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Procyclical productivity plays an important role in many models of aggregate fluctuations.  However, 
recent studies using aggregate data to directly measure technology shocks in the Solow residual find that 
technology shocks are not procyclical.  This paper provides new evidence that, due to countercyclical 
composition changes between producers, the procyclicality of productivity observed in aggregate data 
may be understated.  Using plant-level microdata, this paper finds that the reallocation of output shares 
across continuing plants, as well as the entry and exit of plants, creates a countercyclical component in 
aggregate productivity.  This paper shows that such composition changes may cause a downward bias in 
industry-level estimates of returns to scale.  The findings of this paper suggest that, without correcting for 
the countercyclical effects of reallocations, estimates based on aggregate data may not reflect the true 
cyclicality of technology shocks, which a representative agent faces over the business cycle.   
 
JEL Classification:  D24, E32, O47 
Keywords:  Entry, Exit, Productivity, Returns to Scale  
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction 

Explaining the cyclical behavior of productivity is essential for understanding business cycles.  

Based on the Solow residual as a measure of productivity changes, many researchers have given 

a central role to technology shocks in explaining the procyclical behavior of productivity and 

aggregate fluctuations (See, for example, papers in Cooley, 1995).  However, in a series of 

papers for which they use a modification of Solow’s methodology, Hall (1988, 1990) and others 

claim that real business cycle analysis overestimates the magnitude of productivity shocks and, 

thus, the contribution of these changes to aggregate fluctuations.  Furthermore, Basu, Fernald, 

and Kimball (2005) argue that correctly measured technology shocks are not correlated with 

output or with the business cycle.1  

Although their findings vary, previous studies are similar in their use of aggregated data.  

In this paper, I argue that cyclical reallocations across producers with different levels of 

productivity cause a countercyclical bias in aggregate productivity and obscure the true 

cyclicality in productivity, which a representative firm or plant faces over the business cycle.  I 

use detailed plant-level data on U.S. manufacturing to quantify and assess the empirical 

importance of the aggregation issues implicit in previous studies that use aggregated data to 

measure short-run productivity changes.  Using the Longitudinal Research Database (LRD), I 

examine how entry and exit, as well as reallocations among plants of different efficiencies, 

change the composition of producers over the business cycle.   

In general, I find that cyclical reallocations between plants create a countercyclical 

composition bias in aggregate total factor productivity (TFP), reducing the procyclicality of 

aggregate TFP.  Output shares are reallocated from less-productive to more-productive plants 

during recessions.  Furthermore, plants entering and exiting during a boom are less productive 

than those entering and exiting during a recession.   

The countercyclical effect of composition bias on aggregate TFP is similar to the effect of 

composition bias on the cyclicality of real wages (Stockman, 1983; Bils, 1985; Solon et al, 1994; 

Chang, 2000).  In contrast to the labor market, in which changes in the composition of workers 

are mostly explained by changes that occur on the extensive margin, i.e., entry and exit of 

                                                 
1 Using a very different approach to identify technology shocks, Gali (1998) and Kiley (1997) also reach the similar 
conclusion that technology shocks are very negatively correlated with inputs. 

 1



workers, changes in composition of producers are mostly explained by changes that occur on the 

intensive margin of production, i.e., reallocations between continuing plants.  The magnitude of  

composition bias caused by entry and exit of plants is relatively small, because of the small 

output share of the industry which entering and exiting plants account for.       

Having established the importance of composition changes over the business cycle in 

understanding the cyclical behavior of aggregate productivity, I proceed to show that such 

composition changes may bias aggregate estimates of returns to scale.  Increasing returns to scale 

is put forward as an explanation for the procyclical behavior of productivity and as an important 

propagation mechanism in models of the business cycle.  However, recent studies based on 

industry-level data, such as Basu and Fernald (1997), find decreasing, rather than increasing 

returns to scale.  What matters for macroeconomic models are returns to scale across firms, 

appropriately aggregated.  Many researchers have interpreted returns-to-scale estimates based on 

aggregated data as the returns to scale of a representative firm.  However, estimates from 

aggregated data may not serve as reliable estimates of the average firm-level parameters if the 

composition of producers with different levels of productivity changes over the business cycle.  

As inputs are reallocated toward less-productive firms during booms, for example, the marginal 

response of output to input changes may appear lower in aggregate data than the marginal 

increase in output of a typical firm, leading to smaller estimates of returns to scale in aggregate 

data.  Directly assessing the effects of composition changes, I find that a composition bias helps 

explain the finding of decreasing returns to scale.  In most two- and four-digit SIC industries 

with significantly decreasing returns to scale, returns-to-scale estimates decrease as the plant-

level data are aggregated to the industry level.     

This finding of the countercyclical effects of reallocations between plants sharply contrasts 

with previous findings on the effects of reallocations between industries, such as those of Basu 

and Fernald (2002) and Basu, Fernald, and Kimball (2005).  Basu and Fernald (2002) claim that 

reallocation between two-digit industries with different marginal products explains much of the 

cyclicality of aggregated productivity.  However, the plant-level evidence in this paper points to 

some potential problems in such studies based on aggregated data.  First, the differences in true 

marginal products across industries, once corrected for composition bias, may not be as large as 

they appear in industry-level data.  Compared to industry-level estimates that vary substantially 

across industries, plant-level estimates are rather closer to constant returns to scale.   
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Furthermore, the previous mentioned studies, which are based on macro-aggregates built from 

industry-level data, ignore important reallocations that occur within a detailed industry.  The 

evidence from plant-level data clearly shows that, correcting for aggregation effects running 

from plants to the manufacturing industry, aggregated productivity would be more procyclical.           

This finding of countercyclical composition bias in aggregate TFP is consistent with the 

findings of Baily, Bartelsman, and Haltiwanger (2001) on the way reallocations between plants 

affect the cyclical behavior of aggregate labor productivity.  Whereas their study focuses on 

labor productivity, a key aspect of the present study is an exploration of the effects of cyclical 

changes in producer composition on aggregate TFP and estimates of returns to scale.  As 

discussed in Chang and Hong (2005), labor productivity reflects changes in the input mix, in 

addition to technological changes; moreover, TFP is the right concept for studying technology 

shocks.   

