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“In a monetary economy, it is in everyone’s private interest to try to get someone else to hold

non-interest-bearing cash and reserves. But someone has to hold it all, so all of these efforts must

simply cancel out. All of us spend several hours per year in this effort, and we employ thousands of

talented and highly-trained people to help us. These person-hours are simply thrown away, wasted

on a task that should not have to be performed at all.”

Robert E. Lucas Jr., 2000, Inflation and Welfare.

1 Introduction

It is a commonly held view that inflation induces economic agents to undertake costly actions

in order to reduce their exposure to the inflation tax. The costs associated with these actions

are a social waste, part of the welfare cost of inflation. This conventional wisdom is succinctly

articulated by Lucas (2000). In this paper we formalize this argument and study its implications

for the effects that anticipated inflation has on aggregate output and welfare.

The search-theoretic framework pioneered by Kiyotaki and Wright (1989, 1991, 1993), ex-

plicitly models the frictions that make money essential and relates them to the decentralized

nature of trade. This makes the search-based approach a natural setup for our analysis. We

let agents choose costly search intensities to determine the frequency with which they trade

and study how changes in the rate of inflation affect their search effort decisions, as well as the

number of trades, the quantity of output produced in any trade, and welfare in the equilibrium.

We view these search efforts as a natural way of formalizing the “efforts” to avoid the inflation

tax alluded to in the quote from Lucas (2000).

The particular economic environment we consider has the structure introduced by Lagos and

Wright (2002, 2003). Agents periodically participate in centralized and decentralized markets.

Trade in the centralized market involves all agents and occurs at market clearing prices. The

centralized market allows agents to rebalance their cash holdings and at the same time keeps

the model tractable. In the decentralized market agents are matched pairwise and trade is

bilateral. Lagos and Wright (2002, 2003) follow the previous literature and assume that agents

in these bilateral situations bargain over the terms of trade. Instead, here we follow Rocheteau

and Wright (2002) and generalize the model to allow for different pricing mechanisms.

We first consider bargaining since it is often regarded as the standard pricing mechanism

for search environments with bilateral meetings.1 In this case, buyers respond to increases in
1A model similar to our setup with bargaining but based on Shi (1997) instead of on Lagos and Wright (2002)
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inflation by reducing their real money holdings and search intensities. This complementarity

between real balances and search intensity can be explained as follows. If agents hold smaller

real balances, they enjoy smaller gains from trade when matched. Since each trade yields less

utility, agents exert less effort to generate trades. As a result fewer matches occur (extensive

margin effect) and less output is produced in every match (intensive margin effect), so aggre-

gate output falls with inflation. Under the Friedman Rule, buyers’ search effort choices are

generically inefficient because of a congestion externality characteristic of search environments.

For example, if buyers have all the bargaining power, their search effort is too high, and as

inflation goes up they reduce their search intensities which tends to mitigate this inefficiency.

Nevertheless, the negative effect of inflation on real money balances dominates and higher in-

flation always leads to lower welfare. Note that the prototypical search model with bargaining

predicts that individual search effort decreases with inflation and hence fails to rationalize the

conventional wisdom discussed above.

We then study the model under price posting with partially directed search —one of the

pricing mechanisms considered by Rocheteau and Wright (2002)— as this is a natural notion of

competitive pricing for search models. This version of the model has some agents posting prices

and other agents directing their search toward a particular price.2 For this case the Friedman

Rule is the optimal monetary policy and it generates the first best allocation: buyers choose

the socially efficient search intensity and real balances. For high inflation rates, search intensity

decreases with inflation, just as in the model with bargaining. But for low inflation rates, an

increase in inflation raises buyers’ search intensities. Therefore with the competitive notion of

price posting, the model is able to generate predictions that are in line with the conventional

wisdom discussed above: agents increase their search intensities when the inflation rate is

higher, and the additional search costs are socially wasteful. To see the intuition for this result,

suppose that prices are set by a group of agents we call sellers, and that another group of agents —

buyers— direct their search toward the sellers. Since sellers compete against each other to attract

buyers, they internalize the effect of inflation on the buyers’ willingness to carry real balances.

has been developed independently by Peterson and Shi (2003). They investigate the effect of inflation on price
dispersion by combining both a stochastic match specific component and buyers’ endogenous search intensities.
A key distinction between our model and theirs is that we allow individual agents to choose their money holdings.
Our results differ both in terms of the basic properties of the equilibrium (e.g. existence, uniqueness) as well as
in terms of its comparative static properties.

2This is the competitive price posting or directed search construct introduced in the labor literature by Moen
(1997) and Shimer (1996).
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In equilibrium, competition forces them to partially compensate buyers for the inflation tax by

raising the buyer’s share in the total surplus of a match. For low inflation rates, the gains from

trade that accrue to the buyers increase, so they search harder to generate trades. Furthermore,

when this happens, the effect of a change in inflation on aggregate output is ambiguous. For

some parametrizations the level of output increases with the rate of inflation. Interestingly, we

find that the effect of inflation on output can be non-monotonic, just as suggested by the recent

empirical evidence surveyed by Bullard (1999).3 Inflating in excess of the Friedman Rule may

help raise output, but it always reduces welfare.

The rest of the paper is organized as follows. Section 2 lays out the environment. Section 3

analyzes the model under ex-post bargaining with undirected search. The model with ex-ante

price-posting and directed search is studied in Section 4. Section 5 concludes. The Appendix

contains all the proofs.

2 The model

Time is discrete and the horizon infinite. Each period is divided into two subperiods. There are

two types of nonstorable consumption goods: search goods (produced and consumed in the first

subperiod) and general goods (produced and consumed in the second subperiod). The economy

is populated by a set Ab ⊆ [0, 1] with mass µb of agents we call buyers and a set As ⊆ [0, 1]
with mass µs of sellers. We normalize the population sizes to one: µb = µs = 1. All agents

are infinitely-lived. Buyers and sellers differ in their preferences and production possibilities.

During the second subperiod both have the ability to produce and wish to consume. But in the

first subperiod, buyers want to consume but cannot produce while sellers are able to produce

but do not wish to consume. This double coincidence of wants problem in the first subperiod

is what generates an essential role for money. We describe the preferences of buyers and sellers

in detail below.

There is an intrinsically useless, perfectly divisible and storable asset called money. We use

Mt to denote the quantity of money in the first subperiod of period t. Let the distributions of

money across buyers and sellers at the beginning of the first subperiod be F b and F s respectively.

The gross growth rate of the money supply is constant over time and equal to γ; that is,

3Several authors have argued that empirically, inflation seems to have a positive long-run effect on output for
low inflation economies. Examples include Bullard and Keating (1995), King and Watson (1997), Ahmed and
Rogers (2000) and Rappach (2003).
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Mt+1 = γMt. New money is injected, or withdrawn if γ < 1, by lump-sum transfers, or taxes.

These transfers take place during the second subperiod and for simplicity we specify that they

go only to buyers.

The market structure differs across subperiods. In the first subperiod, trade takes place in a

decentralized or search market where agents are matched and trade bilaterally.4 In the second

subperiod there is a centralized orWalrasian market where agents can trade general goods and

money. All agents in this market are price-takers, and the relative price of money in terms of

the general good, φt, adjusts to clear the market.

Search frictions are modeled by an aggregate matching function ζ (ēµb, µs), where

ē =

R
Ab

eidi

µb

is the average search intensity of buyers, and ei denotes the search intensity of buyer i. (Below,

when no confusion may arise, we will often use e to denote ei.) Assume ζ is homogeneous of

degree one, twice continuously differentiable, strictly increasing and strictly concave with respect

to each argument. Also, suppose ζ (0, µs) = ζ (ēµb, 0) = 0, and ζ (ēµb, µs) ≤ min (µb, µs) for
any ē ≥ 0. Letting θ ≡ µs

ēµb
, an individual buyer’s meeting probability is αb =

eζ(ēµb,µs)
ēµb

=

eζ (1, θ). To make the notation more compact, we will let α ≡ ζ (1, θ) and write an individual

buyer’s meeting probability as αb = eα. We assume that α ∈ [0, 1] for any θ ≥ 0, and that
limθ→∞ α = 1. Similarly, the meeting probability of a seller is αs = α/θ, and we assume that

limθ→0 αs = 1.5 The dependence of αb and αs on θ reflects standard search externalities.

The instantaneous utility function of a buyer is

U b(x, y, q, e, ε) = εu(q)− ψ (e) + x− y (1)

where q is consumption in the first subperiod, x is the quantity consumed and y the quan-

tity produced in the second subperiod. Given the linear preferences over x and y it is not

4We will explore two alternative specifications of the search market. In Section 3 we assume buyers and sellers
are randomly matched (i.e. search is undirected). In Section 4 we consider a search market in which search can
be at least partially directed : Each seller can locate herself in distinct “submarket” by credibly posting terms of
trade and each buyer can direct his search toward a particular submarket but contacts potential trading partners
at random within the submarket. This is the competitive (or directed) search construct of Moen (1997) or Shimer
(1996).

5For example, if the matching function is ζ (ēµb, µs) = ēµb [1− exp (−ηθ)] for some η > 0; then α = 1 −
exp (−ηθ). It is easy to check that α ∈ [0, 1] for all θ, as well as that limθ→∞ α = limθ→0 αs = 1.
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worth producing general goods for oneself.6 In one of the formulations buyers receive a match-

idiosyncratic utility shock ε in the first subperiod. Shocks εt are iid with cumulative distri-

bution G(ε) on [0, 1]. The realization of the preference shock is observed by both the buyer

and the seller. We assume u(0) = 0, u0(0) = ∞, u0(q) > 0 and u00(q) < 0 for q > 0. Finally,

the utility cost for a buyer to search with intensity e is ψ (e). We assume that ψ satisfies:

ψ (e) ∈ [0,+∞) for all e ∈ [0, 1], ψ (e) = +∞ for e > 1, ψ0 > 0, ψ00 > 0, ψ (0) = ψ0 (0) = 0 and

lime→1 ψ
0 (e) = +∞.7 A buyer’s lifetime expected utility is E0

P∞
t=0 β

tU b(xt, yt, qt, et, εt) where

E0 is the expectation operator conditional on all information available at t = 0. The discount
factor β ∈ (0, 1) is the same for all agents and assumed to be smaller than γ throughout the

analysis. The instantaneous utility function of a seller is

Us(x, y, q) = −c(q) + x− y. (2)

We let c(0) = c0(0) = 0, c0(q) > 0 and c00(q) ≥ 0 for q > 0, and c(q) = u(q) for some q > 0.

Lifetime utility for a seller is given by E0
P∞

t=0 β
tUs(xt, yt, qt). We assume that agents are

anonymous and that there are no forms of commitment or public memory that would render

money inessential.

At this point it may be useful to preview how the economy will work. In the centralized

market of a given period t buyers will want to acquire cash to be able to buy their consumption

good in the decentralized market of the following period t + 1. Since agents are anonymous

and they cannot commit, trade must be quid-pro-quo in the decentralized market. Thus buyers

produce during the second subperiod in order to carry some money into the decentralized

market. Sellers, on the other hand, never wish to consume in the first subperiod, so they will

have no use for cash in the decentralized market. Thus, in the centralized market of period t,

they will sell off any cash they may have accumulated. Sellers accept money in the decentralized

market because they anticipate they will be able to trade it for goods in the second subperiod,

in the next meeting of the centralized market. These observations imply that at the beginning

of every period, all the cash is being held by buyers. After the round of decentralized trading,

6One can make the model slightly more general by assuming quasi-linear preferences v(x)− y. Agents would
then consume x∗ in the second subperiod where x∗ satisfies v0(x∗) = 1. Normalizing the autarky payoff v(x∗)−x∗
to 0, the model would be equivalent to the one we present.

