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Green and Lin study a version of the Diamond-Dybvig model with a finite number of 
agents, independence (independent determination of each agent’s type), and sequential 
service. For special preferences, they show that the ex ante first-best allocation is the 
unique equilibrium outcome of the model with private information about types. Via 
a simple argument, it is shown that uniqueness of the truth-telling equilibrium holds for 
general preferences. and, in particular, for a constrained-efficient allocation whether first-
best or not. The crucial assumption is independence. 
 
Keywords: bank run, implementation 
JEL code: D82, G21 



1 Introduction

Green and Lin [4] study a version of the Diamond-Dybvig [3] model with a
�nite number of agents, independent (across agents) determination of each
agent�s type (impatient or patient), and sequential service. For special pref-
erences, they conclude that the ex ante �rst-best allocation� the allocation
that maximizes expected utility when information about types is public� is
the unique equilibrium outcome of the model when information about types
is private. We show, via a very simple argument, that uniqueness of the
truth-telling equilibrium holds for general preferences. In other words, the
conclusion that there is no bank-run equilibrium is unrelated to whether
or not the ex ante �rst-best allocation can be implemented. The critical
assumption is their independence assumption.

2 Environment

There are N agents, two dates, 1 and 2, and there is one good per date. The
economy is endowed with an amount Y > 0 of date-1 good and has a constant
returns to scale technology with gross rate-of-return R. An agent of type
t 2 T has utility u (�; �; t), where the �rst argument is date-1 consumption
and the second is date-2 consumption and T = fi; pg is the set of types
(impatient and patient, respectively). For a given t, u is increasing and
concave.1 Each agent maximizes expected utility.

There is an exogenous random process that determines the queue tN =
(t1; t2; :::; tN), where tj 2 T is the type of the j-th agent in line and is private
information. Let Pk = ftN 2 TN : #p 2 tN = kg; i.e., the set of queues
with k patient people. The number of patient people is a drawing from the
distribution � = (�0; �1; :::; �N), where �k > 0 is the probability that k agents
are patient. If tN 2 Pk, then the probability that tN occurs is �k=#Pk =
�k=

�
N
k

�
. That is, conditional on k, all permutations that determine place

in line are equally likely. Because �k > 0 and all permutations are equally
likely, any tN 2 TN occurs with positive probability. A special case of � is
independence; namely, �k =

�
N
k

�
�k (1� �)N�k for some � 2 (0; 1). As in

1Thus, our preferences are of the general sort introduced into the Diamond-Dybvig
model by Jacklin [5].
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Green and Lin, we assume that each agent knows his place in the queue.2

The sequence of events is as follows. First, nature selects a queue, an
element of TN . Then agents consume at date 1 subject to sequential service:
the date-1 consumption of agent n can depend at most on the agent�s own
information and/or actions and on those of the agents with earlier places in
line. Finally, agents consume at date 2 (after all actions have been taken).

3 Mechanisms

We consider direct and symmetric mechanisms in which each agent�s strategy
is to announce a type. By symmetric, we mean that mechanisms do not
depend on the agents�(initial) identities. We also limit mechanisms to those
for which the planner reveals to each agent the announcements made by
earlier agents.3 And, because truth-telling constraints need not be convex,
we allow lotteries. Finally, we assume throughout that an agent who is
indi¤erent between announcing truthfully and not doing so tells the truth.
In doing this, we are implicitly appealing to results on virtual implementation
(see, for example, [1] and [6]).

To describe the lotteries, we start by describing the set of deterministic
mechanisms that constitute the domain for the lotteries. A strategy for
agent n is sn : T n�1 � T ! T , where the �rst argument is the vector of
announced types of those in earlier places in line and the second is the true
type of agent n, tn. We let sn = (s1; s2; : : : ; sn). A deterministic mechanism
is c = (cn1 ; c

n
2 ), n = 1; 2; :::; N , where c

n
1 : T

n ! R+ is date-1 consumption of
agent n and cn2 : T

N ! R+ is date-2 consumption of agent n. The domain
of c is announcements.

