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I. Introduction. 

The celebrated Taylor (1993) rule posits that the central bank uses a fairly simple 

rule when conducting monetary policy.  This rule is a reaction function linking 

movements in the nominal interest rate to movements in inflation and possibly other 

endogenous variables.  A rule is called active if the elasticity with respect to inflation 

(denoted by τ) is greater than one; the rule is called passive if τ is less than one.  Recently 

there has been a considerable amount of interest in ensuring that such rules do no harm.  

The problem is that by following a rule in which the central bank responds to endogenous 

variables, the central bank may introduce real indeterminacy and sunspot equilibria into 

an otherwise determinate economy. These sunspot fluctuations are welfare-reducing and 

can potentially be quite large.   

A standard result is that to avoid real indeterminacy the central bank should 

respond aggressively (τ > 1) to either expected inflation (see Bernanke and Woodford 

(1997) and Clarida, Gali, Gertler (2000)) or current inflation (see Kerr and King (1996)).  

We will refer to the former rule as “forward-looking” and the latter as “current-looking”.  

These analyses are all reduced-form sticky price models, where the underlying structural 

model is a labor-only economy and money is introduced via a money-in-the-utility 

function (MIUF) model with a zero cross-partial between consumption and real balances 

(ie., Ucm =0).1  

Our analysis differs from those of Bernanke and Woodford (1997), Clarida, Gali, 

Gertler (2000)), and Kerr and King (1996) on one important dimension, the addition of 

                                                           
1 Benhabib, Schmitt-Grohe and Uribe (2001a) analyze Taylor rules in a continuous time MIUF 
environment with an arbitrary cross-partial Ucm and demonstrate that the conditions for determinacy 

 1



capital and investment spending. This added margin makes determinacy much harder to 

achieve.  In contrast to these papers we demonstrate that essentially all forward-looking 

rules are subject to local indeterminacy, and that a sufficient condition for local 

determinacy is for the monetary authority to react aggressively to current movements in 

inflation.  These findings are of more than academic interest since several central banks 

currently use inflation forecasts as an important part of their decision-making on policy 

issues.   

A recent paper by Dupor (2001) analyzes a similar sticky price environment with 

investment but comes to substantially different policy prescriptions than those presented 

here.  He demonstrates that a passive rule (τ < 1) is necessary and sufficient for local 

equilibrium determinacy.  The essential difference between the two papers is that Dupor 

utilizes a continuous-time model.  A key difference between a discrete-time and 

continuous-time model is the no-arbitrage relationship between bonds and capital. In 

discrete time the future marginal productivity of capital equals the real interest rate; in 

continuous time today’s marginal productivity of capital equals the real interest rate. This 

contemporaneous condition provides an extra restriction in continuous time.  In a model 

in which the central bank conducts policy with an interest rate instrument, this extra 

restriction alters the determinacy conditions across the two models. 

This paper extends Dupor’s (2001) analysis in three ways.  First, as noted, we 

examine a discrete time model and demonstrate that this timing assumption has an 

important implication on equilibrium determinacy.  Second, we consider a more general 

utility specification in that we make no assumption on the sign of Ucm. Finally, the 

                                                                                                                                                                             
depend on the sign of Ucm.  Their analysis abstracts from investment spending. 
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discrete-time model in the current paper allows us to examine both current- and forward-

looking Taylor rules.  

The outline of the paper is as follows.  The next section develops the basic model.  

Section III provides the determinacy analysis.  Section IV compares these results to the 

continuous time analysis of Dupor (2001).  Finally section V concludes.  An appendix 

proves the main propositions. 

