessary condition for an optimum for this problem with respect to c01 (p; p)
is:

u0 (c1 (p) + c01 (p; p)) = u0 (R (2y � c1 (p))� c01 (p; p)) : (35)

Using (35), the necessary conditions for an optimum with respect to c1 (p) are:

[u0 (c1 (p) + c01 (p; p)) + u
0 (c1(p) +R[2y � c1(p)� c2(p; i)])] (R� 1) + � = 0

(36)
and

� [c1(p)� �] = 0 (37)

Since the term that multiplies (R� 1) in (36) is strictly positive and R > 1,
it must the case that � > 0. Hence, (37) implies that c1(p) = �. Note that
equation (35) then implies:

c1 (p) + c01 (p; p) = Ry � R + 1

2
� (38)

Imposing condition (38) and c1(p) = �, the maximization problem may alter-
natively be stated as:

wF (�; �) = max
c2(p;i);c1(i)

�22u
�
Ry � R + 1

2
�
�
+

(1� �)�fu (c1(i)) + u(c2(p; i) + � � c1(i) +R[2y � c2(p; i)])g
+� (1� �) fu (c2(p; i)) + u (� +R[2y � c2(p; i)])g+

(1� �)2 fu (c1(i)) + u (2y � c1(i))g:

If c2(p; i) > c1(i), then the optimal full risk-sharing allocation is characterized
by the �rst-order necessary condition for c2 (p; i),

u0 (c2 (p; i) + � � c1 (i) +R[2y � c2 (p; i)]) (1�R) + u0 (c2 (p; i)) (39)
�Ru0 (� +R[2y � c2 (p; i)]) = 0:
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Likewise, the �rst-order necessary condition for c1 (i) is given by:

�fu0 (c1 (i))� u0 (c2 (p; i) + � � c1 (i) +R[2y � c2 (p; i)])g+ (40)
(1� �) fu0 (c1 (i))� u0 (2y � c1 (i))g = 0:

Setting � su¢ ciently close to zero that it can be ignored, conditions (39) and
(40) imply that an (approximate) full risk-sharing allocation must satisfy:

u0 (c2 (p; i)) = Ru0 (R[2y � c2 (p; i)])+(R�1)u0 (c2 (p; i)� c1 (i) +R[2y � c2 (p; i)])
(41)

u0 (c1 (i)) = (1� �)u0 (2y � c1 (i)) + �u
0 (c2 (p; i)� c1 (i) +R[2y � c2 (p; i)])

(42)
assuming that c2(p; i) � c1(i). 3 In what follows, we evaluate the (approxi-
mate) maximum value of this program wF (�; �) for � = 0.

Unfortunately, there is no analytical solution for the system in (41)-(42). We
can, however, make a number of qualitative observations. To this end, we sim-
plify notation by de�ning x � c2 (p; i) and z � c1 (i). De�ne the function
z =  (x) implicitly by (41); and likewise de�ne the function z = �(x) im-
plicitly by (42). A solution (z�; x�) satis�es  (x�) = �(x�) = z� < x�: By the
implicit-function theorem,

 0(x) =
u00(x) +R2u00(R[2y � x]) + (R� 1)2û00

(1�R)û00
< 0;

where û00 � u00 (x� z +R[2y � x]) ; and

�0(x) =
(1�R)û00�

1
�

�
u00(z) +

�
1��
�

�
u00(2y � z) + û00

< 0:

Clearly, j 0(x)j > j�0(x)j; so that  is always �steeper� than �: These loci
are depicted in Figure 1 for the case of where the maximization problem has
economic content, i.e., when x� > z�.

3 We have a weak inequality here since we are setting � = 0.
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Full Risk­Sharing Solution

De�ne a pair of numbers such that a � �(a) and b �  (b): Using (41) and
(42), one can solve explicitly for:

a(�; �)=
2y

1 + [1� � + �R��]
1
�

;

b(�)=
2y

1 + [(2R� 1)R��]
1
�

:

Clearly, x� > z� requires that b > a; i.e., see �gure 1.

