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1. INTRODUCTION

We compare three models of monetary exchange that differ in terms of their

assumed market structures. In the first, at least some activity takes place

in highly decentralized markets where anonymous buyers and sellers match

randomly and bargain bilaterally over the terms of trade. Following the

literature, we call this search equilibrium. In the second model there are

still frictions, and in particular agents are still anonymous, but they meet

in large markets where prices are taken as given. We call this competitive

equilibrium. In the third model, we assume there are different submarkets

with posted prices and buyers and sellers can direct their search across these

submarkets, although within each submarket there are again frictions. We

call this competitive search equilibrium. In each case, we provide results on

existence and on uniqueness or multiplicity of equilibrium. We also analyze

efficiency and optimal monetary policy.

The underlying framework is related to recent search-theoretic models

of money following Lagos and Wright (2002) — hereafter referred to as LW.

The key assumption in this framework is that, in addition to the activity

that takes place in the more or less decentralized markets described above,

agents also have periodic access to centralized competitive markets. The

existence of the decentralized markets, and in particular the assumption that

agents are anonymous, generates an essential role for money (Kocherlakota

(1998), Wallace (2001)). The existence of the centralized markets greatly

simplifies the analysis, because when combined with the assumption that

preferences are quasi-linear, it implies that all agents of a given type will

carry the same amount of money into the decentralized market. This renders
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the distribution of money holdings in this market simple, which makes the

model very easy to analyze, compared to similar models with no centralized

markets like Green and Zhou (1998), Molico (1999), Camera and Corbae

(1999), or Zhou (1999).2

Intuitively, the simplification comes from the fact that quasi-linearity

eliminates wealth effects on the demand for money, and hence eliminates

dispersion in money holdings based on trading histories. While we believe

that the wealth/distribution effects from which we are abstracting are inter-

esting, as discussed in Levine (1991) and Molico (1999) e.g., the goal here

is to focus on other effects that have not been analyzed previously.3 To

introduce these new effects we extend existing monetary models by adding

a generalized matching technology and a free entry condition. These ex-

tensions can be thought of as being adapted from labor market models like

those discussed in Pissarides (2000). Their role here is to allow us to discuss

the effects of inflation on the extensive margin (the number of trades) as well

as the intensive margin (the amount exchanged per trade), and to discuss

“search externalities” — i.e. the dependence of the amount of trade on the

composition of the market.
2Shi (1997) provides a different approach that also delivers simple distributions; see LW

for a comparison. Note also that, as emphasized by Zhou (1999) and Kamiya and Shimizu
(2003), a problem with some of the models mentioned above is that they have a continuum
of stationary equilibria. This is not true in the LW model, even if we generalize preferences
away from quasi-linearity, for the following reason. In the models in Zhou or Kamiya and
Shimizu, there are equilibria where agents value money only in integer multiples of p; i.e.
the value of having m dollars, V (m), is a step function with jumps as at p, 2p, 3p... Given
this, nothing actually pins down p. With periodic competitive markets as in LW, however,
V (m) must be strictly increasing, and such equilibria do not arise.

3Moreover, although our specification ignores wealth effects, recent work suggests the
results are robust in the following sense. Khan, Thomas and Wright (2004) solve numer-
ically a version of the model in LW with a more general class of utility functions, and
show that as the wealth effects get small, both the distribution of money holdings and
the welfare cost of inflation converge to the results derived analytically for quasi-linear
specification.
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Our main result is to show that the different market structures have

very different implications for the nature of equilibrium and for the effects

of policy. In search equilibrium (bargaining), we prove that the quantity

traded and entry are both inefficient. In this model inflation implies a first-

order welfare loss, and although the Friedman Rule is the optimal policy, it

cannot correct the inefficiencies on the intensive and extensive margins. In

competitive equilibrium (price taking), the Friedman Rule gives efficiency

along the intensive margin but not the extensive margin. In this model the

effects of policy are ambiguous, and inflation in excess of the Friedman Rule

may be desirable. In competitive search equilibrium (posting), the Friedman

Rule achieves the first best. In this model inflation reduces welfare but the

effect is second order. We think these results are interesting because they

help to sort out which results in recent monetary theory are due to features

of the environment — preferences, information etc. — and which are due to

the assumed market structure — bargaining, posting etc.

The three market structures have previously been used, of course, in

different contexts. In the context of monetary economics, dating back to

Shi (1995) and Trejos and Wright (1995) most search-based models use

bargaining. Competitive pricing is used in, say, overlapping generations

models by Wallace (1980) and turnpike models by Townsend (1980), but

it has not been used in monetary models with search-type frictions. Price

posting and directed search have been used in several monetary models (see

Section 5 for references), but not in combination, and it is the combination

that is critical for the concept of competitive search equilibrium. In terms

of the literature on labor markets, one way to understand the three market

structures is the following. Our bargaining model is monetary economics’
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analog to the Mortensen and Pissarides (1994) search model; our price-

taking model is the analog to the Lucas and Prescott (1974) search model;

and our price-posting model with directed search is the analog to Moen

(1997) and Shimer (1996).

From a different perspective, consider Diamond (1984), who introduced a

cash-in-advance constraint in the Diamond (1982) model because he wanted

to discuss “Money in Search Equilibrium.” Although his approach to bar-

gaining was primitive at best, perhaps a bigger problem was that money

is imposed exogenously via the cash-in-advance constraint. Later, Kiyotaki

and Wright (1991) showed that in a very similar environment a role for

money can be derived endogenously. Kocherlakota (1998) clarified exactly

what makes money essential in those environments: a double coincidence

problem, imperfect enforcement, and anonymity. It seems natural to look

for a physical environment that incorporates these features, but also allows

one to consider alternative market structures. Here, in addition to being

able to discuss what Diamond wanted we can also analyze “Money in Com-

petitive Equilibrium” and “Money in Competitive Search Equilibrium.”

The rest of the paper is organized as follows. Section 2 presents the basic

assumptions and discusses efficiency. Section 3-5 analyze equilibrium in the

models with bargaining, price taking, and price posting. Section 6 concludes

by summarizing the results.

2. THE BASIC MODEL

Time is discrete and continues forever. As in LW, each period is divided

into two subperiods, called day and night, where economic activity will dif-

fer. During the day there will be a frictionless centralized market, while at
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night there will be explicit frictions and trade will be more or less decentral-

ized, depending on which model (market structure) we consider. There is a

continuum of agents divided into two types that differ in terms of when they

produce and consume. We find it convenient to call them buyers and sellers.