Section 2 of this paper provides a description of the data and empirical evidence of 

composition changes over business cycles.  Section 3 examines how these changes in the 

composition of producers may affect returns-to-scale estimates for different levels of 

aggregation.  Conclusions are presented in the last section.   

2 Composition Changes and the Cyclicality of Productivity 

2.1  Measurement of Productivity and Data Description 

The plant-level data used in this study are taken from the LRD maintained by the Center for 

Economic Studies at the U.S. Bureau of the Census.  The LRD is constructed by linking 

individual establishment records from the Census of Manufactures, which is taken every five 

years, and the Annual Survey of Manufactures (ASM), which is taken every non-census year.  In 

this study, I use the ASM portion of the LRD for the years 1972 through 1997.  Because the 

entire ASM comprises a representative sample of manufacturing plants (Davis, Haltiwanger, and 

Schuh, 1996), the survey allows me to assess the contribution of entry and exit to the cyclical 

behavior of productivity as well as the impact of output reallocation across plants. 

Plant-level productivity is measured using a standard total factor productivity index similar 

to that used by Baily, Hulten, and Campbell (1992) and Foster, Haltiwanger, and Krizan (2001).  

The TFP index of plant j is computed as follows: 
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where  is real gross output,  is labor input,  is real materials, and  is real capital 

stock.  The input cost shares for four-digit industries are used as the measure of the 

corresponding factor elasticities.

jtY jtL jtM jtK

2  There are two problems in measuring cost shares in the ASM.  

First, the ASM only includes the wage and salary costs of labor.  In calculating labor’s share, I 

follow Bils and Chang (2000), magnifying each four-digit industry’s wage and salary payments 

to reflect other labor payments, such as fringe payments and employer FICA payments.3  

Another problem is that capital expenditures are not available for the ASM.  Given that previous 

studies by Rotemberg and Woodford (1995) and Basu and Fernald (1997) find small profits in 

manufacturing, I assume zero profit at the industry level so that total revenue will be equal to 

total cost.  Next, I calculate the share of costs for input J in the total revenue from the four-digit 

industry-level data, aggregated from the ASM panels.  For these computations, I consider capital 

expenditure shares to be residuals.  Basu, Fernald, and Kimball (2005) used the same strategy 

and found a result similar to direct attempts at measuring capital’s share.     

Outputs and inputs are measured in 1987 constant dollars.  Real gross output is measured 

as the total value of shipments, deflated by the four-digit industry output deflator for the industry 

into which the plant is classified.  All output, materials, and investment deflators are from the 

NBER manufacturing productivity data set (Bartelsman and Gray, 1996).4  Labor input is 

measured as total hours for production and non-production workers.  Because hours for non-

production worker are not collected in the ASM, the total hours are estimated following the 

method used in Baily, Hulten, and Campbell (1992), in which total hours represents total hours 

for production workers multiplied by the ratio of total payroll for all workers to the payroll for 

                                                 
2 This procedure implicitly assumes that all plants in the industry operate with the same production technology, a 
common assumption in such studies. 
3 Bils and Chang (2000) use information from the National Income and Product Accounts to calculate the ratio of 
these other labor payments to wages and salaries at the two-digit industry level.  I thank Yongsung Chang for 
providing the data. 
4 See Bartelsman and Doms (2000) for the drawback to using deflated production to measure productivity.  Some 
caution is needed in interpreting the results.  Ignoring any quality improvement in output that is not reflected in the 
deflator may result in a downward bias in productivity growth.  If new plants enter a market with new products 
having higher prices, and the number of new plants increases during a boom, the use of a single industry-level 
deflator may lead to overestimate the procyclicality of aggregate productivity.  As Klette and Griliches (1996) 
pointed out, returns to scale estimates obtained from production function regressions might be biased downward if 
firms sell outputs at different prices (imperfect competition) but firm-level outputs are deflated based on a common 
output deflator.    
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production workers.  Material input is measured as the cost of materials deflated by the four-digit 

industry materials deflator.  Capital stocks for equipment and structures are constructed using the 

perpetual inventory method.  

2.2  Patterns of Entry and Exit over the Business Cycle 

Previous studies on the entry and exit of producers document considerable fluctuations in entry 

and exit rates over the business cycle.  Campbell (1998) finds that the quarterly entry rate 

exhibits procyclical behavior, whereas the quarterly exit rate is countercyclical and is positively 

correlated with future GDP growth.  Cooper and Chatterjee (1993) and Devereux, Head, and 

Lapham (1996) find that net business formation shows a strong procyclical movement.  Figure 1 

shows the annual entry and exit rates measured as the share of entering or exiting plants in the 

manufacturing industry within a given year.  In this study, entering plants are either new plants, 

which appeared in the LRD for the first time, or plants that restarted production after a certain 

period of inactivity.  Similarly, exiting plants include those that stopped producing during the 

following period and stayed inactive for a certain period of time, as well as those that 

permanently shut down.5  As discussed in detail in Davis, Haltiwanger, and Schuh (1996), 

samples in the ASM panels are rotated every five years.  Only large “certainty” plants are 

continuously observed across different ASM panels; moreover, it is very difficult to measure 

entry and exit between the two years in which the panels are rotated.  In order to avoid 

measurement errors in entry and exit caused by the panel rotations, the results reported exclude 

entries and exits measured between two different ASM panels, namely 1973–74, 1978–79, 

1983–84, 1988–89, and 1993–94.  Figure 1 presents the interpolated values for these missing 

years (i.e., the first ASM years in each rotation, 1974, 1979, 1984, 1989, and 1994). 