7This last condition guarantees that the buyer’s optimal choice of intensity will be in [0, 1]. Together with
the assumption α (θ) ∈ [0, 1] for any θ ≥ 0, this guarantees that αb (e) ∈ [0, 1] in any equilibrium. Thus we never
have to worry about “corner solutions” for cases in which αb (e) would otherwise exceed 1. Assume ρ ≥ 1, then
ψ (e) = e

1−e

ρ

for e ∈ [0, 1] and ψ (e) = +∞ for e > 1 is a cost function that satisfies all our assumptions.
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some of the money will end up being held by sellers. These sellers will then sell those balances

off in the following centralized trading session, and so on.

Throughout the paper we take production in the decentralized market to be the relevant

measure of aggregate output:

Y = ζ (ēµb, µs)

Z 1

0
q(ε)dG(ε), (3)

where q(ε) is the quantity traded in a meeting when the buyer receives an ε preference shock.

We define velocity as the nominal value of transactions in the search market divided by the

money stock:

V =
ζ (ēµb, µs)

R 1
0 d(ε)dG(ε)

M
, (4)

where d(ε) is the amount of money a buyer spends in a decentralized trade when he receives a

preference shock ε.8

In the following sections we will be introducing several notions of equilibrium. To assess

the efficiency properties of the equilibrium allocations, here we consider the social planner’s

problem. The planner chooses a nonnegative sequence
n
et,
¡
xit, y

i
t, q

i
t

¢
i=b,s

o∞
t=0

in order to max-

imize E0
P∞

t=0 β
t
£
U b(xbt , y

b
t , q

b
t , et, εt) + Us(xst , y

s
t , q

s
t )
¤
, subject to xbt +xst ≤ ybt +yst and q

b
t ≤ qst .

Using (1), (2), the feasibility constraints at equality and writing out the expectations operator

explicitly, the planner’s objective can be rewritten as:

∞X
t=0

βt
½
−ψ (et) + etα (1/ēt)

Z 1

0
{εu [qt(ε)]− c [qt(ε)]} dG(ε)

¾
.

Optimality requires qt(ε) = q (ε) for all t, where q (ε) satisfies

εu0 [q(ε)]

c0 [q(ε)]
= 1, ∀ε ∈ [0, 1] . (5)

For given ε, let q∗ε denote the socially efficient quantity traded that satisfies (5). Note that

q∗0 = 0 and ∂q∗ε
∂ε = −u0

εu00−c00 > 0. The socially efficient choice of search intensity for buyer i,

namely ē∗, satisfies

ψ0 (ē∗) = α (1/ē∗) η (1/ē∗)S∗, (6)

where η (1/ē) ≡ 1− (1/ē)α0(1/ē)
α(1/ē) , and S∗ ≡

R 1
0 [εu (q

∗
ε)− c (q∗ε)] dG(ε). Note that η (1/ē) ∈ (0, 1) is

the elasticity of the matching function with respect to ē.9 Letting Q∗ =
R 1
0 q

∗
εdG (ε), aggregate

8Velocity in the centralized market equals V and hence overall velocity is 2V.
9For example, if ζ (µbē, µs) = ēµb [1− exp (−ηθ)] with η > 0, then η (θ) = 1− ηθ

exp(ηθ)−1 , where θ =
µs
ēµb
.
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output (in the decentralized market) along the optimal path is

Y ∗ = ζ (ē∗µb, µs)Q
∗. (7)

3 Bargaining

This section investigates the output and welfare effects of inflation when prices are determined

according to a simple bargaining protocol, i.e., buyers make take-it-or-leave-it offers. This

pricing mechanism is the standard benchmark in the search-theoretic literature on monetary

exchange since Shi (1995) and Trejos and Wright (1995). At the end of the section we also

discuss the implications of giving sellers some bargaining power.

First consider a buyer’s problem in the first subperiod. Given his choice of search intensity,

e, he contacts a seller with probability αe. Once matched, the buyer receives q(mb,ms, ε) in

exchange for d(mb,ms, ε) dollars. The notation reflects that in general, the terms of trade (q, d)

may depend on the money holdings of the buyer and the seller, mb and ms, as well as on the

buyer’s preference shock, ε. For convenience, we suppress the time subscript t and shorten the

subscript t+1 to +1, t−1 to −1, and so on. Let V b(m,φ) be the value function of a buyer with

m dollars upon entering the decentralized market when the price of money in terms of general

goods in the following centralized market is φ. Similarly let W b(m,φ) be the value function

of a buyer with m dollars upon entering the centralized market in a period where the price of

money in terms of general goods is φ.10 The value functions satisfy

V b(m,φ) = max
e

n
−ψ(e) + (1− αe)W b(m,φ)

+ αe

Z n
εu [q(m,ms, ε)] +W b [m− d (m,ms, ε) , φ]

o
dHs(ms, ε)

¾
,

where dHs(ms, ε) = dF s(ms)dG(ε); and

W b(m,φ) = max
m̂,x,y

h
x− y + βV b(m̂, φ+1)

i
(8)

s.t. x+ φm̂ = y + φ(m+ T ).

T =M+1−M is the monetary transfer the buyer receives and m̂ is the money he chooses to take

into the decentralized market of the following subperiod. Using the constraint to substitute for

10By expressing the value functions as V i (m,φ) and W i (m,φ) we can think of this as a stationary dynamic
programming problem even if {φt} is not stationary. See Lagos and Wright (2002) for details.
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x− y we have

W b(m,φ) = φ (m+ T ) + max
m̂≥0

h
βV b(m̂, φ+1)− φm̂

i
. (9)

From (9), we see that the maximizing choice of m̂ is independent of m, and W b(m + d, φ) −
W b(m,φ) = φd. This second observation implies

V b(m,φ) =W b(m,φ)

+max
e≥0

{−ψ(e) + αe

Z
{εu [q(m,ms, ε)]− φd (m,ms, ε)} dHs(ms, ε)}. (10)

Let V s(m,φ) andW s(m,φ) be the corresponding value functions for sellers. The value function

of a seller entering the first subperiod with m dollars satisfies

V s(m,φ) = (1− αē)W s(m,φ)

+αē

Z
{−c [q (mb,m, ε)] +W s [m+ d (mb,m, ε) , φ]} dHb(mb, ε)

with dHb(mb, ε) = dF b(mb)dG(ε). The value function of a seller entering the centralized market

with m dollars satisfies

W s(m,φ) = max
m̂,x,y

©
x− y + βV s(m̂, φ+1)

ª
(11)

s.t. x+ φm̂ = φm+ y.

Using the constraint to substitute x− y out of the objective, we have

W s(m,φ) = φm+max
m̂≥0

£
βV s(m̂, φ+1)− φm̂

¤
. (12)

Again, note that m̂ is independent of m, and that W s(m,φ) = φm+W s(0, φ), so

V s(m,φ) =W s(m,φ) + αē

Z
{−c [q (mb,m, ε)] + φd (mb,m, ε)} dHb(mb, ε). (13)

3.1 Prices

Prices in the decentralized market are determined by take-it-or-leave-it offers by buyers. Con-

sider a match between a buyer and a seller where the buyer holds m units of money and his

preference shock is ε. The terms of trade (q, d) satisfy

max
q,d≤m

[εu(q)− φd] s.t. − c(q) + φd ≥ 0. (14)
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The solution is q = q∗ε and d = c(q∗ε )
φ if c(q∗ε) ≤ φm; or c(q) = φm and d = m otherwise.11 In

either case the pair (q, d) is independent of the seller’s money holdings. Moreover, the solution

only depends on the buyer’s real money balances z = φm, so we write it as

qε (z) =

½
q∗ε if z ≥ c (q∗ε)
q̂ (z) otherwise,

(15)

where q̂ (z) is the q that solves c (q) = z. Since q∗ε is an increasing function of ε, there is a

threshold R (z) such that qε (z) = q∗ε if ε ≤ R (z) and qε (z) = q̂ (z) for all ε > R (z). In

other words, R (z) is the ε-draw that renders the buyer’s cash constraint in the bargaining just

binding. The threshold R satisfies c (q∗R) = z or equivalently Ru0 [q̂ (z)] = c0 [q̂ (z)]. For future

reference, note that R (0) = 0, R [c (q∗1)] = 1 and R0 (z) > 0 for z ∈ [0, c (q∗1)). Also,

q0ε (z) =

½ 1
c0(q) if ε > R (z)

0 otherwise
and q00ε (z) =

(
−c00(q)
[c0(q)]3

if ε > R (z)

0 otherwise.

3.2 Equilibrium

Let Zt ≡ φtMt denote aggregate real balances. Hereafter we specialize the analysis to stationary

equilibria with constant aggregate real balances, i.e. with Z+1 = Z for all t, which implies

φ/φ+1 = γ. Define τ ≡ φT , the real transfer received by the buyer, and

S (z) ≡
Z 1

0
{εu [qε (z)]− c [qε (z)]} dG (ε) , (16)

the expected surplus of a match. The following Lemma gives the closed form expressions for

the value functions rewritten in terms of real balances.

Lemma 1 (a) Sellers do not carry cash into the decentralized market. Moreover,

V s (z) = z and W s (z) = z. (17)

(b) Let g (z) ≡ τ +maxe [αeS (z)− ψ (e)]. The value functions for the buyer are

V b (z) =
B

1− β
+ g (z) + z, and

W b (z) = τ + z +max
z
[βg (z) + (β − γ) z] +

β

1− β
B, (18)

11When deciding his take-it-or-leave-it offer to a seller holding ms dollars, a buyer with m dollars faces the
following problem:

max
q,d≤m

εu(q) +W b(m− d, φ)−W b(m,φ) , s.t. − c (q) +W s (ms + d, φ) =W s(ms, φ).

To obtain (14) we use the fact that W i(m+ d, φ)−W i(m,φ) = φd for i = b, s.
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where B ≡ maxz [βg (z) + (β − γ) z].

Sellers have no use for money in the decentralized market, so provided γ ≤ β, they choose

ms = 0 in the centralized market. Consequently, sellers’ expected utility at the beginning of a

period is V s(0) = 0. Buyers choose real balances in the centralized market and search intensity

upon entering the decentralized market. From (18), their decision problem is:

max
e,z

∙
αeS (z)− ψ (e) +

µ
β − γ

β

¶
z

¸
. (19)

The following lemma establishes some properties of the individual decision problem faced by

buyers in a stationary equilibrium.

Lemma 2 (a) The buyer’s optimal choice of search intensity as a function of his real balances,

e (z), is characterized by

ψ0 (e) = αS (z) . (20)

Moreover, e (z) ∈ [0, 1), e0 (z) > 0 for all z ∈ [0, c (q∗1)) and e0 (z) = 0 for all z ≥ c (q∗1).

(b) The (set of) optimal choice(s) of real balances D (ē, γ) = argmaxz [βg (z) + (β − γ) z]

is nonempty, compact-valued and upper-hemi continuous. In addition, D (ē, γ) ⊆ [0, c (q∗1)) is
decreasing in (ē, γ).

The optimal choice of search effort given by (20) equates the marginal disutility from search

to the buyer’s expected gains from trade. Part (a) also shows that search intensity and real

money balances are complements. Intuitively, search effort is increasing in the buyer’s expected

surplus from trade, S (z), and higher real balances mean a higher expected surplus. This

complementarity between money demand and search intensity implies that the buyer’s maxi-

mization problem need not be concave. Part (b) provides a complete characterization of the

set of money demands that maximize the buyer’s problem. The largest solution will be strictly

below c (q∗1), namely the amount of cash that renders the buyer’s cash constraint slack for every

possible realization of the preference shock. In other words, as long as β < γ, every buyer’s cash

constraint will bind with positive probability. In terms of comparative statics, as inflation (γ)

or congestion in the search market (ē) increase, buyers reduce both their investments in money

and search effort. Notice that even though the buyer’s problem may have multiple solutions, our

comparative static results do not rely on an arbitrary selection rule: according to part (c), any
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selection from argmax [βg (z) + (β − γ) z] is decreasing in (ē, γ).12 The first-order condition

for real balances, i.e. S 0 (z) = γ−β
αeβ , or equivalently,Z 1

c0[q(z)]
u0[q(z)]

½
εu0 [q (z)]

c0 [q (z)]
− 1
¾
dG (ε) =

γ − β

eαβ
(21)

is used in Lemma 2 only to establish the strict monotonicity of the maximizers in the very last

step of the proof of part (c). We are now ready to define an equilibrium.

