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In this paper we introduce a new family of GARCH-Jump models and derive the correspond-
ing option pricing theory. These discrete time processes are of interest since the conditional
returns of the underlying asset allow levels of skewness and kurtosis to be matched to the data
and option prices can readily be established that are influenced by changing volatility and jumps
in both returns and volatilities. This GARCH-Jump option pricing model is thus a generaliza-
tion of the typical GARCH option pricing models with normal innovations, a pricing approach
started by Duan (1995). We empirically test our model, and show that it not only fits the return
data better than traditional GARCH models with normal innovations. Moreover, our model is
better in removing more of the biases in option prices relative to the models with conditional
normality.

Our new GARCH models are also interesting in that they serve as discrete time approxima-
tions for an array of continuous time jump diffusion models. Duan, Ritchken and Sun (2005)
have derived a variety of continuous-time limiting models based on our GARCH-Jump pro-
cesses. When the GARCH process is curtailed, but jumps allowed, the limiting model nests
the jump-diffusion model of Merton (1976), or the more general model of Naik and Lee (1990).
When the jumps are suppressed, both in returns and volatilities, the limiting model can be made
to converge to continuous time stochastic volatility models, including Heston (1993), Hull and
White (1987) and Scott (1987), among others. Finally, when jumps are permitted in our model,
the limiting models contain jumps and diffusive elements in both returns and volatilities, along
the lines of Eraker, Johannes and Polson (2003) and Duffie, Singleton and Pan (1999).

Just as the binomial model serves as a discrete time approximation for many underlying
diffusion processes, our model serves as a useful approximation for underlying diffusive processes
that permit jumps in returns and/or volatilities. Further, just as the appropriately redefined
binomial model provides a useful mechanism for pricing American style options under a geometric
Wiener process, our appropriately redefined risk neutralized discrete GARCH models provide a
mechanism for pricing options under processes that also include random jumps in returns and/or
volatilities. In light of the linkages between our GARCH-Jump models and their continuous
time limits, our empirical results can be immediately linked to the huge literature on empirical
performance of continuous time models.

Strictly speaking, the binomial model is a pure jump model where prices in each time incre-
ment can jump to one of two values. Similarly, GARCH models can be viewed as jump models,
where in each time increment, the variance jumps to a new value based on the innovation that
has just occurred. Here we emphasis “Jump ” in our GARCH models to reflect the fact that the
conditional return distribution in each time increment are compound Poisson random variables.
This feature serves two purposes. First, it allows conditional distributions to have skewness and
kurtosis that can readily be matched to the data. Second, as the time increments diminish, this
feature leads to convergence of the return series towards processes that have diffusion and jump
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elements in either or both returns and volatilities.

This paper contributes to the literature in three ways. First, we establish the discrete time
theory which allows us to price options when the underlying asset’s innovations may be far from
normal and when volatility is stochastic. This is important because most theoretical GARCH
option models rely on normal innovations.1 Second, we conduct an empirical analysis of these
nested models that highlights the importance of incorporating jumps in returns and volatilities
so as to better capture kurtosis and skewness in the time series dynamics and to better describe
option prices and the volatility smile. Third, we provide a set of hedging tests among our
GARCH option models. To our knowledge these hedging tests are the first to be performed
using GARCH pricing models.

Why is it important to incorporate jumps in volatility? Empirical research has shown that
models which describe returns by a jump-diffusion process with volatility being characterized by
a correlated diffusive stochastic process are incapable of capturing empirical features of equity
index returns or option prices. For example, both Bates (2000) and Pan (2002) examine such
models, and are unable to remove systematic option pricing biases that remain.2 While jumps
in the return process can explain large daily shocks, these return shocks are highly transient and
have no lasting effect on future returns. At the same time, with volatility being diffusive, changes
occur gradually and with high persistence. These models are unlikely to generate clustering of
large returns associated with temporarily high levels of volatility, a feature that is displayed by
the data. Both of the above authors recommend considering models with jumps in volatility.
Eraker, Johannes and Polson (2003) examined the jump in volatility models proposed by Duffie,
Singleton and Pan (1999), and show that the addition of jumps in volatility provide a significant
improvement to explaining the returns data on the S&P 500 and Nasdaq 100 index returns. In
contrast, Eraker (2004) estimated parameters using the time series of returns together with the
panel of option data, using methodology similar to Chernov and Ghysels (2000) and Pan (2002).
He confirmed that the time series of returns was better described with a jump in volatility.
Surprisingly, however, the model did not provide significantly better fits to option prices beyond
the basic stochastic volatility model.

The GARCH model has been extensively used in studying return time series. In recent years,
1We know of two exceptions. Duan (1999) developed a GARCH option model allowing for conditional skewness

and kurtosis via a normal transformation technique. Christoffersen, Heston, and Jacobs (2004) developed a

GARCH option pricing model using inverse Gaussian innovations.
2Stochastic volatility option models have been considered by Hull and White (1987), Heston (1993),

Nandi (1998), Scott (1987), among others. Bakshi, Cao and Chen (1997) provide empirical tests of alterna-

tive option models, none of which contain jumps in volatility. Naik (1993) considers a regime switching model

where volatility can jump. For additional regime switching models, see Duan, Popova and Ritchken (2002). More

recently Bakshi and Cao (2003) provide empirical support for some stochastic volatility models with jumps in

returns and volatility.
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there has been an increasing use of the GARCH option pricing model to empirically examine its
pricing performance. Heynen, Kemna and Vorst (1994), Duan (1996), Hardle and Hafner (2000),
Heston and Nandi (2000), Hsieh and Ritchken (2000), Duan and Zhang (2001), Lehar, Scheicher
and Schittenkopf (2002), Lehnert (2003) and Stentoft (2003) are some examples. More recently,
Christoffersen and Jacobs (2004) examined a set of GARCH option models using the more
general GARCH specifications given in Ding, Granger and Engle (1993) and Hentschel (1995).
They concluded that while analysis of the return time series alone is in favor of more complex
models, the option data suggest that the more parsimonious models with simple volatility clus-
tering and leverage effects tend to have better performance. The GARCH option pricing models
considered in Christoffersen and Jacobs (2004) all have conditionally normal innovations. Our
study using the GARCH-Jump option pricing model thus adds to the empirical GARCH option
pricing literature.

Our empirical analysis focuses on a nested set of models that contain interesting special cases.
At one extreme, we consider models where in the limit volatility does not jump, but returns can
jump. A Merton-like model is considered, where jump risk is not priced, and a generalized version
of this model is also considered where jump risk is priced. At the other extreme we consider
models containing no jumps but allow volatility to be time varying. Finally, we consider models
where jump and diffusive risk is priced and whose continuous time limits contain jumps in both
returns and volatilities.

Our empirical analysis follows a different path to most studies in option models. In particular,
if our models are good, then estimates of the parameters, based on time series of the underlying
alone, should be sufficient to price options, and eliminate all biases. So, to the extent possible, we
do not use option data to estimate parameter values, but rather view option prices as providing
a set of information for which we can assess the ability of the pricing models. When we do use
option data, in conjunction with time series information, to estimate parameters, we make sure
that our tests are truly out of sample. Specifically, once all the parameters are estimated, we
observe the future path of the asset, and based on the path, we update all the state variables,
and compute prices of all options. We do this daily for up to one year after the parameters are
estimated. Given the “out-of-sample” estimates of option prices, we conduct tests to examine
option biases and to evaluate whether incorporating jumps adds value to the model.

In addition, we conduct hedging tests. To our knowledge this is the first paper that has
examined hedging effectiveness using GARCH models of any form. Our results for the S&P 500
demonstrate that incorporating jumps in volatility adds significantly to explaining the time
series properties of the index, adds significantly to explaining patterns in option prices, and is
capable of being well used to establish hedge ratios for dynamic rebalancing.

The paper proceeds as follows. In section 1 we provide the basic setup for the pricing
kernel and the dynamics of the underlying asset. We also identify the risk neutral measure,
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and establish our nested models which represent interesting special cases. In section 2 we
discuss time series estimation, option pricing, and hedge construction issues in the discrete
GARCH Jump framework. In section 3 we examine our nested GARCH with jumps models
and present empirical evidence from time series of the S&P500 index. In section 4 we examine
the ability of these models to price European options. We investigate how theoretical option
prices, computed up to 50 weeks after the parameters are estimated, perform and we examine
the hedging effectiveness of these models. Section 5 concludes.

1 The Basic Setup

We consider a discrete-time economy for a period of [0, T ] where uncertainty is defined on a
complete filtered probability space (Ω,F , P) with filtration F = (Ft)t∈{0,1,···,T} where F0 contains
all P-null sets in F .

Let mt be the marginal utility of consumption at date t. For pricing to proceed, the joint
dynamics of the asset price, and the pricing kernel, mt

mt−1
, needs to be specified. We have

St−1 = EP
[
St

mt

mt−1

∣∣∣∣Ft−1

]
(1)

where St is the total payout, consisting of price and dividends. The expectation is taken under
the data generating measure, P, conditional on the information up to date t − 1.

We assume that the dynamics of this pricing kernel, mt/mt−1, is given by:

mt

mt−1
= ea+bJt (2)

where Jt is a standard normal random variable plus a Poisson random sum of normally dis-
tributed variables. That is,

Jt = X
(0)
t +

Nt∑

j=1

X
(j)
t (3)

where

X
(0)
t ∼ N(0, 1)

X
(j)
t ∼ N(µ, γ2) for j = 1, 2, ...

and Nt is distributed as a Poisson random variable with parameter λ. Although we have assumed
a constant λ, our theoretical results remain valid if the Poisson parameter is stochastic but Ft−1-
measurable.3 The random variables X

(j)
t are independent for j = 0, 1, 2, · · · and t = 1, 2, · · · , T .

