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We estimate the process underlying the pricing of American options by using higher-order lattices 
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American options provide a good forecasting tool. We use a nonparametric test of the densities 
that is based on the inverse probability functions and is modified to account for correlation across time 
between our random variables, which are uniform under the null hypothesis. We find that the densities 
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1 Introduction

It is common to price a new derivative by assuming a continuous process model
and computing the value of the derivative given the model. This paper follows
the different strategy of Bates (1991) in that it recovers an underlying process that
is consistent with the set of observed market prices of the derivatives. Once the
process is recovered, we test how well the estimated process performs as a forecasting
density over a variety of forecasting horizons. The market derivative studied in this
paper is the American-style option on a futures contract written on the U.S. dollar-
German mark FX rate. However, the technique we describe could just as well be
used with other types of data, including yield curve data for interest rate processes,
prices for swaps, barrier options, and so forth, as long as the price of the derivative
depends only on a single-state variable. However, the price does not have to be a
linear function of the state, and the implied density for the underlying may deviate
from a simple lognormal density or it may have no specific parametric form.
It is well known that with complete markets, a sufficiently rich set of European

options prices implies a state-price density that one may interpret as a probability
density over the price that underlies the derivative contract, if agents are risk neu-
tral. European options have been used to recover the risk-neutral densities for a
variety of prices and indices, including oil and the Standard and Poor’s 500 Index,
using a technique first pointed out by Breeden and Litzenberger (1978). Second
differentiation of the call price with respect to the strike price, K, gives the risk-
neutral density, πT (X), times a discount factor, e−ρ(T−t). The subsequent literature
(e.g., Shimko (1993), Malz (1997), Jackwerth and Rubinstein (1996) and Stutzer
(1996)) has concentrated on estimation of the density from noisy or, in the Malz
case, extrapolated data on prices by using parametric distributions, mixtures of
parametric distributions, or nonparametric smoothers to fit the second derivative
of the option price function with respect to the strike price. Others, like Neuhaus
(1995) do not rely on smoothing equations and calculate probabilities at and be-
tween strike prices. Once the risk-neutral density is calculated, it can be used to
forecast the price of the underlying basis for the option, or it may be used to price
other derivatives based on the same sequence.
The method of calculating the risk-neutral density is to first estimate the stochas-

tic process followed by the underlying (here, a futures contract for foreign exchange),
based on the set of traded prices of the derivative (here, the American puts and calls
reported for the end of the trading day, though our results do not change by using
settlement quotes). We solve the pricing of American options by using higher-order
lattices combined with smoothing at the boundaries in order to mitigate the non-
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differentiability of both the payoff boundary at expiration and the early exercise
boundary. This paper extends our earlier work (Craig and Keller, 2001) to include
a flexible grid scheme that improves the accuracy of the higher-order lattices con-
siderably. By calculating the price of an American option quickly, we can estimate
the diffusion process by minimizing the sum of the squares between the calculated
prices and the observed prices in the data. A great advantage of obtaining the esti-
mated diffusion process is that this process can be simulated forward to any forecast
horizon of interest. We do not face a time-to-maturity boundary, as we would, for
example, if we had relied on a Breeden-Litzenberger type procedure and recovered
the density only at the terminal date. It is straightforward to generalize our proce-
dure to include other forms of derivatives, risk-aversion parameters, or schemes of
uncertainty different than the single-factor models explored in this paper.
This paper also tests whether the densities provided from American options pro-

vide a good forecasting tool. We use a nonparametric test of the densities which
depends on the inverse probability ideas of Fischer (1930) and others. A problem
with the use of these tests in the past has been the time-series nature of the trans-
formed variables when the forecasting windows overlap. The inverse probability of,
say, a realized thirty-day-ahead spot at time t is correlated with the corresponding
number at time t − 1, because the spot shares twenty-nine days of history. We
modify the tests based on the inverse probability functions to account for this corre-
lation between our random variables, which are uniform under the null hypothesis.
The theory that accounts for time-series dependence in specification tests that are
formed from general empirical distribution functions over inverse probabilities is not
well developed. We use a bootstrapping procedure, which we test in a separate pa-
per (Craig and Keller, 2003), with more recent tests, which we designed and which
are more powerful for short forecasting horizons. We find that the loss of power in
the bootstrapping tests is very small, and that this technique can be employed with
confidence.
We find that the densities based on the American-option markets for foreign

exchange do quite well for the forecasting period over which the options are thickly
traded. Further, simple models that fit the densities do as well as more sophisticated
models. This was surprising to us. A simple risk-neutral model does so well
in matching the forecast densities that one wonders what the extra sophistication
(which does fit the data slightly better) explains.
In the following section we describe our data. We lay out the numerical methods

used to calculate the risk-neutral densities implied by American-option prices that
are based on a futures contract. Next, we describe the tests we used to evaluate
our implied densities, especially those that take into account the time-series nature
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of the overlapping windows of the forecasts. Our results are detailed in the final
section.

2 The Data

American options are exchange-traded, approach a fixed expiration date, and can
be exercised before maturity. Our data comprise over two million transaction prices
from the Chicago Mercantile Exchange (CME) for fifteen years of options based
on the prices of U.S. dollar-German mark futures. The option prices are close-of-
day transactions, and they always represent prices that have been used in a trade
on that day. While these data are advantageous in that they represent the most
liquid exchange-traded market for foreign exchange options and they include more
different strike prices each day than all other data sources combined, they have
a major disadvantage: the CME options are American-style options based on an
underlying futures price, so there is an incentive to exercise the CME option early.
One can think of the underlying futures contract as providing a continuous stream
of “dividends” as the price of the future to reflect the known expected change of the
foreign exchange. As is well known, an American-style option on an underlying stock
that provides a continuous stream of dividends does not always provide incentive to
hold the option until its expiration date. For some values of the underlying price,
a trader can do better by cashing in the option early. This provides a “boundary”
of prices, under or over which (depending on whether the option is a call or a put)
the trader always exercises the option before the expiration date. This early-exercise
boundary is something that we take into account when we calculate our risk-neutral
densities.
In addition, some of the data are especially noisy. As a result, we excluded some