The entry rate rises during economic booms and falls during recessions.  The correlation 

between the annual entry rate and the annual growth rate of real GDP (excluding the first ASM 

panel years) is .242.  The procyclical behavior of the entry rate is consistent with the findings of 

previous studies.  The annual exit rate in Figure 1 covaries positively with the entry rate.  This 

counterintuitive, procyclical behavior of the exit rate is the result of the fact that, in this study, 

the category of exiting plants includes those that stop production temporarily.  Most of these 

plants enter during the boom part of the cycle, operate for a short period of time, and stop 

                                                 
5 I classify plants that have zero employees or produce zero output as inactive plants. 
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operating until they reenter the market.  Such temporary exits increase during booms, explaining 

more than 50% of plant exits in certain years.  In contrast, most of the exits during recessions 

consist of plants that shutdown permanently.  When measured on the basis of the number of 

permanent shutdowns (i.e., excluding temporary shutdowns), the annual exit rate does not show 

procyclical behavior.6   

Table 1 summarizes the shares and relative TFP indexes of entering and exiting plants for 

the sample period.  The shares are measured in terms of the numbers (the entry and exit rates in 

Figure 1), employment, and total output accounted for by entering and exiting plants.  Entering 

plants account for about 7% of plants in a given year, while 10% of plants in a given year stop 

producing during the following year.  Entering and exiting plants tend to be smaller than 

continuing plants, as reflected in their generally smaller shares of employment and output 

(2~3%).  These small contributions contrast with previous studies, such as that of Foster, 

Haltiwanger, and Krizan (2001), which finds that entries and exits make significant contributions 

to aggregate productivity growth over a longer (five- or 10-year) time horizon.  This difference 

results from the difference in the time horizon over which entry and exit are measured.  As the 

period becomes longer, the number of plants that have entered or exited during the given time 

period increases.  Consequently, the output and labor shares accounted for by entering and 

exiting plants can be much larger when measured over a longer time horizon.   

The last column of the table reports the relative TFP indexes for entering and exiting 

plants.  These indexes consist of the weighted averages of TFPs for entering or exiting plants, 

divided by the weighted averages of TFPs for continuing plants in the same four-digit industry 

during the same year.  In general, entrants are more productive than exiting plants.  This result is 

consistent with the vintage capital model, in which new plants with new technology replace 

older, less productive plants.  I find that within the same four-digit industry, entrants are 

relatively more productive than continuing plants, while exiting plants are less productive than 

continuing plants.  While the finding of exiting plants’ lower productivity is consistent with the 

those of previous studies, such as Foster, Haltiwanger, and Krizan (2001), the finding of 

                                                 
6 These permanent shutdowns are often called plant deaths in the literature.  In a similar way, new plants that appear 
in the LRD for the first time are called plant births.  Measuring entry and exit rates as the share of plant births and 
deaths in the total number of plants in a given year, I find a negative correlation between the annual entry rate and 
the annual exit rate.  The contemporaneous correlation between the entry rate and the log change of real GDP 
increases to .289.  The correlation between the exit rate and the log change of real GDP is .05. 
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entrants’ higher productivity differs from previous research.  This difference is mainly explained 

by the following facts:  First, the relative productivity of new plants in the ASM panel years is 

slightly higher than in Census of Manufactures years.  Second, new plants that entered in the 

1990s have relatively higher productivity than earlier cohorts of entrants.  These recent cohorts 

were not examined in Foster, Haltiwanger, and Krizan (2001).7   

The same statistics are separately reported for economic boom and recession periods in 

order to illustrate how the contributions of entering and exiting plants change over time.  The 

second row summarizes the shares and relative TFP for entering and exiting plants for periods 

when the growth rate of real GDP was greater than 4% (i.e., a boom).  The third row provides the 

same statistics for periods when the growth rate of real GDP was less than 1% (i.e., a recession).  

As described in Figure 1, the share of entrants, measured as the number of entering plants 

divided by the number of all plants (i.e., the entry rate), increases during a boom and decreases 

during a recession.  However, although the number of entering plants increases during a boom, 

the output share accounted for by entering plants does not increase to a significant degree.  This 

finding is partly explained by the relatively low productivity of entrants during a boom.  

Although overall productivity is higher for entrants than for continuing plants, plants that enter 

during a boom are less productive than continuing plants in the same industry.  In contrast, plants 

that enter during a recession or in normal times are more productive than continuing plants.  

Although the magnitudes are relatively small, these differences in productivity over the business 

cycle are also found for exiting plants.  Plants that exit during a recession are more productive 

than those that exit during a boom.  

This difference in the relative productivity of plants that move in and out of production 

suggests that aggregate productivity is subject to composition effects.  Because overall 

productivity is lower for plants that enter during a boom than for those that enter during a 

recession, plant entry may create a countercyclical composition bias in aggregate productivity.  

The differences in exiting plants’ productivity across the cycle may make the behavior of 

aggregate productivity look more procyclical.  Whether the composition bias caused by the entry 

                                                 
7 While the results are reported for the case that uses real capital stocks, obtained using the perpetual inventory 
method, the deflated book value for capital was also used for the purpose of comparison with previous studies.  The 
results were similar to those of the previously mentioned authors when the deflated book value of capital was used.   
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and exit is countercyclical or procyclical will depend on the relative share and productivity of the 

entering and exiting plants over the business cycle.  

2.3  Decomposition of Aggregate Productivity Changes 

Using plant-level data, I examine the extent to which such changes in the composition of 

producers or shifts in the share of outputs across plants affect the cyclical patterns of aggregate 

productivity.  Following Baily, Bartelsman, and Haltiwanger (2001), the time series changes in 

aggregate productivity are decomposed into components that reflect a within-plant component 

(holding output shares fixed) and other effects that reflect the reallocation of shares across plants 

including the effect of entry and exit:8   

 

where  is TFP index for plant j at time t,  is the aggregate TFP index at time t,  

is the share of output at plant j at time t, and a bar over a variable indicates the average of the 

variable over the base and end years (t –  1 and t).  Because a sample of plants from the ASM is 

used, the share is further inflated by the ASM sampling weight.  The first term reflects changes 

in productivity from continuing plants holding output shares (often interpreted as a “within” 

effect).  This term is measured as the weighted sum of productivity changes with the weights 

equal to the average output shares across time.  The second term reflects changes in output share 

from continuing plants for fixed levels of productivity (often interpreted as a “between” effect).  

