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1 Introduction

Should monetary policy be cyclical? Although this is an old question in monetary

economics, there is no general consensus as to the correct answer. Recent research on

the �pure theory of money�has contributed very little, if anything, to the debate that

surrounds this question. By pure theory of money, we refer to that line of research

where money arises endogenously as a solution to a trading problem, instead of being

treated as a primitive of the economic environment, like preferences and technology.

Perhaps it is not so surprising that modern theories of money have remained silent

on the desirability of cyclical monetary policy: Although the environments that are

suitable for modeling a role for �at money� environments with in�nite horizons and

diverse trading opportunities� are quite tractable when they are stationary, they

become quite intractable when the stationarity assumption is relaxed. In this paper,

we explore a simple departure from the standard model of money as a medium of

exchange; in particular, we construct a model with seasonal �uctuations in output,

where money is essential and the cyclical creation and destruction of money can be

welfare-enhancing.

We claim that cyclical policies ought to have a role when the standard model

is generalized to account for seasonal movements in output and consumption. Our

argument is twofold: First, because money is essential, there necessarily exist some

sorts of frictions in the economy. But the very existence of these frictions means that

the standard welfare theorems will not apply. Hence, monetary economies will be

relegated to the world of the second-best. In a second-best world, activist govern-

ment policies may be bene�cial. However, in the context of a monetary environment,

activist government policies should not be able to implement the �rst-best allocation,

for this would imply that government policies can somehow �neutralize�the funda-

mental frictions that exist in the economy. For example, monetary policy should not

be able to overcome the fact that money holdings are a less-than-perfect substitute for

credit. Because of this, a distribution of money holdings should persist after central

bank interventions, so long as full insurance against idiosyncratic risk is unattainable.

Second, and consequently, any monetary policy aimed at improving the e¢ ciency of
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monetary trades should attempt to make adjustments in the distribution of money

over economic cycles. In this paper, we study a simple framework in which a bene�-

cial role for cyclical monetary policy is derived; we believe that this result will remain

valid for any generalization to the model environment that preserves the second-best

aspect of �at money.

The task that we set for ourselves is to construct a model where the social role

of money varies over a cycle and where the monetary authority can �react� to the

cyclical nature of money by using a limited set of policy instruments, namely lump-

sum creation and destruction. In addition, we want to maintain a reasonably sized

state space for the economy. We �nd that a simple alternating movement in prefer-

ences, studied from the perspective of mechanism design, within a set of cyclical but

otherwise stationary allocations, can be addressed without di¢ culties when money

holdings are limited to either zero or one unit. We wish to emphasize that the limited

holdings of money are used for analytical tractability and do not drive the key results.

The model, the creation of the Fed, and some literature In our model

economy, individual agents experience seasonal preference shocks, and trade between

pairs of agents is characterized by a lack of double coincidence of wants. Agents

in the economy belong to one of two equally sized groups. When one group has a

production opportunity, the other group has a consumption opportunity; on a period-

by-period basis, each group alternates between having production and consumption

opportunities. In pairwise meetings, the consumer faces an idiosyncratic preference

shock that a¤ects his desire to consume. The notion of seasons is introduced by having

the (economywide) distribution of consumer-preference shocks di¤er over even and

odd dates. For example, the even period will be a high-demand season and the odd

period a low-demand season, if the total number of consumer agents who actually

want to consume in even periods exceeds the total number of consumer agents who

want to consume in odd periods.

Monetary policy is restricted to take the form of a reccurring pattern of taxing

money holdings in one period and injecting the proceeds in a lump-sum fashion in

the subsequent period. If taxes and subsidies are non-zero, then monetary policy will
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be cyclical; if taxes and subsidies are equal to zero, then the money supply will be

constant. We �rst show that under a constant monetary policy rule, the seasonal

frequency of trade is constant. When we compare a cyclical monetary policy with a

constant-money-supply policy, we �nd two basic e¤ects. First, cyclical policies may

reduce the return on money and, hence, reduce the producers�desire to supply output.

This intensive margin e¤ect may reduce the social surplus associated with each trade.

Second, if there is su¢ cient asymmetry in the distribution of aggregate preference

shocks, so that one season has a higher desire or demand for consumption than the

other season, then a cyclical monetary policy will increase the average frequency of

trades, or the extensive margin, compared to a constant-money-supply policy. We

�nd that under a wide variety of circumstances, the optimal monetary policy will be

cyclical. So, although a cyclical monetary policy may result in a lower and ine¢ cient

level of production at the match level, an increase in the economywide frequency

of trades implies that a cyclical monetary policy can deliver a higher level of social

welfare than a constant-money-supply policy.

The results from our model can be loosely interpreted as providing some sup-

port for the creation of the Federal Reserve System in 1913. The preamble to the

Federal Reserve Act states that the Reserve banks were established to �furnish an

elastic currency,� among other things. According to Meltzer (2003), elasticity has

two meanings. One refers to a central bank�s ability to pool reserves and lend them

out in the event of a banking or �nancial crisis. The second refers to seasonal �uctu-

ations, the topic of this paper. In practice, the two meanings of elasticity are related

because the data indicate that seasonal �uctuations in money demand can exacerbate

a (potential) banking or �nancial panic. For example, before the Fed was founded,

farmers needed cash in the autumn to harvest their crops but, given the structure

of the banking system, there was essentially only a �xed amount of reserves to go

around. As a result, the increase in demand for cash in the autumn could potentially

turn a quite independent and manageable liquidity problem in �nancial markets into

a �nancial panic or banking crisis.

Miron (1986) concludes that the founding of the Fed had positive welfare conse-

quences for the economy because its policy of furnishing an elastic currency greatly
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reduced the possibility of �nancial panics, which formerly were commonplace and

sometimes quite severe. Note that two meanings of elasticity are at play here: By

consolidating reserves at a central place, the Fed could provide reserves to banks that

needed them in a time of �nancial stringency. Furthermore, by discounting real bills,

the Fed could provide (additional) liquidity to farmers, implying that their increase

in demand for money need not exacerbate a potential liquidity problem in �nancial

markets. Miron (1986) points out, however, that if an economy has deposit insurance,

then an elastic currency policy would not improve welfare improving because the ex-

istence of deposit insurance would greatly reduce, if not eliminate, the possibility of

�nancial panics, which is the source of the welfare gain in his analysis. In this paper,

we completely abstract any notion of �nancial panics and �nd that there are other

sources of welfare gains associated with an elastic currency (cyclical monetary) policy

and that providing an elastic currency can increase the average frequency of trade in

the economy.