 

II. A Sticky Price Model 

 The economy consists of numerous households and firms each of which we will 

discuss in turn. We are concerned with issues of local determinacy. Hence, without loss 

of generality we limit the discussion to a deterministic model.  As is well known, if the 

deterministic dynamics are not unique, then it is possible to construct sunspot equilibria 

in the model economy.  Below we will use the terms “real indeterminacy,” “local 

indeterminacy,” and “sunspot equilibria” interchangeably.2   

 Households are identical and infinitely-lived with preferences over consumption, 

real money balances and leisure given by 

 βtU(ct,Mt+1/Pt,1-Lt),   
t =

∞

∑
0

where β is the personal discount rate, ct is consumption, and 1-Lt is leisure. We utilize a 

MIUF environment because of its generality (see Feenstra (1986)).  In contrast to 

Carlstrom and Fuerst (2001a), we adopt the convention of end-of-period money balances 

in the utility function.  We do this to be consistent with Dupor’s continuous time 

                                                           
2 Benhabib et al. (2001b) conduct a global analysis of equilibrium determinacy in a continuous time model 
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analysis.3   For the purposes of this paper this timing issue is of limited importance. The 

utility function is given by: 

 U(c,m,1-L) ≡ V(c,m)  – L. 

Most studies investigating the conditions for determinacy have assumed a zero 

cross-partial between consumption and real balances (ie., Vcm =0).  In contrast we make 

no assumption on the nature of V(c,m).  The conditions for determinacy are completely 

independent of V.  Of course this generality comes at a price.  Most notably we assume 

an infinite labor supply elasticity.  Carlstrom and Fuerst (2000, 2001b) provide a 

complementary determinacy analysis in a flexible price environment in which the 

determinacy conditions are independent of labor supply elasticity.  We thus restrict our 

analysis to an infinite labor supply elasticity.   

 The household begins the period with Mt cash balances and Bt-1 holdings of 

nominal bonds.  Before proceeding to the goods market, the household visits the financial 

market where it carries out bond trading and receives a cash transfer of  

from the monetary authority where M denotes the per capita money supply and Gt is the 

gross money growth rate.  After engaging in goods trading, the household ends the period 

with cash balances given by the intertemporal budget constraint: 

)1( −t
s
t GM

s
t

tttttttttttttt
s
ttt KPcPKrLwPBRBGMMM Π+−−−+++−+−+= +−−+ 1111 })]1([{)1( δ . 

                                                                                                                                                                             
without capital.  Local indeterminacy is a sufficient condition for global indeterminacy. Similarly, local 
determinacy is a necessary condition for global determinacy.   
3 Carlstrom and Fuerst (2001a) refer to this as “cash-when-I’m-done timing” (CWID) as it is assumed that 
the money balances that aid in transactions are the money balances that the household has after leaving the 
store.  The natural alternative is cash-in-advance (CIA) timing.  That is, the money balances that aid in 
transactions are the money balances that the household has upon entering goods market trading so 
that .  As noted by Benhabib et al. (2001a), the discrete time analog to a 
continuous time MIUF model is CWID timing. 

tttt
s
ttt BRBGMMA −+−+= −− 11)1(
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Kt denoes the households accumulated capital stock that earns rental rate rt and 

depreciates at rate δ.  The real wage is given by wt while Πt denotes the profit flow from 

firms.  The first order conditions to the household’s problem include the following: 

  t
c

L w
tU
tU

=
)(
)(

        (1) 

{ })]1()[1()( 1 δβ −++= +tcc rtUtU    (2) 



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 +

=
+1

)1()(

t
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t

t
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tUR
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tU β     (3) 
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t

c

m

R
R

tU
tU 1
)(
)( −

=                                 (4)  

Equation (1) is the familiar labor supply equation, while (2) is the asset accumulation 

margin.  Equation (3) is the Fisherian interest rate determination in which the nominal 

rate varies with expected inflation and the real rate of interest on bonds.  Equation (4) is 

the model’s money demand function.   