The sets of buyers and sellers are denoted B and S, respectively. The differ-
ence is the following: while all agents produce and consume during the day,

at night buyers want to consume but cannot produce while sellers are able

to produce but do not want to consume. This generates a temporal double

coincidence problem at night. Combined with the assumption that agents

are anonymous, which precludes credit in the decentralized night market,

this generates an essential role for money.4

It is well know by now that several different models can generate a similar

role for money, including a variety of specifications with many goods and

specialization in tastes and technologies (e.g. Kiyotaki and Wright (1989,

1993)). We choose to work with a single consumption good and a temporal

double coincidence problem for the following reason. In the typical search-

based model, any agent engaged in decentralized trade may end up either

buying or selling, depending on who they meet, while here sellers can only

sell and buyers can only buy in the night market. Differentiating types ex

ante allows us to introduce an entry decision on one side of the decentralized

market, and thereby allows us to capture extensive margin effects in a very

simple way. Thus, the measure of B is normalized to 1 and all buyers

participate in the night market at no cost, while only a subset St ⊆ S with
measure nt of sellers enter the night market at each date t, and we will

4Essential in this context means we can achieve allocations with money that we could
not achieve without it; again see Kocherlakota (1998) and Wallace (2001).
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consider both the case where nt is exogenous and where sellers may or may

not choose to enter at cost k.5

Money in the model is perfectly divisible, and agents can hold any non-

negative amount. The quantity of money per buyer grows at constant rate

γ: Mt+1 = γMt. New money is injected, or withdrawn if γ < 1, by lump-

sum transfers in the centralized market. For simplicity we assume these

transfers go only to buyers, but this is not essential for the results (i.e.,

things are basically the same if we also give transfers to sellers, as long as

they are lump sum in the sense that they do not depend on behavior, and in

particular, on their entry decisions). Also, we restrict attention to policies

where γ ≥ β, where β is a discount rate to be discussed below, since it can

easily be checked that for γ < β there is no equilibrium. Furthermore, when

γ = β — which is the Friedman Rule — we only consider equilibria obtained

by taking the limit γ → β. In general, at date t the distribution of (real)

money holdings across buyers is F b
t and the distribution across sellers is F

s
t .

The instantaneous utility of a buyer at date t is

U b
t = v(xt)− yt + βdu(qt), (1)

where xt is the quantity consumed and yt the quantity produced during the

day, qt is consumption at night, and βd is a discount factor between day and

the night. There is also a discount factor between night and the next day,

5When we allow entry, we assume the set S is large enough that nt is never constrained.
Also, as in standard search models with constant returns, we are only interested in the
ratio of buyers and sellers and not the overall size of the market; this is why we have
entry by one side only. There are alternatives to entry that can be used to endogenize
the extensive margin. For example, Rocheteau and Wright (2004) consider a fixed total
number of agents that can choose whether to be buyers or sellers. In a related model
Lagos and Rocheteau (2003) keep the buyer-seller ratio fixed but introduce endogenous
search intensity.
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βn, and we let β = βdβn < 1.6 Lifetime utility for a buyer is
P∞

t=0 β
tU b

t .

We assume u(0) = 0, u0(0) =∞, u0(q) > 0, and u00(q) < 0. Also, v0(x) > 0,

v00(x) < 0 for all x, and there exists x∗ > 0 such that v0(x∗) = 1. Without

loss of generality, we normalize v(x∗)− x∗ = 0. Similarly, the instantaneous

utility of a seller is

Us
t = v(xt)− yt − βdc(qt), (2)

where xt is consumption and yt production during the day, and qt is pro-

duction at night. Lifetime utility for a seller is
P∞

t=0 β
tUs

t . We assume

c(0) = c0(0) = 0, c0(q) > 0 and c00(q) > 0. Also we assume c(q) = u(q) for

some q > 0, and let q∗ denote the solution to u0(q∗) = c0(q∗).

In the centralized day market the price of goods is normalized to 1 at each

date t, while the relative price of money is denoted φt. In the decentralized

night market, details in terms of prices will differ across the models studied

below, but there will always be some friction in the following sense: each

period t only a subset eBt ⊆ B of buyers and a subset eSt ⊆ St ⊆ S of

sellers who participate get to trade in this market. Agents in eBt ∪ eSt may
either trade bilaterally or multilaterally in the models discussed below. The

measure of eBt is αb(nt) and the measure of eSt is ntαs(nt), and we assume
agents in these sets are chosen at random; hence the probabilities of trading

for buyers and sellers at night are αb(nt) and αs(nt), respectively. This

allows for “search externalities” in the sense that trading probabilities may

depend on the ratio of sellers to buyers, nt. Typically, unless otherwise

indicated we assume αb(n) = α(n) and αs(n) = α(n)/n, which means the

6A special case is when agents do not discount between one subperiod and the next,
i.e. either βn = 1 or βd = 1 , as in LW. Another special case is when βd = βn, so that the
two subperiods can be thought of as even and odd dates, as in the version of the model
studied by Williamson (2004).
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same number of buyers and sellers trade in the decentralized market, but

we also discuss some cases where we relax this. We also assume α0(n) > 0,

α00(n) < 0, α(n) ≤ min{1, n}, α(0) = 0, α0(0) = 1 and α(∞) = 1.7

We now consider efficiency, which of course can be discussed indepen-

dently of the assumed market structure and prices. Consider a social planner

who chooses each period the measure nt of sellers in the night market, as

well as an allocation At = [qbt (i), q
s
t (i), xt(i), yt(i)] specifying consumption

and production during the day [xt(i), yt(i)] for all i ∈ B ∪ S, consumption
at night qbt (i) for all i ∈ eBt, and production at night qst (i) for all i ∈ eSt. The
planner is constrained by the frictions in the environment, in the sense that

he cannot actually choose eBt and eSt, but only nt, and then these sets are

determined at random in such a way that eBt has measure αb(nt) and eSt has
measure ntαs(nt). In the case where the same number of buyers and sellers

trade in the decentralized market, eBt and eSt both have measure α(nt).
Given quasi-linear utility, we only consider the case where the planner

weights all agents equally. Thus, let

Wt =

Z
B∪S

{v[xt(i)]− yt(i)} di

+βd

Z
Bt
u[qbt (i)]di− βd

Z
St
c[qst (i)]di− βdknt. (3)

The planner wants to maximize
P∞

t=0 β
tWt. Feasibility requires several

things. First, we obviously must have
R
B∪S xt(i)di ≤

R
B∪S yt(i)di. Similarly

we must have
R
Bt q

b
t (i)di ≤

R
St q

s
t (i)di, but in addition, in a model where

7The function α(n) can be given several interpretations; for now one can think of it as
the standard specification coming from a constant returns to scale matching technology.
Thus, if µ(nb, ns) is the number of meetings when there are nb buyers and ns sellers,
constant returns implies the arrival rate for a representative buyer is αb = µ(nb, ns)/nb =
α(ns/nb). See Petrongolo and Pissarides (2001) for an extensive discussion of the matching
function.
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agents trade bilaterally at night, we have the stronger requirement qbt (i) ≤
qst (j) for each trading pair (i, j). An efficient outcome is defined as paths

for nt and At that maximize
P∞

t=0 β
tWt subject to these restrictions.

PROPOSITION 1: An efficient outcome is stationary and satisfies: x(i) =

x∗ for all agents in the day market; qb(i) = qb and qs(i) = qs for all i ∈ eB
and all j ∈ eS, where u0(qb) = c0(qs) and αb(n)q

b = nαs(n)q
s; and

α0b(n)
h
u(qb)− qbc0(qs)

i
+ [αs(n) + nα0s(n)][q

sc0(qs)− c(qs)] = k. (4)

In the case where αb(n) = nαs(n) = α(n), this implies qb(i) = qs(j) = q∗

and n = n∗, where

α0(n∗) [u(q∗)− c(q∗)] = k. (5)

PROOF: Note first that the planner’s problem is equivalent to a sequence

of static problems. Maximizing Wt at each date leads to first order condi-

tions that imply v0[x(i)] = 1, and therefore x(i) = x∗ for all i in the day

market, and u0[qb(i)] = c0[qs(j)] = λ/βd for all i and j that trade in the night

market where λ is the Lagrange multiplier associated with the feasibility con-

straint
R
B q

b(i)di =
R
S q

s(i)di. From the feasibility constraint, since eB and eS
have measures αb(n) and nαs(n), respectively, we have αb(n)qb = nαs(n)q

s.