Since the ��ne tuning� of monetary policy is a broad topic with a voluminous

literature, it is important to relate our model to some well-known papers at the

outset, in order to highlight the particular debt our work owes to them. Lucas (1972)

was the �rst to present a pure theory of the short-run e¤ects of monetary policy, but

an important ingredient in his analysis is an exogenous and random supply of money.

In a competitive environment, the optimal monetary policy invariably leads to the

Friedman (1969) rule in the form of a de�ation that eliminates the opportunity cost

of holding money. Bewley (1980), Levine (1991), and Sheinkman and Weiss (1986),

among others, departed from a representative-consumer structure and found that

there are welfare gains associated with an ongoing in�ation. In these models, traders

face uninsurable shocks and can bene�t from some redistribution of wealth generated

by in�ation. The literature that has followed the seminal work of Kiyotaki andWright

(1989) on the media of exchange has more or less been limited to reproducing these

in�ation gains.1

The rest of the paper is divided as follows: In section 2, we describe the environ-

1See Molico (1999) and Deviatov and Wallace (2001). There has also been work on the e¤ects
of in�ation on search intensity, such as Li (1995) and Shi (1999), among others.
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ment with two seasons. In section 3, we de�ne symmetric and stationary allocations

as well as the welfare criteria that guide the discussion of optimal monetary policies.

In section 4, we de�ne an implementable allocation. Section 5 analyzes extensive mar-

gin e¤ects associated with a cycle monetary policy, and section 6 analyzes intensive

margin e¤ects. Section 7 characterizes the optimal monetary policy, and section 8

concludes.

2 The environment

Time is discrete and the horizon is in�nite. There are two types of people, each de�ned

on a [0; 1] continuum. Each type is specialized in consumption and production: A

type e person consumes even-date goods and produces odd-date goods, whereas a

type d person consumes odd-date goods and produces even-date goods. We �nd it

convenient to refer to a type e individual in an even (odd) date, or a type d individual

in an odd (even) date, as a consumer (producer). Each type maximizes expected

discounted utility, with a common discount factor � 2 (0; 1). Let s 2 fe; dg indicate
the season and/or the type of person. We �nd it useful to have a notation for the

two-period discount factor, � � �2.
The utility function for a consumer in season s 2 fe; dg is "sus(ys), where "s is

the idiosyncratic shock a¤ecting this consumer and ys 2 R+ is the amount consumed.
The shock "s is Bernoulli and the probability that "s = 1, �s 2 (0; 1) is indexed by
the season s. A producer in season s can produce any choice of ys � 0 at a utility cost
normalized to be ys itself. Utility in a period is thus "sus(ys) when consuming and�ys
when producing. The function us is assumed to be increasing, twice di¤erentiable,

and to satisfy us(0) = 0, u00s < 0, u
0
s(0) =1 and u0s(1) < 1. We assume that �e � �d

and u0e � u0d, so that even dates feature a higher desire for consumption� both at

the individual and aggregate levels� than odd dates. It should be emphasized that a

strict inequality for either of these gives rise to a cyclical demand for liquidity.

In every period, a type e person is matched randomly with a type d person. During

meetings, the realization of preference shocks occurs and production may take place.

All individuals are anonymous, in the sense that they all have private histories. We
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also assume that people cannot commit to future actions, so that those who produce

must get a tangible (future) reward for doing so. In this paper, the reward takes the

form of �at money. To keep the model simple, we assume that each person can carry

from one meeting to the next either 0 or 1 units of �at money. A consequence of this

assumption, which makes the distribution of people tractable, is that trade will take

place only when the consumer realizes "s = 1 and has money, and the producer has

no money.

Monetary policy takes the simple form of a choice of the pair (�; �), where � is

the probability that a person without money gets one unit of money before meetings,

and � is the probability that a person with money loses the money before meetings.

Let Me denote the measure of individuals holding money in even periods and Md the

measure of individuals holding money in odd ones. We restrict attention to cases in

which either � = � = 0 in all dates, or � > 0 in even dates and � > 0 in odd dates.

This simple formulation is designed to limit our analysis to the speci�c question

of whether periods of high desire for consumption should have an increase in the

supply of money, which is o¤set by a reduction of economywide money balances in

the subsequent period.

3 Stationarity and welfare criteria

We let the measure of consumers with money during meetings in season s be denoted

by qs and consumers without money denoted by 1 � qs. We let the measure of

producers without money during meetings in season s be denoted by ps and producers

with money denoted by 1�ps. In order to save on notation, let y = (ye; yd) denote the
list of output levels, let x � (pe; qe; pd; qd) denote an arbitrary distribution, and use

the superscript +, as in x+ � (p+e ; q+e ; p+d ; q+d ); when the quali�cation that � > 0 for
that distribution becomes essential. A distribution x 2 [0; 1]4 is considered invariant
if and only if there exists (�; �) 2 [0; 1]2 such that

pe = (1� �)(1� qd + �dpdqd); (1)

pd = (1� �)(1� qe + �epeqe) + � ; (2)
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qe = (1� �)(1� pd + �dpdqd) + �; (3)

and

qd = (1� �)(1� pe + �epeqe); (4)

where the distribution x is described after money is created or destroyed.

The stationarity requirement (1) can be explained as follows: During odd-date

meetings, trade takes place after money is destroyed. The measure of consumers

with money is qd, and the measure of producers without money is pd. Consumers

without money, whose number is 1 � qd, cannot buy goods; each of them faces a

probability � of �nding money at the beginning of the next date. Hence, 1 � �
times 1� qd is the total �ow of consumers who become producers without money in
the next (even) date. Similarly, the measure of consumers with money in the odd

date is qd. Only a fraction �d of these consumers will want to consume in the odd

date, and only a fraction qd of them will meet a producer without money. Therefore,

�dpdqd represents the measure of consumers with money that will trade in date d,

and (1� �)�dpdqd represents the number of these consumers that become producers
without money in the next (even) period, after money creation takes place.