As for firm behavior, we follow Yun (1996) and utilize a model of imperfect 

competition in the intermediate goods market.  Final goods production in this economy is 

carried out in a perfectly competitive industry that utilizes intermediate goods in 

production.  The CES production function is given by 

Y y i dit t= − −∫{ [ ( ) ] }( )/ /( )η η η η1 1

0

1

 

where Yt  denotes  the  final  good,  and  yt(i)  denotes the continuum of intermediate  

goods, each indexed by i ∈ [0,1].  The implied demand for the intermediate good is thus 
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given by    

 
η−
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where Pt(i) is the dollar price of good i, and Pt is the final goods price.   Perfect 

competition in the final goods market implies that the final goods price is given by  

∫ −−=
1

0

)1/(1)1( }])([{ ηη diiPP tt .      (5) 

Intermediate goods firm i is a monopolist producer of intermediate good i.  Each 

intermediate firm rents capital and hires labor from households utilizing a CRS Cobb-

Douglass production function denoted by f(K,L) ≡ KαL1-α. Imperfect competition implies 

that factor payments are distorted.  With zt as marginal cost, we then have rt = ztfK(Kt,Lt) 

and  wt = ztfL(Kt,Lt).  Since factor markets are competitive, the intermediate goods firms 

take zt as given. 

As for intermediate goods pricing, we follow Yun (1996) and utilize the 

assumption of staggered pricing in Calvo (1983).  Each period fraction (1-ν) of firms get 

to set a new price, while the remaining fraction ν must charge the previous period’s price 

times steady-state inflation (denoted by π).  This probability of a price change is constant 

across time and is independent of how long it has been since any one firm has last 

adjusted its price.  Suppose that firm i wins the Calvo lottery and can set a new price in 

time t.  It’s optimization problem is given by: 
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where denotes the marginal utility of a dollar.  The optimization 

condition is given by 
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If ν = 0 so that all prices are flexible each period, zt = (η-1)/η < 1.  This latter term z ≡ 

(η-1)/η is a measure of the steady-state distortion arising from monopolistic competition.  

In the case of sticky prices (ν > 0), zt will not typically equal z and will reflect the time 

varying monopoly distortion.   

A recursive competitive equilibrium is given by stationary decision rules that 

satisfy (3), (4), (5), (6), and the following:    

 

 )(
)(
)(

tfz
tU
tU

Lt
c

L =         (7) 

{ )]1(),()[1()( 111 }δβ −++= +++ ttKtcc LKfztUtU    (8) 

tttttt YLKfKKc ≡=−−+ + ),()1(1 δ       (9) 

 

Note that equations (7)-(9) are essentially the real business cycle (RBC) conditions 

distorted by marginal cost and the effect of real money balances on the marginal utility of 

consumption. This latter distortion is proxied by the nominal rate of interest.  If these 

distortions were held fixed, we would have the RBC model, and would thus be assured of 

a unique equilibrium.  Indeterminacy arises because of endogenous fluctuations in the 

nominal interest rate and marginal cost. 
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 To close the model we need to specify the central bank reaction function.  In what 

follows we assume a reaction function where the current nominal interest rate is a 

function of inflation.4  We will consider two variations of this simple rule: 

,,0,
β

π
τ

π
π

τ

ss
ss

ss

it
sst RwhereRR =≥








= +       

where i = 1 is a forward-looking rule, and i = 0 is a current-looking rule.  

 Under any such interest rate policy the money supply responds endogenously to be 

consistent with the interest rate rule.  It is this endogeneity of the money supply that leads 

to the possibility of indeterminacy.  By real indeterminacy, we mean a situation in which 

the behavior of one or more real variables is not pinned down by the model.  This 

possibility is of great importance as it immediately implies the existence of sunspot 

equilibria which in the present environment are necessarily welfare reducing.    

 

III. Equilibrium Determinacy.  

 We will now discuss each Taylor timing convention in turn.  Because we are 

interested in highlighting the effects of capital on the determinacy conditions, in each 

subsection we will first present results for a labor-only economy and then note how the 

determinacy range is affected by the inclusion of the investment margin. 

 

Forward-Looking Taylor Rules: 

 Consider a labor-only economy in which production is linear in labor (α = 0). 