data points by imposing requirements that all our data had to meet. All options
included in the data set had to have both volume and open interest that were
positive on the trading day. In addition, because of the historical illiquidity in
certain markets, other prices were excluded: options expiring within 10 days of the
current trading date, options expiring more than 100 days from the current trading
date, and options with strike prices that were greater than 0.05 in relative time-
normalized moneyness, following Dumas, Fleming, and Whalley (1998). In other

words, options are excluded if
¯̄̄
Xt−K
K
√
T−t

¯̄̄
> .05, with K being the strike price, Xt

the actual futures rate and
√
T − t =

√
τ the normalizing time factor, which is

the difference between the expiration date T and the actual date t. This excludes
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those options in the extreme tails, where prices are known to be driven more by
illiquidity than by market expectations. The time period under investigation runs
from January 25, 1984, to December 31, 1998. Days with traded options that did not
include at least eight different strike prices were excluded. This left us with 3,728
separate trading days with which to estimate densities. The number of different
options sold on the days where densities were estimated ran from a low of 8 to a
high of 106. An average day included about 58 usable options prices. Note that all
option prices that matched the above filters were used, even those that occasionally
did not meet the arbitrage conditions implied by option theory, such as monotonicity
with respect to strike price. (In our two million data points, this happened about
20 times.) In the case of our estimation, these anomalies were considered part of the
error term in the nonlinear least squares technique.

3 Estimation of the Processes

Following Dumas et al. (1998) and our earlier work, we estimate the parameters of
a diffusion process in order to approximate the risk-neutral density for each day. We
first calculate the instantaneous volatility of the spot, σ̂t(X, τ, bβ), as a function of the
state of the exchange rate and time to expiration, τ, of the contract. We estimate
the diffusion function, σ̂t(X, τ, bβ), parametrically, by minimizing with respect to
a parameter vector, bβ, the sum of the squared deviations of the observed option
prices from the prices implied by σ̂t(X, τ, bβ). This function is estimated separately
for each day for which we have options price data. Each function implies a distinct
risk-neutral density for any period in the future for which one wishes to forecast.
As is usual when handling option prices, a trade-offmust be made between making

the parameterization of σ̂t(X, τ, bβ) rich enough to capture the details of the market’s
valuation of the risk and overfitting. Following the literature on fitting European
options to single-state diffusions, we fit four specifications of σ̂t(X, τ, bβ) in this paper:

σ̂t(X, τ, bβ) = β1X,

β0 + β1X,

β0 + β1X + β2X
2

β0 + β1X + β2X
2 + β3X

3. (1)

The first parameterization is the Black-Scholes, lognormal specification. The time
series have been centered, therefore the drift term is omitted.The second adds a
normal term, which has the effect of allowing for thicker tails on the density. The
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third specification is a polynomial extension to this, which allows for the standard
volatility “smile” and “sneer” often observed in foreign exchange options, and the
fourth adds an additional term to account for the possibility of very thick tails.
Note that the term σ̂t is not the same as the "implied volatility" reported by the
exchanges (and therefore not a function of the strike price), but rather the single-
state volatility parameter defining the diffusion process.
By estimating the diffusion process rather than the implied state space density

for each expiration date, we allow for tests of forecast densities at a variety of
horizons, not just the expiration dates for which we have options data. We obtain
forecast densities for one, seven, fourteen, thirty, ninety, and one-hundred-eighty
days ahead of the current information by using the separate estimates of σ̂t(X, τ, bβ)
for each trading day, t. From these densities we acquire the series bΠθ,t(Xt+θ), which
is the probability, given the estimated density at t, that the θ-day-ahead forecast
is less than or equal to the observed θ-day-ahead outcome, Xt+θ. In other words,bΠθ,t(Xt+θ) is the CDF of our estimated forecast densities. For clarity, we drop the
θ notation when we refer to an estimated density, so that bΠθ,t(Xt+θ) = bΠt(Xt).

4 A Higher-Order Lattice

Our test relies on evaluating the implied option prices quickly and accurately. Our
experience suggests that the binomial lattice is not very accurate and requires many
time steps to be useful, which requires far too much computational time. To save
time, we use higher-order lattices. These work by using higher-order expansions
to match the proposed process. They work analogously to the Taylor expansion,
as it approximates a function by adding higher-order terms. A set of higher-order
approximations goes more quickly to a smooth function than adding the linear spline
terms when both require the same computational effort. This is true as long as the
function approximated is smooth.
Indeed, Heston and Zhou (2000) show that the rate of convergence for a lattice

that matches q moments in the data converges to the diffusion at a rate O(∆t
q−1
2 ), if

the payoff function is 2q times differentiable. Of course, with an American option on
a future, the payoff function is not differentiable at two places: at the early-exercise
boundary and at the strike price when the option expires. We resolve this problem
by using logistical smoothers around the points of nondifferentiability.
The higher-order terms greatly increase the speed with which a function is ap-

proximated, but with a cost. The functions must be smooth, and handling the
single-factor volatility parameter, which varies over the state space, is problematic.
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Our value functions are not smooth because they have a point of nondifferentiability
at the strike price at the end boundary and (because these are American options)
they involve a nonsmooth early-exercise boundary as well. The nonsmoothness is
easily seen by looking at the value function of an option at its due date. For values
of the underlying less than the strike price on a call option, the value is zero. Above
the strike price, the value is the price of the underlying futures contract minus the
strike price. Therefore, there is a strict nondifferentiability at the strike price.
We smooth the boundary functions with logistical smoothers that allow infinite

differentiability. We describe this method in a previous paper, Craig and Keller
(2001). We experimented with a variety of bandwidths for these smoothers and
found that for our results they did not matter much. The results reported in this
paper use a bandwidth measure of ω of 0.005 for the value function boundary and
of 0.003 for the early-exercise boundary.
The second issue is more important and much trickier to handle. The single-

factor volatility parameter, σ̂t(X, τ, bβ), varies over the parameter state space, X. In
other words, the volatility parameter that defines the Brownian process is different
for each value of the price. Standard higher-order-lattice procedures rely on the
lattices being constant on a variation of the state space (i.e., some transformation of
X). To illustrate the problems this causes along with our solution, we must discuss
higher-order lattices. We start with a pentinomial lattice that has a constant value
of state-space increments ∆h, presented in Figure 1a.
In Figure 1a, the time axis goes from t to t+∆t. The higher-order lattice considers