3Maheu and McCurdy (2004) developed a GARCH-Jump model that allows for time variation and clustering

in the jump intensity. They focused on describing the time series dynamics of individual stocks, rather than on

the pricing of options.
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The asset price, St, is assumed to follow the process:

St

St−1
= eαt+

√
htJ̄t (4)

where J̄t is a standard normal random variable plus a Poisson random sum of normal random
variables. In particular:

J̄t = X̄
(0)
t +

Nt∑

j=1

X̄
(j)
t (5)

where

X̄
(0)
t ∼ N(0, 1)

X̄
(j)
t ∼ N(µ̄, γ̄2) for j = 1, 2, · · ·

Furthermore, for t = 1, 2, · · · , T :

Corr(X(i)
t , X̄(j)

τ ) =

{
ρ if i = j and t = τ

0 otherwise,

and Nt is the same Poisson random variable as in the pricing kernel.

The Poisson random variable provides shocks in period t. Given that the number of shocks
in a particular period is some nonnegative integer k, say, the logarithm of the pricing kernel for
that period consists of a draw from the sum of k +1 normal distributions, while the logarithmic
return of the asset also consists of a draw from the sum of k + 1 correlated normal random
variables. In either case, the first normal random variable is standardized to have mean 0 and
variance 1 because its location and scale have already been reflected in the model specification.

The local variance of the logarithmic returns for date t, viewed from date t−1 is htV ar(J̄t) =
ht(1 + λγ̂2), where

γ̂2 = µ̄2 + γ̄2.

We shall refer to ht as the local scaling factor because it differs from local variance by a constant.
In general, the local scaling factor ht can be any predictable process. For example, it could
depend on all previous scale variables and standardized residuals. That is:

ht = F (ht−i, J̄t−i; i = 1, 2, · · ·) (6)

We assume that the single period continuously compounded interest rate is constant, say,
r.4 Thus, the following restrictions must hold:

EP
[

mt

mt−1

∣∣∣∣Ft−1

]
= e−r (7)

EP
[

mt

mt−1

St

St−1

∣∣∣∣Ft−1

]
= 1 (8)

4Note the constant interest rate assumption is not a necessity. We make this assumption so that there is no

need to specify an additional stochastic process for the interest rate.
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These equilibrium conditions impose a specific form on αt. The dynamics of the asset price can
be rewritten as in the following proposition.

Proposition 1

Under measure P, the dynamics of the asset price can be expressed as:

St

St−1
= eαt+

√
htJ̄t (9)

where

αt = r − ht

2
−
√

htbρ + λκ (1 − Kt) (10)

ht = F (ht−i, J̄t−i; i = 1, 2, · · ·) (11)

κ = exp
(

bµ +
1
2
b2γ2

)
(12)

Kt = exp
(√

ht(µ̄ + bργγ̄) +
1
2
htγ̄

2
)

. (13)

Proof: See Appendix

Given these dynamics, we want to be able to price derivative claims in a risk neutral frame-
work. Towards that goal we assume date T to be the terminal date that we are considering and
define measure Q by

dQ = erT mT

m0
dP. (14)

Lemma 1

(i) Q is a probability measure.

(ii) For any Ft measurable random variable, Zt:

Zt−1 = EP[Zt
mt

mt−1
|Ft−1] = e−rEQ[Zt|Ft−1].

Proof: See Appendix.

Given a specification for the dynamics of the pricing kernel and the state variable, all the
information that is necessary for pricing contingent claims is provided. While pricing of all claims
can proceed, the advantage of the Q measure is that pricing can proceed as if risk neutrality
holds.

Proposition 2

Under measure Q, the dynamics of the asset price is distributionally equivalent to:

St

St−1
= eα̃t+

√
htJ̃t (15)
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where

α̃t = r − ht

2
+ λ̃ (1 − Kt) (16)

ht = F (ht−i, J̃t−i + bρ; i = 1, 2, · · ·) (17)

J̃t = X̃
(0)
t +

Ñt∑

j=1

X̃
(j)
t (18)

X̃
(0)
t ∼ N(0, 1) for t = 1, 2, · · · , T

X̃
(j)
t ∼ N(µ̄ + bργγ̄, γ̄2) for t = 1, 2, · · · , T and j = 1, 2, · · ·

X̃
(j)
t are independent for t = 1, 2, · · · , T and j = 0, 1, 2, · · ·

Ñt has a Poisson distribution with parameter λ̃ ≡ λκ and Kt has been defined in Proposition

1.

Proof: See Appendix

Under measure Q, the overall dynamics of the asset price is similar in form to the dynamics
under the data generating measure, P. In particular, the logarithmic return is still a random
Poisson sum of normal random variables. However, under measure Q, the mean of each of the
normal random variables is shifted. Similarly, the random variable, Nt, distributed as a Poisson
random variable under measure P, is still Poisson under measure Q but with a shifted parameter.

Notice that each normal random variable has the same variance under both measures. How-
ever, the local variance of the innovation under measure Q is ht(1 + λ̃γ̃2), which is not equal to
the local variance under the original P measure unless κ = 1 and bργ = 0.5 In other words, one
should not in general expect the local risk-neutral valuation principle to apply. The expected
value, EQ(J̃t|Ft−1) and variance, V arQ(J̃t|Ft−1) of J̃i are:

EQ(J̃t) = λ̃µ̄ + bργγ̄ (19)

V arQ(J̃t) = 1 + λ̃γ̃2, (20)

1.1 Updating Schemes for the Scaling Factor

For empirical work it is necessary to select specific structures for the scaling factor dynamic in
equation (6). We consider two specific GARCH(1,1) dynamics.

5This result differs from the local risk-neutral valuation of Duan (1995) because the innovation term is generated

by a Poisson random sum of normal random variables as opposed to the use of normally distributed innovations.

Of course, when the Poisson parameter is switched off, the local variance will remain unaltered with the measure

change and the pricing result reduces to the pricing model of Duan (1995).
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1.1.1 The NGARCH Model

The first GARCH(1,1) model that we consider is of the form:

ht = β0 + β1ht−1 + β2ht−1

(
J̄t−1 − λµ̄√

1 + λγ̂2
− c

)2

, (21)

where β0 is positive, β1 and β2 are nonnegative to ensure that the local scaling process is positive.
Here we normalize J̄t−1 in the last term to make this equation comparable to the NGARCH
model which typically uses a random variable with mean 0 and variance 1. The ht process is
strictly stationary if β1 + β2(1 + c2) ≤ 1. The unconditional mean of ht is finite and equals
β0/

[
1 − β1 − β2(1 + c2)

]
if β1 + β2(1 + c2) < 1. Both results are available in Duan (1997).

Notice that when λ = 0, the model reduces to the NGARCH-Normal process. In their
empirical tests, Christoffersen and Jacobs (2004) found that this volatility dynamic performed
the best among many GARCH option models with normal innovations. Their findings motivate
this particular choice.

Using equations (19), (20) and (17), the updating scheme for the local scaling factor, ht,
specialized to equation (21), under measure Q, can be written as

ht = β0 + β1ht−1 + β∗
2ht−1


 J̃t−1 − (λ̃µ̄ + bργγ̄)√

1 + λ̃γ̃2
− c∗




2

(22)

where

β∗
2 = β2

(
1 + λ̃γ̃2

1 + λγ̂2

)

c∗ =
c
√

1 + λγ̂2 + λµ̄ − λ̃(µ̄ + bργγ̄) − bρ√
1 + λ̃γ̃2

γ̃2 = (µ̄ + bργγ̄)2 + γ̄2

Note that the fractional term inside the brackets has mean 0 and variance 1 under measure Q.

1.1.2 The TGARCH Model

The second GARCH specification that we consider is a TGARCH scheme. Let φt be an auxiliary
state variable that fully determines ht. We assume:

φt = β0 + β1φt−1 + β2

∣∣∣∣∣
J̄t−1 − λµ̄√

1 + λγ̂2

∣∣∣∣∣+ β3 max

(
− J̄t−1 − λµ̄√

1 + λγ̂2
, 0

)
(23)

ht = φ2
t ,
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Again when λ = 0 this updating scheme reduces to the standard TGARCH scheme, that Hardle
and Hafner (2000) found to be useful.

For this case the volatility process under measure Q, has the following dynamics:

φt = β0 + β1φt−1 + β∗
2

∣∣∣∣∣∣
J̃t−1 − (λ̃µ̄ + bργγ̄)√

1 + λ̃γ̃2
+ q

∣∣∣∣∣∣

+β∗
3 max


− J̃t−1 − (λ̃µ̄ + bργγ̄)√

1 + λ̃γ̃2
− q, 0


 (24)

ht = φ2
t ,

where

β∗
j = βj

√
1 + λ̃γ̃2

1 + λγ̂2
, j = 2, 3

q =
bρ(1 + γγ̄) + µ̄λ(κ − 1)√

1 + λ̃γ̃2

In summary, when the local scaling factor ht follows a NGARCH or TGARCH process, as
in equation (21) or equation (23), then under measure Q, the updating schemes translates into
a similar NGARCH and TGARCH processes. Proposition 2 allows us to easily come to specific
pricing systems corresponding to different volatility dynamics.

1.2 Decomposition of the Risk Premium

Under measure P, the expected total return on the stock can be expressed as:

EP
[

St

St−1

]
= e(r+ηt)

where the risk premium ηt is given by:

ηt = λκ(1− Kt) − λ(1− eµ̄
√

ht+
γ̄2ht

2 ) −
√

htbρ (25)

≈ [λµ̄(1− κ) − bρ(1 + λκγγ̄)]
√

ht + λγ̄2(1 − κ)
ht

2
, (26)

where the approximation is justified if ht is small.6

To gain some intuitions on the pricing model, first consider the case when κ = 1 and γ = 0.