Definition 1 Given a money supply process Mt+1/Mt = γ, a stationary monetary equilibrium

is a collection
n
(zi, ei)i∈[0,1] , ē

o
and a sequence {φt, Zt} with Zt = Z for all t, such that:

(B1) Given ē, zi ∈ D (ē, γ), and ei = e (zi) is given (20), for every buyer i ∈ [0, 1]

(B2)
R
[0,1] eidi = ē

(B3)
R
[0,1] zidi = Z

(B4) φt =
Z
Mt

Condition (B1) says that the allocation (zi, ei)i∈[0,1] must solve the buyer’s problem. We

do not impose symmetry across buyers: if the set of maximizers is not a singleton, we allow

buyers to make different choices. (B2) defines the average search intensity and (B3) is the

clearing condition for the money market. (B4) maps real balances and the money supply into

the (reciprocal of the) price level. An equilibrium can be found by first solving the buyer’s

problem for zi (ē) and ei = h [zi (ē) , ē], where zi (ē) ∈ D (ē, γ) and h [zi (ē) , ē] is implicitly

defined by (20); and then using these choices to construct the map
R
[0,1] h [zi (ē) , ē] di. Finding

an equilibrium then amounts to finding a fixed point ē =
R
[0,1] h [zi (ē) , ē] di. Once a fixed point

ē has been found, (B3) can be used to get Z =
R
[0,1] zi (ē) di, and given Z, we can read φt from

(B4). The following proposition establishes the main properties of the equilibrium.

Proposition 1 There exists a stationary monetary equilibrium if

max
e,z

{β [eS (z)− ψ (e)] + (β − γ) z} > 0.

The average equilibrium search intensity ē is uniquely determined and it is decreasing in γ.
12The correspondence D (ē, γ) is decreasing in (ē, γ) if (ē00, γ00) Â (ē0, γ0), z0 ∈ D (ē0, γ0), and z00 ∈ D (ē00, γ00),

then z00 ≤ z0 (and z00 < z0 if z00 > 0). Here “º” denotes the pairwise ordering relation on R2. That is, for any
(x0, y0) , (x00, y00) ∈ R2 we write (x00, y00) º (x0, y0) when x00 ≥ x0 and y00 ≥ y0. We write (γ00, ē00) Â (γ0, ē0) if
(x00, y00) º (x0, y0) and (γ00, ē00) 6= (γ0, ē0).
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The condition in Proposition 1 says that a monetary equilibrium exists if the inflation rate

γ is not too high. In addition, the proposition establishes that the average search intensity ē

is uniquely determined, which reflects the absence of strategic complementarities among agents

(See Figure 3). Because real money balances and search intensities are complements, buyers

reduce their search intensities when real balances are “taxed” at a higher rate. The proposition

does not rule out the possibility of multiplicity of equilibria. However, in case of multiplicity,

all buyers and sellers would get the same payoff in any of the equilibria.13

In order to study the effects of inflation on output and welfare, we focus on the case where

the solution to the buyer’s problem is unique.14 Using (3) and (7) output is

Y = ζ (ēµb, µs)

(
Q∗ −

Z 1

R(z)
[q∗ε − q̂ (z)] dG(ε)

)
(22)

where q̂ (z) = c−1 (z) and R (z) = c0 [q̂ (z)] /u0 [q̂ (z)]. We study the effects of inflation on welfare

from the perspective of a buyer upon entering the decentralized market. We ignore sellers since

their expected utility is 0 in equilibrium. Along the equilibrium path, we have

(1− β)V b (z) = αe (z)S (z)− ψ [e (z)] ,

where z ∈ argmaxẑ [βg (ẑ) + (β − γ) ẑ] and e (z) is implicitly defined by (20). Note that this

welfare criterion is essentially the same one used by the planner.

Proposition 2 Equilibrium is socially inefficient. Furthermore, aggregate output and welfare

are decreasing with inflation.

3.3 Discussion

A surprising feature of the model with ex-post bargaining is that buyers do not increase their

search intensity to spend their cash faster as the rate of anticipated inflation increases. In

fact, what happens is that real balances fall, and since real balances and search effort are

complements (recall part (a) of Lemma 2), buyers reduce their intensity of search. Since they

13 In general, the buyer’s problem (19) need not be strictly concave, allowing for the possibility of multiple
solutions. When this is the case, there may be equilibria only differing in the fractions of buyers choosing each
solution.
14There are several ways to ensure that the buyer’s problem has a unique solution. We could focus on inflation

rates close to the Friedman Rule (γ = β). One can also make assumptions on primitives so that there is a unique
positive solution to the first-order necessary conditions. For example, it is sufficient to assume ψ000 > 0 and
S000 (z)S0 (z)− 2S00 (z)2 < 0.
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can get less for their cash, buyers choose not to search as hard. A direct consequence of this is

that output declines as the inflation rate increases: agents produce less in each trade (intensive

margin) due to the lower real balances, and fewer trades take place (extensive margin) due to

the reduction in search intensity. All this has interesting implications for the velocity of money,

an observable which is closely related to search intensity according to the theory.

Using (4) and the bargaining solution, we can write velocity as

ēα (1/ē)

R R(z)
0

c(q∗ε )
φ dG(ε) +

R 1
R(z)MdG(ε)

M
.

Letting v∗ =
R R
0

c(q∗ε )
z

dG(ε)
G(R) , we can conveniently rewrite this expression as

V = ēα (1/ē) {G (R) v∗ + [1−G (R)]} .

This shows aggregate velocity as a weighted average of 1, velocity in all trades for which the

buyer’s cash constraint binds, and v∗, the average velocity of money in those trades with slack

cash constraints. Since v∗ < 1, there are high and low velocity trades, namely those with

binding and slack constraints respectively. The first thing to note is that if there were no

idiosyncratic preference shock, that is if ε = 1 with probability one, then the cash constraint

would be binding in every trade implying V = ēα (1/ē) = ζ (ē, 1). In this case velocity would

be increasing in average search intensity and hence (by Proposition 1) always decreasing in the

rate of inflation. On the other hand, for fixed search intensity, note that velocity rises when real

balances fall. This happens for two reasons. First, when real balances fall, velocity increases in

those trades with slack cash constraints: since real balances are lower, a buyer needs to spend

a larger fraction of his cash holdings to buy the first-best quantity. And second, R falls when

z falls and this increases the fraction of high velocity trades (i.e. the fraction of trades with

binding constraints). In general, the effect of inflation on velocity is ambiguous. On the one

hand inflation reduces real balances and this makes buyers search less intensively. This is the

(negative) extensive-margin effect of inflation on velocity. On the other hand, higher inflation

causes velocity to rise in low velocity trades and the proportion of these trades fall. This is the

(positive) intensive-margin effect of inflation on velocity. The extensive and intensive margins

move in opposite directions and the net effect is ambiguous in general.

Comparing (5) to (21) and (6) to (20), we see that the equilibrium with ex-post bargaining

is inefficient. Conditions (5) and (21) coincide if and only if γ = β. That is, the equilibrium

14



achieves efficiency along the intensive margin under the Friedman Rule (agents exchange the ef-

ficient quantities in all trades). For the equilibrium to also achieve efficiency along the extensive

margin (i.e. for search intensities to coincide), in addition we would need to have η (1/e) = 1.

But since η (1/e) ∈ (0, 1) for all e, buyers search excessively in the equilibrium.
We verify that the main results carry over to the case where the buyer’s bargaining power is

λ ∈ (0, 1). To ease the exposition, we now assume ε = 1 in all matches, which implies the cash
constraint will bind in every trade. The corresponding generalized Nash bargaining solution

maxq [u (q)− z]λ [z − c (q)]1−λ implies z = gλ (q), where

gλ (q) =
λu0 (q) c (q) + (1− λ)u (q) c0 (q)

λu0 (q) + (1− λ) c0 (q)
.

The equilibrium conditions are:

u0 (q)

g0λ (q)
= 1 +

γ − β

eα (1/e)β
(23)

ψ0 (e) = α (1/e) [u (q)− gλ (q)] (24)

u (q)− gλ (q) =
λu0 (q)

λu0 (q) + (1− λ) c0 (q)
[u (q)− c (q)] . (25)

For the case of λ = 1 we analyzed before, (25) implies z = g1 (q) = c (q). Figure 1 illustrates the

determination of the equilibrium: panels (a) and (b) depict the equilibrium conditions for λ = 1

and λ ∈ (0, 1) respectively. In both panels, the dotted lines represent the planner’s first-order
conditions

u0 (q)

c0 (q)
= 1 (26)

ψ0 (e) = α (1/e) η (1/e) [u (q)− c (q)] . (27)

The curve labeled e∗(q) gives the optimal search intensity as a function of q according to

(27). The equilibrium pair (e, q) is determined by the intersection of the q(e; γ) and the e(q)

loci which correspond to (23) and (24) respectively. Several results are immediate from the

figure. First, for the case of λ = 1, q = q∗ under the Friedman Rule and search intensity is

inefficiently high. For the case of λ ∈ (0, 1), the curve e(q) reaches a maximum at some q̃ < q∗,

and q = q̃ under the Friedman Rule. However, for general λ, it may no longer be the case that

search intensity is too high under the Friedman Rule.15 Second, in both panels an increase in
15The Hosios (1990) condition for efficiency in search economies is necessarily violated in our formulation with

λ = 1: the buyer’s bargaining power is larger than his share in the matching process, i.e. λ = 1 > η (e). But for a
general λ, search intensity may be inefficiently high or low under the Friedman Rule. See Berentsen, Rocheteau
and Shi (2001) for a detailed treatment of these issues.
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γ shifts q(e; γ) upward causing e and q to decrease. Consequently inflation reduces aggregate

output for any λ ∈ (0, 1]. Proposition 2 establishes that welfare is decreasing in inflation if
λ = 1, but in fact this result generalizes to any λ.16

* *

)( qe

)( qe

);( γeq );( γeq

1)(a 1,0)( ∈λb

)(* qe )(* qe

q

Figure 1: Equilibrium with bargaining.

The normative and positive implications of the model are not in line with the conventional

wisdom articulated by Lucas (2000), for instance. Lucas’ view is that agents invest additional

resources to get away from cash as the inflation rate increases, and that these resources are

part of the welfare cost of inflation. But in the model with bargaining agents always reduce

their search effort if the inflation rate increases. If the buyer’s bargaining power is large,

e.g. if λ = 1, then search costs are inefficiently high under the Friedman Rule, and higher

inflation reduces those search costs bringing the extensive margin in the equilibrium closer to

the efficient benchmark. All else constant, this effect has a positive impact on welfare. However,

in equilibrium, this partial effect is outweighed by the distortion in the intensive margin caused

by the reduction in real money balances. As a result, welfare unambiguously decreases with

the rate of inflation.
16The argument goes as follows. Welfare can be written as eα [u (q)− gλ (q)]−ψ (e)+eα [gλ (q)− c (q)]. Using

(24) this becomes eψ0 (e)− ψ (e) + eα [gλ (q)− c (q)], which is increasing in e and q and hence decreasing in γ.
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4 Competitive price posting

In this section we adopt the notion of price posting with directed search proposed by Moen

(1997) and Shimer (1996). We depart from the random matching assumption of the previous

section and set up a decentralized market in which search can be partially directed.17 The

sequencing is as follows. First, each buyer locates himself in one of possibly many distinct

submarkets by credibly posting terms of trade at which he stands ready to trade with any seller

he contacts. Each seller then directs her search toward a particular submarket, and once there,

meets potential trading partners at random within the submarket.18 As before, the extent of

the meeting frictions will depend on the number of sellers posting the same terms of trade

and the number of buyers searching for these sellers. Both buyers and sellers form rational

expectations about the market tightness on the different submarkets.