The last two terms represent the contribution of entering and exiting plants, respectively.   
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In this decomposition, the change in shares in the second (between-plant) term is weighted 

by the deviation of plant-level productivity from the average of aggregate productivity, so that an 

increase in the share of output for a plant contributes positively only if the plant has higher 

productivity than the average aggregate productivity.  In a similar manner, a new plant 

contributes positively to the aggregate change only if its productivity is above the average, while 

an exiting plant contributes positively only if its productivity is below the average.   

                                                 
8 This modifies the decomposition method used by Griliches and Regev (1995) to allow for entry and exit.  Foster, 
Haltiwanger, and Krizan (2001) provide excellent reviews of previous studies using different decomposition 
methodologies and measurement issues.   
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The results of these decompositions are reported in Figure 2.  As in Section 2.2, the results 

reported exclude the first ASM years in each panel in order to avoid measurement errors due to 

sample rotations in the ASM panels. The values for these missing years in the figure are 

interpolated.  The decomposition components for total factor productivity reveal cyclical patterns 

similar to those found for labor productivity in Baily, Bartelsman, and Haltiwanger (2001).  The 

within-plant component shows clear procyclical behavior.  It increased sharply during the booms 

of 1976 and 1983 and decreased markedly during the recessions of 1980 and 1991.  Excluding 

the first ASM panel years, the contemporaneous correlation between the within-plant component 

and real GDP growth is 0.69.  Whereas the within-plant term is very procyclical, the between-

plant term moves in a countercyclical direction.  The between-plant component increased during 

the recessions of 1975, 1982, and 1991 and decreased during the recovery years of 1976, 1983, 

and 1992.  Although except during the 1990s the contribution of plant entry and exit to the 

annual change in aggregate productivity growth was relatively small, the net entry component 

also moved in a countercyclical direction.  The correlations of the between-plant component and 

of the net entry component with the annual change in real GDP are –.16 and –.11, respectively.   

These countercyclical reallocation terms suggest that output shares shift from less-

productive toward more-productive plants during recessions.  While the contribution of net entry 

is relatively small, the magnitude of the impact of reallocations between continuing plants is 

significant, with the countercyclical effect of the between-plant component occasionally 

dwarfing the procyclical effect of the within-plant component.  As a result of these 

countercyclical tendencies, aggregate productivity may look less procyclical than the true 

procyclicality of productivity that is typically observed among individual plants.   

2.4  Implications of Returns-to-Scale Estimates Based on Aggregated Data 

The decomposition results of aggregate productivity confirm the importance of heterogeneity 

and aggregation issues for aggregate fluctuations.  In the remainder of the paper, I argue that 

composition changes across plants with different productivity levels may bias estimates of 

returns to scale based on aggregated data.     

The decomposition results suggest two channels through which aggregation might affect 

the aggregate returns-to-scale estimates in equation (4).  First, the aggregate returns-to-scale 

estimates may be affected by cyclical changes in the output shares between continuing plants.  
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Although aggregate inputs increase during booms and decrease during recessions, the extent to 

which inputs change over the business cycle varies across plants.  The relatively large between-

plant component, which exhibits countercyclical behavior, suggests that the shift of output shares 

from less-productive to more-productive plants during a recession may cause a downward bias in 

the returns-to-scale estimates.  Because the shares of more-productive plants increase during 

recessions, the extent to which aggregate output decreases would be smaller than the decreases 

that would have been observed in a representative plant.  And because the shares of less-

productive plants increase more during booms, the increase in output would look smaller in 

aggregate data than the marginal increase in output of a representative plant.   

Second, the entry and exit of plants with different levels of productivity may also affect the 

aggregate returns-to-scale estimates.  Plants that enter during booms are less productive, so entry 

may cause marginal increases in the outputs of continuing plants to be understated during booms, 

leading to smaller aggregate estimates of returns to scale.  Conversely, because plants that exit 

during booms are less productive, exit may cause overstated marginal decreases in outputs 

during booms, leading to larger aggregate estimates of returns to scale.    

3 Estimating Returns to Scale:  Industry- vs. Plant-level Data 

3.1  Estimating Returns to Scale and the Effect of Composition Bias 

In this section, I assess the size of the potential bias caused by composition changes.  The 

baseline model for estimating returns to scale follows Basu and Fernald (1997).  I assume that a 

firm’s production function for gross output, Y, can be written as a function of labor, L, capital, K, 

intermediate inputs of materials and energy, M, and the state of technology, T, 

),,,( TMKLFY = .    (2)     

The logarithmic differences of the production function lead to the following equation: 
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I further assume that factor markets are competitive and that firms minimize costs.  Cost 

minimization implies that returns to scale (γ ) equals the ratio of average to marginal cost; 

therefore, the equation above can be rewritten as: 
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where dl, dk, and dm are the growth rates of L, K, and M, respectively, and  is the share of 

costs for input J in total cost.  That is, the growth rate of output, dy, equals the returns to scale 

multiplied by the cost-share-weighted growth in inputs, dx, plus the productivity growth, dt.  

Although inputs are plant-specific, I use industry-level input cost shares, averaged over the 

beginning and ending years of the period of change.  

Jc

Many researchers, relying on a representative firm framework, have used aggregated data 

and run regressions similar to equation (3) to estimate returns to scale.  To illustrate that these 

estimates from aggregated data may be subject to a composition bias, consider the case in which 

equation (3) is estimated using aggregated data.  This procedure implicitly assumes the existence 

of an aggregate production function similar to that of (2), while dt now reflects aggregate 

productivity changes.  As discussed in detail in the previous section, aggregate productivity 

changes can be decomposed into components that reflect productivity changes within the plant 

and other components that reflect reallocations of shares across plants, including entry and exit:9
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The aggregate output growth in equation (4) depends not only on aggregate input growth and 

aggregated changes in plant-level productivity, but also on the composition changes of producers 

with different efficiencies.  Given that reallocations are negatively correlated with aggregate 

input changes, a regression run on aggregated data may be subject to a bias caused by 

composition changes.   