In this case, the risk premium, ηt reduces to −bρ
√

ht. This amounts to saying that the jump risk
is fully diversifiable, which corresponds to the assumption made in Merton (1976). With κ 6= 1

6In our empirical studies we obtain ht in the order of 10−6.
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and γ = 0 in the pricing kernel, the sensitivity of the risk premium to γ̄ is very small. That is,
the randomness about the jump size adds minimally to the risk premium. Naik and Lee (1990)
extended Merton’s model to the case where jump risk is not diversifiable. In our model this is
accomplished by releasing κ from 1 and/or γ from 0.

With κ = 1 and γ > 0, the risk premium is

ηt ≈ −bρ
√

ht − bρλγγ̄
√

ht.

Here, the uncertainty of the jump size, as measured by γ̄, adds to the risk premium as does the
intensity. Finally, when κ is released from 1, the impact of the intensity of the process on the
risk premium becomes more complex.

The expected value of the pricing kernel, fully determines interest rates, and is given by:

er = EP
[

mt

mt−1
|Ft−1

]
= ea+b2/2+λ(κ−1).

For the case when κ = 1 (i.e., µ = −bγ2/2), the effects of the jump in the pricing kernel play no
role on the interest rate. For all other values of κ, the jump process explicitly affects both the
interest rate and asset price.

1.3 The Nested Models

First, consider the case where κ = 1 and γ = 0. In this case the risk premium reduces to
ηt = −bρ

√
ht. That is, the risk premium does not depend on jumps. With β1 = β2 = 0 in

equation (21) or β1 = β2 = β3 = 0 in equation (23) the scaling factor remains constant. Since
jump risk is diversifiable, the local scaling factor is constant, and innovations, conditional on
the number of jumps are normal, we refer to this model as the discrete-time Merton model, or
MERTON, for short.

Second, consider the same model, but release κ and γ from 1 and 0. This implies that jump
risk is priced. We call this model the generalized Merton model, or G-MERTON, for short.

The third set of models we consider are models with no jumps, i.e., λ = 0, but with our
scaling factor being stochastic. In this case, innovations are normal random variables, and the
risk premium is given by ηt = −bρ

√
ht. If the volatility dynamic is given by equation (21),

the system becomes the NGARCH-Normal model. If volatility evolves according to equation
(23), we have the TGARCH-Normal model. According to Duan (1997), these two models, in the
limit, give rise to an extended version of the Hull and White (1987) and Heston (1993) stochastic
volatility models, respectively.

The fourth set of models that we consider are models where κ = 1 and γ = 0 again, but the
scaling factors are permitted to be stochastic and jumps are permitted. In these models, jump
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risk is diversifiable, volatility is stochastic and innovations are not normal. The two models are
referred to as the Restricted NGARCH model and the Restricted TGARCH model.

The final set of models are the most general models where jump risk is priced, scaling factors
are stochastic, jumps are present and innovations are not normal. These two models are referred
to as the NGARCH-Jump and TGARCH-Jump models or as the full models. Duan, Ritchken
and Sun (2005) have investigated the limiting behavior of these models as the time increment
between consecutive updates is narrowed. They show that these models can be made to converge
to continuous time models with diffusive elements and jumps in both returns and volatilities. For
example, the TGARCH-Jump model can be viewed as a proxy for the following continuous-time
process:

dlnSt = ft−dt +
√

ht−dWt +
(
γ̄Zπt

+ µ̄
)√

ht−dπt (27)

dht =

[
β2

3

4(1 + λγ̂2)
+
(
β2 +

β3

2

)2 π − 2
π(1 + λγ̂2)

+ 2 (β1 − 1)ht−

]
dt

− β3√
1 + λγ̂2

√
ht−dWt + (2β2 + β3)

√
π − 2

π(1 + λγ̂2)

√
ht−dBt

+
1

1 + λγ̂2
[β2 |γ̄Zπt + µ̄| + β3max(−γ̄Zπt − µ̄, 0)]2 dπt. (28)

where
ft = r − ht

2
−
√

htbρ + λκ(1− exp(
√

ht(µ̄ + bργγ̄) +
1
2
htγ̄

2)),

for all 0 ≤ t ≤ T .

The above model is a mean-reverting square root process with jumps for ht. By turning off
jumps, the limiting model nests the square root stochastic volatility model given in Scott (1987)
and Heston (1993). Without switching off jumps, the volatility dynamic in equation (28) is more
general than that in Bakshi, Cao and Chen (1997), Bates (2000) or Pan (2002), for it allows for
volatility jumps as well.

We therefore consider a total of 8 models, summarized in Table 1.

Table 1 Here

We will explore in the next section which of the models nested in our family can simultaneously
explain both the time series of the S&P 500 index values and the cross sectional variation of
option prices over a broad array of strikes and maturities.
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2 Experimental Design for Pricing and Hedging

In this section we consider the empirical performance of the GARCH-Jump models using time
series data on the S&P 500 index and dividends. Our main goal is to estimate models using
return time series alone and then to evaluate the ability of these models to price and hedge
options. We are particularly interested in evaluating the full NGARCH (TGARCH) model as
well as their nested special cases.

2.1 Description of Data

The S&P 500 index options are European options that exist with maturities in the next six
calendar months, and also for the time periods corresponding to the expiration dates of the
futures. Our price data on the call options, covering the five year period from January 1991
to December 1995, comes from the Berkeley Option Database. We collected daily data and
excluded contracts with maturities fewer than 10 days. We only used options with bid/ask price
quotes during the last half hour of trading. For these contracts we also captured the reported
concurrent stock index level associated with each option trade.

In order to price the call options we need to adjust the index level according to the dividends
paid out over the time to expiration. We follow Harvey and Whaley (1992), and Bakshi, Cao
and Chen (1997), and use the actual cash dividend payments made during the life of the option
to proxy for the expected dividend payments. The present value of all the dividends is then
subtracted from the reported index levels to obtain the contemporaneous adjusted index levels.
This procedure assumes that the reported index level is not stale and reflects the actual price
of the basket of stocks representing the index. Since intra day data and not the end of the day
option prices are used, the problem with the index level being stale is not severe.7 Since we used
the actual contemporaneous index level associated with each option trade that was reported
in the data base, the actual adjusted index level would vary slightly among the individual
contracts depending on their time of trade. Finally, we used the T-Bill term structure to extract
the appropriate discount rates.

We have 1250 trading days in our time series, with 250 consecutive weeks of cross sectional
option prices. We split the data up into an in-sample period of 200 weeks, and an out-of-sample
period of the remaining 50 weeks. Over the first 200 weeks we use the daily time series on the

7There are other methods for establishing the adjusted index level. The first is to compute the mid points of

call and put options with the same strikes and then to use put-call parity to imply out the value of the underlying

index. Of course, this method has its own problems, since with non negligible bid ask spreads, put call parity only

holds as an inequality. An alternative approach is to use the stock index futures price to back out the implied

dividend adjusted index level. This leads to one stock index adjusted value that is used for all option contracts.

For a discussion of these approaches see Jackwerth and Rubinstein (1996).
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index to estimate the parameters of some of the nested models. As we shall see, the parameters
of some of the models cannot be fully identified from the time series alone. In these cases we
complement the daily time series with weekly observations of the prices of the at-the-money
call option price with maturity closest to 30 days. Once all models are estimated, we use the
parameter estimates and the daily time series of the index to compute the full time series of the
local scaling factor not only over the 200 week historical time period, but also for the successive
days over the next 50 weeks.

Our first set of experiments are concerned with using the time series data on the S&P
500 index alone to compare the performance of some of the nested models, and to establish
the importance of incorporating jumps and NGARCH effects. Our second set of experiments
evaluates how well the fitted models from the time series are able to price options, conditional
on the index, and on the computed local scaling factor, over the 50 weeks in the “out-of-sample”
period. We also compare these models to the more general models which required that some
parameters be estimated from the historical time series augmented with option prices.

An option model is viewed positively if the in-sample fits are precise and unbiased, and
if, conditional on future state variables, the “out-of-sample” price predictions are also precise
and unbiased. In addition to investigating pricing biases in the out-of-sample period, we also
investigate the performance of delta hedging strategies and report the hedging effectiveness
associated with the models.

2.2 Estimation from the Return Time Series

We use a maximum-likelihood approach to estimate the parameters from the models using the
time series of historical asset returns.

Let yt = ln(St/St−1) − αt. We rewrite the GARCH process of return under measure P as

yt =
√

htJ̄t

ht = v(ht−1, J̄t−1)

where the function αt is given in Proposition 1, and the function v(·) is given by (21) or (23).
The initial value of the local scaling factor is determined by

h1 = V/(1 + λγ̂2) (29)

where V is the sample variance of the asset return and as defined earlier, γ̂2 = µ̄2 + γ̄2.8 Our
model parameter set is

θ = {β0, β1, β2, c, bρ, κ, γ, µ̄, γ̄, λ}
8In fact, V ar(yt) = E(ht)V ar(J̄t) = (1 + λγ̂2)E(ht), and we assume that the initial scaling factor is the

long-run average of ht.

13



The conditional probability density function, l(yt|ht, yt−1), of yt is:

l(yt|ht, yt−1) =
∞∑

i=0

λi

i!
e−λf(µi(t),σ2

i (t))(yt)

where f(µi(t),σ2
i (t))(·) is the normal density function with mean µi(t) = iµ̄

√
ht and variance

σ2
i (t) = ht(1 + iγ̄2).9 The log-likelihood function of the sample is:

L(θ; y1, ..., yT) =
T∑

t=2

ln [l(yt|ht, yt−1)] . (30)

The maximum likelihood estimator for θ is the solution of maximizing the above log-likelihood
function. Given the asset return process, {ln St

St−1
}1≤t≤T , we can write down the likelihood

function recursively, and solve this optimization problem numerically.