We define a submarket as a subset of buyers who post the same contract and randomly

search for sellers with whom to trade at the terms of trade specified by this contract. Formally,

a submarket is a triple s = [q (ms) , d (ms) , θ] where [q (ms) , d (ms)] is the menu posted by

buyers and at which both buyers and sellers commit to trade, if they choose to trade, and

θ is the tightness of the submarket s that is generated by (q, d). Note that terms of trade

(q, d) may in principle be contingent on sellers’ money balances although sellers will not hold

money in equilibrium. The choice of menu also depends on the buyer’s own money holdings

mb. To make the notation consistent with those of the previous section we use q (mb,ms)

17Moen (1997) suggests two interpretations for the notion of price posting equilibrium in this setup. In one, a
“market maker” creates and separates the submarkets and determines the terms of trade in each. These terms of
trade are in fact what distinguish submarkets: they are the same for all trades in a given submarket, but differ
across submarkets. The fictitious market maker ensures that there is no submarket she could open that would
make sellers better off without making buyers worse off. The second interpretation — the one we are adopting — is
one of a decentralized market in which buyers (or sellers) post and commit to the terms of trade (which amounts
to their choosing a submarket) and sellers (or buyers) choose what submarket to search in. This notion of
equilibrium requires that the agents who announce the terms of trade be able to commit to their announcement.
As is well known, money is inessential in environments in which agents have the ability to commit to any future
actions. But the notion of commitment required by the notion of price posting equilibrium is rather weak; too
weak to render money inessential. Here we provide two notions of partial commitment that are strong enough
for the price posting equilibrium to make sense but weak enough so that money remains essential. First, in the
setup in which sellers post prices, we can imagine that they can commit to any present or future action but
buyers cannot. And second, in a similar spirit to the no-commitment mechanisms of Kocherlakota (1998), we
can assume that when faced with any trade, an agent can always choose autarky.
18Here we follow Moen (1997) and let buyers post prices and sellers direct their search. This makes the

comparison with the section on bargaining easier as under both pricing mechanisms buyers choose search intensity,
real balances and terms of trade. It would be equivalent to define a submarket as a subset of sellers who post
the same contract and a subset of buyers who randomly search for individual sellers offering this contract.
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to denote the quantity produced by the seller and consumed by the buyer, and d (mb,ms)

the money transfer from the buyer to the seller when their money balances are mb and ms

respectively. We use θ (s) to denote the ratio of the measure of sellers to the measure of

effective buyers searching in submarket s. Through the matching probabilities αb = eζ [1, θ (s)]

and αs = ζ [1/θ (s) , 1], the “(sub)market tightness” θ (s) determines the expected waiting times

to complete a trade for buyers and sellers in submarket s. If there is a subset Ab (s) ⊆ Ab

of buyers and a subset As (s) ⊆ As of sellers in submarket s, with masses µb (s) and µs (s)

respectively, then θ (s) = µs(s)
ē(s)µb(s)

where ē (s) = [1/µb (s)]
R
Ab(s)

eidi. In this section we let

α [θ (s)] ≡ ζ [1, θ (s)], so we write αb = eα [θ (s)] and αs = α [θ (s)] /θ (s). (We will omit the

argument of α and αs when no confusion may result.)

The problem of a seller holdingm dollars and searching for a buyer in submarket s = (q, d, θ)

when the price of money in terms of general goods in the next centralized market is φ is

summarized by the following Bellman equation:

V s(m, s, φ) = αs {−c [q (mb,m)] +W s [m+ d (mb,m) , φ]}+ (1− αs)W
s (m,φ)},

where mb is the money holdings of buyers in submarket s. The lifetime expected utility of

a seller entering the centralized market with m dollars when the real price of a dollar is φ is

denoted W s(m,φ) and satisfies

W s (m,φ) = max
s∈S

Ŵ s(m, s, φ), (28)

where S is the set of all submarkets that are active, m̂ ≥ 0, and Ŵ s(m,s, φ) satisfies

Ŵ s(m, s, φ) = φm+ max
m̂

£
βV s(m̂, s, φ+1)− φm̂

¤
. (29)

Equations (28)-(29) state that sellers choose their money holdings and direct their search toward

the submarket that maximizes their expected utility.

The value of search to a buyer holding m units of money who has chosen to post terms of

trade (q, d) and hence to be in submarket s = (q, d, θ) is given by:

V b(m, s, φ) = max
e

n
−ψ(e) + (1− αe)W b(m,φ)

+ αe

Z n
u [q(m, m̃)] +W b [m− d (m, m̃) , φ]

o
dF s(m̃)

¾
,
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where F s is the distribution of money holdings among sellers searching in submarket s. The

value of a buyer entering the centralized market with m dollars is

W b(m,φ) = φ(m+ T ) + max
m̂,s

h
βV b(m̂, s, φ+1)− φm̂

i
(30)

subject to θ ≥ 0, m̂ ≥ 0, d (m̂,ms) ≤ m̂ for all ms, and

Ŵ s (0, s, φ) ≥W s(0, φ). (31)

The left-hand side of (31) is the expected utility of a seller who chooses to search in submarket s,

and the right-hand side is the expected utility from searching in the submarket that maximizes

her expected utility. Note that condition (31) ensures that sellers who carry no money are just as

well off searching in submarket s than elsewhere. But Ŵ s (ms, s, φ)−W s(ms, φ) is independent

of ms, so if (31) holds for ms = 0 (which will be the case in equilibrium), then it holds for any

ms. This condition defines an implicit relationship between θ, the terms of trade (q, d) and

W s(0, φ), and says that a submarket receives sellers only if it offers them the maximum level

of expected utility they can achieve by searching in another submarket. Submarkets for which

(31) does not hold do not attract sellers and therefore are inactive.

4.1 Prices

As in the previous sections, we specialize the analysis to stationary equilibria in whichM+1/M =

φ/φ+1 = γ > β. The terms of trade (q, d) are posted by buyers, so to see how they are

determined we take a closer look at their maximization problem in the decentralized market.

First note that since W b(m,φ) =W b(0, φ) + φm, the value function V b can be written as

V b(m, s, φ) = max
e

h
αeSb (m,F s, φ)− ψ(e) +W b(0, φ) + φm

i
,

where Sb (m,F s, φ) ≡
R
{u [q(m, m̃)]− φd (m, m̃)} dF s(m̃) is the buyer’s expected surplus from

trade, and e is constrained to be nonnegative. Substituting this expression into (30) we get

W b(m,φ) = φ(m+ T ) + βW b
¡
0, φ+1

¢
+ βmax

m̂,s,e

h
αeSb

¡
m̂, F s, φ+1

¢
− ψ(e)−

³
γ
β − 1

´
φ+1m̂

i
,

where the maximization is subject to θ ≥ 0, m̂ ≥ 0, e ≥ 0, d (m̂, m̃) ≤ m̂ for all m̃, and (31).

Similarly for sellers, W s(m,φ) =W s(0, φ) + φm and therefore

V s(m, s, φ) = αsSs (mb,m, φ) + φm+W s (0, φ) .
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where Ss (mb,m, φ) ≡ φd (mb,m)− c [q (mb,m)] is the seller’s surplus. Substituting this expres-

sion in (29) yields

Ŵ s (m,φ) = φm+ βW s
¡
0, φ+1

¢
+ βmax

m̂

h
αsSs

¡
mb, m̂, φ+1

¢
−
³
γ
β − 1

´
φ+1m̂

i
.

Therefore the buyer’s problem in the centralized market is

max
m̂,s,e

h
αeSb

¡
m̂, F s, φ+1

¢
− ψ(e)−

³
γ
β − 1

´
φ+1m̂

i
,

with s ≡ [q (m̂, m̃) , d (m̂, m̃) , θ] and subject to θ ≥ 0, m̂ ≥ 0, e ≥ 0, d (m̂, m̃) ≤ m̂ for all m̃,

and

max
m̂

h
αsSs

¡
mb, m̂, φ+1

¢
−
³
γ
β − 1

´
φ+1m̂

i
≥ Us,

where

Us ≡ max
s∈S,m̂

h
αsSs

¡
mb, m̂, φ+1

¢
−
³
γ
β − 1

´
φ+1m̂

i
.

So, the buyer maximizes his expected surplus in the search market net of the search cost and

the cost of carrying real balances, and subject to the constraint that the contract he chooses

satisfies sellers’ participation constraint. The following lemma summarizes the main properties

of the solutions to the individual decision problems.

Lemma 3 (a) Sellers carry no cash into the decentralized market.

(b) The buyer’s optimal choices are described by the following correspondence:

Υ (Us) = arg max
q,z,θ,e

n
eα (θ) [u (q)− z]− ψ (e)−

³
γ
β − 1

´
z
o
,

subject to q, z, e ≥ 0 and θ ≥ 0 if αs (θ) [z − c (q)] ≥ Us or θ = 0 otherwise.

(c) Υ (Us) is nonempty and upper-hemi continuous.

Sellers have no use for money in the decentralized market, so as long as γ > β, they choose

ms = 0 in the centralized market. The buyer’s objective function in part (b) is identical to

(19), that of a buyer under bargaining. We can think of the buyer’s problem as one of choosing

search intensity and a simple contract (q, z) specifying a level of real balances z that he will

carry into the submarket and will hand over to any seller he meets in exchange for q units of

output. In principle, different buyers may choose to operate in different submarkets by offering

different (q, z) pairs. If this is the case, sellers then choose which submarket to search in. The
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participation condition for sellers can be used to solve for the submarket tightness, θ, implied by

any combination of terms of trade (q, z) offered in the submarket and any market-wide utility

level Us. Observe that if the submarket is active then the participation condition for sellers will

bind at the optimum (else the contract posted by the buyer would fail to maximize his utility),

so αs (θ) [z − c (q)] = Us. Part (c) establishes that the buyer’s problem has a solution and that

the solution(s) varies (vary) continuously with Us.

4.2 Equilibrium

We are now ready to define the notion of equilibrium we employ in this section.

Definition 2 Given a money supply process M+1/M = γ, a stationary competitive price

posting monetary equilibrium is a sequence {φt, Zt} with Zt = Z for all t and a collectionn
U b, Us, (qi, zi, ei, θi)i∈[0,1]

o
such that:

(C1) Given Us, (qi, zi, θi, ei) ∈ Υ (Us)

(C2)
R
[0,1] eiθidi = 1

(C3)
R
[0,1] zidi = Z

(C4) φt =
Z
Mt

(C5) U b = eiα (θi) [u (qi)− zi]− ψ (ei)−
³
γ
β − 1

´
zi, for (qi, zi, θi, ei) ∈ Υ (Us)

Consistent with Lemma 3, (C1) says that the allocation (qi, zi, θi, ei) must be an equilibrium

of the price posting game. Condition (C2) is an aggregate consistency condition: it states that

the numbers of buyers and sellers each add up to 1. We can also think of this condition

as stating that the aggregate demand for sellers (the left-hand side of (C2)) must equal the

aggregate supply, i.e. 1. Under this interpretation (C2) determines Us, the “price of a seller”

that clears the market for sellers.19 (C3) is the clearing condition for the money market. (C4)

19Recall that a submarket s is essentially defined by a set of buyers each choosing the same tuple
(q (s) , z (s) , e (s) , θ (s)). That is, (qi, zi, ei, θi) = (q (s) , z (s) , e (s) , θ (s)) for each buyer i ∈ Ab (s). Since we
are assuming that µb = µs = 1, i.e. that the total numbers of buyers and sellers each equals one, the equilibrium
allocation must satisfy s∈S µs (s) = s∈S µb (s) = 1. Because market tightness in submarket s was defined

as θ (s) = µs(s)
e(s)µb(s)

, this aggregate consistency condition can be written as s∈S µb (s) θ (s) e (s) = 1. And since
µb (s) = Ab(s)

di and (e (s) , θ (s)) = (ei, θi) for all i ∈ Ab (s), we can write the condition as s∈S Ab(s)
θieidi = 1,

or
[0,1]

θieidi = 1 since ∪s∈SAb (s) = [0, 1], which is (C2). This condition is analogous to the equilibrium condi-
tion for “λ” in Lucas and Prescott (1974).
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maps real balances and the money supply into the (reciprocal of the) price level. (C5) simply

defines U b as the maximum value of the buyer’s program. The following proposition states that

a monetary equilibrium exists as long as the inflation rate γ is not too high.