                                                 
9 Although the unit of the discussion in this section is “a firm”, the unit of empirical analysis is “a plant”, which 
refers to a physical location where production takes place.  The distinction between firm and plant may not be 
important if a firm has only one plant.  In the case of multi-unit firms, the analysis implicitly assumes that decisions 
of production are made at the plant level.   
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In order to assess the size of the bias that may be present in studies using aggregated data, 

the “composition changes” term calculated from the LRD is run on aggregated input changes, dx, 

constructed from the publicly available aggregated data.  For the total manufacturing samples 

from the NBER manufacturing database, the regression coefficient,δ , is –.077 (see Table 2).  As 

expected, because of the relatively small contribution of plant entry and exit to aggregate 

productivity growth, the bias caused by net entry (Column 3) is much smaller than the bias 

caused by between-plant reallocations (Column 2).   

Overall, the results in the first row suggest that the effects of composition bias on the 

returns-to-scale estimates for manufacturing as a whole might not be large.  However, they do 

not necessarily imply that the effect of the bias would be smaller at the disaggregated level.  The 

results for durables and nondurables suggest that the effect of composition bias may be larger, as 

well as significant at more disaggregated levels of data.  Given that previous findings of 

decreasing returns to scale are based on two-digit industry-level data, this finding suggests that 

composition bias may be more important at more disaggregated levels of data.   

3.2 Estimates of Returns to Scale at Various Levels of Aggregation 

One straightforward method of avoiding composition bias is to measure returns to scale at the 

plant level, giving fixed weights to the exact same plants over time.  In this section, the baseline 

model in Equation (3) is estimated using an ordinary least squares (OLS) regression at various 

levels of aggregation, from the plant level to the two-digit SIC industries, and to manufacturing 

as a whole.10  Assuming that the specification is correct for both the plant- and industry-level 

regressions, a direct comparison of plant- and industry-level estimates allows an assessment of 

the size of aggregation bias in estimates obtained from industry-level data.  Appropriate caution 

should be used in interpreting these results, because this assumption may not be warranted.  For 

instance, measurement errors in plant-level variables may cause returns to scale to be 

understated; if industry-level variation in inputs is correlated with technology changes, the 

estimates of returns will be biased.  The size of a bias, caused by measurement errors, 
                                                 
10 As pointed out by a number of researchers since the classic study by Marschak and Andrews (1944), production 
function estimates obtained by the OLS are subject to a simultaneity bias generated by the relationship between 
productivity and input demands.  Since Hall (1988, 1990) and Basu and Fernald (1997), a growing number of 
studies have generalized the methodology to avoid either measurement errors in factor utilization or the simultaneity 
bias problem.  However, because the study focuses on the effects of composition bias and its primary concern is the 
differences between estimates at different levels of aggregation, the OLS estimation serves the primary purpose of 
this study. 
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misspecification, the effects of technology shocks, or endogeneity in regressions, may vary 

across different levels of aggregation.        

Plant-level Estimates—Correcting Measurement Errors  

A potential problem of plant-level analysis is the attenuation bias caused by measurement errors.  

Previous studies suggest that plant-level returns to scale might be understated by measurement 

errors present in plant-level hours or capital stocks.11  Because the specification requires 

measuring changes in inputs and outputs, first-differencing variables may magnify the 

attenuation bias, leading to a much smaller returns-to-scale estimate.     

As a standard response to errors in variables, two instruments are introduced.  The first is 

cost-share-weighted growth in inputs, dx, measured over t + 1 and t – 2.  Given that a firm’s 

input decisions are highly correlated, plant-level input changes between t and t – 1 and those 

between t + 1 and t – 2 should be highly correlated as well.  If measurement errors are not 

serially correlated, an IV estimation using the instrument will yield consistent estimates of 

returns to scale.  The second instrument is obtained by aggregating the plant-level data.  

Assuming that measurement errors are canceled out at higher levels of aggregation, plant-level 

inputs may be aggregated at the four-digit-industry level to calculate cost-share-weighted growth 

in inputs at that level.  Although IV estimation may help reduce the attenuation bias caused by 

measurement errors, it does not take account of the endogeneity of inputs.   

The plant-level estimates are reported in the first three columns of Table 3.  Column (1) 

presents the plant-level OLS result for a pooled sample, which includes plants that have operated 

for two consecutive years in which they produced nonzero output.  The first ASM panel years 

are excluded in order to avoid sampling issues from panel rotation.  Throughout the paper, all 

plant-level regression results are obtained from weighted regressions using the ASM sampling 

weight so that the sample is representative of US manufacturing as a whole. 

The second and third columns report the results from the IV estimation.  Column (2) 

reports these results using the first instrument, (i.e., the cost-share-weighted input growth 

                                                 
11 See Westbrook and Tybout (1993) and Becker et al. (2005) for evidence of measurement errors in capital.  Hansen 
and Lindstrom (2004) argue that measurement errors in factor inputs can explain the puzzles of rising returns-to-
scale estimates at higher levels of aggregation and decreasing returns to scale at the firm level.  In the appendix, I 
present evidence of the attenuation bias caused by measurement errors, following the method of Griliches and 
Hausman (1986) and Goolsbee (2000).  In Table A5, returns-to-scale estimates rise (even within the same set of 
plants), as changes in inputs and outputs are measured over a longer period of time.   
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between t + 1 and t – 2 at the plant level), while Column (3) reports equivalent results using the 

second instrument, (i.e., the cost-share-weighted input growth between t and t – 1 at the four-

digit-industry level).  Overall, the returns-to-scale estimates are higher than the OLS estimates 

for all three groups of samples.  In most cases, the Hausman specification test rejects the null 

hypothesis, which would hold that the OLS estimate is consistent.  For durables, I find 

statistically significant increasing returns to scale when the industry-level instrument is used. 