Given this, the first order condition for n is (4). Finally, (5) is derived from

(4) by using qs = qb and αs(n) + nα0s(n) = α0(n). Q.E.D.

As long as x = x∗, which will turn out to be true in every equilibrium

considered below, and ignoring constants, for any n and q welfare per period

can be measured by α(n) [u(q)− c(q)] − kn. From this it is clear that the

efficient q is the one that solves u0(q∗) = c0(q∗), and as seen in (5) the efficient

n is the one that makes a seller’s marginal contribution to the trading process

α0(n) times the surplus u(q∗)− c(q∗) equal to the participation cost k.
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3. SEARCH EQUILIBRIUM (BARGAINING)

In this section we study the market structure used in much of the recent

literature on the microfoundations of money, where buyers and sellers trade

bilaterally and bargain over the terms of trade. In this model, one can think

of the event that a buyer gets to trade as the event that he meets a seller,

and vice-versa, as in standard matching models. In the following we define

the real value of an amount of money mt in the hands of an agent at date

t by zt = φtmt. Here we focus on steady-state equilibria, where aggregate

real variables, including the aggregate real money supply Zt = φtMt, are

constant. Therefore, in steady-state equilibrium, we have φt+1/φt = 1/γ

because Mt+1/Mt = γ.

If a buyer with real balances zb meets a seller with zs, let d = d(zb, zs)

and q = q(zb, zs) denote the real dollars and units of the good that are

traded. Let V b(zb) and W b(zb) be the value functions for a buyer with zb in

the night market and day market, respectively, and let V s(zs) and W s(zs)

be the value functions for sellers. Bellman’s equation for a buyer in the

decentralized night market is

V b(zb) = α(n)

Z ½
u [q(zb, zs)] + βnW

b

·
zb − d (zb, zs)

γ

¸¾
dF s(zs)

+ [1− α(n)]βnW
b

µ
zb
γ

¶
. (6)

In words, with probability α(n) he meets a seller who has a random zs, at

which point he consumes q(zb, zs) and starts the next day with real balances

[zb − d(zb, zs)] /γ; and with probability 1−α(n) he does not trade and starts
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the next day with zb/γ.8 Similarly, for sellers,

V s(zs) =
α(n)

n

Z ½
−c [q (zb, zs)] + βnW

s

·
zs + d (zb, zs)

γ

¸¾
dF b(zb)

+

·
1− α(n)

n

¸
βnW

s

µ
zs
γ

¶
− k. (7)

Comparing (6) and (7), notice only sellers pay the participation cost k.

In the centralized day market a buyer’s problem is

W b(zb) = max
ẑ,x,y

n
v(x)− y + βdV

b(ẑ)
o

(8)

subject to ẑ + x = zb + T + y, (9)

where T is his real transfer and ẑ is the real balances he takes into that

period’s decentralized market.9 Similarly, for any seller who enters the night

market,

W s(zs) = max
ẑ,x,y

{v(x)− y + βdV
s(ẑ)} (10)

subject to ẑ + x = zs + y. (11)

LEMMA 1: For all agents in the centralized market, ẑ is independent of

z. Also, W b(zb) = zb +W b(0) and W s(zs) = zs +W s(0) are linear.

PROOF: Consider a buyer. Substituting (9) into (8), we have

W b(zb) = zb + T +max
ẑ,x

n
v(x)− x− ẑ + βdV

b(ẑ)
o
. (12)

The rest is obvious. Q.E.D.

8 If a buyer holds zt = mtφt at the end of period t, his real balances at the beginning
of period t+ 1 are zt+1 = mtφt+1 = ztφt+1/φt = zt/γ.

9We are ignoring non-negativity constraints. For variables other than y, these will be
satisfied under the usual conditions. For y, we simply look for equilibria with the property
that y > 0 for all agents, but one can impose conditions on primitives to guarantee this is
valid, as in LW. It is important that y ≥ 0 is not binding for a key result proved below —
the result that all agents of a given type choose the same ẑ, independent of z.
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Assuming V b is differentiable (it will be) the first order condition for ẑ

from (12) is

−1 + βdV
b
z (ẑ) ≤ 0, = 0 if ẑ > 0, (13)

and if V b is strictly concave over the relevant range (it will be under weak

conditions) there is a unique solution to (13) and all buyers choose the same

ẑ.10 Similarly all sellers choose the same ẑ. To say more, we need to discuss

the terms of trade in the decentralized market.

Consider a meeting between a buyer with zb and a seller with zs at night.

To determine q(zb, zs) and d(zb, zs) in this model we use the generalized Nash

bargaining solution, where θ ∈ (0, 1] is the bargaining power of a buyer and
threat points are given by continuation values. Thus, the payoffs of the buyer

and seller are u(q) + βnW
b [(zb − d)/γ] and −c(q) + βnW

s [(zs + d)/γ], and

the threat points are βnW
b(zb/γ) and βnW

s(zs/γ). Linearity ofW b(zb) and

W s(zs) implies W b [(zb − d)/γ] −W b [zb/γ] = −d/γ and W s [(zs + d)/γ] −
W s [zs/γ] = d/γ. Hence the generalized Nash bargaining solution reduces

to

max
q,d

·
u(q)− βn

γ
d

¸θ ·
−c(q) + βn

γ
d

¸1−θ
(14)

where d is subject to the resource constraint d ≤ zb.

It is immediate that the solution to (14) is independent of zs. Moreover,

(q, d) depends on zb if and only if the constraint d ≤ zb binds. If it does not

bind, the first order conditions from (14) are

u0(q) = c0(q), (15)

βn
γ
d = (1− θ)u(q) + θc(q) (16)

10LW provide details on the existence, differentiability, and strict concavity of the value
functions for their version of the model, and the same arguments apply here. We will
discuss how things change in the other models considered below.
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which imply q = q∗ and d = z∗ = [θc(q∗) + (1− θ)u(q∗)] γ/βn. If the

constraint does bind, then q solves the first order condition from (14) with

d = zb, which we can write as

βn
γ
zb = g(q, θ) =

θu0(q)c(q) + (1− θ)c0(q)u(q)
θu0(q) + (1− θ)c0(q)

. (17)

For future reference, note that the function g(q, θ) defined in (17) satisfies

gq(q, θ) > 0 for all q < q∗.

This fully describes decentralized trade under bargaining. To return to

the determination of ẑ, we now make the following assumption:

ASSUMPTION 1: (i) limq→0 u0(q)/gq(q, θ) = ∞; (ii) for all q < q∗,

u0(q)/gq(q, θ) is strictly decreasing.

Part (i) is a standard Inada condition. Part (ii) implies equilibrium will

be unique when n is exogenous, and is made so that we will know any

multiplicity of equilibria that occurs when n is endogenous is due to free

entry.11 We have the following.

LEMMA 2: Sellers set ẑ = 0. Buyers set ẑ = γg(q, θ)/βn, where g is

defined in (17) and q is the unique positive solution to

γ − β

βα(n)
+ 1 =

u0(q)
gq(q, θ)

. (18)

PROOF: Consider first sellers. From the bargaining solution, ∂q/∂zs =

∂d/∂zs = 0 for all zs. Hence, the first order condition for ẑ for a seller is

−1 + βdV
s
z = −1 + β/γ ≤ 0, = 0 if ẑ > 0.