Proposition 3 A stationary competitive price posting monetary equilibrium exists if

max
q,z,e

½
e [u (q)− c (q)]− ψ (e)−

µ
γ

β
− 1
¶
c (q)

¾
> 0.

Given Us, in any active submarket s the contract (q, z) the tightness θ and the buyer’s

search intensity e must satisfy:

u0 (q)

c0 (q)
= 1 +

γ − β

eα (θ)β
(32)

ψ0 (e) = α (θ) [u (q)− z] (33)

u (q)− z =
η (θ)u0 (q)

η (θ)u0 (q) + [1− η (θ)] c0 (q)
[u (q)− c (q)] (34)

Us = αs (θ) [z − c (q)] . (35)

Equations (32), (33) and (34) are the first-order conditions of the buyer’s problem for q, e and

θ respectively.20 Just as in the previous section, (32) defines a relationship between q and the

buyer’s probability of trade, eα. The higher the probability of trade, the larger the real balances

the buyer will carry. And more real balances translate into larger quantities traded of the search

good. Condition (33) defines the equilibrium level of search intensity as the one that equates

the marginal cost of search to the marginal increase in the buyer’s expected gain from trade.

Condition (34) comes from the choice of market tightness and defines the gain from trade that

accrues to the buyer: u (q) − z = ω (θ, q) [u (q)− c (q)], where ω (θ, q) ≡ η(θ)u0(q)
η(θ)u0(q)+[1−η(θ)]c0(q) is

the buyer’s share of the total surplus.

In what follows we focus on equilibria where the buyer’s problem has a unique solution and

hence a single submarket is active. This, for example, is the case for inflation rates close to

the Friedman Rule (see Lemma 4 in the Appendix). When the buyer’s problem has a unique

solution, (C2) simplifies to θ = 1/e and (C3) to z = Z. Conditions (32)-(34) can be solved for

20The corresponding Lagrangian is Lb = eα (θ) [u (q)− z]−ψ (e)−(γ/β − 1) z+ρs {(1/θ)α (θ) [z − c (q)]− Us},
where ρs is the shadow price of the seller’s participation constraint.
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(q, z, e); given e we know θ and (35) yields Us. This allows us to rewrite (32) and (33) as

u0 (q)

c0 (q)
= 1 +

γ − β

eα (1/e)β
(36)

ψ0 (e) = α (1/e)
η (1/e)u0 (q)

η (1/e)u0 (q) + [1− η (1/e)] c0 (q)
[u (q)− c (q)] . (37)

From (36) it is immediate that the Friedman Rule implies q = q∗ and hence achieves efficiency

along the intensive margin. Also, when γ = β, (37) is identical to (6) for the case with ε = 1 with

probability 1. Thus under competitive price posting the Friedman Rule also achieves efficiency

along the extensive margin: it induces efficient search intensity. The following proposition

summarizes the effects of inflation on the intensive margin, welfare, and search intensity under

competitive price posting.

Proposition 4 The equilibrium is efficient under the Friedman Rule. Inflation reduces q, and

deviations from the Friedman Rule reduce welfare. For γ close to β an increase in γ increases

search intensity, e.

4.3 Discussion

The determination of the equilibrium is illustrated in Figure 2. The dotted lines represent the

planner’s first-order conditions (26) and (27). The (q, e) combinations that satisfy (36) lie on

the curve labeled q (e; γ). The (q, e) pairs that satisfy (37) lie on the curve labeled e (q). Note

that q (e;β) = q∗ and e (q∗) = e∗ (q∗), so the Friedman Rule induces efficient production and

search intensity decisions. As in the model with bargaining, inflation shifts up the q (e; γ) locus

and always reduces q. The effect of inflation on search intensity depends on the level of γ.

For high γ, an increase in inflation induces buyers to reduce search intensity e. For low γ,

buyers raise their search intensity in response to an increase in inflation. The key to a positive

extensive margin effect lies in the non-monotonic relationship between e and q defined by (33),

namely

ψ0 (e) = α (1/e)ω (1/e, q) [u (q)− c (q)] .

The right-hand side represents the buyer’s expected gains from trade in the search market. It

is convenient to think of this gain as the product of two factors: the total surplus, u (q)− c (q),

and the buyer’s share of this surplus, ω. The total surplus is increasing in q (“the total surplus

effect”), but notice that the buyer’s share is decreasing in the size of the trade, q (the “share
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effect”). Intuitively, as q increases, the marginal utility of a buyer falls relative to the marginal

disutility from production incurred by the seller and therefore equating their marginal utilities

from trade requires the buyer to get a smaller share of the total surplus. The net effect on the

buyer’s expected gains from trade can go either way and this causes the relationship between

e and q to be non-monotonic. For small q the surplus is steep so the “total surplus effect”

dominates and the buyer’s gain from trade is increasing in q. The “share effect” dominates for

large q and consequently the buyer’s gain from trade is decreasing in the size of the trade, q,

beyond some threshold q̃ < q∗. Suppose, for example, that the inflation rate increases slightly

from γ = β. The quantity q falls slightly below q∗, but since u (q)−c (q) is maximized at q∗, the
total surplus suffers only a second order reduction. The buyer’s share ω (1/e, q) will experience

a first-order increase and as a result the buyer’s expected gain from trade will rise and this will

induce him to increase his search intensity.21

*

)( qe

);( γeq

)(* qe

q

Figure 2: Equilibrium under competitive price posting

The economic reasoning behind the non-monotonic relationship between e and γ deserves

further attention. The distinctive feature of competitive price posting is that price-setters

21A similar non-monotonic relationship between e and q is obtained from the model with generalized Nash
bargaining in which the seller has bargaining power. However, as we showed in the previous section, the equilib-
rium (q, e) pair of the model with generalized Nash bargaining will never lie on the downward sloping part of the
schedule that (24) and (25) define in (q, e) space. (See Figure 1.) Therefore search intensity (and hence velocity
and aggregate output) always fall with inflation in the model with bargaining.
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compete for trading probabilities. They internalize both congestion and thick market effects,

which is precisely why the equilibrium allocation is efficient at γ = β. As γ increases, buyers

reduce their real balances and this reduces the match surplus u (q)− c (q). If the buyer’s share

of this surplus was to remain constant, the buyer’s expected gains from trade falls and so does

his willingness to pay for a contact with a seller. For the market for contact probabilities to

clear, the “price” Us needs to adjust downward. The reduction in Us occurs in equilibrium

through a fall in the seller’s share. A similar story can be told for the case in which sellers are

the ones who post prices. As inflation increases, buyers will tend to carry lower real balances

into the decentralized market. To encourage buyers to bring more cash (in order to increase

the gains of trade u (q)− c (q) of the buyer-seller match) sellers offer them a better deal, i.e. a

larger share of the surplus.

An increase in inflation always has a negative intensive margin effect on output: less output

is traded in each match. Furthermore, for high inflation, the number of trades falls so the

extensive margin effect of inflation on output is also negative. Thus for high γ, aggregate

output unambiguously falls with inflation. At low inflation rates, however, the frequency of

trades is increasing in the rate of inflation. Therefore, if the positive extensive margin effect

dominates the negative intensive margin effect then total output will rise. We parametrized the

model, computed several examples, and found that the postive effects of inflation on output

can be large. For example, suppose α (1/e) = [1− exp (−ε/e)], u (q) = (q+b)1−σ−b1−σ
1−σ , ψ (s) =

Aeρ (1− e)−ρ, and c (q) = qκ/κ. When β = .99, ε = .01, σ = .7, b ≈ 0, ρ = 1.2, A = 1 and

κ = 25, going from the Friedman Rule (which corresponds to a 1% deflation) to price stability

entails a 5% increase in aggregate ouput. Increasing inflation further from 0 to 1% implies

an additional output gain of 1.4%. Output peaks at around 6% inflation, and at that point

aggregate output is about 7.6% higher than it would be under the Friedman Rule.22

Interestingly, this model is consistent with the common wisdom on the welfare effects of

anticipated inflation we discussed in the introduction. An increase in inflation can induce agents

to spend additional resources to try to get rid of their cash and these additional resources spent

are a social waste. The model is also broadly consistent with the recent empirical evidence on

the long-run output effects of permanent changes in inflation of Bullard and Keating (1995).
22The intensive margin is less responsive to inflation if c (q) is very convex, so the size of the output effect is

increasing in κ. For instance if κ = 15, output is 2.7% higher at 0% inflation than at the Friedman rule. The
extensive margin is more responsive if ρ is small (A big), so the output effect is larger for smaller (bigger) ρ (A).
For example, if we set A = 1.5, then going from the Friedman Rule to price stability yields a 6.8% increase in
aggregate output.
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5 Conclusion

It is only natural for economic agents to devote more effort to trading away their cash holdings

at higher inflation rates. But ultimately, money has to be held by someone, so these efforts are

bound to be socially wasteful. Such is the conventional wisdom as captured by the quote from

Lucas (2000) in our introduction. The actions taken in response to the inflation tax are also

likely to have an impact on macroeconomic outcomes. Indeed, recent evidence seems to indicate

that permanent increases in inflation are associated with permanent increases (reductions) in

the level of output in countries with low (high) average inflation. We constructed two versions of

a search-based model of monetary exchange and used them to study if, or under what conditions

the conventional wisdom regarding the changes in trading behavior in the face of inflation is

supported by theory. We also explored its implications for the effects that permanent changes

in the rate of inflation have on the level of output and on welfare.

We first considered the canonical search model of money in which prices are set according to

ex-post bilateral Nash bargaining between a buyer and a seller. We found that higher inflation

always decreases search effort, the frequency of trades, and aggregate output. These implications

are not in line with the conventional wisdom, say as articulated by Lucas (2000), and do not

help us understand the nonlinear relationship between the anticipated rate of inflation and the

level of output reported in Bullard (1999). From a normative point of view, ex-post bargaining

generically implements inefficient equilibria, and any deviation from the Friedman rule reduces

welfare.

We then analyzed the model under competitive price posting and found that search intensity

and the frequency of trades increase with inflation at low inflation rates. When this extensive

margin effect is strong enough, it is possible to have aggregate output increasing with anticipated

inflation at low inflation rates but decreasing at high inflation rates. Thus, this version of the

model can rationalize the conventional wisdom regarding the changes in agent’s trading behavior

in response to inflation, and at the same time help explain the nonlinear relationship between

inflation and the level of output reported in Bullard (1999). Although it may be possible to

increase output by running a mild inflation, inflating in excess of the Friedman Rule always

reduces welfare.
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Appendix A

Proof of Lemma 1. (a) Using the bargaining solution (15) together with the fact that

c [qε(z)] = z in all matches, we rewrite the value functions in terms of real balances:

V b (z) = max
e≥0

h
αeS (z)− ψ(e) +W b (z)

i
(38)

W b (z) = z + τ +max
ẑ≥0

h
βV b (ẑ)− γẑ

i
(39)

V s (z) = W s (z) (40)

W s (z) = z +max
ẑs≥0

[βV s (ẑs)− γẑs] (41)

It can easily be checked from (40) and (41) that ẑs = 0 for all γ > β. This gives the first part

of the Lemma. (b) Combine (38) and (39) and write

V b (z) = g (z) + z +max
ẑ≥0

h
βV b (ẑ)− γẑ

i
(42)

Since g is continuous and bounded (See proof of Lemma 2), we can use standard dynamic

programming to establish the existence and uniqueness of a V b (z) that solves (42).23 By

substituting the expressions in the statement of the lemma into (38) and (39) it is easy to see

that they indeed solve the Bellman equations.