Likewise, regarding requirement (2), we �rst notice that a measure 1� qe+�epeqe
producers arrive at the beginning of date d without money. Adding to that the mass of

money destroyed from date e consumers with money who did not trade, �qe(1��epe),
yields the right-hand side of (2). The same principle explains requirement (3). The

measure of consumers with money at date e consists of the measure of producers who

leave date d with money, 1�pd+�dpdqd, plus the measure of producers who leave date
d without money but obtain some when additional money is created at the beginning

of date e, �pd(1� �dqd). Finally, requirement (4) follows from imposing stationarity

on the measure of consumers with money arriving at date d, 1 � pe + �epeqe, after
the destruction of money takes place with probability � :

Our notion of stationarity amounts to restricting that output, ys, as well as the

measures ps and qs, to be constant functions of the season, s, only. These functions are

used symmetrically in a measure of welfare as follows: We adopt an ex ante welfare

criterion, with an expected discounted utility computed according to an invariant
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distribution and output function. Whenever trade takes place in a season, it is because

money is changing hands from a fraction ps of the mass of consumers �sqs in position

to trade. Since there is a producer for each consumer, the �ow of total utility in

season s is �spsqs[us(ys) � ys]. We call the term �spsqs the extensive margin at s,

and us(ys)� ys the intensive margin at s. The extensive margin is a property of the
distribution x, and the intensive margin is a property of outputs y. An allocation is

a pair (x; y); where x and y are invariant and y has non-negative coordinates. The

welfare U attained by an allocation is de�ned as the present discounted value

U(x; y) =
1

(1� �)
X
s

�spsqs[us(ys)� ys]:

The intensive margin at s is maximized at y�s , where u
0
s(y

�
s) = 1, which is uniquely

de�ned by assumption. We refer to y� = (y�e ; y
�
d) as the �rst-best output list.

4 Implementable allocations

The de�nition of the values of y consistent with incentive compatibility follows the

notion of sequential individual rationality employed by Cavalcanti and Wallace (1999)

and Cavalcanti (2004). Underlying their de�nition of participation constraints is the

idea that a social planner proposes an allocation but anonymous individuals may

defect from that proposal by not trading in a given meeting. If individual(s) defect,

then they do not lose any money holdings that were brought into the meeting. We

adopt the same concept here, with the exception of the taxation of money holdings,

which we assume cannot be avoided by individuals with money. The participation

constraints are then de�ned by a set of allocations, according to the expected dis-

counted utilities implied by the allocations. To be able to represent these constraints,

we �rst need to describe the Bellman equations of the economy.

The value functions will be computed before the realization of the e¤ects of cre-

ation and destruction of money for each individual in a given date. (Recall that

money is created at the beginning of even dates and is destroyed at the beginning

of odd dates.) The value function for consumers with money at s is vs, and that

for producers without money is ws. We de�ne �vs as the value for consumers without
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money at s and �ws as that of producers with money. The Bellman equations for

(v; w) = (ve; vd; we; wd) are de�ned by

ve = �epe(ue + �wd) + (1� �epe)� �wd

we = ��vd + (1� �)[�eqe(�ye + �vd) + (1� �eqe)��vd] (5)

vd = ��we + (1� �)[�dpd(ud + �we) + (1� �dpd)� �we]

wd = �dqd(�yd + �ve) + (1� �dqd)��ve;

where ue and ud, by an abuse of notation, stand for ue(ye) and ud(yd), respectively.

The de�nition is completed by substituting for the values of (�v; �w) given by

�ve = �ve + (1� �)�wd

�we = �vd (6)

�vd = �we

�wd = �wd + (1� �)�ve

into the previous system.

The participation constraint for producers at even dates is simply

�ye + �vd � ��vd = �we, (7)

since an even-date producer is bringing no money into a meeting and only has the

option of leaving the meeting and becoming a producer two periods later. Producers

at odd dates must take into account that if they disagree with producing the planned

output yd and walk away from a trade, then they have a chance of receiving money in

the next period from the money-creation policy. Thus, the participation constraint

for producers at odd dates can be stated as

�yd + �ve � ��ve = ��ve + �(1� �)wd: (8)

For completeness, we state the participation constraint for consumers, which can

be shown to be implied by the participation constraints of producers. They are

ue + �wd � � �wd (9)
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and

ud + �we � � �we: (10)

An allocation (x; y) is said to be implementable if x � (pe; qe; pd; qd) is invariant for
some policy (�; �) such that there exist (v; w) and (�v; �w), for which (5)-(10) hold. An

allocation is said to be optimal if it maximizes U(x; y) among the set of implementable

allocations.

5 Extensive-margin e¤ects

Monetary policy can be viewed as a choice of an invariant distribution x. Changes in

x resulting from changes in (�; �) have direct e¤ects on extensive margins, �spsqs, and

indirect e¤ects on intensive margins, us(ys)�ys, through the participation constraints;
i.e., y depends on x: Note that the latter e¤ects can be ignored if, for both s = e

and s = d, the maximizer of us(ys) � ys, y�s satis�es participation constraints. In
this section, we investigate whether the maximizer of the sum

P
s �spsqs; among all

invariant distributions x, is a cyclical policy x+, i.e., one with a positive �. We shall

see that a cyclical monetary policy tends to increase the extensive margin at e and

to decrease that at d: Since u0e � u0d, it will follow that if y
� satis�es participation

constraints and the maximizer of the sum
P

s �spsqs is cyclical, then the optimal

allocation is indeed a cyclical monetary policy.

Acyclical distributions We start by pointing out an important property of the

invariant distributions when the money supply is constant, i.e., when � = 0. If x

is invariant when � = 0, we will say that x is acyclical, a label motivated by the

following lemma:

Lemma 1 Assume that x is acyclical. Then the extensive margin, �spsqs, is constant

in s.