11LW establish that a sufficient condition for (ii) is that either θ is not too small or u0

is log-concave and c is linear. Some such condition is required because under bargaining
q is generally a nonlinear function of zb and it depends on u000. As we will see, this is not
a problem in the models in the later sections.
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Since as we said above we only consider either the case γ > β, or the case

γ = β but equilibrium is the limit as γ → β from above, the solution is

ẑ = 0.

Now consider buyers. From (15)-(17), if zb > z∗ then ∂q/∂zb = ∂d/∂zb =

0, and if zb < z∗ then ∂q/∂zb = βn/γgq(q, θ) and ∂d/∂zb = 1. From (6), if

zb > z∗ then V b
z (zb) = βn/γ and if zb < z∗ then

V b
z (zb) =

βn
γ

½
α(n)

·
u0(q)
gq(q, θ)

− 1
¸
+ 1

¾
. (19)

Given γ > β, −ẑ + βdV
b(ẑ) is strictly decreasing for all ẑ > z∗. Also, one

can show that as z → z∗ from below, we have limu0[q(z)]/gq[q(z), θ] ≤ 1.
This establishes that as z → z∗ from below −1 + βdV

b
z (z) < 0, and so the

optimizing choice is ẑ < z∗. Inserting (19) into the first order condition

1 = βdV
b
z (ẑ) and rearranging we get (18). Assumption 1 guarantees that it

has a unique positive solution. Q.E.D.

Having discussed z and q we now move to n. We consider two alterna-

tives: either it is exogenous at n = n̄, or it is endogenous and determined

by free entry.

LEMMA 3: Free entry implies

α(n)

n

·
−c (q) + βn

γ
d

¸
= k. (20)

PROOF: First note that a seller who does not enter gets a payoff each

day of v(x∗)−x∗ = 0. Since sellers do not bring money to the decentralized

market, W s(z) = z + βdmax [V
s(0), 0] = z. Free entry implies 0 = V s(0) =

α(n)
n {−c [q (zb, 0)] + βnd (zb, 0) /γ}− k, which reduces to (20). Q.E.D.

By (20), the participation cost is equal to the probability of trading
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multiplied by the seller’s surplus. It can be rewritten using (17) as

α(n)

n

(1− θ)c0(q)
θu0(q) + (1− θ)c0(q)

[u(q)− c(q)] = k. (21)

As a necessary condition for n > 0 we impose

ASSUMPTION 2: k <
(1− θ)c0(q̃)

θu0(q̃) + (1− θ)c0(q̃)
[u(q̃)− c(q̃)],

where q̃ is the solution to (18) when γ = β; notice that q̃ = q∗ if θ = 1 while

q̃ < q∗ otherwise. Given k > 0, naturally Assumption 2 requires θ < 1.

We now define equilibrium formally for this model. In all definitions

in this paper, when we say equilibrium we mean a steady-state monetary

equilibrium with q, n > 0.12

DEFINITION 1: (i) With n = n̄, search equilibrium is a list (q, z) ∈ R2+
satisfying (17) and (18). (ii) With free entry, search equilibrium is a list

(q, z, n) ∈ R3+ satisfying (17), (18) and (21).
Note that equilibrium has a recursive structure: with n fixed q is determined

by (18), and with free entry (q, n) is determined by (18) and (21), but in

either case we can solve for z = γg(q, θ)/βn after we find q. Hence, we

concentrate on q and n in what follows.

PROPOSITION 2: (i) Assume n = n̄. Search equilibrium exists and

is unique. Furthermore, ∂q/∂γ < 0. (ii) Assume free-entry. There is a

γ̄ > β such that equilibrium exists if and only if γ ≤ γ̄. For all γ ∈ (β, γ̄)
equilibrium is generically not unique. At the equilibrium with the highest q,

∂q/∂γ < 0 and ∂n/∂γ < 0. When γ = β there exists a unique equilibrium.

PROOF: (i) If n = n̄ then equilibrium is simply a q > 0 solving (18),

which exists uniquely by Assumption 1. It is easy to check ∂q/∂γ < 0.

12Nonstationary equilibria for a version of the model with n fixed are analyzed in Lagos
and Wright (2003).
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(ii) Now consider free entry. Let q̄ be the value of q that solves (21)

when n = 0, and notice n > 0 if and only if q > q̄. A necessary condition for

equilibrium to exist is q̄ < q̃ which holds by Assumption 2. For all q ∈ [q̄, q̃],
(21) can be written n = n(q) with n0(q) = α(n)[gq(q, θ)−c0(q)]/k[1−η(n)] >
0, n(q̄) = 0 and n(q̃) > 0. Let Γ(q; γ) be defined by

Γ(q; γ) = βα [n(q)]

·
u0(q)
gq(q, θ)

− 1
¸
− (γ − β).

From Definition 1, an equilibrium exists if and only if there is a q ∈ (q̄, q̃]
such that Γ(q; γ) = 0.

Consider first the limiting case γ = β. Then the unique q ∈ (q̄, q̃] such
that Γ(q;β) = 0 is q = q̃. Consider next γ > β. Then Γ(q̄; γ) = Γ(q̃; γ) =

β − γ < 0. As Γ(q; γ) is continuous, if equilibrium exists it is generically

not unique. Furthermore, Γ(q; γ) is decreasing in γ, Γ(q;β) > 0 for all

q ∈ (q̄, q̃), and for large values of γ, Γ(q; γ) < 0 for all q ∈ (q̄, q̃]. Therefore,
there is a γ̄ > β such that equilibrium exists if and only if γ ≤ γ̄. Finally,

∂q/∂γ = 1/Γq and Γq < 0 at the equilibrium with the highest q, which

means ∂q/∂γ < 0, and, from (21), ∂n/∂γ < 0. Q.E.D.

In the case with n endogenous, equilibrium obtains at the intersection of

two curves in (n, q) space, the q-curve defined by (18) and the n-curve defined

by (21). See Figure 1. Both curves are upward-sloping, and as γ increases

the q-curve rotates downward. For γ > β, at both n = 0 and n = n(q̃)

the n-curve is above the q-curve, so equilibria are generically not unique.

It is clear that this multiplicity requires a participation decision since when

n is exogenous Assumption 1 guarantees uniqueness, but note that it does

not require increasing returns, as in the typical nonmonetary search model.

The reason is that there is a strategic interaction here between entry by
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sellers and money demand by buyers.13 However, in the limit as γ → β the

q-curve becomes horizontal at q̃ for all n > 0, and we get uniqueness as the

equilibrium with low (q, n) coalesces with the origin.

INSERT FIGURE 1 ABOUT HERE

We now analyze efficiency and the effects of inflation.

PROPOSITION 3: (i) Assume n = n̄. The optimal monetary policy is

γ = β and it yields the efficient outcome if and only if θ = 1. (ii) Assume

free entry. Equilibria with higher q and n yield higher W. In the best
equilibrium, the optimal monetary policy is γ = β, but it can never achieve

the efficient outcome.

PROOF: With n = n̄, W = βdα(n̄) [u(q)− c(q)] is maximized at q = q∗.

From (18), q = q∗ if and only if γ = β and θ = 1. Under free en-

try α(n) [g(q, θ)− c(q)] = nk and W = βdα(n)[u(q) − c(q)] − βdnk =

βdα(n) [u(q)− g(q, θ)]. Since α(n) is increasing in n and u(q) − g(q, θ) is

increasing in q for all q ∈ [0, q̃], equilibria with higher q and n imply higher

W. Since ∂q/∂γ < 0 and ∂n/∂γ < 0 at the best equilibrium, ∂W/∂γ < 0,

and the best policy is γ = β. At γ = β, we have q = q∗ if and only if θ = 1.