Combining (3), (7) and the forward-looking policy rule gives 

                                                           
4 Including output in the Taylor rule would have only minor effects on the local determinacy conditions.  
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111
~~~~

+++ −+= tttt zz ππτ .       (10) 

The tildes denote log deviations from steady-state values, except for the inflation rate in 

which case it is simply the deviation from the steady-state value.  As for marginal cost, 

Yun (1996) demonstrates that (5)-(6) can be combined to yield the following log-

linearized “Phillips curve” 

1
~~~

++= ttt z πβλπ ,        (11) 

where πt = (Pt/Pt-1) –1, denotes the inflation rate, and λ = (1-ν)(1-νβ)/ν.   

Equations (10)-(11) represent a system in zt and πt. This is essentially the model 

analyzed by Clarida, Gali, and Gertler (2000).  Their analysis suggested that to avoid 

indeterminacy the central bank should react aggressively (but not too aggressively) to 

future inflation.  In particular, the necessary and sufficient condition for determinacy is 

λ
λβτ ++

<<
)1(21 . 

For plausible parameter values (eg., β is close to one, λ and α each about 1/3) indicate 

that the determinacy range is quite large with an upper bound of about 13.  Hence, an 

aggressive (but not too aggressive) forward-looking rule is determinate in this 

environment. 

Adding capital basically eliminates all these determinate equilibria.  One 

important reason is because in the model with capital there is always a zero eigenvalue.  

To see this substitute (8) and (9) into (7) to obtain 

 ).1()1(1
1

δ
π

−++= +
+

tfzR
kt

t

t    

                                                                                                                                                                             
We thus abstract from it for simplicity. 
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This is an arbitrage relationship linking the real return on bonds to the real return on 

capital accumulation.  Note that both elements are forward-looking.  In particular, for a 

forward-looking policy rule this arbitrage relationship does not depend on time t 

variables. This immediately suggests a zero eigenvalue.5 

Since capital is the only state variable in the system a zero eigenvalue implies that 

if there is determinacy capital must immediately jump to the steady state.  This suggests 

that even if there is determinacy the welfare properties of the rule would be disastrous.  

Conversely, if there are sunspots, one can always construct them in a model in which 

capital is set to steady-state for all periods.  Hence, the conditions for determinacy in a 

model with capital are at least as tight as in the model with labor.  But in fact, the 

conditions are sufficiently tighter:  (NEED MORE DISCUSSION HERE.) 

 

Proposition 1: Suppose that monetary policy is given by a forward-looking Taylor rule. 

In the Calvo sticky price model with investment a necessary condition for determinacy is 

that τ be in one of the following two regions: 







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βτλβ 2
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2 ,)1(2min)1()31( a
a

a
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a
,  

α
β

τλ
)1()1(0 2 −
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a , 

where )1(1)1)(1(1 21 δβαδβ −−=−−−= aanda . 

 

                                                           
5 The appendix formally shows the presence of a zero eigenvalue.  The labor equation has time t elements 
but can be substituted out given the assumption of linear leisure.  However, a zero eigenvalue arises even 
in models without an infinite labor supply elasticity—separable preferences are a sufficient condition. 
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These regions for determinacy are remarkably narrow.  Suppose that α = λ = 1/3, δ = .02, 

and β = .99, so that a1 ≈ .35 and a2 ≈ .03.  In this case, the first region is an empty set, and 

the second region is 1 < τ < 1.0027.  In comparison to the labor-only economy, the 

presence of capital makes determinacy essentially impossible. 

 

Current-Looking Taylor Rules: 

 As before, consider the labor-only economy.  The system is given by (11) and the 

counterpart to (10)  