Proof. Set � = � = 0 in equations (1) and (4). It follows that �epeqe = �dpdqd.

Interestingly, the property of constant extensive margins holds regardless of the

relative values of �s. We can o¤er an intuitive explanation for this property as follows:

Let us consider the in�ow and out�ow of money for a set of individuals of the same
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type, say type e. Then, on one hand, the stationary measure of consumers of this

type spending money is (�epe)qe, an event taking place at even dates. On the other

hand, the stationary measure of producers of this type acquiring money is (�dqd)pd,

an event taking place at odd dates. Since the quantity of money in the hands of

this group must be stationary, and all seasons have the same frequency, these two

margins must be equalized, as stated in the lemma.

Some useful observations about acyclical distributions can be made with regard

to the relative values of psand qs.

Lemma 2 Assume that x is acyclical. Then (i) pe � qe = pd � qd, and (ii) pe � pd
if and only if �d � �e:

Proof. (i) Set � = � = 0 in equations (1) and (2). Since, by lemma 1, �epeqe =

�dpdqd, equations (1) and (2) imply that pe� qe = pd� qd. (ii) By lemma 1, �epeqe =
�dpdqd, so �e � �d if and only if peqe � pdqd. Part (i) of this lemma implies that if
peqe � pdqd, then pe � pd and qe � pd.
There is an alternative way to think about part (i) of lemma 1. The measure of

individuals that hold money in period s, Ms, is the sum of consumers with money,

qs, and producers with money, 1� ps. When � = � = 0, the measures of individuals
that hold money in odd and even periods are the same, i.e., Me =Md, which implies

that 1� pe + qe = 1� pd + qd, or that pe � qe = pd � qd.
An application of lemma 2 allows us to describe in rather simple terms the set of

acyclical distributions when �e = �d.

Lemma 3 Assume �e = �d = �: Then the set of acyclical distributions is fully

described by pe = pd = p, qe = qd = q, and p = 1� q + �pq for q 2 [0; 1].

Proof. Since �e = �d then, by lemma 2, pe = pd, and consequently, by lemma 1,

qe = qd. Equation (1) with � = 0 thus proves the lemma.

The one-dimensional set described by lemma 3 is the symmetric set of distributions

that appears in Cavalcanti (2004). The equation p = 1 � q + �pq de�nes a strictly
concave function for q 2 [0; 1]; and the extensive margin �pq is maximized when

p = q = [1� (1� �) 12 ]=�.

11



Properties similar to those described by lemma 3 also obtain when �e > �d; for

example, every acyclical x can be indexed by a one-dimensional choice of qd.

Lemma 4 When �e > �d there exists, for each qs, a unique acyclical x: Moreover,

x can be solved for analytically. The statement holds for any s in fe; dg.

Proof. See appendix 1.

The extensive margin is maximized when the measure of consumers with money

equals the measure of producers without money.

Proposition 1 When �e > �d, the maximizer of �spsqs, among the set of acyclical

distributions, is the unique x such that ps = qs for s 2 fe; dg.

Proof. See appendix 2.

Hence, when the money supply is constant, the distribution that maximizes the

extensive margin is characterized by pd = qd and pe = qe. This result echoes a

standard result in many search models of money, namely, that it is optimal for half

of the population to hold money. Such a distribution of money holdings maximizes

the number of productive matches. To see that our model also has this feature, note

that when � = � = 0 and when �spsqs is maximized, i.e., ps = qs for s 2 fe; dg, then
the measure of individuals holding money at date s is 1 � ps + qs = 1. Since the

total measure of individuals in the economy is 2, having half the population holding

money maximizes the extensive margin when � = � = 0. Note that the value of x is

easily computed when the extensive margin is maximized,.

Lemma 5 If x is acyclical and ps = qs, then

pd =
1 +

p
� �

q
(1 +

p
�)2 � 4�d

2�d
;

and

pe = 1� pd + �dp2d;

where � = �d=�e.

Proof. Since by lemma 1, �epeqe = �dpdqd, equation (2) with � = 0 yields pd =

1�qe+�epeqe. Because qs = ps, then pe =
p
�pd and pd = 1�pe+�dp2d. The last two

expressions yield a quadratic equation in pd whose only relevant solution is as stated.

The value for pe can be computed from the last expression once pd is determined.

12



This completes our discussion of acyclical distributions, i.e., a constant money

supply. We can now move on to cyclical money policy and cyclical distributions.

Cyclical distributions We now consider small perturbations in the quantity of

money. We consider cyclical distributions x+ in a neighborhood of a given acyclical

x. Our ultimate goal is to describe and sign the derivative of the sum
P

s �spsqs with

respect to �, evaluated at � = 0 and ps = qs. It follows, by force of proposition 1,

that if this derivative is positive, then the maximizer of the sum must be cyclical.

Clearly, the system (1)-(4) that de�nes x+ depends on � and � . The existence of x+

follows from a simple �xed-point argument.

Lemma 6 Let (� ; �) 2 (0; 1)2 be �xed. Then there exists an invariant distribution
x+.

Proof. The right-hand side of (1)-(4) de�nes a continuous function of x+, with

domain on the compact and convex set [0; 1]4. The result then follows from Brower�s

�xed-point theorem.

If x+ is invariant, then the quantity of money destroyed in season d must equal

the quantity created in e, i.e.,

�(1� p+e + q+e ) = �(1� q+d + p+d ): (11)

It can be shown that the equality (11) is implied by the system (1)-(4). The quantity

of money during season e meetings, just before trade, is given by the mass 1 � p+e
with producers, plus the mass q+e with consumers. Since trade itself does change this

quantity of money, and each money holder at the beginning of next season faces a

probability � of losing his money, then the total amount of money destroyed is given

by the left-hand side of (11). Likewise, the measure of individuals without money at

the end of season d is 1�q+d +p+d , and since each of those �nds money at the beginning
of season e with probability �, then the quantity of money created is expressed in the

right-hand side of (11).