But θ = 1 implies n = 0, so there is no way to achieve q = q∗ and n > 0.

Q.E.D.

For all θ < 1 and all γ, q is too low due to a holdup problem that reduces

the demand for money: when a buyer brings cash to the decentralized market

he is making an investment, but when θ < 1 he is not getting the full return

on his investment. This reduces the equilibrium value of q below the efficient

13A similar point has been made by Johri (1999), who shows that a version of Diamond
(1982) with constant returns can have multiple equilibria once money is introduced in a
sensible way.
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level. Consider Figure 2, which plots the total surplus from decentralized

trade S(q) = u(q)− c(q), as well as the buyer’s share

Sb(q) =
θu0(q)

θu0(q) + (1− θ)c0(q)
[u(q)− c(q)] , (22)

as functions of q.14 The curve Sb(q) reaches a maximum at q = q̃ ≤ q∗, with

the inequality strict if θ < 1. A buyer will never bring more money than

needed to buy the quantity that maximizes Sb(q). If there is an opportunity

cost of holding money, which there is when γ > β, he will in fact prefer to

buy less than q̃. Hence, we have q < q∗ whenever γ > β.

INSERT FIGURE 2 ABOUT HERE

In the case where n is endogenous, inflation affects both individual real

balances and the frequency of trade. Comparison of (5) and (21) implies

that, for any given q, n is efficient if and only if

(1− θ)c0(q)
θu0(q) + (1− θ)c0(q)

= η (n) , (23)

where η (n) = nα0(n)/α(n) measures sellers’ contribution to buyers’ proba-

bility of trade. This is the familiar Hosios (1990) condition: entry is efficient

if and only if agents’ share of the surplus from trade equals η (n). It is pos-

sible for n to be either too high or too low in equilibrium, and if it is too

high, inflation actually increases welfare along the extensive margin (basi-

cally, by driving out some sellers). Still, the negative effect on the intensive

margin always dominates any positive effect on the extensive margin. We

will discuss this further in the next section.
14To derive(22), insert βnz/γ = g(q, θ) from (17) into Sb(q) = u(q)−βnz/γ and simplify.

The seller’s share is defined similarly.
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4. COMPETITIVE EQUILIBRIUM (PRICE TAKING)

Considering a competitive market at night, with a Walrasian auction-

eer, may make the decentralized market less decentralized but it does not

make money inessential as long as we maintain the double coincidence prob-

lem and anonymity (Levine (1991) and Temzelides and Yu (2003) make a

similar point). Also, we can still capture search-type frictions by assuming

that, although there is a competitive market at night, not all agents get in.

Following the notation in the previous section, the probabilities of getting

an opportunity to trade — which now means getting into the market — for

buyers and sellers are αb(n) and αs(n).15 Note that entry by sellers in this

model means entry into the group S trying to get into the night market; of
these only eS ⊆ S succeed. For those who do, after seeing the (real) price of
night goods p, each buyer chooses demand qb and each seller chooses supply

qs. Goods trade against money for exactly the same reason they did in the

previous section: the double coincidence problem and anonymity.16

The value function of a buyer at night is now

V b(zb) = αb(n)max
qb

½
u(qb) + βnW

b

µ
zb − pqb

γ

¶¾
+ [1− αb(n)]βnW

b

µ
zb
γ

¶
, (24)

where the maximization is subject to the budget constraint pqb ≤ zb, and

W b(zb) still satisfies (8) from the previous section. Similarly, for sellers, we

15Since competitive equilibrium does not require bilateral trade, for now we adopt a
general specification for αb(n) and αs(n); later, we will specialize to αb(n) = nαs(n) =
α(n) in order to make the different models comparable.
16The assumption that not all agents get into the night market is simply a convenient

way to introduce search-type frictions into an otherwise Walrasian model; it can be thought
of as a generalized version of Lucas and Prescott (1974) and Alvarez and Veracierto (1999).
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have

V s(zs) = αs(n)max
qs

½
−c(qs) + βnW

s

µ
zs + pqs

γ

¶¾
+ [1− αs(n)]βnW

s

µ
zs
γ

¶
− k, (25)

where W s(zs) is the same as in the previous section.

LEMMA 4: Sellers set ẑ = 0. Buyers set ẑ = pqb where qb is the unique

positive solution to
γ − β

βαb(n)
+ 1 =

γ

βnp
u0
³
qb
´
. (26)

PROOF: For sellers, the reasoning is similar to the proof of Lemma 2.

Now consider buyers. From (24),

V b
z (z) =

(
αb(n)u

0
³
z
p

´
1
p + [1− αb(n)]

βn
γ z < z∗

βn
γ z > z∗

where z∗ satisfies u0 (z∗/p) = βnp/γ. To establish the concavity of V
b(z),

note that V b
zz = αbu

00/ (p)2 < 0 for all z < z∗, V b
zz = 0 for all z > z∗, and

V b
z (z) is continuous at z

∗. Furthermore, −1+ βdV
b
z (z) is strictly decreasing

in z for all z ∈ [0, z∗], −1 + βdV
b
z (0) = ∞ and −1 + βdV

b
z (z) = −1 + β/γ

for all z ≥ z∗. Consequently, for all γ > β there is a unique z ∈ (0, z∗)
satisfying 1 = βdV

b
z (z). Finally, (26) results from substituting for V b

z (z) in

1 = βdV
b
z (z). Q.E.D.

From Lemma 4, each of the αb(n) buyers who get in to the market at

night demand qb. Similarly, each of the nαs(n) sellers who get in supply qs.

To clear the market we require

nαs(n)q
s = αb(n)q

b. (27)

From (25) c0(qs) = βnp/γ, which with qb = z/p implies

βn
γ
z = qbc0 (qs) , (28)
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and hence
u0(qb)
c0 (qs)

= 1 +
γ − β

βαb(n)
. (29)

If n is endogenous, the free entry condition is analogous to (20) where βnd/γ

is replaced by βnpq
s/γ = c0(qs)qs,

αs(n)
£
qsc0 (qs)− c (qs)

¤
= k. (30)

DEFINITION 2: (i) With n = n̄, a competitive equilibrium is a list

(qb, qs, z) ∈ R3+ satisfying (27), (28) and (29). (ii) With free entry, a com-
petitive equilibrium is a list (qb, qs, z, n) ∈ R4+ satisfying (27), (28), (29) and
(30).

As we said above, we do not necessarily assume that the same number

of buyers and sellers get into the night market. However, if we do make this

assumption then one can imagine exchange being bilateral in this model, as

it is in the other models we discuss, even though prices are determined in a

competitive market. This assumption means αb(n) = nαs(n) = α(n), and

then the market clearing condition (27) is simply qb = qs = q, where q is

given by (29). This makes it easier to compare the different models, since,

e.g., (29) is analogous to (18) in the previous section (indeed they coincide

if and only if θ = 1). Also, note that things are again recursive: we can first

determine q and then z = γqc0(q)/βn.

DEFINITION 2’: Consider the special case where αb(n) = nαs(n) =

α(n), and therefore qb = qs = q. (i) With n = n̄, a competitive equilibrium is

a list (q, z) ∈ R2+ satisfying (28) and (29). (ii) With free entry, a competitive
equilibrium is a list (q, z, n) ∈ R3+ satisfying (28), (29) and (30).