not just the point in the future of X1 but also the states of one and two increments
of ∆h, both higher and lower than X1, so that each point has five future points
factoring into its value at time t. Thus five probabilities are required for this lattice,
which we denote p0 (for the probability of no change), p+1 (for the probability that
the state goes up to X1 + ∆h), p+2 (for the probability that the state goes up to
X1 + 2∆h), and p−1 and p−2 (for the probabilities that the state goes down by the
same amounts, ∆h and 2∆h). The lattice points of Figure 1a are combined as in
Figure 1b. In this figure, each line represents a separate probability that must be
calculated, as the value of σ̂t(X, τ, bβ) varies across the state space.
For a Taylor expansion of a function around a point, successively higher derivatives

of the function at the point are evaluated. For approximating the stochastic function
represented by σ̂t(X, τ, bβ)dz, with (dz)2 = ∆t, successively higher moments are set
equal to the moments of this local Brownian process. Thus, the odd-numbered mo-
ments are set to zero, implying equal probabilities of local up and down increments
of the same magnitude (i.e., ∆h,−∆h and 2∆h,−2∆h) and allowing the complexity
of the system to be reduced. (Note that this is a statement about the instantaneous
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Figure 1: Higher Order Lattice

local behavior of the process. Because the volatility varies over the state space, the
density over an outcome at a point in the future can have nonzero odd moments.)
Setting the sum of the probabilities equal to unity, along with matching the second
and fourth moments, gives a lattice which matches the first five moments of the
local process. Thus, the equations to solve for p0, p+1 and p+2 are:

2p+1 + 2p+2 + p0 = 1 (2)

E [X(t+∆t)−X(t)]2 = 2p+1∆h2 + 2p+2(2∆h)2 = σ̂t(X, τ, bβ)2∆t

E [X(t+∆t)−X(t)]4 = 2p+1∆h4 + 2p+2(2∆h)4 = 3σ̂t(X, τ, bβ)4∆t2

In this simple system, the solution for the implied risk-neutral probabilities is
easily calculated as p+2 = α2

8
− α

24
and p+1 =

2α
3
− α2

2
, where α = σt(X,τ,β)2∆t

∆h2
. For

the pentinomial tree, the pi are positive if and only if α ∈
£
1
3
, 4
3

¤
.

The time step ∆t is determined by the size of a chosen state-space increment, ∆h,
a chosen value of α, and the maximum σ̂t(X, τ, bβ) at the end of the lattice, given
the initial guess of the diffusion process on day t. In our scheme we used a value
for the time step of ∆t = 2

3
∆h2

max(σ̂t(X,τ,β)2)
, which allowed the fourth moments to be

matched for the part of the state space where σ̂t is large. The pi change for each
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node, according to the diffusion process, σ̂t(X, τ, bβ), and the value of the state X,
since α is a function of X.
If ∆t is constant (as it should be, for doing otherwise would greatly complicate

calculating the lattice and would require additional computational time), and ∆h is
held constant, a problem emerges in the definitions of the probabilities in equation
1. If α, in response to certain state spaces, X, and given ∆h increments, becomes
less than 1

3
, then the value of p+2 will be less than zero, and therefore no longer a

probability. Thus, for the fourth moments to be matched, α must be in the interval
[1
3
, 4
3
]. However, for constant ∆t and ∆h, the volatility parameter may fall to less

than one-quarter of its maximum value over the range of the state space, which
places α outside this interval. One possible solution is to simply match only second
moments for smaller values of σ̂t. However, this destroys the gains from using the
higher moments in the lattice. The solution we use in this paper is to vary the grid
size, to account for smaller values of σ̂t. The problems of the varying σ̂t and the
proposed solution are illustrated in Figure 2.
The state space, X, is represented on the vertical axis. On the right side of the

graph are plotted hypothetical functions, α1 and α2. While both are functions of σ̂t
(and thus of X), α1 is the function implied with the coarser grid, ∆h, whereas α2 is

calculated from a finer grid, 0.5∆h. Given the definition of α = σt(X,τ,β)2∆t
∆h2

, α can
fall to one-quarter of the values of the coarser grid, so that α2 must be in the interval
[ 1
12
, 1
3
] for the finer grid. At point A, where the coarse grid is barely able to match

all four moments with nonnegative probabilities at all nodes, and α1 equals 1
3
, the

fine grid is barely able to match all four moments with nonnegative probabilities,
while α2 is near its upper interval end (equal to 4

3
). Thus, point A divides the state

space into two regions. Above point A (α1 > 1
3
), a coarser grid is used. For lattice

nodes that completely fall below point A (α2 < 1
3
), a finer grid is used, as pictured

on the left side of Figure 2. Point A therefore defines a grid-shift threshold in terms
of the estimated diffusion process σ̂t(X, τ, bβ).
Where lattice points use values at t+∆t on both sides of point A, the lattice, and

its probabilities, must be modified. Figure 3a shows the lattice at point A, which
lies between x3 and x3 +∆h. At x3 +∆h, α > 1

3
, (α refers to the function of ∆h)

and the coarser grid is appropriate. At x3, α < 1
3
, and so the finer grid is appropriate

for this point and points below it. We insert a branch of the lattice between x3 and
x3 +∆h, at x3 + 0.5∆h. As shown in Figure 3b, for x3 +∆h (and all nodes above
it) branches can be found so that a coarse lattice can be constructed. For the node
at or below x3, branches exist so that a finer lattice may be used. At the middle
point, x3 + .5∆h, however, a new lattice design must be used.
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We use the lattice pictured in Figure 3c. This is a lattice with two inner branches
like a finer grid lattice, but with two outer branches that are spaced with wider
increments, like the coarser lattice. Matching second and fourth moments yields
probabilities p+0.5 = 9α

4
− 3α2, and p+1.5 = α

3
− α2

36
. The parameter α is calculated as

a function of a combination of both the fine and the coarse grid and, therefore, ∆h,
and therefore α must lie in the interval