While there is a continuum of acyclical distributions, i.e., when � = � = 0, for each

qd there is a unique x (lemma 4), the same does not hold for cyclical distributions.
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When � and � are strictly positive, there is an in�ow of money that must be matched

by an out�ow of the same quantity. Our numerical experiments indicate that only

one level of q+d produces quantities of money that are capable of equalizing in�ows

and out�ows for a given pair (�; �): We can, however, pin down the neighborhood in

which q+d lies as follows: Because we want to associate x
+ with a given x; we �nd it

useful to de�ne the constant � with the property that, for � = ��, x+ converges to

x as � approaches zero. Since the pair (�; �) must be consistent with the stationary

quantities of money in the economy, expressed above by equation (11), the desired

ratio of � to �, for a given x = (pe; qe; pd; qd), is

� =
1� qd + pd
1� pe + qe

. (12)

By lemma 1 and proposition 1, the maximizer of the sum
P

s �spsqs among the set

of acyclical distributions is the unique x for which � = 1. We assess the e¤ects of

perturbations by di¤erentiating the system (1)-(4) with respect to � for � �xed.

The lemma can be viewed as generalizing lemma 2; in other words, the di¤erence

between the measures of consumers with money and producers without money will

be equalized between seasons only if the distribution is acyclical.

Lemma 7 If x is invariant and � = ��, then ps� qs = fs(�), where fe(�) = �����1
1+����

and fd(�) =
�+���1
1+���� .

Proof. See appendix 3.

Note that fs does not depend on the fraction of consumers who desire to consume

in season s, �s.

The next proposition, which is the main result of this section, characterizes the

sign of the derivative of the sum
P

s �spsqs, evaluated at ps = qs, and � = 0 (the

latter two equalities characterize the optimal constant-money-supply policy).

Proposition 2 The maximizer of sum
P

s �spsqs is cyclical if and only if �d 2 [0; ��],
where �� 2 (0; �e) can be solved for analytically as a function of �e.

Proof. See appendix 4.

The maximizer is therefore acyclical if �d = �e. The intuition behind which

policy� acyclical or cyclical� maximizes the average extensive margin is straightfor-

ward. Suppose that �d = �e = �. Then, the policy that maximizes the average

14



extensive margin is given by pe = pd = qe = qd � t. Now if � is slightly increased

from zero, there will be a stationary cyclical distribution x+ in the neighborhood of

x. When � > 0, then Md = 1 � p+d + q+d < 1 < Me = 1 � p+e + q+e . Hence, it
must be the case that qe increases by more than pe decreases and qd decreases by

more than pd increases when � (and �) is increased from zero. Therefore, p+e q
+
e > t

2

and p+d q
+
d < t

2: For a cyclical monetary policy, the extensive margin will increase in

season e and decrease in season d, compared to the acyclical policy. Since a constant

stock of money is optimal in a world with �no seasons,� i.e., when �d = �e = �, it

must be the case that the negative extensive margin e¤ect associated with season d

outweighs the positive extensive margin e¤ect associated with season e. Another way

of thinking about this result is that when psqs is �equally weighted,� i.e., �e = �d,

the (negative) odd-season e¤ect dominates the (positive) even-season e¤ect. Suppose

now that �d < �e. It will still be the case that p+e q
+
e > peqe and p

+
d q

+
d < pdqd, where

(pe; qe; pd; qd) is the distribution associated with the optimal acyclical monetary policy.

However, since the di¤erences between �p�and �q�do not depend upon �e and �d

(see lemma 7) it may now be the case that the (positive) even-season e¤ect dominates

the (negative) odd-season e¤ect. This is because the even-season matching probabil-

ity of a consumer with money meeting a producer without money, peqe, is weighted

more heavily than the odd-season matching probability, pdqd, i.e., �e > �d. Hence,

if the fraction of potential consumers in odd periods is su¢ ciently smaller than the

fraction of potential consumers in even periods� or if demand in the �high�season is

su¢ ciently greater than demand in the �low�season, then a cyclical monetary policy

will deliver a higher-average extensive margin than the optimal acyclical policy.

6 Intensive-margin e¤ects

The only participation constraints that are relevant, given our notion of stationar-

ity, are those of producers. In this section, we derive representations of producer

constraints as functions of preference parameters, policy parameters, and allocations,

without reference to value functions. Although the �rst-order e¤ect of cyclical in-

terventions is a tightening of participation constraints, these negative e¤ects can be
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negligible or even absent if the discount factor is su¢ ciently high.

Proposition 3 The participation constraints are satis�ed if and only if

ud(yd) �
ye
�

�
1

(1� �)�dpd
� (1� �)�1� �dpd

�dpd

�
(13)

and

ue(ye) �
yd
�

�
1

(1� �)�epe
� (1� �)�1� �epe

�epe

�
: (14)

Proof. See appendix 5.

Inequalities (13) and (14) indicate that cyclical policies have a potentially negative

e¤ect on intensive margins, since the right-hand side of both inequalities is increasing

in � and � . The intuition behind these potential negative e¤ects is straightforward: In

either case� whether money is injected or withdrawn from the economy� the value

of money in a trade will fall compared to the situation where � = � = 0. In the

case where the money supply is contracted after production and trade, the value of

currency falls because there is a chance that the producer will be unable to use his

unit of currency in a future trade because it will be taken away; in the case where

the money supply is expanded after production and trade, the fact that a producer

may receive a unit of currency if he does not produce reduces the value of a unit

of currency for a producer who does. A fall in the value of money implies that the

amount of output received per unit of currency is reduced. If, however, � is su¢ ciently

high, then inequalities (13) and (14) will not bind at y = y�, the output levels that

maximize the intensive margins; hence, the potential e¤ects on the intensive margins

do not materialize for small monetary interventions.

Suppose that neither participation constraint binds when � = 0. Then, it turns

out that if � is reduced, the �rst participation constraint to be violated is the partic-

ipation constraint for date-e producers, (13). Hence,

Lemma 10 If the participation constraint for date-e producers is satis�ed for x acycli-

cal and y = y�, then (x; y) is implementable.