In principle, the entire set of parameters can be identified by only using a time series of asset
returns. In practice, however, two of them are hard to pin down empirically. To understand this
assertion, recall that:

1 − Kt = 1− exp(
√

ht(µ̄ + bργγ̄) +
1
2
htγ̄

2)

≈ −
√

ht(µ̄ + bργγ̄) − 1
2
ht((µ̄ + bργγ̄)2 + γ̄2).

Hence,

αt ≈ r − 1
2
ht(1 + λκ(γ̄2 + (µ̄ + bργγ̄)2))−

√
ht(bρ + λκµ̄ + λκbργγ̄) (31)

First note that ht is much smaller than
√

ht because
√

ht takes on small values already. The
term with

√
ht effectively dominates the term with ht. The above formula suggests that the

coefficient of
√

ht, i.e., −(bρ + λκµ̄ + λκbργγ̄), practically acts as a single term, which makes it
hard to separate bρ, κ and γ. Note that parameters λ, µ̄ and γ̄ directly enter into the density
function. In contrast, parameters bρ, κ and γ only appear through αt in the equation for yt.
Since only the sum −(bρ + λκµ̄ + λκbργγ̄) matters in the sample likelihood function, two of
the three parameters – bρ, κ and γ – are indeterminate. In the estimation, we thus introduce a
composite parameter δ = (bρ + λκµ̄ + λκbργγ̄). To deal with the indeterminacy we set κ = 1
and γ = 0 and view bρ as a function of δ. As a result, we actually estimate the parameter set
θ∗ = {β0, β1, β2, c, δ, µ̄, γ̄, λ}, for the NGARCH models and θ∗ = {β0, β1, β2, β3, δ, µ̄, γ̄, λ}, for
the TGARCH models.

Notice that when κ = 1 and γ = 0 we obtain the Restricted-Jump models. These models,
as well as the MERTON model (with β1 = β2 = 0) can be fully estimated using the maximum
likelihood method on the return time series alone. In addition, the two GARCH-Normal models

9Conditioning on Nt = i, the variance of J̄t is 1 + iγ̄2. Without conditioning, however, the variance becomes

1 + λγ̂2.
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can be readily estimated. Of course, if option data is available as well, then the parameters κ

and γ can be released in both the MERTON and Restricted-Jump models to obtain estimates
for the G-MERTON and the two full GARCH-Jump models.

Since there are no simple analytical expressions for the options, their prices are generated by
Monte Carlo simulation. Hence, rather than doing a joint optimization, for the last two models
we use the option prices only to estimate κ and γ. Specifically, we fix the other parameters,
and then for a given κ and γ we generate the daily values of ht over the last 20 weeks of the
in-sample data. Every two weeks, we compute, via Monte Carlo simulations, the theoretical
price of the short-dated (closest to 30 days) nearest-the-money contract. We then select the
parameter values that result in the minimum sum of squared percentage errors.

2.3 Fitting of Option Prices

Given the parameter estimates from the time series data, extracted over the “in-sample” period,
and given the time series of the index over the next 250 days, we can construct the time series
for ht over all the days in the out-of-sample period. Given the index and local scaling factor at
any date, we can compute option prices using simulation. The option prices are computed using
10, 000 sample paths and antithetic variance reduction techniques. We refer to all the theoretical
option prices computed after day 1000, as “out-of-sample” option prices. These prices, of course,
are conditional on the index level being observed, and on the level of the local scaling factor
ht, that determines the local volatility. Over our 250-day out-of-sample period, we compute the
theoretical prices of all option contracts, each week, for a total of 50 weeks, for our models.
For the different models, the same stream of random variables are used. The residuals for each
contract and model are stored. If a model is good, the fitted option prices in the out-of-sample
period should be unbiased across maturities and strike prices. That is, the model should explain
the volatility skew and the maturity bias inherent in the Black-Scholes model.

Investigating the fit of option contracts using models estimated from the time series of prices
alone has been used in many studies. For example, Jaganathan, Kaplin and Sun (2003), estimate
several multifactor Cox-Ingersoll-Ross models, using time series data on swaps, and then assess
how well the resulting calibrated models fit swaption contracts. Alternatively, parameters can
be implied out from a set of derivatives in one market and then used to price claims in a related
market. For example, Longstaff, Santa Clara and Schwartz (2001), calibrate models of the term
structure using caps and floors, and then assess their models by considering the performance
of the fitted models in the swaption market. In our analysis, we want to estimate our models
using the return time series data as much as possible, and then assess the models not only on
their return time series fit, but also on their ability to price the panel of option contracts in the
out-of-sample weeks.
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Our analysis here stands in strong contrast to the common procedure of repeatedly re-
estimating models based on cross sectional option prices and examining properties of the pricing
residuals and implied parameters. Our purpose here is to place as much weight on the time series
of prices as possible, to use the minimal amount of option information, and then to examine
whether we are capable of pricing options, over an array of strikes and maturities, in out-of-
sample tests. Specifically, for a particular model we only need to optimize once to obtain all
the parameters. Then, since the future state variables are fully determined by the trajectory
of the underlying price, as it evolves we can easily update option prices. In this regard, our
“out-of-sample” residuals can be based off parameter values estimated up to 50 weeks earlier.
Our goal is to demonstrate that from the time series of asset prices, we can fit option prices well
and that the out-of-sample performance is fairly precise, even 50 weeks after our parameters
were estimated.

2.4 Hedging Effectiveness

Our final tests will be to evaluate the hedging performance of our models using the out-of-sample
period of 250 days. We compute the hedge ratios for our models and set up hedges for each
contract for each day. The performance of each hedged position dynamically rebalanced over a
15 day interval is recorded. This allows us to compare the relative performance of the hedges.

Specifically, consider an option that is to be hedged over n successive periods (days) of length
∆t, starting from date k. Define the discrete delta hedged gains, π(n; k), over the n days as:

π(n; k) = (Cn+k − Ck) −
n−1∑

i=0

∆k+i(Sk+i+1 − Sk+i) −
n−1∑

i=0

r(Ck − ∆k+iSk+i)∆t

where ∆k+i is the hedge ratio for the option at date k + i, and is given by the model.

The hedging tests are conducted over the last 250 days of data, using models, the parameters
which are estimated using data from the first 1000 days. The “out-of-sample” hedging perfor-
mance for our models is compared to the “in-sample” hedging performance of the Black-Scholes
model, where the hedge for each contract is determined by its own concurrent implied volatility.
That is

∆k+i = ∆BS
k+i = N(d1(σk+i(X, T ))

where N() is the standard normal cumulative distribution function and

d1 =
ln(Sk+i/X) + (r + σk+i(X, T )2/2)T

σk+i(X, T )
√

T

where T is the time remaining to expiration, r is the yield to maturity over date T , and
σk+i(X, T ) is the implied Black volatility at date k + i that equates the theoretical price to
the actual option price.
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Notice that this benchmark against which our hedging is to be compared is difficult to beat.
At each day the hedge is constructed so that every option matches its actual price. At any
single date, this model has as many parameters as there are contracts, and over n successive
days the number of parameters in this model is n times the number of contracts! In contrast,
the models we test are based on parameters estimated using historical data alone and at any
date, theoretical option prices will not exactly match actual option prices.

We now discuss how the hedge ratios for our GARCH models are established. Discrete-time
GARCH models do not allow for hedging along the lines of Black-Scholes because markets are
incomplete. Nevertheless, one can view the hedge ratio as the partial derivative of the option
pricing function with respect to the stock price while holding the local volatility fixed. The
hedge ratio naturally becomes

∆t = e−r(T−t)EQ
[
ST

St
1
[
ST
St

> X
St

]

]
(32)

a result first established in Duan (1995) and later collaborated by Garcia and Renault (1998) by
applying the homogeneity of degree one property of the option pricing function. In our hedging
analysis, we adopt equation (32) for computing the hedge ratio.

For each model, we compute the hedge ratios numerically, using Monte Carlo simulation
with 10,000 paths, and antithetic variables. The same set of random numbers are used for the
different models. The above analysis will reveal how effective the models are in their ability to
hedge the full array of call options by moneyness and maturity.

3 Empirical Results

3.1 Time Series Estimation

Table 2 shows the parameter estimates based on the time series data over the first 1000 trading
days for the 8 models. In particular, for all parameters that can be estimated from the time
series alone, we report the point estimates and their standard deviations.

Table 2 Here

First, consider the models for which no option data was used. It can be seen that λ is
significantly different from 0 indicating that the incorporation of jumps is significant. In addition,
for the NGARCH models, the parameters β1 and β2 are significantly different from 0, indicating
that GARCH effects are important. As is well documented the non-linear term c, capturing
the so called leverage effect, is also significant in the full NGARCH-Jump model and restricted
NGARCH-Jump model. For the TGARCH models all the β values are significant.
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Table 2 also reports the additional estimates for the G-MERTON and the full NGARCH-
Jump and TGARCH-Jump models, when option data was used to identify κ, bρ and γ. The
effects on option prices to changes in γ were found to be very minor, and hence the results
reported here are obtained by fixing γ = 1. For the normal models, since λ = 0, bρ = δ, and
these values are reported.