£
1
12
, 3
4

¤
. Note that α will be greater than 1

12
,

so long as σ̂t does not fall by more than fourfold over the interval ∆h.
In contrast to a scheme using approximations that calculate the value of the

option only at the trading date, the early-exercise boundary is easily incorporated
within the higher-order-lattice framework by adding a maximization operator into
the calculation of the discretized value functions at each node and at each time.
Thus, for a call option, the value of the node at state X and time t−∆t, is

V (X, t−∆t) = max{e−ρ∆tPVXt, Fp(X, t−∆t)−K}, (3)

where

PVXt ≡ Pu(V (X +∆h, t) + V (X −∆h, t)) + P2u(V (X + 2∆h, t)+

V (X − 2∆h, t)) + (1− 2Pu − 2P2u)V (X, t), (4)

and whereK is the strike price, and where Fp(X, t−∆t) is the value of the underlying
futures price.
For a given diffusion, a higher-order lattice approximates the value function of

each option by using the higher-order terms of a moment-generating function for
the true value function. Using a higher-order approximation instead of a binomial
tree to evaluate a diffusion expectation is analogous to using the sum of multino-
mial variables that have a density that is close to normally distributed to evaluate a
normal expectation instead of a sum of binomial variables. Because of central limit
theorems, averaging the binomial outcomes does approximate the normal distribu-
tion, but it does so more slowly than the sum of variables drawn from a distribution
closer to the normal.
Although the kernel smoothing and the variable-grid-size-higher-order lattice both

require a lot of computation and complication even for small bandwidths, we find
they make a large difference in the calculated theoretical price of an option (and
their solution was much closer to the actual value of the option when we had an
analytical solution with which to check our numerical performance). As shall be
seen in our results, the extra sophistication changes the interpretation of our tests,
allowing us to say that the options provide an excellent forecast over the range of
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horizons for which the options are thickly traded.
Finally, a word is in order about the numerical techniques used to choose the

parameters, β̂, to minimize the distance between the observed and the theoretical
prices. (In this case, the distance is measured as the sum of squared deviations.)
The estimation had to be conducted over nearly 4,000 separate trading days. An
initial problem using standard optimization routines was that for some iterations,
the routines either would not converge, or at some point in the iterative process,
they would attempt to evaluate the price of options at values of β̂ for which the
price proved difficult to compute. These routines were based on Newton iterations,
which depend on the objective function being “well behaved” in the sense of being
smooth and having initial values that are close enough to the optimum. The benefit
of using these usual routines is that they converge to the exact optimum much more
quickly than other routines.
We found this to be a poor trade-off. Part of the problem was that for many of the

days we considered, the objective function was flat with respect to β̂. In other words,
the density could be approximated by a wide range of combinations of parameters
in the vector, β̂. Our problem, unlike many estimation problems, was not to identify
individual elements of β̂, but rather to estimate the option-implied density used by
the market in its arbitrage-free pricing.
Instead of classical optimization programs, we used simplex-based methods, which

although they converged more slowly, were much more likely to search a reasonable
area for the optimum. A problem with simplex algorithms is that they often require
a bit of art on the part of the operator in terms of choosing useful values for the
step-size parameters, as well as initial values, so that the program can find a global
optimum. After considerable trial and error, we developed a catalog of ten sets of
initial values and step sizes that were reasonably successful at finding global optima
in a set of test prices. Our solution was to run the optimization for all ten sets and
then to choose the value of β̂ which had the lowest distance for the ten runs, which
we denote β̂10.
Several observed phenomena gave us confidence that our methods were finding

processes that were close to the true optimal processes. Although often many of
the sets did not converge to a value close to the chosen β̂10, usually, close values
were attained in at least four of the sets (though often in different sets for different
trading days). On those trading days where only one of the sets attained a value
close to β̂10, at least one other set gave a process that was very close to the process
used, although with a different value of β̂. Each of the ten sets we used had at
least one trading day where it gave the chosen value, β̂10, and each of the ten sets
had several days where it gave a result that was much worse than the chosen value.
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However, as a group, the ten sets attained a process estimate that we were fairly
confident was close to the least squares process.

5 Evaluating Density Forecasts

Estimating a process implies a forecasting density, and different methods of esti-
mation lead to different forecasting densities, some of which necessarily must be
wrong. The ranking of these incorrect density forecasts is a difficult task, because
a ranking depends on the often unknown individual loss function of agents. These
loss functions may include more arguments than simply the mean and variance of
a distribution. For example, decision makers with nonsymmetric expected loss care
about the skewness of the distribution. Moreover, different agents have different loss
functions, so that it is often impossible to find a ranking upon which all individuals
agree unanimously. However, the correct density is always preferred to false densi-
ties in a forecast. Therefore, as a second-best solution one tries to approximate the
true density as well as possible. (See Diebold, et al., (1998)).
To assess whether there is significant evidence to indicate that the estimated den-

sities coincide with the true densities, we adopt a two-stage procedure. First, we
transform the actual realizations of the foreign exchange rate into probability inte-
grals, given our estimated density. Under the null hypothesis that the true density
functions correspond to our estimated densities, the transformed realizations should
be uniformly distributed. To assess this property of the transformed realizations we
suggest as a second step two different tests, based upon the distance of the observed
distribution of the transformed random variables from the uniform distribution. This
distance is in the L2 topology, and was first suggested by Cramer in the 1920s. These
tests are robust to time dependence in the data.
The basic univariate integral transformation theorem originated with Fischer

(1930) and has been generalized for the multivariate case by Rosenblatt (1952). A
thorough overview of transformation methods in goodness-of-fit techniques is given
by Quesenberry (1986). Recently, Diebold et al. (1998) apply this concept to time
series, evaluating the densities implied by a MA(1)-t-GARCH(1,1) model. Clements
and Smith (2001) use the probability integral transforms for evaluating the density
forecast of a self-exciting-threshold autoregressive model.
We report results from a continuous distance statistic, the so-called Cramer-von

Mises statistic (von Mises (1931)). This statistic is defined as
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[CvM ≡
1Z
0

(F (prn)− bF (prn))2d(prn). (5)