We say that c is feasible if for all tN 2 TN , R(Y �
PN

n=1 c
n
1 ) �

PN
n=1 c

n
2 .

(That is, we require that the resource constraint be satis�ed ex post). Let
C denote the set of all feasible c and let 
 denote the set of all measures on
C. A lottery mechanism is ! 2 
. The realization from ! is independent

2This contrasts with Peck and Shell [7], who assume that an agent does not know his
place in line. Under their assumption it is possible that mechanisms that do not reveal
place in line to the agents would achieve better outcomes than those that do. Peck and
Shell do not investiage that question. They study only mechanisms that do not reveal
place in line.

3As noted below, our result does not rely on that limitation.
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of the realization of the queue. The outcome to the lottery is chosen before
any agent makes an announcement, but is seen by each agent only after the
agent makes an announcement.4 It follows that the ex ante utility associated
with the deterministic mechanism c 2 C and the strategy sN is

W (c; sN) =
NX
k=0

�k�
N
k

� X
tN2Pk

NX
n=1

u[cn1
�
sn�1; sn

�
; cn2
�
sN
�
; tn]; (1)

where sn denotes the announcement or play implied by sn. Then, the ex ante
utility associated with ! 2 
 and the strategy sN is

W (!; sN) = E![W (c; s
N)]; (2)

where for any function f , E!(f(c)) =
R
c2Cf(c)d!.

We let tNn+1 = (tn+1; tn+2; :::; tN) 2 TN�n�1 denote the vector of types
of those in line after n. Let �(tNn+1 j sn�1; tn) denote agent n�s beliefs; the
probability of the outcome tNn+1 conditional on earlier announcements and
n�s type.

In terms of the above notation, we have the following de�nition of equi-
librium.

De�nition 1 The strategy sN and the belief � is a perfect Bayesian equilib-
rium for ! 2 
 if

E!
X
tNn+1

�(tNn+1 j sn�1; tn)u[cn1 (sn�1; sn); cn2 (sn�1; sn; sNn+1); t] �

E!
X
tNn+1

�(tNn+1 j sn�1; tn)u[cn1 (sn�1; ~sn); cn2 (sn�1; ~sn; sNn+1); t] (3)

for all tn 2 T n, ~sn 2 T , and n, and if �(tNn+1 j sn�1; tn) is consistent with
Bayes�rule whenever possible.

In (3), a realization for tNn+1 implies a realization for s
N
n+1. More generally,

given knowledge of the strategy, sn, a realization of tn implies a realization

4Thus, agent n cannot see the date-1 consumptions assigned to those earlier in line
because such information would tend to reveal the realization from the lottery.
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of the play, sn. However, the converse is not in general true. In particular,
an observation on sn�1 does not uniquely determine tn�1. For example, the
strategy of the �rst agent could be to announce impatient independent of that
agent�s true type. Hence, we must distinguish between � and the distribution
of tNn+1 conditional on (t

n�1; tn), which we denote ~�(tNn+1 j tn�1; tn). The
distribution ~� is implied by �, while the distribution � depends on � and the
strategies.

By appeal to the revelation principle, we have

De�nition 2 We say that ! is weakly implementable if sn(tn�1; tn) = tn and
~�
�
tNn+1 j tn�1; tn

�
is a perfect Bayesian equilibrium for !.

And, we also have

De�nition 3 We say that ! is strongly implementable if sn(tn�1; tn) = tn
and ~�

�
tNn+1 j tn�1; tn

�
is the unique perfect Bayesian equilibrium for !.

4 Independence and uniqueness

If � satis�es independence, then ~�
�
tNn+1 j tn�1; tn

�
= �̂(tNn+1). (In particular,

if tNn+1 has k patient types, then �̂(t
N
n+1) = �k(1 � �)N�n�1�k.) Moreover,

it follows from independence and the Bayes�rule requirement in de�nition
1 that �(tNn+1 j �; �) � �̂(tNn+1). This plays a crucial role in the proof of the
following proposition.