Observe that a(�; �) is strictly increasing in �; with the implication that higher
values of � reduce the degree of risk-sharing (i.e., z� approaches x�): It is easy
to establish that there is a threshold 0 � �� < 1 such that z� � x� for all � �
�� and z� < x� for all � > ��: The implication here is that for � > ��; the full
risk-sharing allocation cannot be optimal. Note that wP (��; �) =W F (��; �):

The comparative statics are a little more involved in terms of �; but intuitively,
one would expect that a higher degree of risk-aversion should (all else held
constant) make the full risk-sharing allocation a more likely outcome (this is
con�rmed in the numerical examples below).
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6.3 Partial versus Full Risk-Sharing

Given a parameterization (�; �;R; y); we can compute the partial and full risk-
sharing solutions. De�neW F (�; �) = wF (�; �) when conditions (41) and (42)
imply that c2(p; i) � c1(i); otherwiseW F (�; �) = �1. The optimal allocation
generates a maximum utility W (�; �) = max

n
W P (�; �);W F (�; �)

o
:

Figure 2 plots the date-1 the allocations c1 (i) ; c2 (p; i) and c2 (i; i) as a function
of parameters. Here, we assume y = 1; R = 1:1 and plot the gross interest
rate (date-1 withdrawal level divided by y) for � 2 f0:01; 0:02; :::; 0:99g : The
coe¢ cient of relative risk-aversion (CRRA) is set to � = 2:
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Date­1 Withdrawal Schedule

CRRA = 2

For this parameterization, the partial risk-sharing solution represents the op-
timal allocation for almost the entire range of � (�� = 0:04). For very low
values of �; full risk-sharing is optimal but note that the additional return
received by the impatient depositors in state (p; i) is trivially small.

As described above, one would expect that the gains to risk-sharing increase
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with the coe¢ cient of relative risk-aversion. Figure 3 veri�es that this is indeed
the case (the �gure considers CRRA = 5). In this case, the full risk-sharing
solution is optimal for all � � �� = 0:68:
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Here it is worth emphasizing that far from simplifying the optimal contractual
form, the presence of moral hazard may actually render it even more compli-
cated. In particular, recall that the sophisticated date-1 withdrawal schedule
in Green and Lin [5] has the property:

c2(p; i) > c1(i) > c2(i; i) > c2(p; i) = c1(p) = c2(p; p) = 0:

In contrast, when full risk-sharing is optimal in the presence of moral hazard,
the optimal date-1 withdrawal schedule has the property:

c2(p; i) > c1(i) > c2(i; i) > c2(p; i) > c1(p) � c2(p; p) = 0:

On the other hand, when moral hazard makes full risk-sharing too expensive,
the date-1 withdrawal schedule is simpli�ed relative to Green and Lin [5]:

c2(p; i) = c1(i) > c2(i; i) > c2(p; i) � c1(p) = c2(p; p) = 0:
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7 Depositor Private Information and Bank-Runs

To address the issue of the existence of bank-run equilibria, we need to extend
the model developed above so that a depositor�s type !n 2 fi; pg is private in-
formation. The speci�cation of the environment is essentially identical to that
described in section 2, except that now the depositor�s type is never observable
to the either banker or mechanism. The basic structure of the mechanism re-
quires only some minor modi�cations to accommodate the private information
assumption regarding depositors�types.

As described in section 3, the banker makes a report date-1 to the mechanism
mn after depositor n�1 departs and before depositor n arrives. When depositor
n arrives he makes a report or announcement an to the mechanism, where

an : 
n ! 
n for n = 1; 2; :::; N;

where the domain represents the depositors true type. 4 Note that the mech-
anism here is similar to the one proposed in Peck and Shell [7]; in particular,
we assume that the depositor does not know the previous history of announce-
ments or his place-in-line when he makes his announcement. As stressed by
Peck and Shell [7], this property of the mechanism is crucial for entertaining
the possibility of a bank-run.