Proof of Lemma 2. (a) Our assumptions on primitives imply that αeS (z)− ψ(e) is strictly

concave in e, so the first order condition (20) is necessary and sufficient. It is immediate from this

that e (z) = S (z) = 0 if z = 0. The fact that e (z) < 1 for all z follows from our assumption

that lime→1 ψ
0 (e) = +∞. Let z∗1 ≡ c (q∗1). Note that S 0 (z) =

R 1
R(z)

h
εu0(qε)
c0(qε)

− 1
i
dG (ε), so

S 0 (z) > 0 for all z ∈ [0, z∗1) and S 0 (z) = 0 for all z ≥ z∗1 , since S (z) = S∗ for all z ≥
z∗1. Therefore, e

0 (z) = αS0(z)
ψ00(e)

> 0 for all z ∈ [0, z∗1) and e0 (z) = 0 for all z ≥ z∗1 , so the

buyer’s optimal choice of search intensity is increasing in his real money balances. (b) Let

∆ (z; ē, γ) ≡ βg (z) + (β − γ) z. In the centralized market, buyers choose their demand for

real balances by solving max
z≥0

∆ (z; ē, γ). Observe that ∆1 (z; ē, γ) = βαe (z)S 0 (z) − (γ − β),

so from part (a) we have ∆1 (z; ē, γ) = − (γ − β) < 0 for all z ≥ z∗1. Thus we can write

max
z≥0

∆ (z; ē, γ) = max
z∈[0,z∗1 ]

∆ (z; ē, γ). The buyer is maximizing a continuous function over a

23See Lemma 7 in Lagos and Wright (2002) for details.
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compact set. By the Theorem of the Maximum (e.g. Stokey and Lucas [1989], page 62)

the correspondence D : [0,∞) × [β,∞) → [0, z∗1 ] defined by D (ē, γ) = argmax
z≥0

∆ (z; ē, γ) is

nonempty, compact-valued and upper-hemi continuous. We know thatD (ē, γ) ⊆ [0, z∗1) because
∆1 (z

∗
1 ; ē, γ) < 0. Next, we establish the comparative static results. The correspondenceD (ē, γ)

is decreasing in (ē, γ) if (ē00, γ00) Â (ē0, γ0), z0 ∈ D (ē0, γ0), and z00 ∈ D (ē00, γ00), then z00 ≤ z0 (and

z00 < z0 if z00 > 0), where “º” denotes the pairwise ordering relation on R2. The choice set
[0, z∗1 ] is independent of (ē, γ). Note that ∆13 (z; ē, γ) = −1 < 0, and that ∆12 (z; ē, γ) =

β
h
e+ αS(z)

ψ00(e)

i
S 0 (z)α0 (ē) < 0. Thus the objective function has strictly decreasing differences in

(ē, γ); i.e. for all (ē00, γ00) Â (ē0, γ0) we have∆ (z; ē00, γ00)−∆ (z; ē0, γ0) < ∆ (z̃; ē00, γ00)−∆ (z̃; ē0, γ0)
if z > z̃. (See Topkis [1998].) We now show that (ē00, γ00) Â (ē0, γ0) implies z00 ≤ z0. Suppose to

the contrary that z00 > z0, then

0 ≤ ∆
¡
z00; ē00, γ00

¢
−∆

¡
z0; ē00, γ00

¢
< ∆

¡
z00; ē0, γ0

¢
−∆

¡
z0; ē0, γ0

¢
≤ 0,

a contradiction. So we conclude that z00 ≤ z0.24 Next, we show that if z00 > 0, then (ē00, γ00) Â
(ē0, γ0) implies z00 < z0. Since z00 ≤ z0, z00 > 0 implies z0 > 0 so z00 and z0 must satisfy the

first order necessary conditions ∆1 (z00; ē00, γ00) = ∆1 (z0; ē0, γ0) = 0. Suppose that z00 = z0,

then since ∆ (z; ē, γ) has strictly decreasing differences in (ē, γ), we have 0 = ∆1 (z0; ē0, γ0) >

∆1 (z
0; ē00, γ00) = ∆1 (z00; ē00, γ00) = 0, a contradiction. Therefore z00 < z0.

Proof of Proposition 1. By Corollary 2.7.1 in Topkis (1998), we know that D (ē, γ) has

a greatest and a least element. Denote them zH (ē) and zL (ē) respectively. Then define a

correspondence E : [0,∞)× [β,∞)→ [0,∞) by

E(ē; γ) = {e ∈ R : e = σh [zH (ē) , ē] + (1− σ)h [zL (ē) , ē] for some σ ∈ [0, 1]}.

So E (ē; γ) is the set of average search intensities resulting from all convex combinations of

the elements of D (ē, γ). The equilibrium condition
R
[0,1] e(i)di = ē can be reformulated as

ē ∈ E(ē; γ), i.e., for given γ, ē is a fixed point of the correspondence E(ē; γ). The correspondence

E(ē; γ) is upper-hemi continuous and convex-valued. From (20), we see that ē → ∞ implies

α (ē) → 0, and hence h [zi (ē) , ē] → 0 for i = H,L. (To see this, note that S (z) ≤ S∗ < ∞.)
As ē→ 0, α (ē)→ 1 and the buyer’s maximization problem in the centralized market becomes

max {β [eS (z)− ψ (e)] + (β − γ) z} subject to e ≥ 0 and z ≥ 0. Since the value of setting

24This argument resembles Theorem 2.8.4 in Topkis (1998).
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z = e = 0 is 0, the condition max {β [eS (z)− ψ (e)] + (β − γ) z} > 0 implies zL (0) > 0

and then from (20) we have h [zL (0) , 0] > 0. Thus a monetary equilibrium exists if max
e≥0,z≥0

{β [eS (z)− ψ (e)] + (β − γ) z} > 0. (The only if part is immediate from the monotonicity of

the equilibrium correspondence in ē, which we establish below.) From (20) and the comparative

static results in parts (a) and (c) of Lemma 2 we know that E(ē; γ) is strictly decreasing in ē

so there is a unique ē satisfying ē ∈ E(ē; γ). See Figure 3.

),(eE ee

Figure 3: Equilibrium with bargaining.

To show the comparative static result on the equilibrium, consider γ0 and γ00 such that

γ00 > γ0. From part (c) of Lemma 2 we know that for all e0 ∈ E(ē; γ0) and all e00 ∈ E(ē; γ00),

e0 ≥ e00 with a strict inequality if e00 > 0. As a consequence, the fixed point ē = E(ē; γ) is

strictly decreasing in γ. See Figure 4.

Proof of Proposition 2. According to (21), εu0(q) = c0(q) in all trades iff γ = β. From (20),

e satisfies ψ0(e) = α(1/e)S∗. It is then easy to check that e > ē∗.

To show the second part of the Proposition, take two inflation rates γ00 and γ0 with γ00 > γ0 >

β. We first establish that real balances are decreasing with inflation. Let ē00 ∈ E (ē00, γ00) and

ē0 ∈ E (ē0, γ0). From Proposition 1 we know that ē00 ≤ ē0, with strict inequality if ē00 > 0. From

(20), ē0 (ē00) implies a unique z0 (z00), and ē00 < ē0 implies z00 < z0. Now consider the effect of

inflation on output. Recall that q̂0 (z) ≥ 0; also from (20), e0 (z) = αS0
ψ00−α0S ≥ 0. Differentiating

29



'; γeE

"; γeE

Figure 4: Inflation and equilibrium search intensity.

(22) we find that

∂Y

∂z
=

ζ1 (e, 1) e
0 (z)Y

ζ (e, 1)
+ ζ (e, 1) q̂0 (z) [1−G (R)] ≥ 0, (43)

with strict inequality if z < c (q∗1). For the welfare effect of inflation use (20) to write

(1− β)V b (z) = eψ0 (e)− ψ (e) and get

∂V b (z)

∂z
=

e (z) e0 (z)ψ00 [e (z)]

1− β
≥ 0, (44)

with strict inequality if z < c (q∗1).

Proof of Lemma 3. We first show that the following problem,

max
s∈S,m̂,e

h
αeSb (m̂, F s, φ)− ψ(e)−

³
γ
β − 1

´
φm̂
i

with s ≡ [q (m̂, m̃) , d (m̂, m̃) , θ] and subject to θ ≥ 0, m̂ ≥ 0, e ≥ 0, d (m̂, m̃) ≤ m̂, and

max
m̂≥0

h
αsSs (mb, m̂, φ)−

³
γ
β − 1

´
φm̂
i
≥ Us (45)

reduces to the one in the statement of the lemma. We proceed in several steps. Let [q (·, ·) , d (·, ·) , θ]
be part of the solution to the buyer’s problem. Then:
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(i). If the submarket s ≡ [q (·, ·) , d (·, ·) , θ] is active, then d (mb,ms) > 0.

Assume not; then Ss (mb,ms, φ) = −c [q (mb,ms)] and therefore the left-hand side of the

seller’s participation constraint (45) is strictly negative. But in any period sellers can achieve

0 ≤ Us meaning that (45) is violated and hence the submarket s ≡ [q (·, ·) , d (·, ·) , θ] is inactive.
(ii). If the submarket s ≡ [q (·, ·) , d (·, ·) , θ] is active, then the contract [q (mb,ms) , d (mb,ms)]

is independent of ms and sellers carry no cash into submarket s.

Assume not; suppose that

φd (mb,ms)− c [q (mb,ms)] > φd (mb, 0)− c [q (mb, 0)]

and that the seller chooses to carry m0
s > 0 into submarket s. (If the above inequality does not

hold, then it immediately follows that a seller would choose ms = 0). Then a seller’s payoff in

submarket s is

αs
©
φd
¡
mb,m

0
s

¢
− c

£
q
¡
mb,m

0
s

¢¤ª
−
³
γ
β − 1

´
φm0

s.

Consider the contract [q̂ (mb) , d̂ (mb)] where terms of trade are independent of the seller’s money

holdings, i.e. q̂ (mb) = q (mb,m
0
s) and d̂ (mb) = d (mb,m

0
s). It yields the seller

αs

n
φd̂ (mb)− c [q̂ (mb)]

o
= αs

©
φd
¡
mb,m

0
s

¢
− c

£
q
¡
mb,m

0
s

¢¤ª
> αs

©
φd
¡
mb,m

0
s

¢
− c

£
q
¡
mb,m

0
s

¢¤ª
−
³
γ
β − 1

´
φm0

s

meaning that the seller’s participation constraint is violated and hence the submarket is inactive.

Parts (i) and (ii) and the fact that γ > β imply that any active submarket s ≡ [q (·, ·) , d (·, ·) , θ]
will have q (mb,ms) = q (mb) and d (mb,ms) = mb. (The terms of trade are independent of the

seller’s money holdings, sellers carry no cash, and buyers hand over all their cash to sellers in

every trade.) This establishes part (a) and allows us to rewrite the buyer’s problem as

max
q,m,θ,e

h
α (θ) e [u (q)− φm]− ψ(e)−

³
γ
β − 1

´
φm
i
,

subject to q ≥ 0, m ≥ 0, θ ≥ 0, e ≥ 0, and αs (θ) [φm− c (q)] ≥ Us. Letting z = φm we get the

expressions in part (b) of the statement of the lemma.

(c). We first show that the maximizers (q, z, e) lie in a compact set. Suppose the buyer

chooses (q0, z0) with q0 > q∗. Then the seller’s surplus is z0− c (q0) and the buyer’s is u (q0)− z0.