11
~~~~

++ −=− tttt zz ππτ .  

It is straightforward to show that we have real determinacy if and only if τ > 1.   To 

understand why, assume to the contrary that there is indeterminacy when τ > 1.  Consider 

a sunspot increase in πt+1. Indeterminacy implies that tt zz <+1  and tt ππ <+1 .  If  τ > 1 

then marginal cost (zt) and inflation (πt) must be inversely related. But the Phillips curve 

implies that they move together which gives us our contradiction.  A similar argument 

can be used to show that when τ < 1 indeterminacy is possible.  Remarkably this 

conclusion is not affected by the addition of investment to the model: 

  

Proposition 2:  Suppose that monetary policy is given by a current-looking Taylor rule.  

A necessary condition for determinacy is that τ > 1.  Furthermore if 21 )12( aa −> βλ  

where )1(1)1)(1(1 21 δβαδβ −−=−−−= aanda  then in the Calvo sticky price 

model with investment τ > 1 is both a necessary and sufficient condition for determinacy. 
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Note:  Given the above calibration α = 1/3, δ = .02, and β = .99, so that a1 ≈ .35 and a2 ≈ 

.03, there can only be indeterminacy for some values of τ > 1 if prices are extremely 

sticky, λ < 0.083.  Given that λ = (1-ν)(1-νβ)/ν this implies that less than 25% of firms 

adjust their prices every quarter (where ν denotes the probability that a firm can adjust 

prices in the current period).  The above, however, is only a sufficient condition for 

determinacy.  Even if λ < 0.05 the range for indeterminacy is very small 1.1 < τ < 1.69. 

 

IV. A Comparison with a Continuous Time Analysis. 

In a recent paper Dupor (2000) conducts a similar determinacy analysis in a 

continuous time MIUF model.  The environments appear to be the same: prices are sticky 

as in Calvo (1983), output is produced using both labor and capital, and preferences are 

linear over labor.  However, Dupor reaches a quite different outcome: he reports that τ < 

1 is necessary and sufficient for local determinacy.   

 In this section we will explore the reasons for the different results.  Dupor assumes 

a utility function of the form U(c,m,1-L) ≡ ln(c) + V(m) – L.  For simplicity we maintain 

this restriction.  Following Proposition 1, however, we need not make any assumption 

regarding V(c,m).   We will first present a discrete time analysis of the model using this 

functional form, and then turn to Dupor’s continuous time version. 

  To compare the models we must specify whether in discrete time we have a 

current- or a forward-looking Taylor rule.  In continuous time limit, there is no 

distinction between a current-looking and forward-looking rule.  We initially assume that 

the discrete time model is given by a forward-looking rule since the comparison between 

discrete and continuous time is especially straight forward and dramatic.   

 12



 Using the Fisher equation (3) the capital accumulation equation is 
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Equation (12) is key in what follows.  As noted above, this is a no-arbitrage relationship: 

the real return on bonds must be equal to the real return on capital accumulation.  With a 

forward-looking rule this expression is entirely in terms of time t+1 variables, and is the 

cause of the zero eigenvalue above. 

 Note that since cash balances are separable, the money demand curve (4) is 

irrelevant for determinacy issues.  Money is the residual that can be backed out at the 

end. Let x ≡ L/K.  The log-linearized equilibrium conditions are given by 
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where )1(12 δβ −−≡a , β ≡ 1/(1+ρ), and css denotes steady-state consumption, etc.  

The continuous time counterpart to this discrete-time system is given by 

ttt cxz ~~~ += α  (18) 

ttt xaza ~)1(~~)1( 22 απτ −+=−        (19) 

ttc πτ ~)1(~ −=          (20) 
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The fundamental difference in this system is that the no-arbitrage capital accumulation 

(19) equation is solely in time-t variables.  We can use (18) and (19) to eliminate zt and xt 

from the system.  Doing so yields the following: 

 







































−−







 +−
−

−−−−
−

=
















t

t

t

ss

ss

ss

ss

ss

sssst

t

t

K

c

K
c

Ka
Y

K
cY

a
K

c

~
~
~

)1()1()1(
0/)1()1(
010

~
~
~

2

2 π
ταα

τλαραλ
τ

π  

 
For determinacy, we need exactly one negative eigenvalue. By inspection, we have one 

eigenvalue equal to css/Kss > 0.   The remaining two are the solution to the following 

quadratic equation: 

)1()1(]))1([()( 22
2

2 −−+−−+≡ ταλρτλα aqaqaqh . 

In continuous time determinacy requires that one root be negative and one be positive.  

The sign of h(0) is given by the sign of (τ-1).  Since h → ∞ as either q → -∞ or q → ∞,   

τ < 1 is both a necessary and sufficient for determinacy. (This is analogous to Dupor’s 

Theorem 1.)  If τ  > 1 the system is either overdetermined or underdetermined depending 

on the sign of ])/)1([()0( 2 ρτλα −−=′ ah .  If this term is positive, the remaining two 

roots are negative and the system is underdetermined.  If this term is negative, the 

remaining two roots are positive and the system is overdetermined.  In the former case, 

there are a continuum of equilibria, while in the latter there are no stationary equilibria.  

This corresponds to Dupor’s Theorem 2. 
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 How does the analysis differ in discrete time?   The key difference is that the no-

arbitrage equation (14) is entirely in time t+1 variables so that it does not provide any 

restriction on time-t behavior.  This comparison can be made exact in the following way. 

Scroll the expressions (13), (15), (16) and (17) forward one period.  Scrolling everything 

but the capital accumulation forward implies that the system is given by 
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plus the following time t restrictions 

 ttt cxz ~~~ += α           (28) 

 11
~)1(~~

++ −=− ttt cc πτ        (29) 

 t
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ss
t
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ss
t

ss

ss
t c

K
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cK ~~)1(~1~

1 

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


−




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

 −
+








+=+

α   (30) 

 1
~~~