The following restriction is necessary for n > 0.

ASSUMPTION 2’: k < q∗c0(q∗)− c(q∗).
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PROPOSITION 4: (i) Assume n = n̄. Competitive equilibrium exists

and is unique. Furthermore, ∂q/∂γ < 0. (ii) Assume free-entry. There exists

γ̄ > β such that equilibrium exists if and only if γ ≤ γ̄. For all γ ∈ (β, γ̄)
equilibrium is generically not unique. At the equilibrium with the highest q,

∂q/∂γ < 0 and ∂n/∂γ < 0. When γ = β there exists a unique equilibrium.

PROOF: The argument is essentially the same as the proof of Proposition

2 and therefore is omitted. Q.E.D.

Let nβ denote the equilibrium value of n at γ = β; since γ = β implies

q = q∗, this means nβ solves α(nβ) [q∗c0 (q∗)− c (q∗)] = nβk.

PROPOSITION 5: (i) Assume n = n̄. The optimal policy is γ = β

and it yields the efficient outcome. (ii) Assume free-entry. Equilibrium is

efficient if and only if γ = β and

η(nβ) =
q∗c0(q∗)− c(q∗)
u(q∗)− c(q∗)

. (31)

In the equilibrium with highest q and n, optimal policy involves γ > β if

and only if η(nβ) <
q∗c0(q∗)−c(q∗)
u(q∗)−c(q∗) .

PROOF: From (29) we have q = q∗ if and only if γ = β. Comparing

(30) with (5), we see that nβ = n∗ if and only if (31) holds. Differentiating

W = βdα(n) [u(q)− c(q)]− βdkn and substituting for k from (30), we have

dW
dγ

= βd
α(nβ)

nβ
[u(q∗)− c(q∗)]

n
η(nβ)−

h
q∗c0(q∗)−c(q∗)
u(q∗)−c(q∗)

io dn

dγ
(32)

where the derivatives are evaluated at the limit as γ → β from above. From

(29) and (30),

dn

dγ
=

q∗c00(q∗)c0(q∗)
β [u00(q∗)− c00(q∗)] [1− η(nβ)]k

< 0.

As long as η(nβ) <
q∗c0(q∗)−c(q∗)
u(q∗)−c(q∗) , we have dW/dγ > 0. Q.E.D.
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If n = n̄ the Friedman Rule γ = β yields full efficiency. This is in

accordance with many models in monetary economics, although not the one

in the previous section, where the Friedman Rule was the optimal policy

but could not achieve full efficiency unless θ = 1. The reason γ = β implies

efficiency here is that the holdup problem with money demand disappears

under competitive pricing. If n is endogenous, in addition to γ = β, for

efficiency we also need (31) to be satisfied. Hence, full efficiency is achieved

if and only if the Friedman Rule and the Hosios condition both hold. There

is no reason to expect the Hosios condition to hold, in general, since (31)

relates the elasticity of the matching function to properties of preferences.

Therefore n is typically inefficient, and may be either too high or too low. In

particular, when the number of sellers in the economy is too high at γ = β,

a deviation from the Friedman rule is welfare improving.

It is uncommon for a deviation from the Friedman Rule to be optimal.

The intuition for our result is as follows. In general, when sellers decide

to enter they impose, in the jargon of the literature, a “congestion” effect

on other sellers and a “thick market” effect on buyers. If the former effect

dominates — and it certainly will for some specifications — then n is too high,

and inflation helps because it reduces sellers’ incentive to enter. Inflation

also reduces q, and this hurts along the intensive margin, but it has only

a second-order effect in the neighborhood of the Friedman rule since q is

close to q∗ in the neighborhood of the Friedman rule. It is important to

emphasize that this result is different from the bargaining model, where in

general q < q∗ for θ 6= 1, and hence the negative effect of inflation along the
intensive margin has a first order effect.17

17There are a few related results in the literature based on “search externalities,” in-
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It may not be surprising that a single policy instrument γ cannot sort

out both the intensive and the extensive margins. If taxes and transfers were

available that could be made contingent on agents’ types and actions, say,

one could presumably do better in trying to correct for inefficient entry by

sellers. When such transfers cannot be implemented, however, inflation is a

natural instrument to target “congestion” since it reduces agents’ incentives

to participate in the market. We have shown that one cannot necessarily

choose γ to get efficiency on both margins. One should not be too cavalier,

however, about thinking that it is unsurprising that a single instrument

cannot achieve efficiency on both margins — in the model of the next section,

it turns out that it can.18

5. COMPETITIVE SEARCH EQUILIBRIUM (POSTING)

The concept of competitive search equilibrium is based on the idea that

some agents can post a price (or, more generally, a contract) that specifies

the terms at which buyers and sellers commit to trade. Buyers and sellers

in the market observe posted prices and choose where to go, although again

there may be frictions. In some versions, frictions manifest themselves by

cluding Li (1995) and Berentsen, Rocheteau and Shi (2001), but those results are not
especially robust. In general, even with “search externalities” it is often the case that the
Friedman Rule is optimal — this was certainly true in the previous section. It seems that
one has to somehow get around the holdup problem for the potentially desirable extensive
margin effects to dominate the bad intensive margin effects. Li assumes indivisible goods
and indivisible money, which certainly does the trick, and Berentsen et al. invoke a special
bargaining solution. Here we avoid the holdup problem because we have competitive price
taking.
18We close this section by mentioning that the welfare results are robust if we relax the

assumption that equal numbers of buyers and sellers get into the night market, and indeed
it is even easier to construct examples. Assume, for instance, that all buyers get in with
probability one while sellers get in with probability αs(n) where α0s(n) < 0. Then (4) and
(30) imply that n is necessarily too high at γ = β, and inflation above the Friedman rule
necessarily improves welfare, by reducing n.
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more or fewer buyers showing up at a seller’s location that he has capacity

to serve (Burdett, Shi and Wright (2001)), while in other versions agents get

to choose a location with a given price but still have to search for trading

partners at that location (Moen (1997)). In either case, there is (partially)

directed search, and this generates competition among price setters.19

We adopt the interpretation of competitive search equilibrium that as-

sumes there are agents called market makers who can open submarkets

where they post the terms of trade (q, d).20 Agents can direct their search

in the sense that they can go to any submarket they like, but within any

submarket there is random bilateral matching. Given knowledge of (q, d)

across submarkets, and expectations about where other agents go, which

determines the arrival rates across submarkets, each buyer or seller decides

where to go, and in equilibrium expectations must be rational. When de-

signing a submarket, a market maker takes into account the relationship

between the posted (q, d) and the numbers of buyers and sellers who show

up, summarized by the ratio n. In equilibrium the set of submarkets is

complete in the sense that there is no submarket that could be opened that

makes some buyers and sellers better off.

The timing of events in a period is as follows. At the beginning of

each day, market makers announce the submarkets to be open that night,

19Corbae, Temzelides and Wright (2003) show that directed search models still have an
essential role for money, but do not consider price posting, and the notion of competitive
search equilibrium requires the combination of the two. For monetary models with posting
and undirected search, see the references in Curtis and Wright (2004).
20One can think of market makers as profit-maximizing agents who charge submarket

participants an entry fee, which we assume must be independent of agents’ types; this
fee will be 0 in equilibrium because the cost of opening a submarket is negligible. See
Mortensen and Wright (2002). One can also interpret the model as having buyers or
sellers themselves post (q, d) in order to maximize their expected utility. See Faig and
Huangfu (2004) for a recent discussion and some extensions.
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as described by (q, d), and this implies an expected n in each submarket.