The date-1 outcome function, Cn(�), for depositor n is contingent on the
banker�s date-1 reports and the depositor�s report, i.e.,

Cn : �
� 
n ! R+ for n = 1; 2; :::; N:

Since that banker is the only agent in the model with a record-keeping device,
it is optimal for the mechanism to inform the banker of an, n = 1; :::; N .

At date-2 banker and all of the depositors simultaneously make a report. As in
section 3, the banker�s date-2 reporting strategy is a function m0 : 
N ! 
N

and each depositor announces

a0n : 
n ! 
n for n = 1; 2; :::; N:

Let k (a01; :::; a
0
N) 2 N denote the number of patient announcements contained

in the vector (a01; :::; a
0
N). Again, we stress that the mechanism can only observe

k(�) and not the speci�c con�guration of (a01; :::; a0N) :Hence, a date-2 allocation
or outcome function for depositors is a recommendation C 0n(�)made contingent
on the banker�s date-2 report and k(�); i.e.,

C 0n : 

N � N! R+ for all n = 1; 2; :::N:

4 The mechanism may choose to provide this information to the banker, see below.
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Let a = (an; a0n)
N
n=1represent a strategy pro�le for the N depositors.

Without loss of generality, we restrict attention to allocations that are truth-
fully implementable. In keeping with our earlier analysis, we focus on the case
where N = 2.

Assuming that depositors announcement their types truthfully, all of the
analysis� and the associated implications� in section 5 remain valid here. In
particular, if the allocation is characterized by c2 (p; i) > c1 (i) > c2 (i; i), then
c2 (i; p) > c (p) = " > 0 is required for banker truth-telling; and if the allo-
cation is characterized by c2 (p; i) = c1 (i) > c2 (i; i), then c2 (i; p) = � > 0 is
required for banker truth-telling.

Since impatient depositors do not value date-2 consumption, any optimal al-
location will be characterized by c01 (i; i) = c02 (i; i) = c01 (i; p) = c02 (p; i) = 0.
As well, an optimal allocation will be characterized by c2 (p; p) = 0 (with
c1(p) = 0 in the partial risk-sharing scenario). Assuming that the banker re-
veals depositors�announcements truthfully, the truth-telling condition for an
impatient depositor is, 5

(1� �)2

2
fu (c1 (i)) + u (c2 (i; i))g+ � (1� �) fu (c1 (i)) + c2 (p; i)g

�
(1� �)2

2
fu (c1 (p)) + u (c2 (i; p))g+ � (1� �)u (c1 (p)) :

This condition is always satis�ed. First, note that c1 (p) is an arbitrarily
small number so that for our preferences u (c1 (p))! �1. Second, note that
u (c1 (i)) + u (c2 (i; i)) > u (y) > u (c2 (i; p)) since c1 (i) + c2 (i; i) = y and
c2 (i; p) < y.

The truth-telling condition for a patient depositor is, 6

�2

2
u
�
Ry � R + 1

2
c1 (p)

�
+

(1� �)�fu (c2 (i; p) +R (2y � c2 (i; p)� c1 (i))) + u (c1 (p) +R (2y � c2 (p; i)))

� (43)
�2

2
fu (c1 (i)) + u (c2 (p; i))g+ (1� �)� fu (c1 (i)) + u (c2 (i; i))g :

5 Recall that the Peck and Shell [7] mechanism assumes that the depositor does
not know his place in line.
6 Since depositors do not know their place in line, it is optimal to deliver to depos-
itors the same utility payo¤ in state (p; p).
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Allocation c for the mechanism (
; c)is said to be implementable as a truth-
telling equilibrium if conditions (5) and (43) hold.