Note that this is a distance in the L2 topology between the empirical distribution
function (Ecdf) of zt,cF (prn), and its theoretical value, F (prn) = prn, representing
the uniform null. A similar statistic that was also computed with the same results
lies in the L∞ topology, the so-called Kolmogorov-Smirnov statistic,

KS ≡ sup
prn

|F (prn)− bF (prn)|. (6)

In this paper, our statistical inference is based upon bootstrap samples that pre-
serve the time series properties of our original sample, z1, ...zt, ..., zN . The notation,
zt is a standard notation for the transformed variables that are distributed uni-
formly. The stationary bootstrap approach (IFSB) of Politis and Romano (1994)
uses a resampling procedure to calculate standard errors of estimators that account
for weak data dependence in stationary observations. From this bootstrap we can
construct cutoff values for a variety of statistics. In addition, we construct the same
values using a limiting-distribution technique, which gets around the ill-posed prob-
lem inherent in a variance-covariance matrix that is completely estimated (Craig and
Keller (2003b) discuss the limiting distribution technique). This provides a check of
the bootstrap technique, particularly for the shorter forecast horizons. We used the
data-based choice of prob, suggested by Politis and Romano, so that prob = probN
→ N−1/3, with N equal to the number of observations. With this choice, the mean-
squared error of bσ2bt,probN as an estimator of σ2N is minimal. Fortunately, as long
as prob → 0 and Nprob → ∞, fundamental consistency properties of the boot-
strap are unaffected by choosing prob suboptimally. As can be directly seen, these
requirements are clearly met by the choice of prob = N−1/3.
We use the sample sequence {zt} to calculate the Cramer-von Mises statistic,

[CvM, directly for our sample Ecdf , bF (prn), and then to calculate whether this is
a significant distance from the 45◦ line through the bootstrapped samples. Boot-
strapped distribution functions, Fb(prb), are also formed, and the CvMb statistic,

CvMb ≡
1Z
0

(F (prb)− Fb(prb))
2d(prb), (7)
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is evaluated for each bootstrapped sample. Because the sample distribution function
[CvM and all bootstrapped sample-distribution functions CvMb are step functions,
the integral expression inCvMb is calculated directly. We computedCvMb for 10,000
replications and report a number, CvMb, which is the proportion of bootstrapped
distances, CvMb, that are greater than [CvM, the distance between our sample
distribution function and the null, the uniform distribution function. A value of
CvMb less than some critical value, α0, rejects the hypothesis of z1, ...zt, ..., zN being
drawn from a uniform distribution at the α0 level.

6 The Results

The results for the entire sample of the CvMb statistics are reported in Table 1.
This table present the probabilities that bootstrapped samples differ from the orig-
inal sample in the Cramer-von Mises distance by as much as the original sample
differs from the null of the 45◦ line. Lower values than 0.05 imply a rejection of
the null at the five percent level. Several things are immediately clear from these
tests. First, the data strongly support the option-price densities as useful forecast-
ing densities for forecast horizons that extend to three months. In no case was the
model rejected. Second, the simpler models and the more complicated models do
about equally well at these horizons, and all do poorly at the very long time hori-
zon. However, one important aspect of our results is that although the statistical
procedure did not reject the simple lognormal model in most of the cases when the
more sophisticated models were estimated, the simple lognormal model did not do
better as a forecasting density. The p-value of the CvMb statistics falls with the
complexitiy of the estimated process for the shorter-term models and rises with the
complexity of the longer-term models.

Horizon θ in days 1 7 14 30 90 180
Specification*

β1X 0.1108 0.1418 0.3033 0.3109 0.2050 0.0297
β0 + β1X 0.0870 0.1146 0.2954 0.3404 0.2469 0.0373

β0 + β1X + β2X
2 0.0773 0.0990 0.2733 0.3273 0.2367 0.0427

β0 + β1X + β2X
2 + β3X

3 0.0811 0.0944 0.2607 0.3146 0.2271 0.0401

*Bold numbers indicate that the hypothesis of an accurate density can’t be rejected.

Table 1: Stationary Bootstrap on von Mises with a Multigrid Estimate from
American Options
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Figure 4: State/sigma diagram

Figure 4 plots the process volatility, σ, as a function of δ, which denotes the
deviation of the actual state of the underlying from its forward rate, on February
22, 1990, which just an arbitrary date.
The functions drawn into Figure 4 change their pattern daily depending on the

new information coming in each day. If δ equals unity, then the state variable,
which is the spot rate of the foreign exchange, is equal to the actual forward rate in
the option contracts under consideration. If δ equals 1.1, then the acutal state is
10 cents above the relevant forward rate. In Figure 4 four lines are plotted. Each
line represents the state-dependent process volatility of a model. BS stands for the
Black-Scholes model, where σ depends linearly on the state with a zero constant.
Model 1 relaxes this restriction and allows for a positive or negative intercept. In
model 2, σ is a quadratic function of the state, and so forth. By visual inspection of
Figure 4, it immediately becomes clear that the process volatilty is nearly the same
for all models, if the actual state is near the “at the money (ATM)” rate, that is, near
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Figure 5: 5 percent quantiles

the forward rate. The more the actual state differs from the ATM point, the bigger
are the differences (in terms of the state-dependent volatility) between the more
complex models and the Black-Scholes model. Note, however, that the volatilty of
the more complex models can be above or below the Black-Scholes volatility. In
other words, on another day the line of models 1, 2, or 3 can be above the Black-
Scholes line. This is true for all quantiles. However, for higher quantiles, the
average volatilty of the more complex models is slightly above the volatilty of the
Black-Scholes model, indicating “fat tails.” Figure 5 makes this point clear.
In Figure 5, the 5 percent quantiles of the density implied by the Black-Scholes

model are indicated on the abscisa. The 5 percent quantiles of the models are
indicated on the ordinates. Several observations can be made immidiately: First,
the estimated σvolatility fans out with higher values for the 5 percent quantile.
Second, the average of the estimated σ of the more complex models lies above the
45 degree line, indicating a slightly higher 5 percent quantile for these models. In
other words, the more complex models imply a higher probability mass in the outer
regions of the density. In light of this observation, it is clear why the more complex
models do better with longer-term forecasts (90 days and 180 days). This is because
states which are further away from the ATM point become more relevant only in
the long run. Simply speaking, the state needs some time to be driven into regions
where model differences matter.
The outcome is more complex when we examine our risk-neutral densities on the