The option information allows us to extract information on jump risk premia. In particular
according to equation (26), the contribution of the diffusion risk premium for the NGARCH-
Jump model, −bρ

√
ht = 0.01246

√
ht, while the jump risk premium, λ(µ̄(1 − κ) − bρκγγ̄)

√
ht =

0.05986
√

ht. So the introduction of “jumps”, that allow for kurtosis and skewness, accounts for
about 82.7% of the total risk premium. For the TGARCH-Jump model, the contribution of the
diffusive term to the risk premium is −bρ

√
ht = 0.01623

√
ht, while the remaining components

contribution is 0.07880
√

ht. So the introduction of “jumps”, accounts for about 82.9% of the
total risk premium.

Table 3 reports the skewness and kurtosis of the conditional daily return residual normalized
by the square root of the local scaling factor, i.e., yt/

√
ht for the various models. We know

that the NGARCH and TGARCH-Normal models have conditionally normal distributions so
the kurtosis of residuals should be 3. But Table 3 shows that the actual kurtosis is larger than
3.10

Table 3 Here

Eraker, Johannes and Polson (2003) find that jumps are infrequent events, occurring on
average about twice every three years, tend to be negative, and are very large relative to normal
day to day movements. In contrast, our average “jump” frequency is close to two a day. In
our model the jumps add conditional skewness and kurtosis to the daily innovations, rather
than providing large shocks. Indeed, the mean and standard deviation of our jump size variable
is not particular large compared to the standard normal innovation. By mixing a random
number of normal distributions, the conditional distribution displays higher kurtosis. In our
case J̄t consists of one standard normal random variable together with a Poisson random sum
of independent normal random variables with mean µ̄ and variance, γ̄2. The NGARCH-Jump
model, for example, has a predicted kurtosis (skewness) of normalized daily return residuals
equal to 4.119, (0.0276) close to the observed kurtosis of 4.107 (0.0264).

10Under measure P the conditional skewness and kurtosis of NGARCH-Jump innovation, J̄t, can be shown to

be skewness = λ(3µ̄γ̄2+µ̄3)

(1+λ(γ̄2+µ̄2))3/2 and kurtosis = λ(3γ̄4+6γ̄2 µ̄2+µ̄4)

(1+λ(γ̄2+µ̄2))2
.
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3.2 Option Pricing Performance

Once the parameter estimates of the models have been obtained, the full time series of the local
scaling factor can be established. Given the two state variables, (St, ht+1), at any date t, we can
compute the theoretical option prices in the out-of-sample period and compare them to actual
option prices.

In our out-of-sample period, the stock market steadily increased. As a result, there are many
more very deep in-the-money contracts. We define moneyness as (St −X)/St where X is strike
price. Our default moneyness buckets consisted of bins set up as follows: 1 = (< −0.05), 2 =
(−0.05,−0.04), 3 = (−0.04,−0.03), 4 = (−0.03,−0.02), 5 = (−0.02,−0.01), 6 = (−0.01, 0.01),
7 = (0.01, 0.02), and so on up to 11 = (> 0.05). For ease of presentation sometimes we combined
moneyness categories, and focused on out-the-money contracts since this is where the models
produce significantly different results. We separated out all contracts into 4 maturity buckets,
of less than 30 days, 30 − 60 days, 60 − 90 days and greater than 90 days. Our out-of-sample
call option set consists of 17, 891 (3,710) contracts, when computed daily (weekly).

Table 4 shows the results of pairwise comparisons of the out-of-sample residuals for each
option contract in the sample. In particular, the table reports the proportion of occasions that
the model on the row outperformed the model in the column over the class of contracts indicated
in the three panels.

Table 4 Here

The purpose of this table is to compare the performance of the 8 models and hopefully
reduce the set to a fewer candidate set of models. As an example, from the first panel of deep
out-the-money contracts we see that the G-Merton model outperforms the Merton Model in
92.3% of the contracts.11

From the tables we see that the models that incorporate historical option price information
clearly outperform models that only used historical time series information on the stock. In
particular, the G-Merton model outperforms the Merton Model and the Full NGARCH-Jump (
Full TGARCH-Jump) model outperforms their restricted versions. It appears that incorporating
option information in the estimation phase improves the out-of-sample performance.

The difference between the NGARCH and TGARCH models are different with an overall
slight edge going to the NGARCH models. For example, for out-the money contracts in our three
groups, (near, middle, and deep out-the-money contracts) the NGARCH-Normal model wins
47, 66 and 68% of the time, while the Restricted NGARCH-Jump model beats the Restricted

11The Table does not report the standard errors of these estimates, but in all cases sample sizes were fairly

large (over 300) and standard errors were always less than 2%.
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TGARCH model in 24, 35 and 44% of the time. Finally, the unrestricted NGARCH-Jump model
outperforms the unrestricted TGARCH-Jump model in 55, 56, and 56% of the times. The results
indicate that there may not be a major difference between the NGARCH and TGARCH models.

To explore this more fully, Figure 1 provides box and whisker plots for the percentage errors
of the three NGARCH models side by side with the corresponding TGARCH models for each
moneynesss category and separated by different maturities.

Figure 1 Here

As can be seen there are very little differences between the NGARCH and TGARCH- Nor-
mal models, between the restricted NGARCH and TGARCH models and between the two unre-
stricted models. The differences between the three classes of models, namely, normal, restricted
and unrestricted, are much greater than the differences between NGARCH and TGARCH mod-
els. In light of these results, in what follows we only focus on the NGARCH models. This
reduces the set of models from 8 to 5 and makes the presentation of the following results more
manageable.

Figure 2 summarizes the pricing performance of the 5 remaining models. The left panel
provides a plot of the average percentage error in prices of contracts versus moneyness. The
percentage pricing error is defined as the model price minus the market price and then divided
by the market price. The four plots are for each maturity bucket. On each graph there are
five lines, each representing a particular model. In all graphs, the topmost line refers to the
MERTON model, the next line the G-MERTON model, followed by the NGARCH-Normal,
RNGARCH-Jump and NGARCH-Jump.

Figure 2 Here

For all maturities, and for all models, there are systematic moneyness biases. In general,
on average, all models overprice deep out-of-the-money contracts, and very slightly underprice
in-the-money contracts. This can be seen in the skewness of the curves which are, in general,
positive over the range of out-the-money contracts, then negative for in-the-money contracts
and eventually converging to zero for very deep in-the-money contracts.

The MERTON model has very large biases and is clearly dominated by other models. G-
MERTON improves upon MERTON in reducing the skewness of the curves. The NGARCH-
Normal and RNGARCH-Jump appear to be fairly similar with the jump component providing
small benefits. Finally, there appears to be a significant flattening out of the curve for the
NGARCH-Jump model.

For short-dated contracts, and 30-60 day contracts, the NGARCH-Jump model produces
very good results relative to the others. For the longest dated contracts, the model does the
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best at fitting deep out-the-money contracts, but underprices contracts close to the money and
in-the-money.

Since the big discrepancy among the performance of the models is for out-the-money and
at-the-money contracts, we take a closer look at pricing errors for these contracts. The second
panel in Figure 2 presents the box and whisker plots for the percentage errors of the five models
plotted against moneyness. These plots clarify the results presented in the graphs and highlight
the distribution of residuals. For each moneyness bucket, the five plots are ordered from left to
right as MERTON, G-MERTON, NGARCH-Normal, RNGARCH-Jump and NGARCH-Jump.

Figure 3 shows the average percentage errors in prices for each model across expiration dates.
Since the results depend on moneyness, four graphs are presented, each graph for a different
moneyness category. If there were no bias in the results, then the plots should be horizontal
lines near zero. For all models, and for all moneyness buckets, the overall trend of the lines is
downward sloping. Average percentage errors in short-dated options are higher than average
percentage errors for long-dated contracts. For all out-the-money and at-the-money contracts,
the NGARCH-Jump model has the flattest curve closest to zero. However, the underpricing
of in-the-money contracts is clearly revealed, with the problem becoming more extreme with
longer-dated contracts.

Figure 3 Here

In our analysis of the NGARCH-Jump model, we used short-dated at-the-money options to
estimate κ. As a result, it may not be surprising that short-dated, at-the-money option prices
are well fit. If we re-estimate κ using longer-dated options, then the “out-of-sample” fit to
longer-dated contracts does improve.

In general there is no unambiguously preferable metric for computing and presenting in-
sample or out-of-sample fits.12 Our estimate of κ was done by minimizing the sum of squared
percentage errors for the set of short-dated, at-the-money options. Alternative approaches could
use more cross sectional option prices, and/or use absolute errors, rather than percentage errors.
Bates (2002) suggests that dividing dollar errors by the underlying asset price makes results more
comparable and is more appropriate given that option prices are theoretically nonstationary.
Since our goal is to compare model performance, using estimates extracted from time series
information, as much as possible, we refrained from recalibrating our models using panel option
data and alternative best fit criterion.

The next pricing analysis conducted on the “out-of-sample” residuals was to compare more
carefully the performance of the restricted NGARCH model with the unrestricted model. If
the differences are small, then it suggests that the majority of option pricing information can

12For a good review of the alternative approaches, see Bates (2003).
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indeed be identified from the time series of the underlying alone. If using historical option price
information adds information, then the unrestricted models should perform better. Table 5
shows the mean absolute percentage error for the restricted and unrestricted NGARCH with
Jumps models over several moneyness categories and for our maturity buckets.

Table 5 Here

The Table clearly reveals the superiority of the unrestricted model in computing better
out-the-money prices. This holds true for all maturity options. Interestingly, however, for the
in-the-money contracts, there is a small bias in favor of the restricted model. Recall, however,
that in estimating the full models, the only additional information beyond the time series of
index prices that was used were the short dated at the money call option prices. Since this time
series provided significant improvements in predictions, clearly using additional historical option
prices could improve the results further. The main conclusion from this analysis, however, is
that for estimation purposes, incorporating the time series of option data does indeed improve
the estimates for future option pricing.