Industry-level Estimates and the Effect of Composition Bias 

In order to examine the effects of aggregation, the same equation (3) is estimated using the 

industry-level data, created by aggregating all plants in the industry for a given year.  The ASM 

sampling weight is used to make the aggregated data to mimic the data used in aggregate studies 

representing the entire industry.  Because the industry-level estimation is less likely to be subject 

to measurement errors, OLS estimates are used as the industry-level estimates.12

The productivity decomposition in the previous section provides two channels through 

which changes in composition can affect aggregate statistics:  (1) the reallocation of output 

shares among continuing plants; and (2) the entry and exit of plants.  In order to examine the 

effects of these two channels separately, plant-level data are aggregated in two different ways:  

(1) aggregating only continuing plants excluding entering and exiting plants; and (2) aggregating 

all plants including entering and exiting plants.  The returns-to-scale estimates from the two 

different sets of aggregated data are presented in the last two columns of Table 3.      

First, by comparing plant-level estimates to industry-level estimates based on aggregated 

data excluding entering and exiting plants (Column 4), I assess the effects of composition bias 

caused by share changes among continuing plants (i.e., the first channel).  Whereas the 

regression coefficients obtained from the aggregate data reflect the effect of share changes 

among continuing plants, a regression run on plant-level data would give the same weight to all 

continuing plants.  The countercyclical behavior of the between-plant component in the 

productivity decomposition predicts a downward bias in industry-level estimates.  The industry-

level, returns-to-scale estimate, 1.049, is slightly lower than the IV estimates in Column 3, which 

use the second (industry-level) instrument (1.077).  Although the difference between the 
                                                 
12 As it turns out, the Hausman test suggests that the OLS estimates are not statistically different from the industry-
level estimates obtained from IV estimations, using an instrument corresponding to the first instrument in the plant-
level analysis (i.e., the plant-level cost-share-weighted input growth between t + 1 and t – 2). 
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estimates is not big enough to change the implication of returns to scale for total manufacturing, 

this downward composition bias seems to have a more significant impact on durables, a category 

in which changes in productivity due to between-plant reallocations exhibit more countercyclical 

behavior than do such changes in manufacturing as a whole.13  This finding is consistent with the 

results in Table 2.   

Next, I compare the returns-to-scale estimates obtained from aggregate data excluding 

entering and exiting plants (Column 4) to those obtained from aggregate data including entering 

and exiting plants (Column 5), in order to determine the size of the composition bias caused by 

the second channel of entry and exit of plants.  The relatively small contribution of entering and 

exiting plants to aggregate productivity growth, along with their relatively small output shares, 

suggests that the biases caused by entry and exit may not be very large.  However, there exists a 

relatively substantial difference between estimates from aggregate data, excluding entry and exit 

(1.049 for manufacturing, Column 4) on one hand, and estimates from aggregate data covering 

all manufacturing plants (1.384, Column 5) on the other.  Setting aside the small shares of 

entering and exiting plants, the direction of the bias, which contradicts the prediction of the 

productivity decomposition exercise, suggests that composition bias alone is unlikely to explain 

the difference in the returns-to-scale estimates for these two different aggregate data sets.14   

The Impact of Composition Bias within Two-digit Industries  

The previous section discussed the effect of composition bias at a higher level of aggregation 

than that of the two-digit SIC industries.  Thus, the effect of reallocations between plants 

includes the effects of reallocations both between and within two-digit industries.  Although the 

plant-level evidence suggests that reallocations within industries are countercyclical, previous 

studies such as Basu and Fernald (1997) find that reallocations between industries are procyclical 

overall; as inputs are reallocated toward industries with higher returns to scale during a boom, 

the estimate of returns to scale is higher at the higher level of data aggregation.  Given the 

opposite effect of between-industry reallocations, offsetting the effect of the composition bias 

caused by within-industry reallocations across plants, it is more relevant to examine the effect of 
                                                 
13 The contemporaneous correlations of the between-plant component with changes in real GDP are –.155 for the 
entire manufacturing sector, –.583 for durable goods, and –.082 for nondurable goods. 
14 While the role of entry and exit merits further investigation, a possible explanation would be that these entering 
and exiting plants are inefficient, producing in a region in which average and marginal cost are declining (i.e., 
average cost > marginal cost).   

 15



composition changes within an industry.  Considering that previous findings of decreasing 

returns to scale are based on data at the two-digit-industry level, I focus on analysis at this 

level.15  

Table 4 provides plant-level and industry-level estimates of returns to scale for each two-

digit sector, in a manner similar to that used in Table 3.  The IV estimates in Column 2 appear in 

bold if the Hausman specification test rejects the null hypothesis, i.e., consistency of the OLS at 

the 5% level of significance.16  The industry-level estimates show wide variation, ranging from 

.413 for Tobacco (SIC 21) to 1.621 for Electrical Machinery (SIC 36), whereas the plant-level 

estimates are rather closer to constant returns to scale.  Compared to the industry-level estimates 

(Column 4), the plant-level estimates are smaller in industries with industry-level estimates 

larger than 1 and larger in industries with industry-level estimates smaller than 1.     

The bias implicit in aggregating plant-level data might help resolve the puzzling finding of 

the decreasing returns to scale in previous studies that used industry-level data.  For example, the 

statistically significant, decreasing returns-to-scale estimates in the Petroleum (SIC 29) and 

Leather (SIC 31) industries suggest the existence of relatively large positive profits, which seems 

to contradict previous studies’ empirical evidence of a low profit level (Rotemberg and 

Woodford, 1995; Basu and Fernald, 1997).  However, this does not necessarily imply that a 

typical plant in these industries has decreasing returns to scale, making positive pure profits.  

Even if an average plant in these industries produces with constant returns to scale (as plant-level 

estimates suggest), aggregation may create a bias in the aggregate estimates and lead to a 

different implication than would the true returns to scale of an average plant.  This finding 

suggests that differences in industry-level estimates of returns to scale across industries may 

reflect differences in the size of the bias caused by within-industry reallocations, rather than the 

between-industry differences in returns to scale of an average plant.  Whether the industry-level 

estimate is larger or smaller than true returns to scale will depend on the cyclical behavior of 

reallocations within the industry.  