Suppose that when depositor type is observable, the optimal allocation is
characterized by partial risk-sharing; i.e., c2 (p; i) = c1 (i) > c2 (i; i). In this
case, it is straightforward to demonstrate that condition (43) is always satis�ed
with a strict inequality. If, instead, the optimal allocation is characterized by
full risk-sharing; i.e., c2 (p; i) > c1 (i) > c2 (i; i), then one can demonstrate
(numerically) that condition (43) holds with strict inequality for a wide range
of parameter values. 7 Hence, the optimal allocation when depositor type is
observable can be implemented as a truth-telling equilibrium when depositor
type is private information. For the preferences considered here, rendering
depositor type private information in no way a¤ects our earlier analysis.

Let c� represent the optimal allocation that can be implemented as a truth-
telling equilibrium. Given the mechanism (
; c�), do there exist other equi-
libria, i.e., other than the truth-telling equilibrium? In particular, does there
exist a bank-run equilibrium, where the strategy of all depositors is to an-
nounce i; i.e., an = i and a0n = i for all !n, and the banker reveals the history
of depositor announcements truthfully?

It is straightforward to demonstrate that there does not exist a bank run
equilibrium. To see this suppose that all depositors play the bank-run strategy.
Then, the bank will rationally announce mn = i for n = 1; 2 and m0 = (i; i).
The banker will announce m1 = i, instead of the truth m1 = ?, because
this results in a payment to the �rst depositor of c1 (i; i) < c1 (i) and the
banker�s payo¤will beR[c1 (i)�c2 (i; i)] > 0, which is higher than the proposed
equilibrium payo¤ of zero. Hence, when depositors play bank-run strategies in
the mechanism (
; c�), the banker will depart from a truth-telling strategy.

7.1 Binding Incentive-Compatibility Constraints

It should be pointed out that if the banker was programed to reveal the depos-
itors�messages truthfully� the standard assumption in the literature� then a
bank run equilibrium does not exist for our speci�cation of preferences (Green
and Lin [5]). One interesting lesson from Peck and Shell [7] is that if the depos-
itor truth-telling constraint (43) does not bind, then it appears that is impos-
sible to generate a bank-run equilibrium even under the restrictions imposed
on their mechanism. To entertain the possibility of a bank-run equilibrium,

7 In fact, we could not �nd parameters where the condition is violated.
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Peck and Shell [7] modify depositor preferences as follows:

U (c; c0; !) =

8><>: u(c+ c0) if ! = p;

Au(c) if ! = i;

where A > 1. As A is made su¢ cient large, condition (43) will be violated for
the optimal allocation under the assumption that depositor type is observable.
Hence, when depositor type is private information, the optimal allocation will
have condition (43) binding. Denote the optimal allocation that can be imple-
mented as a truth-telling equilibrium, when condition (43) binds, as �c. Peck
and Shell [7] demonstrate, via an example, that when the depositor truth-
telling constraint binds, it is possible to generate a bank-run equilibrium for
allocation �c.

However, note that the �banker�in Peck and Shell [7] is programmed to report
truthfully. If we amend the preferences of depositors along the lines of Peck
and Shell [7] in our environment so that the optimal allocation implemented
under truth-telling has condition (43) binding, then using the same argument
above, it would not ever be possible to generate a bank-run equilibrium. That
is, if depositors play bank-run strategies, a self-interested banker will depart
from truth-telling. Although both Green and Lin [5] and Peck and Shell [7]
allude to the possibility that banker moral hazard may open the door to bank
runs, we �nd that, if anything, the introduction of banker moral hazard slams
this door shut.

8 Concluding Remarks

In this paper, we asked to what extent might moral hazard on the part of a
bank might serve to simplify the optimal structure of deposit liabilities and
whether such a simpli�ed payment structure might introduce the possibility of
bank runs. We found that moral hazard could theoretically render the struc-
ture deposit liabilities either more or less complicated relative to those that
would emerge in a world of public information. Our numerical results suggest
that simple contracts emerge under a wide range of empirically plausible para-
meter values. However, whether or not the payment structure turns out to be
simple, it appears that the introduction of moral hazard actually eliminates
the possibility of a bank-run equilibrium.
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