The table shows that in aggregate, over all contracts, the RNGARCH-Jump model outper-
forms all other models. Further, for almost all maturity and moneyness buckets, this model
outperformed MERTON and G-MERTON. The NGARCH-Normal model was a bit more com-
petitive, but, at the 5% level of significance, the RNGARCH-Jump model is preferable. As we
saw earlier, the unrestricted NGARCH-Jump model was significantly better than the restricted
model in pricing out-the-money and at-the-money contracts.

Table 6 shows the average absolute percentage pricing errors for the RNGARCH-Jump
model, for all contracts in the 50 week out-of-sample period in each maturity-strike price bucket.
The standard errors are also provided. The average absolute pricing error over all 17, 891 con-
tracts was 6%. The median percentage error was 3.5%.

Table 6 Here

The errors reported here are somewhat similar to the errors reported in one-week “out-of-
sample” tests conducted by Bakshi and Cao (2003) for their stochastic volatility model with
correlated return and volatility jumps. For out-(at-)the-money calls their average absolute
percentage errors ranged from 14% to 27% (5% to 12%) depending on maturity. Comparisons of
our residuals with theirs are somewhat difficult to make for several reasons. First, in our study
we used time series of the underlying index to estimate most of the parameters, while they fit
their parameters based on out-the-money contracts. If we had used information on out-the-
money contracts in the optimization, our fits of out-the-money options would improve, possibly
at the expense of in-the-money contracts. However, our goal was to evaluate whether models
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estimated from the time series of returns would lead to good models of option prices. Second,
our model is never re-estimated. In particular, included in our sample of residuals are contracts
whose prices are computed up to 50 weeks after the model parameters were determined.13 In
spite of differing objectives, our error terms appear to be of similar magnitudes to their reported
values.

Recall, that our model is never recalibrated. As a result it may be the case that the errors
propagate over time in an uneven way. The bottom panel of Table 6 shows the means of the
absolute pricing errors by moneyness, for each successive 10-week period. Interestingly, the
performance of the model does not seem to deteriorate over the 10-week blocks. Indeed, the
pricing errors, 40 − 50 weeks out-of-sample, are no worse than the errors in the first 10-week
block.

3.3 Hedging Performance

Figure 4 shows the box and whisker plots of the raw hedging errors (discrete delta hedged gains)
from dynamically hedging over 15 successive trading day periods, when the delta values are
computed by the G-MERTON, NGARCH-Normal, RNGARCH-Jump, the full NGARCH-Jump
model and the Black-Scholes model. The leftmost plot in each block of six plots indicates the
change in the unhedged position. The plots are ordered by the original moneyness of the option
at the start of the hedging period.

Figure 4 Here

From the box and whiskers plot of the unhedged residuals, we see that over the sample
period, the S&P 500 index steadily increased, and on average buying calls was profitable. The
figure shows that all five hedges were remarkably effective, in spite of the fact that some of
these models performed poorly in pricing. Indeed, at this aggregate level, there appears to be
very minor differences between the five hedges. The amount of unhedged variability explained
by the delta hedging strategies are similar for all models. Indeed, while the ordering of the R2

values by model align with the results from the pricing, the differences are hardly significant.14

To our knowledge, the results reported here are the first results that attempt to measure the
effectiveness of hedges established using GARCH based models.

13Bakshi and Cao’s analysis is primarily geared towards examining volatility skews for stock options rather

than index options. Bakshi, Kapadia and Madan (2003), relate individual security skewness to the skew of the

market, and identify conditions where the skewness of the market is greater. This skewness directly relates to the

volatility smile.
14The R2 values for G-MERTON, NGARCH-Normal, RNGARCH-Jump, NGARCH-Jump and the ad hoc (in-

sample) Black-Scholes were 0.79, 0.85, 0.87, 0.90, and 0.89, respectively.
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Notice that all the models produced hedge results as good as the ad hoc Black-Scholes model.
Indeed, over all 706 hedges that were tested, the NGARCH-Jump model outperformed the ad
hoc Black-Scholes model on 54% of occasions.

Recall that the ad hoc Black-Scholes model used the implied volatilities of each contract as
the basis for the delta hedge. As a result, this model perfectly priced each contract each day.
The fact that these “out-of-sample” hedges performed as well as the “in-sample” Black-Scholes
model indicates that these models are useful for explaining option prices moves. This is quite
remarkable, since the Black-Scholes equation as used here, is not really a model but serves only
as a calibrating device.15

The average return from all the delta hedged strategies, across all moneyness categories is
clearly negative. This result is consistent with that found by Bakshi and Kapadia (2003), who
explained this finding by postulating a negative risk premium for volatility risk.

Eraker (2004) found that while the inclusion of jumps in volatility improved the time series
fit of the S&P 500 time series of returns, the benefits of the jump in explaining option prices were
surprisingly not significant. In our analysis, we find that our “jumps” are significant in the time
series, and that the benefits of incorporating these jumps flow over into option pricing. However,
from a hedging perspective, even the simplest NGARCH-Normal model does an outstanding job
in producing hedge ratios that reduces the risk associated with selling naked calls. Indeed, while
the hedges constructed from the NGARCH-Jump model were not worse, they added little to
the explanatory power.

The hedging results indicate that even crude models might be very effective in hedging
European call options. However, this may just be a property of European calls, and may not
generalize to the hedging of exotic options, such as barrier options. Indeed, evidence that this
is indeed the case is provided by Davydov and Linetsky (2001). The above hedging results can
therefore be interpreted positively. The hedges are effective for Europeans, and, unlike the ad
hoc Black-Scholes model, the methodology used to construct the hedges flows over very naturally
to the hedging of exotic derivatives.

4 Conclusion

In this paper we have extended Duan’s (1995) GARCH option model that relies on normal
innovations to incorporate non-normal innovations. These GARCH-Jump models extend the
literature in a very important way. Specifically, they contain, as special limiting cases, models
of the underlying that contain jumps in returns and/or in volatilities. This is in contrast to the

15For example, American or exotic options cannot be priced using the ad hoc model information, while American

or exotic GARCH option prices can easily be computed.
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typical GARCH models based on normal innovations. Since these latter models only contain
diffusive stochastic volatility models as limiting cases, it is not surprising that they are not
capable of removing well known option pricing biases. We provide the theory of GARCH option
pricing that permits contracts to be priced in the presence of skewed and leptokurtic innovations,
and demonstrate that these advances are empirically significant.

Specifically, using data on the S&P 500 index and the set of European options, we have
provided empirical tests of the ability of GARCH-Jump models to price and hedge options. We
show that introducing jumps that allow for fat tails and higher kurtosis adds significantly to
explaining the time series behavior of the S&P 500.

For pricing of options our simplest nested model, the Merton model, performed the worst.
Capturing time varying volatility, and including priced jump risk lead to better results. However,
all models based on normal innovations were dominated by models that allowed non-normal
innovations. Unlike the findings of Christoffersen and Jacobs (2004), we demonstrate that
complex models of the underlying that go beyond capturing simple volatility clustering and
leverage effects, can add significantly to explaining the volatility smile. Further, we showed
that our GARCH-Jump models are capable of pricing options well without requiring frequent
recalibration. Indeed, our models were capable of good pricing up to a year after the parameters
were estimated. Finally, the hedging effectiveness of the GARCH-Jump models was examined.
The models were able to hedge European options very effectively.

We illustrated how incorporating short-term at-the-money contracts into the analysis im-
proved the fit of out-the-money contracts. If our sole goal was only to price and hedge options,
then we should be able to improve our results by incorporating more historical information
provided by the time series of all the options.

In general, distinguishing between stochastic volatility and jumps is difficult. Our empirical
results showed that jumps were frequent, with more than one “jump” a day. This implies that
to capture fat tailed return distributions random mixing of normal innovations is necessary. It
is possible that introducing more dependence in the dynamics of the pricing kernel will have
the effect of allowing for greater skewness and kurtosis in return distributions over longer time
horizons, leading to a better explanation of the volatility skew. Although our empirical results
related to a local volatility updating equation of NGARCH and TGARCH forms, our evidence
suggests that the difference between the two structures is not that important for option pricing.
What is important is that models should contain jumps and conditional local returns should not
be normal.
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Appendix

Proof of Proposition 1

Substituting for the dynamics of the pricing kernel, we compute the following expectation:

EP
[

mt

mt−1
|Ft−1

]
= exp

[
a + b2/2 + λ(κ − 1)

]
.

Since this value is the price of a one period discount bond with face value $1, we have:

r = −
(
a + b2/2 + λ(κ − 1)

)
.

This equation uniquely identifies a in terms of the other parameters.

Now consider the pricing equation for the asset. We have, from equation (8),

EP
[

mt

mt−1

St

St−1
|Ft−1

]
= 1.

Substituting for the dynamics of the pricing kernel and the asset price, the equation can be
reexpressed as

EP
[
e
αt+a+X̃

(0)
t +

∑Nt
j=1

X̃
(j)
t

]
= 1

where

X̃
(0)
t ∼ N(0, σ2

0t)

X̃
(j)
t ∼ N(bµ +

√
htµ̄, σ2

t )

with

σ2
0t = ht + b2 + 2

√
htbρ

σ2
t = htγ̄

2 + b2γ2 + 2
√

htbργγ̄

Computing this expectation, the equation leads to:

αt + a + σ2
0t/2− λ + λebµ+

√
htµ̄+σ2

t /2 = 0

Finally, substituting the expression for a into the above equation leads to:

αt = r − ht

2
−
√

htbρ + λκ

[
1 − exp

(√
ht (µ̄ + bργγ̄) +

htγ̄
2

2

)]
,

and the result follows.