basis of a rolling window. We chose to look at the sample as if the researcher were
continually monitoring the forecasting performance of the simulated risk-neutral
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Figure 6: p-values

densities from 1000 trading days after the start of our sample period. We then
stepped continously forward, testing the forecasting properites of our densities with
a step size of 20 trading days, until the end of the sample period. This led to about
300 p-values for each model and forecasting horizon. The results are depicted in
Figure 6.
In Figure 6 each number represents a specific date and encompasses the p-value

statistics, summarizing therefore their actual performance, of 1000 tested risk-neutral
densities at different forecasting horzions before that date. Again, it turns out that
the differences among the four models seem to be negligable, aside from some peri-
ods in which the more complex models clearly outperform the Black-Scholes model.
We first turn to the time periods in which the Black-Scholes model cannot be re-
jected and then turn to the time periods in which we observe substantial differences
between the different models. Figure 7 is a plot of the U.S. dollar-German mark ex-
change rate. The shaded areas indicate the time periods in which the Black-Scholes
model for the 90- and 180-day forecasting horizons are not rejected on the basis of
1000 tested densities (with p-values above 5 percent). Since one value in Figure 7
corresponds to 1000 days in Figure 7, the affected areas are quite large. The shaded
areas for the more complicated models look similiar, aside from some specific time
periods we will discuss later. As it turns out, much of the time we do not accept
the Black-Scholes model (and the other models) as good forecasting densities for

20



1.2

1.6

2.0

2.4

2.8

3.2

3.6

84 86 88 90 92 94 96 98 00

Deutschmark / US-Dollar

Non-rejection area
(180 days)  forecasting horizon

black bars: starting date of acceptance area

1.2

1.6

2.0

2.4

2.8

3.2

3.6

84 86 88 90 92 94 96 98 00

Deutschmark / US-Dollar

Non-rejection area
(90 days)  forecasting horizon

black bars: starting date of acceptance area

Figure 7: Non-rejection areas

the longer horizons. What is the reason for this? Since all densities are centered
around the forward rate, which differs only by the interest rate differential from the
spot rate, the forecasting densities do not capture the steep run-up in the value of
the U.S. dollar in 1984 and the subsequent tumbling after early 1985. Therefore,
we are able to reject the null of a good forecasting horizon until the end of 1988.
Then, in late November 1988, our test starts to indicate that our densities are better
forecasting tools. The reason for this is that the area from the first black bar to the
beginning of the shaded area represents a comparatively balanced period, in which
we find no long sequences of one-sided errors. Since our test is very sensitive to this
kind of failure and it does not materialize during this period, we start to accept the
null. We find similar explanations for the other nonrejection periods.
Figure 8 (90- and 180-day horizon) also plots the U.S. dollar-German mark ex-

change rate. The shaded areas indicate where the most complex cubic model (Model
4) performs at least 5 percent (in terms of the p-value) better than the Black-Scholes
model. Here again, the values in Figure 6 correspond to 1000 days in Figure 8, and
therefore the time periods affected by several large forecasting mistakes are quite
large. The black lines in Figure 6 indicate the first observation of the shaded area
that leads to a p-value difference bigger than 0.05. Remember that the more com-
plex models, that is, those whose densities allow for fat tails, become relevant only
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in the long run, as we have argued on the basis of Figures 4 and 5. One of the
reasons we rejected the simpler models at these forecasting horizons was because of
the frequency of one-sided errors. The fat-tail property of the more complex models
3 and 4 gives more leeway for large, one-sided errors under the null.

7 Robustness Checks

In this section we check the extent to which our results are affected by the option
design (European vs. American), by the numerical method of smoothing nondiffer-
entiable areas and by the bootstrap-test procedure.

Horizon θ in days 1 7 14 30 90 180
Specification*

β1X 0.1096 0.1385 0.2928 0.3080 0.2033 0.0238
β0 + β1X 0.0776 0.1207 0.3088 0.3549 0.2596 0.0308

β0 + β1X + β2X
2 0.0635 0.1550 0.2306 0.2275 0.1714 0.0301

β0 + β1X + β2X
2 + β3X

3 0.0960 0.1168 0.2858 0.3160 0.2228 0.0326

*Bold numbers indicate that the hypothesis of an accurate density can’t be rejected.
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Table 3: von Mises with a Multigrid Estimate
from European Calculations on American Options

Table 3 reports results from the estimates that are obtained when we assume
that the options are European even when they are not. The false European options
do a very good job of approximating the foreign exchange distributions. They
were consistently poorer than the true American options only for the very long time
horizon of 180 days, or for the more complex models in the mid-range horizons.
The European options even did marginally better, in some ranges, than the correct
American options. This surprised us. We had thought that the American early
exercise would matter more in setting the density. However, this market seems to
be one where simplicity rules the probability distributions. Standard assumptions
do a good job of expaining foreign exchange beliefs.

Horizon θ in days 1 7 14 30 90 180
Specification*

β1X 0.1155 0.1471 0.3072 0.3097 0.2029 0.0295
β0 + β1X + β2X

2 + β3X
3 0.0839 0.1004 0.2650 0.3157 0.2244 0.0398

*Bold numbers indicate that the hypothesis of an accurate density can’t be rejected.

Table 4: American Option: No Smoothing

We also conducted studies of the importance of the various components of our
numerical methods in computing accurate forecasting densities. For example, Ta-
ble 4 reports results from estimates that did not smooth the node for the American
options. Note that this had little effect on the estimates, in spite of the reduced
accuracy. This is less surprising than it might have been, had taking into account
the American option mattered more. The estimates, however, do fare less well at
the very place that American options matter, which is at the long horizons. The
correct method, of course, only presents a marginal improvement because using the
correct American method only represents a marginal improvement over the Euro-
pean method.
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Horizon θ in days 1 7 14 30 90 180
Black Scholes*
Exact Spec. 0.1032 0.1063 0.2751 0.4215 0.3225 0.0507

Local Bootstrap Once 0.1009 0.1088 0.2625 0.4610 0.3269 0.0703
Local Bootstrap Many 0.0998 0.1059 0.2586 0.4113 0.3152 0.0492

*Bold numbers indicate that the hypothesis of an accurate density can’t be rejected.