Proof. Since u0e � u0d and ue(0) = ud(0), then u0e(y
�
d) � 1; so that y�e � y�d and

u�e(y
�
e) � u�d(y

�
d). Now, it has been established in the previous section that, if x is
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acyclical, then �d � �e implies qd � qe. As a result, since the equality �epeqe = �dpdqd
holds for all acyclical x, �d � �e implies �dpd � �epe. Since the right-hand side of

(13) or (14) is increasing in �sps, and since u�e(y
�
e)=y

�
d � u�d(y

�
d)=y

�
e , then the result

follows.

Lemma 10 indicates that it su¢ ces to look at the participation constraint for

date-e producers in order to �nd a value of � such that small interventions have

no negative e¤ects on intensive margins; the following proposition characterizes the

critical � for the optimal acyclical distribution such that the participation constraint

for the date-e producer �just�binds.

Proposition 3 Let x take the value of the acyclical distribution with ps = qs, and let

� > ��, where

�� =
�ud(y

�
d)

y�e
+

r�
ud(y

�
d)

y�e

�2
+ 41��dpd

(�dpd)2

21��dpd
�dpd

:

Then, if � is su¢ ciently small, the cyclical allocation (x+; y�) for x+, in a neighbor-

hood of x, is implementable.

Proof. The cuto¤ value �� was constructed so that (x; y�) is implementable for

� = ��. Since the participation-constraint sets vary continuously with (�; �), the

result follows.

7 Optimal policies

On one hand, our results regarding extensive-margin e¤ects show that there exists

a cuto¤ value for �d, called ��, such that the maximizer of the average extensive

margin is cyclical if and only if �d < ��. On the other hand, our results on intensive

margins show that there exists a cuto¤ value of �, called ��, such that for � > ��;

small interventions around the allocation (x; y�), where ps = qs, are implementable. It

follows, therefore, that the optimum is cyclical for a large set of parameters, including

�s and � such that �d < �� and � > ��.

Proposition 4 If �d < �� and � � ��, then the optimum monetary policy is cyclical.
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Proof. Welfare is proportional to
P

sEsIs, where Es is the extensive margin at s,

�spsqs, and Is is the intensive margin at s, us(ys) � ys. By lemma 1, Ee = Ed for

all acyclical policies, so that for �xed (Ie; Id), the acyclical x that maximizes welfare

features ps = qs. Since � � ��, y� satis�es participation constraints evaluated at this

maximizer, so that the allocation that attains the highest welfare among acyclical

policies is (x; y�). Since a small intervention increases Ee and Ee + Ed when �d < ��,

and Ie � Id for y = y�, and such intervention is implementable according to our last
proposition, then the optimal cannot be acyclical.

The proof of this proposition holds even when ue = ud. When ue = ud, �d = ��,

and � = ��, proposition 4 implies thatX
s

�sp
+
s q

+
s

�
us
�
y+s
�
� y+s

�
=
X
s

�spsqs [us (y
�
s)� y�s ] ;

where x+ is a cyclical distribution, x is the (optimal) acyclical distribution and, by

construction, y+e = y
+
d = y

�
d = y

�
e . However, if u

0
e > u

0
d, �d = ��, and � = ��, thenX

s

�sp
+
s q

+
s

�
us
�
y+s
�
� y+s

�
>
X
s

�spsqs [us (y
�
s)� y�s ] ; (15)

since ue (y+e )�y+e = ue (y�e)�y�e > ud
�
y+d
�
�y+d = ud (y�d)�y�d, �ep+e q+e > �ep�eq�e , andP

s �sp
+
s q

+
s =

P
s �spsqs. Therefore, when u

0
e > u

0
d there exist (non-unique) numbers

�̂ < �� and �̂ < �� such that for any � 2
�
�̂; ��

�
and � 2 (�̂; ��), inequality (15)

holds. Therefore, proposition 4 describes the conditions that are su¢ cient, but not

necessary, for the optimal money policy to be cyclical. (We have documented these

properties with numerical simulations, which are available upon request.) As a result,

cyclical monetary policy may be optimal for some economies where the conditions of

proposition 4 do not hold.

8 Conclusion

We have constructed a random-matching model of seasons, where di¤erent seasons

are characterized by the buyer�s di¤ering desires and intensities to consume. Even

when the buyer�s intensity to consume is constant over seasons� and only the desire

to consume varies over seasons� we show that a monetary policy that injects money
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into the economy when the desire to consume is high and withdraws it when the

desire is low may be bene�cial. Compared to a constant monetary policy, a cyclical

policy increases the chances of single-coincidence meetings in the high season and

decreases their chances in the low season. A cyclical policy will be bene�cial if the

proportion of consumers who want to consume is smaller in the low season than in

the high season. In this situation, the average number of successful matches over

both seasons will increase� which in turn increases welfare� because the measure of

single-coincidence matches is weighted by a larger factor in the high season than in

the low season. When the seasons are characterized by the buyer�s di¤ering desires

and intensities to consume, a cyclical monetary policy can be optimal even when the

di¤erence between the proportion of buyers that want to consume in the high versus

the low season is not very large. Our theory provides some additional support for the

founding of the Fed. Previous explanations relied on the reduction in �nancial panics

that came about after the Fed was founded; ours relies on the improved production

and consumption allocations that result when the Fed follows a cyclical policy that

alters the amount of money in the economy on a seasonal basis.
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Appendix 1
Lemma 4 There exists, for each qs, a unique acyclical x: Moreover, x can be solved

for analytically. The statement holds for any s in fe; dg.
Proof. We shall make repeated use of the system (1-4) with � = � = 0. According

to lemma 2, ps = qs + a for some a that does not depend on s. We shall �rst solve

for a analytically. For this purpose, let A � 1 + �spsqs, which, by force of lemma 1,
does not depend on s as well. Equation (1) now reads (i) pe = A � qd. Using (ii)
pd = qd + a, we can write (2) as (iii) qe = A � (a + qd). The equality peqe = �pdqd
for � = �d=�e, can be written, using (i), (ii), and (iii), as (A � qd)2 � a(A � qd) �
�qd(a+ qd) = 0. The only relevant solution of this quadratic equation is given by (iv)