++= ttt z πβλπ .        (31) 

Using (23) and (24) to eliminate zt+1 and xt+1 from the system, we can write the dynamic 

part of the system in matrix form as 
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
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
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
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
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+
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−

−−−−=
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

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























 −

+

+

+

+

+

+

1

1

1

2
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~
~
~
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K

c

K
c
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Y

K
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c
π

ταα
βτλαβαλπ
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Or 

12 ++ = tt BA ψψ  

Notice the similarity in the discrete time versus continuous time matrices.  This system 

has three eigenvalues.  The time t restrictions (27)-(31) provide three restrictions on the 

equilibria.  But we have seven unknowns.  Hence, for determinacy, we need all three of 

the eigenvalues to lie outside the unit circle.  By inspection, one of the eigenvalues is 

given by 1+css/Kss.  The remaining two are the solution to the following quadratic 

equation: 

)1(})1(])1()[1({)( 222
2

2 −−++−−+−+≡ τλαβαατλβ aqaaqaqg . 

Notice the similarity between this quadratic and the h(q) function that arises in the 

continuous time model.   In continuous time we need only one explosive root; in discrete 

time we need two explosive roots. The quadratic g(q) is identical to the quadratic 

equation that arises in the proof of Proposition 1 (see the Appendix).  Hence, there is 

indeterminacy for all values of τ.  

We have now duplicated the results of Dupor and demonstrated how the local 

indeterminacy that arises with the discrete time model becomes local determinacy (with τ 

< 1) in the case of continuous time.  The matrix for the continuous time case is the 

continuous time analogue to the discrete time matrix.  However, for determinacy we need 

both roots to be explosive with discrete time and only one explosive root for continuos 

time.  The key difference is that in continuous time there is an additional restriction: at 

time t the marginal productivity of capital equals the real interest rate while in discrete 

time model this relationship is in terms of the future realizations of returns. Therefore the 

key difference is in the no-arbitrage relationship between bonds and capital.  

 16



 What about the comparison between continuous time and a discrete time model 

with a current-looking rule?  As noted before with continuous time there is no distinction 

between current and forward-looking rules.  The difference between the discrete-time 

model with a current-looking rule and a continuous time model is just as striking.  A 

necessary (and sufficient for plausible parameter values) condition for determinacy with 

a current-looking rule is τ > 1, while with continuous time τ < 1 is necessary and 

sufficient.  Once again the extra restriction present with continuos time plays an 

important role in the difference between the two models. 