Proposition 1 Let � satisfy independence. If ! is weakly implementable,
then it is strongly implementable.

Proof. Suppose that ! is weakly implementable and that
�
sN ; �

�
is

a perfect Bayesian equilibrium for !. We show via a backward induction
argument, starting with sN , that sn(�; tn) � tn for all n. (That �(tNn+1 j
�; �) � �̂(tNn+1) has already been noted.)
By weak implementability of !,

E!u[c
N
1 (t

N�1; t); cN2 (t
N�1; t); t]

� E!u[c
N
1 (t

N�1; ~sN); c
n
2 (t

N�1; ~sN); t] (4)
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for all tN�1 2 TN�1 and all ~sN 2 T . Because (4) holds for all tN�1 2 TN�1
and because sN�1 2 TN�1, it follows that

E!u[c
N
1 (s

N�1; t); cN2 (s
N�1; t); t]

� E!u[c
N
1 (s

N�1; ~sN); c
n
2 (s

N�1; ~sN); t] (5)

for all ~sN 2 T . This condition says that truth-telling is a best response for
agent N independent of the strategies used by the other N�1 agents. Hence,
sN(�; tN) � tN . (Note that this conclusion does not depend on the assumed
independence of �.)

Now we turn to the induction step, for which we have the hypothesis
sj (�; tj) = tj for j = n + 1; : : : ; N ; i.e., future announcements are truthful.
By weak implementability of !,

E!
X
tNn+1

~�(tNn+1 j tn�1; tn)u[cn1 (tn�1; t); cn2 (tn�1; t; tNn+1); t] �

E!
X
tNn+1

~�(tNn+1 j tn�1; tn)u[cn1 (tn�1; ~sn; tNn+1); cn2 (tn�1; ~sn; tNn+1); t] (6)

for all tn�1 2 T n�1 and all ~sn 2 T . But under independence, (6) can be
written as

E!
X
tNn+1

�̂(tNn+1)u[c
n
1 (t

n�1; t); cn2 (t
n�1; t; tNn+1); t]

� E!
X
tNn+1

�̂(tNn+1)u[c
n
1 (t

n�1; ~sn; t
N
n+1); c

n
2 (t

n�1; ~sn; t
N
n+1); t] (7)

for all tn�1 2 T n�1 and all ~sn 2 T . As above, because (7) holds for all
tn�1 2 T n�1 and because sn�1 2 T n�1, it follows that

E!
X
tNn+1

�̂(tNn+1)u[c
n
1 (s

n�1; t); cn2 (s
n�1; t; tNn+1); t]

� E!
X
tNn+1

�̂(tNn+1)u[c
n
1 (s

n�1; ~sn; t
N
n+1); c

n
2 (s

n�1; ~sn; t
N
n+1); t] (8)
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for all ~sn 2 T . By the induction hypothesis (which says that later agents tell
the truth) and �(tNn+1 j �; �) � �̂(tNn+1), (8) is the condition that assures that
truth-telling for agent n is a best response. Therefore, sn(�; tn) � tn, which
completes the proof.

Absent independence, the induction step in the proof would fail because
(8) would not be the condition that assures that truth-telling is a weakly
dominant strategy for agent tn. Absent independence, that condition would
be (8) with �̂(tNn+1) replaced by �(t

N
n+1 j sn�1; tn) and it would not be implied

by (6). Finally, as asserted above, nothing in the proof depends on the
assumption that the agent is informed about earlier announcements. (The
implication �(tNn+1 j �; �) � �̂(tNn+1) says that the conditioning information is
not relevant.) It is enough that each agent knows his place in line.

5 Non-independence and multiplicity

It is tempting to try to construct an example with non-independence and
with a bank-run equilibrium. In particular, we considered searching for an
example for which the mechanism that gives rise to the best truth-telling
equilibrium can have another equilibrium� one in which, along the equilib-
rium path, some patient agents announce that they are impatient.5 Such
multiplicity would be costly in the following sense. Either some worse equi-
librium could occur (perhaps, with some probability) or a di¤erent optimum
problem is solved� one that includes additional constraints ensuring that the
truth-telling equilibrium is the only equilibrium.