2(A � qd) = a +
p
a2 + 4�b, where b = qd(a + qd): Since A = 1 + �dqdpd = 1 + �db,

we can rewrite (iv) as (v) a2 + 4�b = [2�db + 2(1 � qd) � a]2. Expanding (v) as
a quadratic equation in b; we �nd that the only relevant solution is given by (vi)

2�2db = � + a�d � 2�d(1� qd) +
q
�2 � 4�d(1� qd)� + �2da2 + 2��da. Substituting in

(vi) the expression b = qd(a + qd), produces a quadratic equation in a as a function

of qd. The only relevant solution of the latter is (vii) a = [�k2�
p
k22 � 4k1k3]=(2k1),

where k1 = �2d[(2�dqd�1)2�1], k2 = 2�df(2�dqd�1)[2(�dqd)2+2�d(1� qd)� �]� �g,
and k3 = [2(�dqd)2+2�d(1�qd)��]2��2+4�d(1�qd)�. If qd is �xed, then pd = qd+a
determines pd: Using (1) and pe = qe+ a, the values of pe and qe are also determined.

Since the system (1-4) is symmetric in e and d, when � = � = 0, similar conclusions

follow when qe is given, instead of qd.

Appendix 2
Proposition 1 The maximizer of �spsqs, among the set of acyclical distributions, is

the unique x such that ps0 = qs0. The statement holds for any s and s0 in fe; dg.
Proof. The set of acyclical distributions is closed, and �spsqs is continuous in x for

each s, so that a maximizer exists. Let us �x x = x1, with p1s 6= q1s for some s, and
show that x1 cannot be the maximizer. Note that, by lemma 2, p1s 6= q1s if and only if
p1s0 6= q1s0. We start by constructing x2; the �mirror image�of x1, with the equalities
p2s = q1s and q

2
s = p1s for s 2 fe; dg. Also, for � 2 (0; 1); let x� � �x1 + (1 � �)x2.
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It is clear that, for all s, �p1sq
1
s + (1 � �)p2sq2s < p�s q

a
s . Thus the distribution of x

�

attains a higher extensive margin than that of x1, although x� is not invariant if it

does not satisfy (1-4) with equality. However, using now lemma 1, one can rewrite

each equation in the system (1-4), when � = � = 0, as ps + qs0 = 1 + �spsqs or

ps0 + qs = 1 + �spsqs, where s0 6= s, so that each right-hand side is increasing in the
extensive margin. Since p�s + q

�
s0 < 1 + �sp

�
s q
�
s and p

�
s0
+ q�s < 1 + �sp

�
s q
�
s , then there

exists an acyclical �x; with �x � x�, that attains a higher extensive margin than that
of x. The proof is now complete.

Appendix 3
Lemma 7 If x is invariant and � = ��, then ps� qs = fs(�), where fe(�) = �����1

1+����

and fd(�) =
�+���1
1+���� .

Proof. The system (1-4) can be rewritten as

p̂e = 1� (1� �)q̂d + �dpdqd; (16)

p̂d = 1� (1� �)q̂e + �dpeqe +
�

1� � ; (17)

q̂e = 1� (1� �)p̂d + �dpdqd +
�

1� � ; (18)

and

q̂d = 1� (1� �)p̂e + �epeqe; (19)

where p̂e = pe=(1 � �), p̂d = pd=(1 � �), q̂e = qe=(1 � �), and q̂d = qd=(1 � �):
Eliminating �dpdqd between equations (16) and (18), and �epeqe between (17) and

(19), yields

p̂e � q̂e = (1� �)(p̂d � q̂d)�
�

1� �
and

p̂d � q̂d = (1� �)(p̂e � q̂e) +
�

1� � ;

which can now be solved as

p̂e � q̂e =
(1� �)� � �

(1� �)[1� (1� �)(1� �)] (20)

and

p̂d � q̂d =
� � (1� �)�

(1� �)[1� (1� �)(1� �)] : (21)
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One can now multiply both sides of (20) by 1� � to obtain the expression pe � qe =
fe(�), and multiply both sides of (21) by 1�� to obtain the expression pd�qd = fd(�).

Appendix 4
Before we can provide a proof for proposition 2, the following two lemmas are

needed. From lemma 7 we can use the expression qs = ps � fs to reduce (1)-(4) to a
system in (pe; pd), which allows us to write the derivatives of ps with respect to � as

follows.

Lemma 8 If x is invariant and � = ��, then the derivatives of ps with respect to

�; evaluated at � = 0, satisfy�
1 1� �d(2pd � fd)

1� �e(2pe � fe) 1

� �
p0e
p0d

�
=

�
(1� �dpd)f 0d � pe

(1� �epe)f 0e � �pd + �

�
:

Proof. Equations (1) and (2) can be written as

p+e
1� � = 1� p

+
d + fd + Ed (22)

and
p+d

1� �� �
��

1� �� = 1� p
+
e + fe + Ee; (23)

where Ed = �dp+d (p
+
d � fd) and Ee = �ep+e (p+e � fe). Taking derivatives on both sides

of (22) and (23), with respect to �, yields, for � = 0,

pe + p
0
e = �p0d + f 0d + E 0d (24)

and

�pd + p
0
d � � = �p0e + f 0e + E 0e; (25)

where E 0d = �dp
0
d(2pd � fd)� �dpdf 0d and E 0e = �ep0e(2pe � fe)� �epef 0e. Substituting

the expressions for E 0d and E
0
e into equations (24) and (25) yields the result.

The total e¤ect of changes in � on extensive margins can also be expressed in a

compact form.

Lemma 9 If x is invariant and � = ��, then the derivative of the sum
P

s �spsqs,

with respect to �, evaluated at � = 0, is equal to pe + �pd � �� f 0e � f 0d + 2(p0e + p0d).
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Proof. Using equations (24) and (25), derived in the proof of the previous lemma,

yields the results because the derivative of the sum
P

s �spsqs is precisely E
0
d+E

0
e.