   

V. Conclusion. 

The central issue of this paper is to identify the restrictions on the Taylor interest 

rate rule needed to ensure real determinacy.  A classic result in the literature is that an 

aggressive response to future or forecasted inflation is sufficient for determinacy (eg., 

Bernanke and Woodford (1997) and Clarida, Gali, Gertler (2000)).  These earlier 

analyses ignore the central role of investment spending.  The role of investment across 

the business cycle has a long tradition in monetary economics so that ignoring it seems 

like a bad idea.  We have demonstrated above that in the case of forward-looking policy, 

inclusion of the investment choice dramatically shrinks the region of determinacy.  The 

end result is that for anything but the most extreme parameter values this model with 

Calvo stickiness implies that monetary policy must respond aggressively to current 

inflation to generate determinacy. In short, there is a clear danger to any policy that is 

forward-looking. 

Appendix 
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Proposition 1: Suppose that monetary policy is given by a forward-looking Taylor rule. 

Then in the Calvo sticky price model with investment a necessary condition for 

determinacy is that τ be in one of the following two regions: 









+
+

<−<
+

αα
βτλβ 2

1

2

1

2 ,)1(2min)1()31( a
a

a
a

a
,  

α
β

τλ
)1(

)1(0 2 −
<−<

a , 

where )1(1)1)(1(1 21 δβαδβ −−=−−−= aanda . 

Proof:   

Given the assumption that utility is linear in leisure the first order conditions (7) and (8) 

can be written as   

 

 
t

t
t

t

t
c K

Lxwhere
z

xtU =
−

= ,
)1(

)(
α

α

     (A1) 

 { }( ))1()1()( 1
11 δαβ α −++= −

++ ttcc xztUtU    (A2) 

Substituting (A1) and equation (A1) scrolled forward one period into (A2) yields 

 { }







−+= −

++
+

+ )1(1
11

1

1 δαβ α
αα

tt
t

t

t

t xz
z
x

z
x .    (A3) 

We can express this as 

 xt+1 = F(xt,zt+1,zt).        (A4) 

The resource constraint (9) provides another equation: 

 .      (A5) ttttt cKxKK −δ−+= α−
+ )1(1

1
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The money demand curve (4) implies that real balances depend only on ct and Rt.  Using 

(A1) we then have that ct depends only on Rt, zt and xt.  Using the policy rule we can then 

write (A5) as 

 Kt+1 = G(xt,πt+1,Kt,zt).       (A6) 

Using (A1) and the policy rule, we can express the Fisher equation (3) as 
 
 zt+1 = H(πt+1,xt,xt+1,zt).       (A7) 
 
In summary, we have three equations (A4), (A6), and (A7).  The Phillips curve (11) 

yields πt+1 = P(πt, zt).  The linearized Euler equations are given by 

 xt+1 = F(xt,zt,zt+1) 

 Kt+1 = G(xt,πt+1,Kt,zt) 

 zt+1 = H(xt,xt+1,πt+1,zt) 

 πt+1 = P(πt,zt). 

Let wt denote the vector [xt, zt, πt, Kt] so that the linearized system can be expressed as 

 Awt+1 = Bwt  

where A and B are 4x4 matrices with elements given by the derivatives of F, G, H and P.  

After inverting A, we are left with the matrix A-1B which has four eigenvalues.  Since 

there is only one state variable in this system (Kt), we need three explosive eigenvalues 

for determinacy.  Once again one eigenvalue is zero, while another is given by  

 11 >+
ss

ss

K
c  

where ss denotes steady-state levels.  Hence, a necessary and sufficient condition for 

determinacy is that the remaining two roots be outside the unit circle. The relevant 

quadratic equation is given by 
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  01
2

2 JqJqJ ++

where   

 22 aJ β=  

 211 )1()1( aaJ βτλ +−−=  

 )1(20 −−= τλαaJ  

 )1(1)1)(1(1 21 δβαδβ −−=−−−= aanda . 

The above implies  

 ))(1()1( 1 ατλ −−= aJ . 