Agents then trade in the centralized market during the day and readjust

their real balances, exactly as before, and go to submarkets of their choosing

at night in a way consistent with expectations. In the submarkets at night

agents trade goods and money bilaterally, like in search equilibrium, except

they do not bargain — they are bound by the posted terms of trade (q, d).

Obviously, this builds in a certain amount of commitment; this is a defining

feature of the competitive search equilibrium concept. We let Ω denote the

set of open submarkets, with generic element ω = (q, d, n) listing the terms

of trade and the seller-buyer ratio.

For a buyer at night,

V b(zb) = max
ω

½
α(n)1 (zb ≥ d)

·
u(q) + βnW

b

µ
zb − d

γ

¶¸
+[1− α(n)1 (zb ≥ d)]βnW

b

µ
zb

γ

¶¾
, (33)

where 1 (zb ≥ d) is the indicator function that is equal to one if zb ≥ d and

zero otherwise. Thus, a buyer chooses ω among the set of open submarkets,

and then he gets to trade if he meets a seller and has enough money to meet

the posted price, zb ≥ d. For a seller at night,

V s(zs) = max
ω

½
α(n)

n

·
−c(q) + βnW

s

µ
zs + d

γ

¶¸
+

·
1− α(n)

n

¸
βnW

s

µ
zs

γ

¶¾
− k. (34)

The functions W b and W s are exactly as in the previous sections.

As before, the seller’s choice of real balances in the day market is ẑ = 0.

The set of open submarkets is complete if there is no submarket that could

beat existing submarkets, in the sense of making some buyers better off
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without making sellers worse off (it would obviously be equivalent to consider

the dual). A submarket with a posted (q, d) will attract a measure n of sellers

per buyer, where n satisfies

α(n)

n

·
−c(q) + βn

γ
d

¸
= J (35)

if −c(q) + βnd/γ ≥ J , and n = 0 otherwise, where J is the equilibrium

expected utility of a seller at night. This constraint says that sellers will

only show up if they get the J prevailing in the market; if −c(q)+βnd/γ ≥ J

then n will adjust to bring (35) into equality and if −c(q)+βnd/γ < J then

sellers would not show up even if they could trade with probability 1.

Completeness means market makers choose (q, d, n) to maximizeW b(zb)

subject to the constraint in (35). From (8) and (33), it is easy to check that

d = ẑ (i.e. the buyer will bring in just enough money to meet the posted d

in the submarket of his choice) so that the problem can be reformulated as

max
q,n,ẑ

½
zb + T −

µ
1− β

γ

¶
ẑ + βdα(n)

·
u(q)− βn

γ
ẑ

¸
+ βW b(0)

¾
(36)

subject to the same constraint. Ignoring constants in the objective function,

this is equivalent to

max
q,z,n

½
α(n)

·
u(q)− βn

γ
z

¸
−
µ
γ − β

β

¶
βn
γ
z

¾
(37)

subject to the same constraint. Letting N(J) denote the set of solutions for

n, we have the following results.

LEMMA 5: N(J) is non-empty and upper hemi-continuous, and any

selection from N(J) is decreasing in J . For all n ∈ N(J) such that n > 0,

the corresponding q in that submarket satisfies

γ − β

βα(n)
+ 1 =

u0(q)
c0(q)

. (38)
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PROOF: The objective function in (37) is continuous and, with no loss

in generality, (q, z, α) can be restricted to the compact set

∆ = {(q, z, α) : α ∈ [0, 1] , q ∈ [0, q∗] , c(q) ≤ βnz/γ ≤ u(q)} .

Given this, the constraint (35) can be rewritten as (q, z, α) ∈ Γ(J) where
Γ(J) is a continuous and compact-valued correspondence. By virtue of the

Theorem of the Maximum, the correspondence that gives the set of solutions

for α is non-empty and upper hemi-continuous. Since α(n) is a bijection,

N(J) is non-empty and upper hemi-continuous.

We now show that any selection from N(J) is decreasing in J . Consider

J1 > J0 > 0 and denote by (qi, zi, ni) a solution to (37) when J = J i,

for i = 0, 1. First, it is easy to check that if n0 = 0 then n1 = 0. Now

consider the case where a solution to (37) is interior, n > 0. Substituting

βnz/γ = Jn/α(n)+ c(q) from the constraint into (37), write the problem as

max(n,q)Ψ (n, q;J) where

Ψ (n, q;J) = α(n) [u(q)− c(q)]− nJ −
µ
γ − β

β

¶·
n

α(n)
J + c(q)

¸
. (39)

ThenΨ
¡
n0, q0;J

0
¢ ≥ Ψ ¡n1, q1;J0¢ andΨ ¡n1, q1;J1¢ ≥ Ψ ¡n0, q0;J1¢, which

implies½·µ
γ − β

β

¶
n1

α(n1)
+ n1

¸
−
·µ

γ − β

β

¶
n0

α(n0)
+ n0

¸¾¡
J1 − J0

¢ ≤ 0. (40)
Since n/α(n) is strictly increasing in n, this implies n1 ≤ n0. To show

the inequality is strict, take the first-order conditions for q and n. These

imply (38) and

α0(n) [u(q)− c(q)] = J

½
1 + [1− η(n)]

µ
γ − β

α(n)β

¶¾
(41)
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From (38), if n1 = n0 then q1 = q0, which is inconsistent with (41). Q.E.D.

We are ready to formally define competitive search equilibrium. This

definition is slightly more involved than the ones in the previous sections

because there may be multiple submarkets open in equilibrium and we have

to keep track of where (to which submarket) agents go. The measure of

buyers on a given submarket ω is denoted b. Also, we restrict our attention

to equilibria where the set of open submarkets is countable.

DEFINITION 3: A competitive search equilibrium is a set of open sub-

markets Ω, for each ω ∈ Ω a list (qω, zω, nω, bω) ∈ R4+, and a J ≥ 0 such
that: (a) given J , for all ω ∈ Ω, (qω, zω, nω) maximizes (37) subject to the
constraint that (35) holds if nω > 0; (b)

P
ω bω = 1; and if n = n̄ then (c1)P

ω bωnω = n̄, or if we have free entry then (c2) J = k.

As in the previous models, we need some restriction on k to have n > 0.

ASSUMPTION 2”: k < u(q∗)− c(q∗).

Now we have the following results.

PROPOSITION 6: (i) Assume n = n̄. Competitive search equilibrium

exists and J is uniquely determined. (ii) Assume free-entry. There is a

γ̄ > β such that equilibrium exists if and only if γ ≤ γ̄. For all γ ∈ [β, γ̄]
equilibrium is generically unique.

PROOF: (i) Let Ñ(J) denote the convex hull of N(J). The equilibrium

conditions
P

ω∈Ω bωnω = n̄ and
P

ω∈Ω bω = 1, where nω ∈ N(J) for all ω,

imply n̄ ∈ Ñ(J). We now describe Ñ(J) in detail, and depict it in Figure

3. If J = 0 then the market maker’s problem becomes max(q,n){α(n)[u(q)−
c(q)]− (γ−β)c(q)/β} which implies Ñ(0) = {∞}. If J > u(q∗)− c(q∗) then

there is no n > 0 that satisfies (41) and therefore Ñ(J) = {0}. Furthermore,
it can be checked that Ñ(J) is convex-valued and upper hemi-continuous.