                                                 
15 Basu and Fernald also find that correcting for reallocations in aggregate data does not fully recover industry-level 
averages of returns-to-scale estimates.  They interpret this to mean that there exist additional aggregation effects, 
running from the level of firms to the level of individual two-digit industries.  
16 Because the Hausman test suggests that the IV estimates using the industry-level instruments are not statistically 
different from the OLS in most two-digit industries, these estimates are not reported.   
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4 Conclusion 

In examining longitudinal plant-level data in U.S. manufacturing, I find that actual productivity 

may be more procyclical than observed aggregate productivity.  As reallocations among 

producers over the business cycle create a countercyclical component of aggregate productivity, 

aggregate productivity exhibits less procyclicality than the true procyclicality of productivity 

observed in the case of a typical producer.  Without correcting for such a countercyclical 

composition bias, technology shock measures based on aggregated data may understate the 

cyclicality of the technology shocks that a representative agent experiences over the business 

cycle. 

Composition bias, caused by countercyclical reallocations within an industry, helps explain 

the finding of decreasing returns to scale at the industry level of data.  However, the lack of 

evidence for important increasing returns to scale suggests that other factors such as technology 

shocks or cyclical utilization may be more important factors in the cyclical behavior of 

productivity.  

Caution should be used in interpreting differences in plant-level productivity, because it is 

uncertain how much of the difference in TFP across plants is explained by differences in the 

quality of inputs.  Further investigation on this issue will illuminate how factors are reallocated 

over the business cycle. 
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Table 1:  Shares and Relative TFP of Entrants and Exiting Plants 

 Shares 

 Number 
(entry/exit rate) Employment Output 

Relative TFP 

 Entrants Exiting 
Plants Entrants Exiting 

Plants Entrants Exiting 
Plants Entrants Exiting 

Plants 

All sample 
years .074 .096 .029 .023 .024 .031 1.094 .977 

Boom .077 .108 .025 .019 .021 .034 .981 .935 

Recession 
 .054 .075 .026 .026 .020 .026 1.072 .974 

Note:  Boom:  log change of real GDP > 4% 

Recession:  log change of real GDP <1% 

 21



Figure 2:  Productivity Decompositions 
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Note 74, 79, 84, 89, & 94 interpolated in the graph (panel rotation) 

 22



Table 2:  Composition Bias in Returns-to-Scale Estimates  

 [1] [2] [3] 
 

Composition 
Changes 

(Between & 
Net Entry) 

)lnln(
______________

TFPtfps j
Contij

jt −∆∑
∈

 

(Between-plant) 
)ln(ln

)ln(ln

_______

1,1,

_______

TFPtfps

TFPtfps

tj
Exitj

tj

jt
Entryj

jt

−−

−

−
∈

−

∈

∑

∑
 

(Net Entry) 
Manufacturing    

δ  
(Std. Err) 

–.077 
(.097) 

–.098 
(.082) 

.020 
(.032) 

Num. of obs. 19 19 19 
    

Nondurables    
δ  

(Std. Err) 
–.128 
(.218) 

–.144 
(.204) 

.017 
(.046) 

Num. of obs. 19 19 19 
    

Durables    
δ  

(Std. Err) 
–.182 
(.070) 

–.192 
(.060) 

.010 
(.025) 

Num. of obs. 19 19 19 
 

Note: The independent variable is a subset of “composition changes” term in Equation (4), stated 

in the column heading.  This measure is calculated from the LRD. The dependent variable is the 

cost-share weighted change in inputs ( ), measured in the NBER manufacturing database.   dx

The sample period is 1972–96, excluding the years 1974, 1979, 1984, 1989, and 1994.  The 

coefficients of the constant terms are not reported. 
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Table 3:  Returns-to-Scale Estimates at Different Levels of Aggregation 

 [1] [2] [3] [4] [5] 
 Plant level 

(pooled) 
 

Plant level 
(pooled) 

 

Plant level 
(pooled) 

 

Aggregate 
(continuing 
plants only) 

Aggregate 
(all plants) 

 
 OLS IV 

(plant level)a  
IV 

(industry level)b
OLS OLS 

Manufacturing      

γ  
(Std. Err) 

.828 
(.006) 

.910 
(.012) 

1.077 
(.128) 

1.049 
(.078) 

1.384 
(.228) 

Num. of obs. 1,078,471 655,350 1,078,471 20 20 
Hasuman test 
statistics (chi2)  263.73 3.81   

 
     

Nondurables      
γ  

(Std. Err) 
.790 

(.008) 
.862 

(.019) 
.781 

(.278) 
.990 

(.060) 
.770 

(.196) 
Num. of obs. 490,635 306,870 490,635 20 20 

Hasuman test 
statistics (chi2)  79.47 0.00   
 

     

Durables      
γ  

(Std. Err) 
.853 

(.007) 
.941 

(.015) 
1.242 
(.124) 

1.080 
(.094) 

1.503 
(.216) 

Num. of obs. 587,836 348,480 587,836 20 20 
Hasuman test 

statistics (chi2)  186.21 9.88   

 

Note: ASM sample weight is used. The sample period is 1972–97, excluding the years 1974, 

1979, 1984, 1989, and 1994.   

a) Plant-level instrument:  Plant-level changes in input between t + 1 & t – 2 

b) Industry-level instrument:  Four-digit, industry-level changes in input between t and t – 1 
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Table 4:  Returns-to-Scale Estimates at Different Levels of Aggregation, Two-digit SIC 

A.  Nondurables 

   [1] [2] [3] [4] 
   Plant level 

(pooled) 
 

Plant level 
(pooled) 

 

Aggregate 
(continuing 
plants only) 

Aggregate 
(all 

manufacturing 
plants) 

SIC 
code Industry  OLS IV OLS OLS 

20 Food 
γ  

(Std. Err) 
.688 

(.021) 
.741 

(.041) 
1.002 
(.044) 

.632 
(.154) 