If τ < 1 then J(1) < 0 and J(0) > 0 which means one root is in (0,1).  Hence, a necessary 

condition for determinacy is τ > 1.  Under this restriction, J(1) > 0 so that additional 

necessary conditions are J(0) > 0 and J(-1) > 0.  These put an upper bound on τ: 

 








+
+

<−
αα

βτλ 2

1

2 ,)1(2min)1( a
a

a
   (A12) 

To make further progress and tighten the bound more closely, we must consider the two 

cases where the solutions to J are real or complex. 

 

Suppose first that the two roots of J are real: 

We first note that J is quadratic and convex.   In this case (assuming the roots are real, 

A12, and τ > 1) we have the following two potential regions of determinacy: 

 1
2 2

1 −<
−

J
J    and    1

2 2

1 >
−

J
J , or      (A13) 
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 )1()31(

1

2 −<
+

τλ
β

a
a      and       

1

2 )1()1(0
a

a β
τλ

−
<−<   (A14) 

 

Combined with (A12) and τ > 1 these two regions of determinacy (assuming the roots are 

real) are  

 
1

2 )1()1(0
a

a β
τλ

−
<−<     and        (A13) 

 








+
+

<−<
+

αα
βτλβ 2

1

2

1

2 ,)1(2min)1()31( a
a

a
a

a
.    (A14) 

 

Suppose instead that the roots are complex:  

The norm of these roots is given by  

2

2

2

0 )1(
a

a
J
J

β
ταλ −−

= . 

Since J0 > 0, this yields the following necessary and sufficient condition for determinacy 

(if the roots are complex): 

 
α

β
τλ

)1()1(0 2 −
<−<

a .      (A15) 

Combining the real and complex regions and noting that α < a1 a necessary condition for 

determinacy is that τ be in one of the following two regions: 









+
+

<−<
+

αα
βτλβ 2

1

2

1

2 ,)1(2min)1()31( a
a

a
a

a
,  

α
β

τλ
)1()1(0 2 −

<−<
a .        
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QED 

 

Proposition 2:  Suppose that monetary policy is given by a current-looking Taylor rule.  

A necessary condition for determinacy is that τ > 1.  Furthermore if 21 )12( aa −> βλ  

where )1(1)1)(1(1 21 δβαδβ −−=−−−= aanda  then in the Calvo sticky price 

model with investment τ > 1 is both a necessary and sufficient condition for determinacy. 

Proof:  The linearized Euler equations are given by 

 xt+1 = F(xt,zt,zt+1) 

 Kt+1 = G(xt,πt,Kt,zt) 

 zt+1 = H(xt,xt+1,πt+1,πt,zt) 

 πt+1 = P(πt,zt). 

Let wt denote the vector [xt, zt, πt, Kt] so that the linearized system can be expressed as 

 Awt+1 = Bwt  

where A and B are 4x4 matrices with elements given by the derivatives of F, G, H and P.  

After inverting A, we are left with the matrix A-1B which has four eigenvalues.  Since 

there is one state variable in this system (Kt), we need three explosive eigenvalues for 

determinacy.  Once again one is given by  

 11 >+
ss

ss

K
c  

where ss denotes steady-state levels.  Hence, a necessary and sufficient condition for 

determinacy is that two of the remaining three roots be outside the unit circle. Hence, 

there must be one real root within the unit circle.  The relevant cubic equation is given by 

  01
2

2
3

3 JqJqJqJ +++
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where   

 23 aJ β=  

 212 )1( aaJ βλ +−−=  

 121 aaJ τλαλ ++=  

 τλα−=0J  

 )1(1)1)(1(1 21 δβαδβ −−=−−−= aanda . 

The above implies J(0) < 0 and  

 ))(1()1( 1 ατλ −−= aJ . 

For determinacy we need exactly one real root in (0,1).  Hence, τ > 1 is necessary for 

determinacy.  The assumed condition in the proposition implies that J is concave at 1.  

Hence, the remaining two roots, either real or complex, must be outside the unit circle.  

QED 
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