Using lemmas 7, 8 ,and 9, we can characterize the sign of the derivative of the

sum
P

s �spsqs, for ps = qs, as follows:

Proposition 2 The maximizer of sum
P

s �spsqs is cyclical if and only if �d 2 [0; ��],
where �� 2 (0; �e) can be solved for analytically as a function of �e.
Proof. Lemmas 7, 8, and 9 allow the substitution of expressions for p0e + p

0
d and

f 0e+f
0
d into the expression of the derivative of

P
s �spsqs, evaluated at � = 0, ps = qs,

and � = 1. Substituting also the analytical solution for pe and pd, when ps = qs and

� = 0 from lemma 5, yields an expression for the derivative involving only parameters.

After some tedious but straightforward algebra, the condition according to which this

derivative is positive can be written as

2�d � (1� �)
p
2� (1�

p
�)2;

where � = �d=�e. The inequality is not satis�ed for � = 1 and �d > 0. Hence, the

cuto¤ value of �d for which the derivative is positive must be below �e. Imposing

equality in this expression and substituting for the value of � yields, after solving for

the unique relevant solution of the implied quadratic equation in �2d,

�� =
1

4

242=p�e +
q
4=�e � 4(2 + (1 +

p
2)=�e)(1�

p
2)

2 + (1 +
p
2)=�e

352 ,
which has the properties stated in the proposition.

Appendix 5
Before providing a proof of proposition 3, we will �rst rewrite (v; w) in a con-

venient form and will then introduce two lemmas that will be needed in the proof.

Substituting the values of (�v; �w) from equation (6) into equation (5) allows us to work

with two independent systems of Bellman equations in (v; w), represented in matrix

format as �
vs
ws0

�
=

1

det(Mss0)
Mss0

�
�us�spsus

��ys0�s0qs0ys0

�
; (26)
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where s; s0 2 fe; dg, s0 6= s, �ue = �yd = 1, �ud = 1� � , �ye = 1� �, and

Mss0 =

�
1� (1� �s0qs0)�(1� �) �� + (1� �)�sps�
�� + (1� �)�s0qs0� 1� (1� �sps)�(1� �)

�
:

We start with the following lemma, which allows us to ignore det(Mss0) in the

algebra that follows.

Lemma 8 The determinant of Mss0 is positive.

Proof. For ad � 1� �dqd and ae � 1� �epe; the determinant of Med equals

(1� �ad + ��ad)(1� �ae + ��ae)� �(�dqd + �ad)(�epe + �ae);

which can be written as the sum of two terms, k0 and k1, where k0 contains all the

terms without � or � , and k1 contains the other terms. The expression for k0 is

k0 = [1� �(1� �dqd)][1� �(1� �eqe)]� ��dqd�eqe:

After some simple algebra, that expression becomes

k0 = (1� �)(1� � + ��dqd + ��eqe � ��dqd�eqe);

which is positive if x is invariant. Likewise, since for ad � 1��dqd and ae � 1��epe;
one can write k1 as

��ae(1� �ad � �dqd) + ��ad(1� �ae � �epe) + ��ad�ae(� � 1); or

��ae(1� �)(1� �dqd) + ��ad(1� �)(1� �epe)� ��ad(1� �)�ae; or

��ae(1� �)(1� �dqd) + ��ad(1� �)(1� �epe)(1� �);

which is nonnegative. A similar argument shows that det(Mde) is also positive.

Next, we use the Bellman equation for weto write (7) in an equivalent format that

does not depend on ye explicitly.

Lemma 9 The participation constraint for date-s producers is equivalent to [1� (1�
�)�]ws � ��vs0.
Proof. Let s = e: The Bellman equation for we can be written as

[1� (1� �)�]we � ��vd = (1� �)�eqe(�ye + �vd � ��vd);
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then the result follows directly from (7). The argument for s = d follows from the

same steps.

We now use the previous two lemmas to write the slack in the producer constraint

in matrix algebra as�
��� 1� (1� �)�

� � vs
ws0

�
=

1

det(Mss0)

�
mus mys0

� � �us�spsus
��ys0�s0qs0ys0

�
(27)

where the scalars mus and mys0 are to be computed so that the sign of the par-

ticipation constraint does not depend on the magnitude of det(Mss0). After some

straightforward algebra is used to produce a simple expression for mus and mys0, the

desired inequalities are derived as follows.

Proposition 3 The participation constraints are satis�ed if and only if

ud(yd) �
ye
�

�
1

(1� �)�dpd
� (1� �)�1� �dpd

�dpd

�
(28)

and

ue(ye) �
yd
�

�
1

(1� �)�epe
� (1� �)�1� �epe

�epe

�
: (29)

Proof. The steps for deriving inequality (28) are simple; we omit the proof for

inequality (29) because it is identical to the proof of inequality (28). Regarding

participation constraint for date-e producers, we �nd it useful to set � = �dpd and

� = �eqe, so that the expression for mud can be written as

�mud = �� � ��(1� �)(1� �)� � �� � (1� �)�� + ��(1� �)� +

(1� �)��(1� �)�

= �(1� �)�� + (1� �)���

= �(1� �)(1� �)��:
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The expression for mye is

�mye = ���� + ��(1� �)�� � 1 + (1� �)(1� �)� + (1� �)� +

�(1� �)�(1� �)(1� �)�

= ���� + �(1� �)�� � 1 + (1� �)� +

�(1� �)(1� �)�[(1� �)� � 1]

= �1 + � � ��[1� � � (1� �)�] + ��(1� �)(1� �)� +

(1� �)(1� �)(1� �)�

= �1 + � � ��(1� �)(1� �) + ��(1� �)(1� �)� +

(1� �)(1� �)(1� �)�

= �1 + � � (1� �)��(1� �)(1� �) + (1� �)(1� �)(1� �)�

= �(1� �)[1� (1� �)�(1� �)(1� �)]:

Thus, the right-hand side of (27) equals

(1� �)(1� �)�eqe
det(Mde)

�
� 1� �(1� �)(1� �)(1� �dpd)

� � (1� �)�dpdud
�ye

�
;

so that (28) follows.
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