30



By virtue of Lemma 5 any selection from Ñ(J) is strictly decreasing in J

for all n > 0. Therefore, there exists a unique J ≤ [u(q∗)− c(q∗)] such that

n̄ ∈ Ñ(J).

(ii) Let V(k, γ) denote the value function defined by (37). For all γ ≥ β

such that V(k, γ) > 0, the solution to (37) is such that n > 0 and equi-

librium exists. From the Theorem of the Maximum, V(k, γ) is continu-
ous. Furthermore, it can easily be checked that V(k, γ) is decreasing in
γ, and strictly decreasing when n > 0. From Assumption 2”, V(k, β) =
max(q,n) {α(n) [u(q)− c(q)]− nk} > 0. From (35), βnz/γ ≥ k, which im-

plies that there is no interior solution to (37) for large enough values of γ.

Consequently, there exists a threshold γ̄ > β such that equilibrium exists if

and only if γ ∈ [β, γ̄]. Finally, given that α(n) is in the compact set [0, 1]
and strictly decreasing with J , there is at most a countable number of values

for J such that Ñ(J) is not a singleton. Q.E.D.

INSERT FIGURE 3 ABOUT HERE

The curve Ñ(J) in Figure 3 can be interpreted as aggregate demand

for sellers by market makers; it is the convex hull of the correspondence

giving the value(s) of n solving the market maker’s problem taking as given

the price of sellers, J . It is downward sloping as the demand for sellers

decreases with J . Without entry, J adjusts so that Ñ(J) = n̄; with entry,

we have J = k and the number of sellers adjusts. In Proposition 6 we show

that equilibrium without entry always exists and J is uniquely determined.

With entry, equilibrium exists assuming γ is not too high, and if it exists

equilibrium is generically unique. The existence result is similar to what we

found in previous models, but uniqueness here contrasts with the multiplicity
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found under bargaining and price taking. Intuitively, it reflects the fact that

market makers effectively internalize any strategic complementarity between

money demand and entry.

Assuming the solution to (37) is unique, all open submarkets must have

the same (q, z, n). Eliminating J from the constraint and using (38), we can

write (41) as
βn
γ
z = g [q, 1− η(n)] , (42)

where g is defined in (17). Interestingly enough, (42) is the first order

condition from the generalized Nash problem where the seller’s bargaining

power is η(n); hence, in competitive search equilibrium the terms of trade

endogenously satisfy the Hosios condition.

PROPOSITION 7: With either n = n̄ or free-entry, the optimal policy

is γ = β and it implies equilibrium is unique and efficient.

PROOF: From (38), q = q∗ if and only if γ = β. From (35) and (42),

the free-entry condition is

α(n)

n
{g [q, 1− η(n)]− c(q)} = k. (43)

When q = q∗, (43) yields

α0(n) [u(q∗)− c(q∗)] = k, (44)

where we have used g [q∗, 1− η(n)]− c(q∗) = η(n) [u(q∗)− c(q∗)] from (17).

Comparing (44) with (5), equilibrium is fully efficient if and only if γ = β.

Q.E.D.

If n = n̄ then equilibrium is efficient at the Friedman rule, basically

because there is no holdup problem. A close examination of (37) suggests

that competitive search equilibrium is equivalent to having buyers and sellers
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contract (commit to the terms of trade) before matching, which of course

gets around the holdup problem. Hence competitive and competitive search

equilibrium both yield efficiency along the intensive margin. When n is

endogenous, competitive search equilibrium does more, because the Hosios

condition arises endogenously; i.e. the extensive margin is also efficient at

γ = β because market makers internalize the effects of n on arrival rates.

6. CONCLUSION

We considered three different market structures for monetary economies:

search equilibrium (bargaining), competitive equilibrium (price taking), and

competitive search equilibrium (price posting with directed search). We

found that efficiency and the effects of policy depend crucially on the mar-

ket structure. Table 1 shows the efficiency properties of the different models

at the Friedman rule. Regarding the intensive margin, γ = β implies q = q∗

in competitive equilibrium and competitive search equilibrium, but q < q∗ in

search equilibrium if θ < 1. Regarding the extensive margin, n is generically

inefficient in search equilibrium and competitive equilibrium, because these

mechanisms do not generally internalize the effects of entry; efficient n re-

quires the Hosios condition. In competitive search equilibrium the relevant

condition holds endogenously, so n as well as q are efficient at the Friedman

rule.

TABLE 1

SE CE CSE
Intensive margin q < q∗ if θ < 1 q = q∗ q = q∗

Extensive margin n ≷ n∗ n ≷ n∗ n = n∗
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Table 2 shows the welfare effect of inflation for γ ≈ β. With n exogenous,

inflation has only a second-order effect in competitive and competitive search

equilibrium, due the envelope theorem: W is maximized and ∂W/∂γ = 0

at γ = β. In the case of search equilibrium with θ < 1, however, the

envelope theorem does not apply: W is still maximized at γ = β, but

∂W/∂γ < 0 because we are at a corner solution (γ = β is the minimum

inflation rate consistent with equilibrium). Inflation has a first order effect in

this case. With n endogenous, inflation decreases W in search equilibrium,

but has an ambiguous effect in competitive equilibrium; it is possible to

have ∂W/∂γ > 0. Finally, in competitive search equilibrium the envelope

theorem applies to both q and n when n is endogenous, and so inflation has

only a second-order effect on welfare near the Friedman Rule.

TABLE 2

SE CE CSE
n exogenous ∂W

∂γ < 0 if θ < 1 ∂W
∂γ ≈ 0 ∂W

∂γ ≈ 0
n endogenous ∂W

∂γ < 0 ∂W
∂γ ≷ 0 ∂W

∂γ ≈ 0

One can ask about the quantitative implications of the results. In Ro-

cheteau and Wright (2004) we numerically study the models analyzed here

by calibrating to standard data, and asking how much the welfare effects of

inflation depend on the market structure.21 The findings are as follows. In

competitive search equilibrium our estimated welfare cost is very similar to

previous estimates, such as those in Lucas (2000): going from 10% to 0%

inflation is worth between 0.67% and 1.1% of consumption, depending on

details of the calibration. In search equilibrium, the estimated cost can be
21We actually work with a slightly different framework in that paper, where instead

of assuming a fixed number of buyers and free entry by sellers we let each agent choose
whether to be a buyer or a seller.
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between 3% and 5%, considerably bigger than what is found in most of the

literature. In competitive equilibrium, the cost is somewhere between the

other two models; while it is possible for positive inflation to be optimal this

was not the case at the calibrated parameter values. While by no means de-

finitive, we think these results are suggestive, and that it is worth pursuing

further quantitative work on these models.

Research Department, Federal Reserve Bank of Cleveland, P.O. Box

6387, Cleveland, OH 44101-1387, U.S.A.; and Australian National Uni-

versity; Guillaume.Rocheteau@clev.frb.org;

and

Department of Economics, University of Pennsylvania, 3718 Locust Walk,

Philadelphia, PA 19104, U.S.A.; rwright@econ.upenn.edu.
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FIGURE 1—Search equilibrium
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FIGURE 2—Surpluses
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FIGURE 3 (a)—Competitive search equilibrium with n = n̄.
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FIGURE 3 (b)—Competitive search equilibrium with free entry.
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