  Num. of obs. 118,839 79,337 20 20 

21 Tobacco 
γ  

(Std. Err) 
.682 

(.078) 
.659 

(.082) 
.642 

(.099) 
.413 

(.214) 
  Num. of obs. 1,389 1,030 20 20 

22 Textiles 
γ  

(Std. Err) 
.876 

(.030) 
.868 

(.036) 
1.083 
(.076) 

1.022 
(.132) 

  Num. of obs. 37,572 25,598 20 20 

23 Apparel 
γ  

(Std. Err) 
.837 

(.017) 
.869 

(.029) 
1.040 
(.035) 

.833 
(.110) 

  Num. of obs. 62,086 33,192 20 20 

26 Paper 
γ  

(Std. Err) 
.904 

(.028) 
.971 

(.040) 
.876 

(.072) 
1.053 
(.212) 

  Num. of obs. 45,584 32,434 20 20 

27 Printing 
γ  

(Std. Err) 
.729 

(.020) 
.806 

(.054) 
.900 

(.033) 
.584 

(.238) 
  Num. of obs. 75,493 38,712 20 20 

28 Chemicals 
γ  

(Std. Err) 
.864 

(.034) 
.972 

(.096) 
.737 

(.200) 
.465 

(.303) 
  Num. of obs. 68,289 45,441 20 20 

29 Petroleum 
γ  

(Std. Err) 
.874 

(.056) 
.983 

(.062) 
.562 

(.148) 
.425 

(.169) 
  Num. of obs. 15,455 10,200 20 20 

30 Rubber 
γ  

(Std. Err) 
.855 

(.020) 
.996 

(.031) 
1.065 
(.038) 

1.271 
(.098) 

  Num. of obs. 55,865 34,389 20 20 

31 Leather 
γ  

(Std. Err) 
.897 

(.059) 
1.060 
(.082) 

1.007 
(.068) 

.836 
(.136) 

  Num. of obs. 10,066 6,537 20 20 
* Plant-level IV estimates appear in bold if the Hausman test rejects the consistency of the 
corresponding OLS estimates at the 5% level of significance. 
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B. Durables 

   [1] [2] [3] [4] 
   Plant 

level 
(pooled) 

 

Plant 
level 

(pooled) 
 

Aggregate 
(continuing 
plants only) 

Aggregate 
(all 

manufacturing 
plants) 

 
SIC 
code Industry  OLS IV OLS OLS 

24 Lumber 
γ  

(Std. Err) 
0.745 
(.017) 

.803 
(.048) 

1.006 
(.025) 

.885 
(.127) 

  Num. of obs. 67,711 35,644 20 20 

25 Furniture 
γ  

(Std. Err) 
0.919 
(.022) 

1.000 
(.049) 

1.046 
(.029) 

1.296 
(.105) 

  Num. of obs. 28,549 16,290 20 20 

32 Stone, Clay, & 
Glass 

γ  
(Std. Err) 

0.990 
(.021) 

1.074 
(.067) 

.968 
(.045) 

1.109 
(.219) 

  Num. of obs. 28,549 29,721 20 20 

33 Primary 
Metals 

γ  
(Std. Err) 

0.792 
(.037) 

.914 
(.032) 

1.125 
(.100) 

1.212 
(.099) 

  Num. of obs. 40,854 27,782 20 20 

34 Fabricated 
Metals 

γ  
(Std. Err) 

0.840 
(.016) 

.952 
(.032) 

.979 
(.042) 

1.293 
(.202) 

  Num. of obs. 112,483 66,116 20 20 

35 Nonelectrical 
Machinery 

γ  
(Std. Err) 

0.872 
(.016) 

.943 
(.034) 

1.137 
(.104) 

1.608 
(.181) 

  Num. of obs. 118,588 68,887 20 20 

36 Electrical 
Machinery 

γ  
(Std. Err) 

0.927 
(.018) 

1.029 
(.035) 

1.601 
(.189) 

1.621 
(.264) 

  Num. of obs. 69,047 45,032 20 20 

37 Transportation 
Equipment 

γ  
(Std. Err) 

0.889 
(.023) 

.997 
(.066) 

1.142 
(.091) 

1.207 
(.077) 

  Num. of obs. 39,173 25,331 20 20 

38 Instruments 
γ  

(Std. Err) 
0.855 
(.030) 

.845 
(.050) 

.626 
(.094) 

.524 
(.122) 

  Num. of obs. 31,455 19,733 20 20 

39 Miscellaneous 
Durables 

γ  
(Std. Err) 

0.905 
(.043) 

.978 
(.056) 

.986 
(.032) 

.887 
(.175) 

  Num. of obs. 26,491 13,944 20 20 
* Plant-level IV estimates appear in bold if the Hausman test rejects the consistency of the 
corresponding OLS estimates at the 5% level of significance. 
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Appendix 

Table A5:  Estimates of Returns to Scale over Different Time Horizons 

A.  Plant-level pooled regressions  

 [1] [2] [3] [4] 
 t & t – 1 t & t – 2 t & t – 3 t & t – 4 
γ  

(Std. Err) 
0.835 

(0.005) 
0.866 

(0.005) 
0.893 

(0.006) 
0.924 

(0.005) 
Num. of obs. 1,234,619 989,255 798,207 634,096 

 

B.  Plant-level pooled regressions with the same sample of continuing plants 

 [1] [2] [3] [4] 
 t & t – 1 t & t – 2 t & t – 3 t & t – 4 
γ  

(Std. Err) 
0.889 

(0.009) 
0.915 

(0.007) 
0.924 

(0.006) 
0.930 

(0.005) 
Num. of obs. 632,268 632,268 632,268 632,268 

 

Note:  The dependent variable is the log change in real output measured over the stated time 

period in the column heading.  The independent variable is the cost-share weighted change in 

inputs over the same, stated time period.   ASM sample weight is used.   

In panel B, the same regression is run for the same sample of plants that have operated for at 

least four consecutive years, to exclude the effects of sample changes due to changes in the time 

period.   
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