But note that the contract (q∗, z∗) with z∗ = c (q∗)+z0−c (q0) keeps the seller’s expected surplus
unchanged but gives the buyer surplus u (q∗) − z∗ = u (q∗) − c (q∗) − z0 + c (q0) > u (q0) − z0.
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So we conclude that q ∈ [0, q∗]. Since ψ0 (e) → +∞ as e → 1, we know that at the optimum,

e ∈ [0, 1]. Finally, we can restrict z ∈ [c (q) , u (q)] without affecting the value of the program,
since choosing u (q)− z < 0 yields value 0 (and this can be achieved by setting e = z = 0), and

choosing z − c (q) < 0 implies the submarket is inactive. Thus, the value of the program is not

affected by assuming z ∈ [c (q) , u (q)]. We can invert αs = ζ (1/θ, 1) and use it to define θ (αs),

so we can think of αs as the choice variable. Then, our assumptions on the matching function

imply that αs ∈ [0, 1]. Now the problem in part (b) of the lemma can be restated as

max
q,z,αs,e

h
eα [θ (αs)] [u (q)− z]− ψ(e)−

³
γ
β − 1

´
z
i
,

subject to (q, z, αs, e) ∈ Γ (Us), where

Γ (Us) =
©
(q, z, αs, e) ∈ R4 : q ∈ [0, q∗] , z ∈ [c (q) , u (q)] , αs, e ∈ [0, 1] , and αs [z − c (q)] ≥ Us

ª
.

Since the objective function is continuous and the constraint correspondence Γ is continuous

and compact valued, the correspondence Υ (Us) is nonempty and upper-hemi continuous.

Proof of Proposition 3. (a). Suppose (q (Us) , z (Us) , e (Us) , θ (Us)) ∈ Υ (Us), and let

r (Us) = e (Us) θ (Us). We denote rH(Us) and rL(Us) the greatest and the least element of the

set {r ∈ R : r = e (Us) θ (Us)}. Then, we define the correspondence Ê (Us) as follows:

Ê (Us) = {r ∈ R : r = σrH(U
s) + (1− σ)rL(U

s) for some σ ∈ [0, 1]} .

This is the set of all convex combinations of rH(Us) and rL(Us). With this notation, condition

(C2) can be written as 1 ∈ Ê (Us). All we need to do to establish that an equilibrium exists is

show that there exists a Us that satisfies this condition. (i) From the buyer’s objective function

we know that Us > u (q∗)− c (q∗) implies Ê (Us) = {0}. (ii) Now suppose Us = 0. We want to

show that in this case we have e (Us) > 0 and θ (Us) = +∞ for all elements in Υ (Us). Suppose

θ < ∞; then the seller’s participation constraint implies the buyer should set z = c (q). If

maxq,z,e

n
e [u (q)− c (q)]− ψ (e)− (γβ − 1)c (q)

o
> 0, then the buyer chooses e > 0 and wants

to set θ = +∞ to maximize his chances to trade. This means that r (Us) = e (Us) θ (Us)→ +∞
as Us → 0 and therefore all elements in Ê (Us) approach +∞ as Us → 0. Given that E (Us) is

upper hemi continuous, Parts (i) and (ii) imply that there exists a Us such that 1 ∈ Ê (Us).

See Figure 5.
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Figure 5: Existence of equilibrium under price posting.

Lemma 4 The buyer’s problem in part (b) of Lemma 3 has a unique solution for γ close to β.

Proof of Lemma 4. In what follows we assume that Us < u(q∗) − c(q∗), which has

to hold in equilibrium. The seller’s participation constraint can be rewritten as z = c(q) +

Us/αs(θ). Substituting z into the buyer’s objective allows to rewrite the buyer’s problem as

max(q,θ,e)∈R3+ Ψ (q, θ, e), where

Ψ (q, θ, e) ≡ eα(θ)[u(q)− c(q)− Us

αs(θ)
]− ψ(e)−

µ
γ

β
− 1
¶ ∙

c(q) +
Us

αs(θ)

¸
.

If γ = β the first-order conditions give:

q = q∗ (46)

ψ0 (e) = α (θ) [u(q∗)− c(q∗)− Us

αs(θ)
] (47)

Us = α0 (θ) [u(q∗)− c(q∗)] . (48)

From our assumptions, α0 is strictly decreasing, α0(0) = 1 and α0(∞) = 0.25 Given that
Us

u(q∗)−c(q∗) ∈ [0, 1], there is a unique θ that solves (48). Given this θ, since ψ
00 > 0, there is a

unique e that solves (47). Given that Us < u(q∗) − c(q∗), it can be checked that θ > 0 and

max(q,θ,e)∈R3+ Ψ (q, θ, e) > 0. To show that Ψ (q, θ, e) is strictly concave in the neighborhood of

25The fact that α0(0) = 1 comes from our assumption that limθ→0
α(θ)
θ = 1. The fact that α0(∞) = 0 comes

from our assumption that limθ→∞ α (θ) = 1.
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the solution for γ = β, we compute:

Ψqq = eα(θ)[u00(q)− c00(q)]−
µ
γ

β
− 1
¶
c00(q),

Ψee = −ψ00(e),

Ψθθ = eα00(θ)[u(q)− c(q)] +

µ
γ

β
− 1
¶Ã

α00s(θ)αs(θ)− 2 [α0s(θ)]
2

[αs(θ)]
3 Us

!
Ψqe = α(θ)[u0(q)− c0(q)],

Ψqθ = eα0(θ)[u0(q)− c0(q)],

Ψeθ = α0(θ)[u(q)− c(q)]− Us.

At γ = β and q = q∗, we have Ψqe = Ψqθ = Ψeθ = 0 and Ψqq < 0, Ψee < 0 and Ψθθ < 0. Since

the Hessian is continuous, the function Ψ (q, θ, e) is strictly concave in the neighborhood of the

solution under the Friedman Rule and hence for γ in the neighborhood of β. Thus, Ψ (q, θ, e)

admits a unique local maximum in the neighborhood of q = q∗. The first-order necessary

condition with respect to q, is: eα(θ)[u0(q) − c0(q)] = (γ/β − 1) c0(q). So any other candidate
for an optimum must be such that either θ or e is in the neighborhood of 0 which would imply

that maxq,θ,eΨ (q, θ, e) is close to 0 (and it can be made arbitrarily close to 0 by choosing γ

arbitrarily close to β). Given that max(q,θ,e)∈R3+ Ψ (q, θ, e) > 0 at γ = β, such candidates can

be eliminated.

Proof of Proposition 4. As argued above the statement of the proposition, the Friedman

Rule implements the planner’s solution, so welfare decreases as we move away from γ = β. For

the second part combine (32)-(34) to get the following two equations in e and q.

u0 (q)

c0 (q)
= 1 +

γ − β

αeβ
(49)

ψ0 (e) = ζ1 (e, 1)
u0(q)

η
¡
1
e

¢
u0 (q) +

£
1− η

¡
1
e

¢¤
c0 (q)

[u (q)− c (q)] , (50)

where ζ1 (e, 1) is the partial derivative of the matching function with respect to its first argu-

ment. By Lemma 4, for γ close to β (49) and (49) characterize the unique equilibrium. Condi-

tion (49) defines a monotonic relationship between q and e with slope ∂e
∂q =

β(c00u0−u00c0)ζ(e,1)2
(γ−β)ζ1(e,1)(c0)2

> 0.

Similarly, if we think of (50) as a curve in (q, e) space, its slope at q∗ has the same sign as

∂e

∂q
=

ζ1 (e
∗, 1)

£
1− η

¡
1
e∗
¢¤
[u00(q∗)− c00 (q∗)] [u (q∗)− c (q∗)]

u0 (q∗)
©
ψ00 (e∗)− ζ11 (e

∗, 1) [u (q∗)− c (q∗)]
ª < 0.
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Therefore, e as a function of q as defined by (50) is downward sloping at q = q∗. A small

deviation from the Friedman Rule shifts the curve defined by (49) up in (q, e) space while (50)

is not affected. This implies that e increases and q falls in response to the increase in γ. See

Figure 2.
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Appendix B : Competitive price posting by sellers

In this appendix, we analyze the competitive search equilibrium assuming that sellers are

those who post the price. We show that the equilibrium is equivalent to the one we have

obtained assuming that buyers are those who set prices.

The price posting game is described as follows. At the beginning of each period, before

buyers have made their choice of money holdings, each seller publicly announces a contract.

A contract specifies the terms at which agents commit to trade as a function of the money

holdings of the two agents. Buyers observe the different contracts and choose one to search for.

They choose their real balances in the market for general goods and their search intensity in

the search market.

Proposition 5 The sequence {φt, Zt} with Zt = Z for all t together with the collectionn
U b, Us, (qi, zi, ei, θi)i∈[0,1]

o
is a stationary competitive price posting monetary equilibrium by buyers if and only if it is a

stationary competitive price posting monetary equilibrium by sellers.

Before proving this proposition, we must first reformulate the problems faced by buyers and

sellers when the latter post prices and the former direct their search. The problem of a buyer

holding m dollars and searching for a seller in submarket s = (q, d, θ) when the price of money

in terms of general goods in the next centralized market is φ is summarized by:

V b(m, s, φ) = max
e≥0
−ψ(e) + (1− αe)W b(m,φ) + αe

n
u [q(m,ms)] +W b [m− d (m,ms) , φ]

o
.

The lifetime expected utility of a buyer holdingm units of money at the beginning of the period,

denoted W b(m,φ), satisfies

W b(m,φ) = max
x,y,s∈S,m̂≥0

h
x− y + βV b(m̂, s, φ+1)

i
subject to φm̂+ x = φ(m+ T ) + y , where S is the set of all submarkets that are active in the

first subperiod and T is the monetary transfer. Substituting the constraint into the objective,

W b(m,φ) = φ(m+ T ) + max
s∈S,m̂≥0

h
βV b(m̂, s, φ+1)− φm̂

i
.
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This equation, which is identical to (30), states that buyers choose their money holdings and

direct their search toward the submarket that maximizes their expected utility. Define

Ŵ b (m, s, φ) = φ(m+ T ) + max
m̂≥0

h
βV b(m̂, s, φ+1)− φm̂

i
,

so that W b(m,φ) = maxs∈S Ŵ b (m, s, φ).

The value of search to a seller holding m units of money who has chosen to post terms of

trade and tightness (q, d, θ) and hence to be in submarket s = (q, d, θ) is given by

V s (m, s, φ) = (1− αs)W
s (m,φ) + αs

Z
{−c [q (m̃,m)] +W s [m+ d (m̃,m) , φ]} dF b (m̃) ,

where F b is the distribution of money holdings among buyers searching in submarket s. The

value of a seller entering the centralized market with m dollars is

W s (m,φ) = φm+ max
s,m̂≥0

£
βV s(m̂, s, φ+1)− φm̂

¤
(51)

s.t. Ŵ b(mb, s, φ) ≥W b(mb, φ). (52)

This expression for W s is similar to (28), but differs in that the maximization is now subject to

(52), the participation condition for buyers. The left-hand side of (52) is the expected utility of

a buyer who chooses to search in submarket s, and the right-hand side is the expected utility

from searching in the submarket that maximizes his expected utility. Note that Ŵ b
¡
mb, s, φ

¢
−

W b(mb, φ) is independent of mb so that if (52) is satisfied for one value of mb, it is satisfied for

all values of mb. The participation constraint (52) defines an implicit relationship between θ

and the terms of trade (q, d), and says that a submarket receives buyers only if it yields them

the maximum level of utility they can achieve by searching another submarket. Submarkets for

which (52) does not hold do not attract buyers and therefore shut down.