Table 5: Bootstrap with exact Black Scholes and With estimation error

Table 5 reports robustness checks for slightly different assumptions about the
densities and our estimates of the transformed variables. We first checked the
accuracy using the simulated paths to estimate the transformed variables, zt. This
could be an issue because simple Monte-Carlo simulations indicated that the [CvM
statistic contained noticeable noise even when the number of simulations exceeded
10,000 and the number of time steps exceeded 10,000. The immediate question
was what effect the noise had on the size of our test: Did the inaccuracy of the
transformation to zt cause enough of a change in the power of the test to affect our
interpretation? The first line of Table 5 reports the bootstrap results for zt’s that
are generated by the closed-form solution of a simple lognormal density rather than
by Monte-Carlo methods. Clearly, the results are not affected in this case. The
only difference is that at long ranges, the approximation error in generating the zt’s
seems to have made our original tests (in Table 1) more powerful than they should
have been, so that the density at the 180-day horizon is now accepted at the five
percent level.
The second two lines of Table 5 concern our statistical assumptions about the

densities generated by the options. Our maintained hypothesis is that the coef-
ficients, β0, β1, β2 and β3, are known to both the market and the researcher. In
other words, we, the researchers, have the densities, or the specification, that we are
testing. The usefulness of stating the hypothesis this way is that it means we are
testing whether the transformed variables, zt, are distributed as U [0, 1]. If, however,
we view the densities as estimates, then poorly measured values of β0, β1, β2 and β3
will mean that the zt’s are no longer uniformly distributed, since the “estimated”
coefficients imply a distribution that differs from the forecasting distribution implied
by the options, even under the risk-neutral null. One possible solution is a localized
bootstrap, suggested by Corradi and Swanson. Here the bootstrap samples under
the alternative are generated from a different distribution: Instead of generating the
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zt’s from the exact distribution implied by β1, say, in the case of Black-Scholes, we
generate them from a distribution that samples from a sample of β1’s. In other
words, we acknowledge that the various estimates are generated by an error-ridden
estimation process, so we bootstrap the estimates in generating our series of zt’s.
The distribution of β1’s is “locally” normal, because the nonlinear least squares esti-
mates of them are assumed to be well enough behaved that they are asymptotically
normal.
Thus the procedure which yields the second and third lines of Table 5 is to first

draw a sample of β1 with a known distribution, but with a sample error generated
by the estimation error.1 We compute the [CvM distance of our sample from this
sample. Then we bootstrap the [CvM distance of our original set of zt’s from a
series of zt’s that are boostrapped. We applied two forms of bootstrapping. In
one, reported on the second line, a series of β1’s was bootstrapped only once to
generate a new set, z1t. This set was then bootstrapped in the method of Politis
and Romano to give a critical value. The third line reports the results of the second
bootstrap procedure, where each replication of the Politis and Romano bootstrap
was also computed from a separate bootstrapped value of β1. Note that for this
table, the individual elements, zt, are all calculated from the closed-form solution.
It is clear from the table that estimation error and how it is handled has little to

do with our results. This is not so surprising in that options allow one to estimate
the densities fairly exactly. In many cases we had over 100 options to work with.
Our estimates for the Black-Scholes, for example, typically had standard errors of
about one percent of the estimate. For the more complicated models, the standard
errors were higher at times, but the 95 percent confidence ellipsoid encompassed
densities that were all quite close to one another. As a result, the bootstrap results,
which take into account this small estimation error, do not differ from the results of
Table 1, which ignore it.
Table 6 reports results from an earlier study (Craig and Keller, 2001), which used

bootstrap estimates for estimates that relied on a less accurate lattice method, which
although of high order, had a fixed grid. Notice that the reliability of the option
densities over the forecast horizons for which they are thickly traded is much less
striking. Indeed, even the simplest model, the lognormal, performs poorly at the
two-week horizon, whereas the more accurate flexible grid system reported in Table
1 delivers estimates that are fine forecasting densities. This is also true, though

1Statistical interference (i.e., bσi(bβi)), of bβi is based on NLLS. The nonlinear regression model
is pj = h(Xi, βi)+ εj , with pj being the j observed American option prices at t. h is the nonlinear
function that links the diffusion process to the prices.
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less striking, at the three-month horizon. More accurate evaluation of the models
delivered more reliable forecasts.

Horizon θ in days 1 7 14 30 90 180
Specification*

β1X 0.0000 0.0000 0.0006 0.0301 0.2103 0.0937
β1X with more smoothing 0.0011 0.0042 0.0493 0.2254 0.2045 0.0151
β0 + β1X + β2X

2 + β3X
3 0.0000 0.0000 0.0004 0.0099 0.1159 0.0446

*Bold numbers indicate that the hypothesis of an accurate density can’t be rejected.

Table 6: Stationary Bootstrap on von Mises with Fixed Grid

Figure 8 shows the results of the much weaker test, which observes the individual
probabilities one by one. We report this to show where the long-term forecasts
are failing. The figure plots the sample cumulative distribution functions. The 45
degree line represents the null, and the two bold lines represent confidence intervals
of two standard errors above and below the estimated CDF. This is a weaker test
than the bootstrapped [CvM distance, as is clear from the fact that the null is always
within the confidence interval. Even so, Figure 8 allows one to observe where the
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forecast is failing. What seems to be missing in the option-based forecast densities
is a skewness in the distribution to the left. The actual distribution of zt’s has too
many large deviations to the left that are not accounted for in the forecast densities,
and too few large deviations to the right. During this sixteen-year period of our
data, then, taking option-based densities that are calculated from the one-week
to three-month options and extending these densities to the half-year horizon fails
because this approach overpredicts larger declines in the dollar, and underpredicts
larger depreciations.