As is well-known, the best truth-telling equilibrium is a solution to

Problem 1 Choose ! 2 
 to maximize W (!; tN) (see (2)) subject to

E!
X
tNn+1

�(tNn+1 j tn�1; tn)u[cn1 (tn�1; t); cn2 (tn�1; tn; tNn+1); t] �

E!
X
tNn+1

�(tNn+1 j tn�1; tn)u[cn1 (tn�1; ~sn); cn2 (tn�1; ~sn; tNn+1); t] (9)

5Peck and Shell accomplish that, but only by placing restrictions on the mechanism;
their mechanism does not reveal any information to agents.
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for all tn 2 T n, ~sn 2 T , and n.

The constraint here is that each agent is willing to be truthful given that
others are truthful.

An example with multiplicity might exist because the weak dominance
of truth-telling in proposition 1 is not robust to even small departures from
independence. As in most problems with private information, for most pref-
erence speci�cations some of the truth-telling constraints in problem 1 will
bind. Suppose that is the case for a � that satis�es independence. Now,
holding the rest of the model unchanged, consider a neighborhood of �, a
neighborhood that consists of distributions that are close to �, but do not
satisfy independence. Then, generically, the same truth-telling constraints
are binding in that neighborhood. But weak dominance of truth-telling ought
to fail in part of the neighborhood because the distribution of future types
conditional on (sn�1; tn) can depend on agent n�s beliefs about the relation-
ship between sn�1 and tn�1. Of course, such failure does not imply existence
of another equilibrium. That is why an example is needed.

However, we became discouraged about the possibility of �nding such an
example. Although problem 1 is a linear programming problem, to keep it
tractable, N must be small and the set of deterministic allocations must be
approximated by a �nite set. Moreover, for tractability, it helps greatly to
have utility functions that are the special sort used by Diamond and Dy-
bvig: impatient types care only about date-1 consumption, patient types
view consumption at the two dates as perfect substitutes, and R > 1. For
such preferences, (i) the solution to problem 1 assigns positive date-1 con-
sumption only to impatient types and positive date-2 consumption only to
patient types, (ii) impatient types necessarily announce truthfully, and (iii)
binding truth-telling constraints for patient types arise if there is su¢ cient
�discounting�of the patient type�s payo¤.6

For N = 3 (the smallest N that could conceivably produce the multiplic-
ity), any bank-run equilibrium would along the equilibrium path have agents
n = 1 and n = 2 announce that they are impatient and have agent n = 3
announce truthfully.7 But, even if a perfect Bayesian equilibrium of this

6Green and Lin use such preferences but without the discounting that would imply
binding constraints.

7As the proof of proposition 1 demonstrates, the last person in line tells the truth for
any �.
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sort exists, the equilibrium would be implausible. It would violate almost
any sensible re�nement about beliefs and, in particular, the Cho-Kreps [2]
intuitive criterion.

To see this, consider agent p1 in the above bank-run equilibrium, where
p1 means that the �rst agent in line is patient. How would agent p2 react
to a defection by p1, a defection to truth-telling? Agent p2 would conclude
that the �rst agent is patient because an impatient agent under the special
preferences never announces p. And, if the �rst agent announces truthfully
and the third does, then p2�s best response is to announce truthfully. Hence,
if p1 defects from bank-run equilibrium play, then all other agents announce
truthfully. Given such behavior, p1 has an incentive to defect from the bank-
run equilibrium play and announce p because p1 gets a higher payo¤ in
the truth-telling equilibrium than in the bank-run equilibrium.8 Hence, for
N = 3 and the Diamond and Dybvig preferences, the Cho-Kreps re�nement
eliminates any possible bank-run equilibrium.

Thus, any example that will have a bank-run equilibrium that satis�es
reasonable re�nements will not be of the simple sort described above. That
conclusion discouraged us from trying to �nd an example because any such
example would give rise to a very high-dimensional linear programming prob-
lem.
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