Here as in the body of the paper, we focus on stationary equilibria in which M+1/M =

φ/φ+1 = γ > β. Since in this formulation the terms of trade (q, d) are posted by sellers, we

take a closer look at their maximization problem in the decentralized market. First note that

since W s(m,φ) =W s(0, φ) + φm, the value function V s can be written as

V s (m, s, φ) = αsSs(F b,m, φ) + φm+W s (0, φ)

where Ss
¡
F b,m, φ

¢
≡
R
{φd (m̃,m)− c [q (m̃,m)]} dF b (m̃). Substituting this into (51) gives

W s (m,φ) = φm+ βW s
¡
0, φ+1

¢
+ βmax

s,m̂

n
αsSs(F b, m̂, φ+1)−

³
γ
β − 1

´
φ+1m̂

o
, (53)

with s ≡ [q (m̃, m̂) , d (m̃, m̂) , θ], and subject to (52), θ ≥ 0, m̂ ≥ 0 and d (m̃, m̂) ≤ m̃.
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Lemma 5 Sellers carry no money.

Proof. Suppose that m0 > 0, q (m̃,m0) and d (m̃,m0) are part of the solution to the seller’s

problem in (53). Clearly, since γ > β, posting q (m̃, 0) and d (m̃, 0) and setting m̂ = 0 yields

the seller strictly higher utility.

By virtue of Lemma 5, hereafter we write the terms of trade as q (mb) and d (mb), where mb

denote the buyer’s money holdings. Using Lemma 5 and the fact that W b(m,φ) =W b(0, φ) +

φm, the value function V b can be written as

V b(m, s, φ) = max
e
{αeSb (m,φ)− ψ(e)}+ φm+W b(0, φ)

where Sb (m,φ) = u [q (m)]−φd (m). Using this expression and the linearity of W b(m,φ) in m,

the participation constraint (52) can be expressed as

max
e,m

n
αeSb

¡
m,φ+1

¢
− ψ(e)−

³
γ
β − 1

´
φ+1m

o
≥ U b (54)

where

U b ≡ max
q(m),d(m),θ,e,m

n
αeSb

¡
m,φ+1

¢
− ψ(e)−

³
γ
β − 1

´
φ+1m

o
,

subject to e ≥ 0, m ≥ 0. Therefore, a seller chooses which s = (q, d, θ) to post by solving

max
q(m),d(m),θ

½
αs

Z
{φd (m̃)− c [q (m̃)]} dF b (m̃)

¾
subject to (54), θ ≥ 0 and d (m) ≤ m for all m. A seller posts (and commits to) terms of trade

[q (m) , d (m)], namely how much output q gets exchanged and how much money changes hands

as a function of the money holdings of the buyer. Given these terms of trade, buyers choose

money holdings, search intensity and a submarket to search in. It is convenient to think of the

seller as posting a “menu” [q (m) , d (m)] that potentially depends on the money holdings of the

buyer (money holdings are observable, just as in Section 2). When the buyer chooses money

holdings he is choosing a particular “item” on the menu offered by the seller. If there are multiple

solutions to the buyer’s problem; i.e. several levels of cash holdings that maximize the left-hand

side of (54), then buyers may show up with different money holdings which is why in principle

the seller has to take expectations using the cumulative density F b. In fact, m0 ∈ suppF b only if

there is some e0 such that (e0,m0) ∈ argmaxe,m
n
αeSb

¡
m,φ+1

¢
− ψ(e)−

³
γ
β − 1

´
φ+1m

o
. Also,

if [q (m) , d (m)] solves the seller’s problem then φd (m0)− c [q (m0)] = φd (m00)− c [q (m00)] for all
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m0, m00 ∈ suppF b.26 This means that the distribution of money holdings among buyers is payoff

irrelevant for buyers and sellers. For this reason we will specialize the analysis to equilibria with

a degenerate distribution of money holdings across buyers within each submarket.27 Lemma

6 shows that there is no loss of generality in restricting our attention to the set of contracts

in which sellers require buyers to hand over all their cash. The basic idea is that since buyers

would never pick an item off a menu that requires them to bring cash that will not be used in

exchange, there is no loss in ignoring the class of menus that include such items.

Lemma 6 The seller’s problem can be written as

max
q(m),d(m),θ

½
αs (θ)

Z
{φd (m̃)− c [q (m̃)]} dF b (m̃)

¾
subject to (54), θ ≥ 0 and d (m) = m for all m.

Proof. Suppose (e0,m0) ∈ argmaxe,mΛ [e,m; q (·) , d (·) , θ], where

Λ [e,m; q (·) , d (·) , θ] ≡ αe {u [q (m)]− φd (m)}− ψ(e)−
³
γ
β − 1

´
φm.

We want to show that if [q (m) , d (m)] solves the seller’s problem, then it will never be the case

that d (m0) < m0. We proceed by contradiction: suppose that the contract [q (m) , d (m)] solves

the seller’s problem and d (m0) < m0. Consider the contract [q̂ (m) , d̂ (m)] = [q (m) , d (m)] for

all m 6= d (m0), but with d̂ (m) = m and q̂ (m) = q (m0) for m = d (m0). Then

αe0
©
u
£
q
¡
m0¢¤− φd

¡
m0¢ª− ψ(e0)−

³
γ
β − 1

´
φm0

< αe0
©
u
£
q
¡
m0¢¤− φd

¡
m0¢ª− ψ(e0)−

³
γ
β − 1

´
φd
¡
m0¢ .

Thus maxe,m Λ [e,m; q (·) , d (·) , θ] < Λ[e0,m0; q̂ (·) , d̂ (·) , θ]. This together with the fact that
φd̂ (m0) − c [q̂ (m0)] = φd (m0) − c [q (m0)] implies that [q (m) , d (m)] is not a solution to the

seller’s problem.

The following lemma shows that the seller’s problem can be simplified even further and

expected utilities of buyers and sellers remain unchanged if we specialize the analysis to the

case in which a seller only chooses among “single-item menus”.
26 If this was not the case, say if φd (m0) − c [q (m0)] > φd (m00)− c [q (m00)], then the seller could simply pick

[q (m00) , d (m00)] in such a way so that no buyer planning to search the submarket would choose m00.
27From a welfare standpoint, this is not restrictive because —as mentioned above and formalized in Lemma 7

below— for each equilibrium with a nondegenerate distribution of money holdings for buyers within a submarket
there is one with identical payoffs to all agents but no dispersion in money holdings within each submarket.
Moreover, we will still be allowing for dispersion in buyers’ money holdings across submarkets.
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Lemma 7 Let z ≡ φm. Given U b, the seller’s problem can be written as

max
q,z,θ

αs (θ) [z − c (q)]

subject to q ≥ 0, z ≥ 0, and αs (θ) ≥ 0 if

max
e

n
α (θ) e [u (q)− z]− ψ (e)−

³
γ
β − 1

´
z
o
≥ U b

or αs (θ) = 0 otherwise.

Proof. First, we show that the maximization problem in Lemma 6 is equivalent to

max
q(m),d(m),θ

½
αs

Z
{φd (m̃)− c [q (m̃)]} dF b (m̃)

¾
subject to (54), θ ≥ 0, d (m) = m for all m and q (m) ∈ C0, where

C0 = {q (m) : R+ → R+ s.th. q (m) = q ≥ 0 if m = m0 and

q (m) = 0 if m 6= m0 for some m0 ∈ R+}.

Let C denote the set of all functions from R+ into R+. Then the difference is that the choice
of q (m) is unrestricted in Lemma 6 but is now required to lie in C0 ⊂ C. Suppose that

[q∗ (m) ,m, θ∗] and (e0,m0) solve the unrestricted problem. That is, [q∗ (m) ,m, θ∗] solves the

seller’s problem we posed in Lemma 6 and (e0,m0) ∈ argmaxe,m Λ [e,m; q∗ (m) ,m, θ∗]. Then

the seller’s payoff is αs (θ∗) {φm0 − c [q∗ (m0)]} and the buyer’s is Λ [e0,m0; q∗ (m) ,m, θ∗]. But

there is a contract [q̂ (m) ,m] with q̂ (m) ∈ C0 that implements the same solution, namely
q̂ (m) = q∗ (m) for m = m0 and q̂ (m) = 0 for m 6= m0. Therefore since [q∗ (m) ,m, θ∗] solves

the seller’s problem when q (m) is unrestricted, and it yields the same payoffs as [q̂ (m) ,m, θ∗],

it follows that [q̂ (m) ,m, θ∗] solves the problem subject to the additional constraint q (m) ∈ C0.
All this means that the value of the seller’s program is not altered if we restrict his maximization

by requiring that q (m) ∈ C0. Hence we can write the value of the seller’s program as

max
q,m,θ

αs (θ) [φm− c (q)]

with αs (θ) ≥ 0 if maxe {α (θ) e [u (q)− φm]− ψ (e)− (γ/β − 1)φm} ≥ U b, and αs (θ) = 0

otherwise. Letting z ≡ φm we get the expressions in the statement.

According to Lemma 7 we can think of the seller’s problem as one of choosing a simple

contract (q, z) specifying a level of real balances z such that the buyer that enters the submarket
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with z gets q in exchange for z and no surplus if he carries any other level of real balances. In

principle, different sellers may choose to operate in different submarkets by offering different

(q, z) pairs. Buyers then choose what submarket to search in (given the “one-item” contracts

offered by sellers this essentially amounts to choosing a level of real balances z) and with what

intensity. Given U b, the seller’s problem can be written as

Definition 3 Given a money supply process M+1/M = γ, a stationary competitive price post-

ing monetary equilibrium by sellers is a sequence {φt, Zt} with Zt = Z for all t and a collectionn
U b, Us, (qi, zi, ei, θi)i∈[0,1]

o
such that:

(C1’) Given U b, (qi, zi, θi, ei) solve the problem posed in Lemma 7

(C2’)
R
[0,1] eiθidi = 1

(C3’)
R
[0,1] zidi = Z

(C4’) φt =
Z
Mt

(C5’) Us = αs (θi) [zi − c (qi)] .

Proof of Proposition 5. Note that conditions (C2)-(C4) and (C2’)-(C4’) are identical.

Thus all we need to show is that
n
U b, Us, (qi, zi, ei, θi)i∈[0,1]

o
satisfy (C1) and (C5) if and only

if they satisfy (C1’) and (C5’). The seller’s problem in Lemma 7 can be conveniently written

as maxq,z,θ,e Ls where

Ls = αs [z − c (q)] + ρb
n
αe [u (q)− z]− ψ (e)−

³
γ
β − 1

´
z − U b

o
and ρb is the multiplier on the buyer’s participation constraint. The first-order necessary

conditions corresponding to (C1’) are

ρbαeu0 (q) = αsc
0 (q) (55)

ρb
h
αe+ γ

β − 1
i
= αs (56)

ρbeα0 (θ) [u (q)− z] = −α0s (θ) [z − c (q)] (57)

ρb
©
α [u (q)− z]− ψ0 (e)

ª
= 0 (58)

ρb
n
αe [u (q)− z]− ψ (e)−

³
γ
β − 1

´
z − U b

o
= 0 (59)
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and (C5’) is

Us = αs (θ) [z − c (q)] . (60)

Similarly, the buyer’s problem in Lemma 3 part (a) can be written as maxq,z,θ,e Lb where

Ls = αe [u (q)− z]− ψ (e)−
³
γ
β − 1

´
z + ρs {αs [z − c (q)]− Us}

and ρs is the multiplier on the seller’s participation constraint. The first-order necessary con-

ditions corresponding to (C1) are

αeu0 (q) = ρsαsc
0 (q) (61)

αe+ γ
β − 1 = ρsαs (62)

eα0 (θ) [u (q)− z] = −ρsα0s (θ) [z − c (q)] (63)

α [u (q)− z]− ψ0 (e) = 0 (64)

ρs {αs [z − c (q)]− Us} = 0 (65)

and (C5) is

U b = αe [u (q)− z]− ψ (e)−
³
γ
β − 1

´
z. (66)

From (56) and (62) we see that ρb = 1
ρs , and hence that (55) is identical to (61) and (57)

is identical to (63). In addition, any active submarket has ρi > 0 for i = b, s and therefore

(58)-(60) are identical to (64)-(66).
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