8 Conclusions

This paper investigates the risk-neutral densities of foreign exchange options with
respect to their application to estimation and forecast testing. Because of our mod-
eling strategy, which expands the densities in a single state space, we can evaluate
the implied densities for a single day at any forecast horizon that we wish. In order
to expand our densities from the lognormal to a richer space of densities (along
the polynomial exansions proposed by Dumas, et al.), we invented a rich appara-
tus which allows us to estimate the processes for a wide variety of options, such as
Bermuda options or (as in this case) American options on a future.
While it is reassuring that our planned research was correct for these particular

options, in the end, the expansions had very little effect on forecast performance.
In only a few periods of our sample did the expanded density perform better than
a simple lognormal density. This is certainly more true of our U.S. dollar-German
mark foreign exchange option than of other options for which tests indicate that the
lognormal performs less well than more skewed and thick-tailed densities. The same
could be said of our correctness in handling the early-exercise boundary implicit in
the American option. While over some of the periods and some forecasting horizons
(particularly the longer ones), our apparatus created marginally better densities than
one which treated the American option as if it were a simpler European option, it
is surprising that for these options, taking the early exercise into account in the
estimation had little effect.
Far more important was the approximation error due to lattices that were of too

low an order, or instances where the lattices did not match enough moments of the
process over the entire grid. Indeed, it was remarkably easy to see when the grid
size was too coarse, or when it did not encompass a large enough state-space for
the estimates that were computed under these conditions gave uniformly horrible
forecast properties. We found that computing successively finer grids until the
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results changed by only a small amount was a good strategy for ensuring an accurate
estimate. This was also true when we checked our solution against estimates for
which we had analytical solutions for the true value.
Compared to making sure that the numerical approximation of the lattice was

close, all other modifications to our forecast approximations or tests of the forecasts
were of second order. Accounting for estimation error in the process, for example,
had only a tiny effect. Again, much of the reason for this centered on the particular
properties of the market we study. The lognormal is not a terrible approximation
for forecasts of the U.S. dollar-German mark exchange rate for this time period,
as long as the volatility is updated on the day the forecast is being made. The
options market has many observations for each day, so that estimation error is not
large compared to forecast error. Most of the options are around the money, and
volatility is fairly low, so that most of the time, the early-exercise ability does not
change the estimate from one calculated by treating the options as European options.
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9 Appendix: Calculation of the Variance for a
Pearson Test

In the case of independence across the N cells and across time, entries V (i, k) = 0
if i 6= k and V (i, k) = ccov(bpi, bpi) =dvar(bpn) = bγn(0) if i = k and the time overlap
h = 0.

ccov(bpi, bpk) = 1

T

"bγi,i(0) + hX
j=1
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1− j
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¶¡bγi,k(j) + bγk,i(j)¢#

bγi,k(j) = 1
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t=j+1
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I it − I i
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∀ i = 1, ..., N ∧ k = i+ 1, ..., N

bγk,i(j) is calculated analogously. Note, that bγk,i(j) 6= bγi,k(j), since bpi 6= bpk. For
i = n, bγ = bγi,i(j) = bγn(j). In our case there is data dependence across the N cells
and across time. Therefore, entries of V (i, k) 6= 0 for i 6= k. For each ccov(bpi, bpk) time
dependence would be calculated up to order bγi,k(h).
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Csőrgő, M. and L. Horváth [1993]: ”Weighted Approximations in Probability
and Statistics,” Wiley, New York.

Diebold, F.X. and T.A. Gunther and A.S. Tay [1998]: ”Evaluating Den-
sity Forecasts with Applications to Financial Risk Management,” International Eco-
nomic Review, 39, 4, pp. 863-883.

Dumas, B., J. Fleming and R.E. Whaley [1998]: ”Implied Volatility Func-
tions: Empirical Tests,” Journal of Finance, 56, pp. 2059-2106.

Figlewski, S. and B. Gao [1999]: ”The Adaptive Mesh Model: A New Ap-
proach to Efficient Option Pricing,” Journal of Financial Economics, 53, pp. 313-
351.

30



Fischer, R.A. [1930]:”Inverse Probability,” Proceedings of the Cambridge Philo-
sophical Society, 36, 4, pp. 528 - 535.

Heston, S., and Zhou, G. [2000]:”On the Rate of Convergence of Discrete-
Time Contingent Claims”, Mathematical Finance.

Jackwerth, C.J. and M. Rubinstein [1996]: ”Recovering Probability Dis-
tributions,” Journal of Finance, 51, pp. 1611-1631.

Malz, A.M. [1997]: ”Estimating the Probability Distribution of the Future
Exchange Rate from Option Prices,” The Journal of Derivatives, 4, pp. 18-36.

Neuhaus, H. [1995]: ”The Information Content of Derivatives for Monetary
Policy”, Discussion Paper 3/95, Economic Research Group of the Deutsche Bundes-
bank.

Pearson, K. [1905]: ”On the General Theory of Skew Correlation and Non-
linear Regression,” Draper’s Non-linear Regression, Draper’s Company Memoirs,
Biometric Series II.

Politis, D.N. and J.R. Romano [1994]: ”The Stationary Bootstrap,” Amer-
ican Statistical Association, 89, 428, pp. 1303-1313.

Quesenberry, C.P. [1986]: ”Some Transformation Methods in Goodness-of-
Fit”, in: Goodness-of-Fit Techniques, eds. Ralph B. D’Agostino and Micheal A.
Stephens, pp. 235-275.

Rosenblatt [1952]: ”Remarks on a Multivariate Transformation,” An. Math.
Stat. 23, pp. 470-472.

Shimko, D.[1993]: ”Bounds of Probability,” Risk, 6, 4, pp. 33-37.

Stutzer, M. [1996]: ”Maximum Entropy and Options Prices,” Journal of Fi-
nance, 51, pp. 1588-1610.

von Mises, R. [1931]: ”Wahrscheinlichkeitsrechnung”, Wien, Leipzig.

31



Federal Reserve Bank

of Cleveland

Research Department

P.O. Box 6387

Cleveland, OH 44101

Address Correction Requested:

Please send corrected mailing label to the

Federal Reserve Bank of Cleveland

Research Department

P.O. Box 6387

Cleveland, OH 44101

PRST STD

U.S. Postage Paid

Cleveland, OH

Permit No. 385