Proof of Lemma 1

The proof follows along the line of Duan (1995).
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(i) Q is a probability measure since:
∫

1dQ =
∫

erT mT

m0
dP

= EP
[
erT mT

m0

∣∣∣∣F0

]

= EP
[
erT mT−1

m0
EP

(
mT

mT−1

∣∣∣∣FT−1

)∣∣∣∣F0

]

= EP
[
er(T−1)mT−1

m0

∣∣∣∣F0

]

where the last equality follows from the fact that:

EP
[

mT

mT−1

∣∣∣∣FT−1

]
= e−r .

Continuing this process we obtain ∫
1dQ = 1.

(ii) Now, for any t < T , we have:

EQ[Zt|Ft−1] = EP
[
Zte

r(T−t+1) mT

mt−1

∣∣∣∣Ft−1

]

= EP
[
Zte

r(T−t+1) mT−1

mt−1
EP

(
mT

mT−1

∣∣∣∣FT−1

)∣∣∣∣Ft−1

]

= EP
[
Zte

r(T−t) mT−1

mt−1

∣∣∣∣Ft−1

]

Continuing this process, we obtain:

EQ[Zt|Ft−1] = erEP
[
Zt

mt

mt−1

∣∣∣∣Ft−1

]
= erZt−1.

So, Q is a local risk neutral probability measure.

Proof of Proposition 2

The proof follows along the line of Duan (1995). Let Wt represent the logarithmic return
over period [t − 1, t]. Then,

Wt = αt +
√

htJ̄t.

We now consider the moment generating function of Wt under Q:

EQ[ecWt |Ft−1] = EP
[
ecWt+r mt

mt−1

∣∣∣∣Ft−1

]

= EP
[
ecαt+c

√
ht J̄t+r+a+bJt

∣∣∣Ft−1

]

= ecαt+r+aEP
[
e
c
√

htX̄t
(0)

+bX
(0)
t +

∑Nt
j=1

(c
√

htX̄t
(j)

+bX
(j)
t )
∣∣∣∣Ft−1

]
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We know that

EP(c
√

htX̄
(0)
t + bX

(0)
t ) = 0

EP(c
√

htX̄
(j)
t + bX

(j)
t ) = bµ + c

√
htµ̄, for j = 1, 2, ...

V arP(c
√

htX̄
(0)
t + bX

(0)
t ) = c2ht + b2 + 2c

√
htbρ

V arP(c
√

htX̄
(j)
t + bX

(j)
t ) = c2htγ̄

2 + b2γ2 + 2c
√

htbργγ̄, for j = 1, 2, ...

Using these results, we obtain

EQ[ecWt |Ft−1] = exp
(

cαt + r + a +
1
2
(c2ht + b2 + 2c

√
htbρ)− λ(1− κKt(c))

)
(33)

where Kt(c) has been defined in Proposition 1.

Now, let c = 0. Then,

1 = exp

(
r + a +

b2

2
− λ(1− κ)

)

or, equivalently,

r + a +
b2

2
= λ(1− κ)

Substituting this expression into equation (33), we obtain

EQ[ecWt |Ft−1] = exp
(

cαt +
1
2
(c2ht + 2c

√
htbρ)− λκ(1− Kt(c))

)
(34)

Now let c = 1. Then EQ[eWt |Ft−1] = er. Hence:

r = αt +
1
2
ht +

√
htbρ− λκ(1− Kt(1)),

from which:
αt +

√
htbρ = r − 1

2
ht + λκ(1− Kt(1)).

Hence:

EQ[ecWt |Ft−1] = exp
[
c

(
r − 1

2
ht + λκ(1− Kt(1))

)
+

1
2
c2ht − λκ(1 − Kt(c))

]

Let

α̃t = r − 1
2
ht + λ̃ (1 − Kt(1))

λ̃t = λκ

We can write:
EQ[ecWt |Ft−1] = exp

[
cα̃t +

1
2
c2ht − λ̃ (1 − Kt(c))

]
(35)
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Now consider the following system:

W̃t = α̃t +
√

htJ̃t

where

J̃t = X̃
(0)
t +

Ñt∑

j=1

X̃
(j)
t

Ñt ∼ Poisson
(
λ̃
)

X̃
(0)
t ∼ N(0, 1)

X̃
(j)
t ∼ N(µ̄ + bργγ̄, γ̄2)

It is straightforward to verify that the moment generating function of W̃t is the same as that in
equation (35). Thus, under measure Q, Wt is distributionally equivalent to W̃t.

The volatility dynamic can be expressed in terms of J̃t using J̄t = J̃t + bρ, which can
be obtained via the return definition. Thus, ht = F (ht−i, J̃t−i + bρ; i = 1, 2, · · ·). The new
innovation J̃t has mean λ̃(µ̄ + bργγ̄) and variance (1 + λ̃γ̃2), and thus requires the appropriate
standardization in the expression.
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Table 1: 
Taxonomy of Models 

 
 
 

 
 

  
 



Table 2: 
Estimates for the Eight Models 

 
The table shows the point estimates and standard deviations for the parameters of all eight models. The 
Merton Model, the NGARCH-Normal and the TGARCH-Normal Model can be estimated from the time 
series alone. For the two normal models bρ= δ. For the two restricted models we estimate δ, and restrict κ 
and γ to be 1 and 0 respectively. This uniquely identifies bρ. For the three unrestricted models (G-Merton, 
Full NGARCH-Jump and Full TGARCH-Jump) we release the two restrictions, but require the δ value to 
be consistent with the time series value.  We incorporate the time series of the closest to 30 day at-the-
money contracts, and then identify  κ, bρ and γ  using least squares as explained in the text. Since the 
calibrated γ values were not significantly different from 1, the optimizations reported are based under the 
constraint that γ=1. 
 
 
 
  

 Merton G-Merton Normal Restricted Full Normal Restricted Full

β0 6.41E-06 6.41E-06 1.83E-06 1.65E-07 1.65E-07 -1.10E-04 -3.40E-05 -3.40E-05
(2.96E-07) (8.52E-07) 6.63E-09 (4.81E-05) (3.03E-05)

β1 - 0.84795 0.84431 0.84431 0.95765 0.96597 0.96597
(0.0040) (0.0062) (0.0224) (4.75E-03)

β2 - 0.07962 0.07560 0.07560 2.56E-04 5.75E-05 5.75E-05
(0.0035) (0.0041) (8.144E-05) (4.21E-05)

β3 - - - - 5.09E-04 1.53E-04 1.53E-04
(1.37E-04) (3.91E-05)

c - 0.66425 0.77139 0.77139 - - -
(0.0412) (0.0008)

λ 1.4365 1.4365 - 2.20226 2.20226 - 2.1304 2.1304
(0.0471) (0.0004) (0.0243)        

2.0705 2.0705 - 2.09608 2.09608 - 2.158 2.158
(0.0451) (0.0014) (0.0084)

0.12941 0.12941 - 0.0332 0.0332 - 0.054841 0.054841
(0.0202) (0.0161) (2.758E-04)

δ 0.081681 0.081681 -0.02249 8.48E-04 8.48E-04 -0.029296 0.0218 0.0218
(0.0293) (0.0085) (0.0064) (0.033034) (1.58E-04)

bρ - -0.02572 -0.0225 -0.0723 -0.01246 -0.0293 -0.0950 -0.0162

κ - 0.9818 - 1 0.8513 - 1 0.9008

- 1 - 0 1 - 0 1

ML Value 3605.9 3616.6 3635.1 3612.0 3631.4

TGARCH

Parameter

NGARCH Jump

γ

μ

γ



Table 3: 
Skewness and Kurtosis of Jt  

 
The table presents the actual and theoretical conditional skewness and kurtosis values of the normalized 
innovation for all the models estimated from the time series of S&P 500 Index values alone. The data used 
was the daily return data on the S&P 500 index over the four year matching period for which option data 
was available, starting from January 1991. 

 
 
 

    
 

 
 
 
 
 
 
 
 

 
 

   
    

Pure Jump 
(Merton Normal (Restricted Normal (Restricted

& G-Merton) & Full) & Full)

Actual 0.2047 0.015 0.0264 0.15 0.0437
Theoretical 0.1244 0 0.0276 0 0.0458

Actual 4.9103 4.0724 4.1071 4.0888 4.0689
Theoretical 4.5473 3 4.119 3 4.162

NGARCH- Models TGARCH- Models

Skewness

Kurtosis



                                          
Table 4: 

Pairwise Comparisons of Absolute Errors 
 

The Table shows the proportion of contracts where the model indicated by the row had smaller absolute 
errors than the model indicated by the column. For example, for deep out-the-money options, the Merton 
Model outperformed the G-Merton Model for only 7.7% of the contracts. The number of contracts used in 
each table exceeded 500 in each moneyness category, and the standard errors were all less than 2%. The 
analysis is performed for all contracts in the middle of each week (Wednesday) over the fifty week periods 
after the parameters were estimated 
  
 
 
 
 
 

 
 

 
  

Merton G-Merton NGARCH TGARCH RNGARCH RTGARCH FNGARCH FTGARCH
Merton - 7.7% 12.3% 11.3% 12.1% 13.5% 27.6% 27.0%

G-Merton 92.3% - 14.5% 13.9% 13.5% 12.9% 29.4% 28.8%

NGARCH 87.7% 85.5% - 47.4% 32.3% 21.2% 36.9% 36.7%

TGARCH 88.7% 86.1% 52.6% - 50.0% 22.2% 38.7% 38.5%

RNGARCH 87.9% 86.5% 67.7% 50.0% - 24.0% 38.5% 37.9%

RTGARCH 86.5% 86.5% 78.8% 77.8% 76.0% - 46.4% 45.8%

FNGARCH 72.4% 70.6% 63.1% 61.3% 61.5% 53.6% - 55.2%

FTGARCH 73.0% 71.2% 63.3% 61.5% 62.1% 54.2% 44.8% -

Merton G-Merton NGARCH TGARCH RNGARCH RTGARCH FNGARCH FTGARCH
Merton - 16.0% 17.0% 19.1% 16.6% 21.3% 29.5% 29.1%

G-Merton 84.0% - 20.9% 22.3% 18.9% 25.2% 30.9% 29.9%

NGARCH 83.0% 79.1% - 65.8% 25.4% 32.6% 38.5% 38.3%

TGARCH 80.9% 77.7% 34.2% - 30.5% 27.9% 36.5% 38.1%

RNGARCH 83.4% 81.1% 74.6% 69.5% - 35.2% 38.7% 39.5%

RTGARCH 78.7% 78.7% 67.4% 72.1% 64.8% - 46.1% 46.5%

FNGARCH 70.5% 69.1% 61.5% 63.5% 61.3% 53.9% - 56.1%

FTGARCH 70.9% 70.1% 61.7% 61.9% 60.5% 53.5% 43.9% -

Merton G-Merton NGARCH TGARCH RNGARCH RTGARCH FNGARCH FTGARCH
Merton - 20.8% 16.9% 20.5% 16.0% 23.5% 34.5% 35.2%

G-Merton 79.2% - 19.5% 22.1% 19.5% 25.7% 35.5% 37.5%

NGARCH 83.1% 80.5% - 67.8% 30.3% 40.4% 45.9% 46.6%

TGARCH 79.5% 77.9% 32.2% - 30.3% 30.6% 42.7% 43.6%

RNGARCH 84.0% 80.5% 69.7% 69.7% - 43.6% 47.6% 48.5%

RTGARCH 76.5% 76.5% 59.6% 69.4% 56.4% - 53.7% 52.1%

FNGARCH 65.5% 64.5% 54.1% 57.3% 52.4% 46.3% - 56.4%

FTGARCH 64.8% 62.5% 53.4% 56.4% 51.5% 47.9% 43.6% -

Deep-Out-The-Money Options  (Moneyness <-0.04)

Near Out-The-Money Options  (Moneyness < 0)

Medium Out-The-Money Options (Moneyness <-0.02)



  
Table 5: 

Average Absolute Percentage Errors Out-of-Sample  
 
The parameter values for the Restricted NGARCH Jump model are estimated using the time series of asset 
prices up to week 200 alone, while the unrestricted NGARCH-Jump model also uses information on the  at-
the-money option prices. In the 50 weeks, after  the parameter values are estimated,  the theoretical option 
prices are updated solely based on the path followed by the stock  index. The table shows the mean (and 
standard error) of the absolute percentage errors over all contracts for each maturity-moneyness bucket for 
contracts for which we had actual prices over all days in the 50 week period. All option prices are 
computed conditional on the index value and the percentage error is defined as the theoretical price less the 
actual price divided by the actual price.  

Moneyness

RNGARCH FNGARCH RNGARCH FNGARCH RNGARCH FNGARCH RNGARCH FNGARCH RNGARCH FNGARCH

- - 0.26 0.16 0.30 0.15 0.18 0.15 0.20 0.15

- - (0.036) (0.043) (0.029) (0.013) (0.009) (0.005) (0.009) (0.005)

0.42 0.12 0.36 0.17 0.21 0.12 0.14 0.14 0.19 0.14

(0.138) (0.047) (0.050) (0.027) (0.025) (0.012) (0.013) (0.008) (0.014) (0.007)

0.37 0.16 0.24 0.13 0.17 0.12 0.11 0.13 0.17 0.13

(0.086) (0.053) (0.030) (0.013) (0.017) (0.011) (0.009) (0.008) (0.010) (0.006)

0.37 0.19 0.20 0.11 0.13 0.11 0.09 0.12 0.15 0.12

(0.054) (0.035) (0.019) (0.008) (0.011) (0.008) (0.007) (0.007) (0.009) (0.005)

0.23 0.14 0.15 0.10 0.09 0.09 0.07 0.11 0.12 0.11

(0.029) (0.015) (0.012) (0.007) (0.007) (0.006) (0.005) (0.007) (0.006) (0.004)

0.12 0.08 0.08 0.07 0.06 0.08 0.06 0.10 0.08 0.08

(0.009) (0.006) (0.005) (0.004) (0.003) (0.004) (0.003) (0.004) (0.003) (0.002)

0.02 0.03 0.02 0.03 0.04 0.04 0.04 0.05 0.03 0.04

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000)

0.06 0.05 0.06 0.05 0.07 0.06 0.07 0.08 0.07 0.06

(0.004) (0.002) (0.003) (0.001) (0.002) (0.001) (0.002) (0.001) (0.001) (0.001)

TotalT<30days 30<T<60 60<T<90 T>90days

-0.02<M<-0.01

-0.01<M<0.01 

M>0.01 

Total  

M<-0.05

-0.05<M<-0.04

-0.04<M<-0.03

-0.03<M<-0.02



Table 6: 
Out-of-Sample Performance of the Full NGARCH-Jump model 

 
The parameter values for the NGARCH-Jump model are estimated using the time series of asset prices up 
to week 200, as well as at-the-money option prices. In the following 50 weeks, the parameter values are not 
updated and the theoretical NGARCH-Jump option prices are updated solely based on the path followed by 
the stock index. The top panel shows the mean  (and standard error) of the absolute percentage errors over 
all contracts for each maturity-moneyness bucket for all contracts for which we had actual prices over all 
days in the 50 week period. All option prices are computed conditional on the index value and the 
percentage error is defined as the theoretical price less the actual price divided by the actual price.   

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

M<-0.05 -0.05<M<-0.04 -0.04<M<-0.03 -0.03<M<-0.02 -0.02<M<-0.01 -0.01<M<0.01 M>0.01 Total  

In Sample 0.15 0.15 0.14 0.14 0.13 0.10 0.05 0.08
(0.006) (0.009) (0.008) (0.008) (0.006) (0.003) (0.001) (0.001)

0.17 0.10 0.10 0.09 0.08 0.05 0.04 0.05
(0.020) (0.018) (0.018) (0.012) (0.008) (0.005) (0.001) (0.002)

0.12 0.09 0.11 0.08 0.07 0.05 0.03 0.04
(0.019) (0.022) (0.015) (0.009) (0.010) (0.005) (0.001) (0.002)

0.12 0.12 0.10 0.10 0.08 0.06 0.03 0.05
(0.014) (0.019) (0.014) (0.012) (0.010) (0.004) (0.001) (0.002)

0.20 0.13 0.12 0.12 0.11 0.10 0.03 0.06
(0.020) (0.020) (0.015) (0.011) (0.009) (0.004) (0.001) (0.002)

0.14 0.17 0.13 0.14 0.12 0.09 0.03 0.04
(0.013) (0.043) (0.038) (0.040) (0.019) (0.006) (0.001) (0.002)

0.15 0.14 0.13 0.12 0.11 0.08 0.04 0.06
(0.005) (0.007) (0.006) (0.005) (0.004) (0.002) (0.000) (0.001)

Moneyness

40-50 weeks 

Total  

1-10 weeks

10-20 weeks

20-30 weeks

30-40 weeks



Figure 1: 
Box Plots of NGARCH and TGARCH Option Pricing Errors 

 
The figures show box plots of percentage errors for six models, plotted against moneyness for the four maturity buckets. In 
all cases, the ordering of the lines in each moneyness category is NGARCH and  TGARCH-Normal models, followed by the 
Restricted NGARCH and TGARCH-Jump models, followed by the unrestricted NGARCH-Jump and TGARCH-Jump 
models . The moneyness categories are 1=(<-0.05), 2 = (-0.05,-0.04), 3=(-0.04,-0.03), 4=(-0.03,-0.02), 5= (-0.02,-0.01) and 6 
= (-0.01,0.01).  All residuals are out-of sample residuals. The parameters are estimated up to day 750, and the residuals are 
computed based on updating the path of the index over the subsequent 50 weeks. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  
 

  



Figure 2:  
Box Plots of Option Pricing Errors 

 
The left column presents the mean percentage errors by moneyness for the four maturity buckets. In all cases, the ordering of 
the lines is MERTON, G-MERTON, NGARCH-Normal, RNGARCH-JUMP and NGARCH-JUMP, with the highest errors 
being for the first model and the lowest errors for the last model.  The right column presents the box and whisker plots for the 
percentage pricing errors for each of the five models, plotted against moneyness over the range (-0.05 to +0.01) where there 
are significant differences. In each figure, the leftmost plot is MERTON, followed by G-MERTON, NGARCH-Normal, 
RNGARCH-Jump, and finally the NGARCH-Jump model. 
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Figure 3: 
Average Pricing Errors 

 
Each figure plots the average percentage error in prices across seven different maturity buckets, for the 
different moneyness categories. The thin solid line is the MERTON model, the dashed line is the G-
MERTON model, the more frequent dashed line in the NGARCH-Normal, the long dash-short dashed line 
is the RNGARCH-Jump, and the dark solid line is the full NGARCH-Jump model. 
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Figure 4: 

Box Plots of Net Profits of Delta Hedging over 15 days 
 
The figure compares the hedging errors of five different models to the unhedged error for all contracts in 
the out-of-sample hedging period as defined in the text. The plots are considered by initial moneyness. The 
leftmost box and whiskers plot is for the unhedged position in a one dollar investment in the option held for 
15 days. The next five plots correspond to the NGARCH model, the RNGARCH-Jump model, the G-
Merton model, the NGARCH-Jump model and the ad-hoc Black-Scholes model.  The estimates for the first 
four model are all based on historical data. In contrast the hedge using the Black-Scholes model is based on 
the daily concurrent quoted implied volatility of each contract. 
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