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The Empirical Performance of Option-Based Densities of Foreign Exchange 
 

By Ben R. Craig and Joachim G. Keller  
 

In this paper, we calculate risk-neutral densities (RND) by estimating the daily diffusion process of the 
underlying futures contract for foreign exchange, based on the price of the American puts and calls 
reported on the Chicago Mercantile Exchange for the end of the day.  Our quick and accurate method of 
calculating the prices of the American options uses higher-order lattices and smoothing of the option’s 
value function at the boundaries to mitigate the nondifferentiability of the payoff boundary at expiration 
and the early exercise boundary.  We estimate the diffusion process by minimizing the squared distance 
between the calculated prices and the observed prices in the data.  We also test whether the densities 
provided from American options provide a good forecasting tool.  We use a nonparametric test of the 
densities that depends on inverse probabilities.  We modify the test to compensate for an inherent problem 
that arises from the time-series nature of the transformed variables when the forecasting windows overlap.  
We find that the densities based on the American option prices for foreign exchange do considerably well 
for the longer time horizons. 
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1 Introduction

It is well known that with complete markets, a sufficiently rich set of European

options prices implies a state price density that one may interpret as a probability

density over the price that underlies the derivative contract, if agents are risk neutral.

In this case the state price density is called a risk neutral density. European options

have been used to recover the risk neutral densities for a variety of prices and

indices, including oil and the Standard and Poor’s 500 index. The richest market

for foreign exchange options present a difficulty in applying this theory, however.

The most liquid foreign exchange options, sold on the Chicago Mercantile Exchange

are American options based on a futures price. As is well known, this type of option

have an early exercise feature that destroys the logic behind computing the risk

neutral densities from European options. To see this, the European option price,

ct (K,X, T − t), (in this case of a call option) at time, t, with a strike price, K,

expiring at time T , in a one state model can be expressed as

ct (K,X, T − t) = e−ρ(T−t)
∞Z

K

(XT −K)πT (X)dX (1)

where ρ is the discount rate, (here assumed constant) and πT (X) is the risk neutral

density over the state space of X at the expiration date T . As pointed out by
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Breeden and Litzenberger (1978), differentiation of this expression twice with respect

to the strike price, K, gives the risk neutral density, πT (X) times a discount factor,

e−ρ(T−t). The subsequent literature (e.g. Shimko (1993), Malz (1997), Jackwerth and
Rubinstein (1996) and Stutzer (1996)) has concentrated on estimation of the density

from noisy or, in the Malz case, extrapolated data on prices by using parametric

distributions, mixtures of parametric distributions, or non-parametric smoothers

to fit the second derivative of the option price function with respect to the strike

price. Others, like Neuhaus (1995) do not rely on smoothing equations and calculate

probabilities at and between strike prices. Once the risk neutral density is calculated,

then it can be used to forecast the price of the underlying basis for the option, or it

may be used to price other derivatives based on the same sequence.

With an American option based on a future price, the relationship in equation (1)

breaks down. The expectation operator must take into account the early exercise

boundary, which will differ for each option based on a different strike price, and differ

by time to expiration for the same option. Under this regime, equation (1) is no

longer true, and arguments which generate equation (1) from the theory of option

pricing, such as application of Feynmann-Kac to the partial differential equation

system defining the evolution of the option price no longer make sense. This leaves

a researcher with two choices. One can use a thinner market, such as the European

options offered by the Philadelphia exchange or use the European options prices

where they are quoted by a single bank. Another possibility, explored in this paper,

is to calculate the risk neutral densities from American option prices on the thickly

traded market by using methods that are theoretically consistent with the early

exercise option.

The method adopted in this paper to calculate the risk neutral density in this

case is to first estimate the underlying process of the underlying futures contract

for foreign exchange, based on the traded price of the American puts and calls

reported for the end of the trading day. This estimated process implies a risk

neutral density for each point of time in the future. In order to estimate the diffusion

process we need methods of calculating the prices of American options that are fast

and accurate. The numerical problems posed by American options are tough. We
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solve the pricing of American options by using higher order lattices combined with

smoothing at the boundaries in order to mitigate the non-differentiability of both

the payoff boundary at expiration and the early exercise boundary. By calculating

the price of an American option quickly, we can estimate the diffusion process by

minimizing the sum of the squares between the calculated prices and the observed

prices in the data.

This paper also tests whether the densities provided from American options pro-

vide a good forecasting tool. We use a non-parametric test of the densities that

depends on the inverse probability ideas of Fischer (1930) and others. A problem

with the use of these tests in the past has been the time series nature of the trans-

formed variables when the forecasting windows overlap. The inverse probability of

the realized thirty day ahead spot at time, t, is correlated with the same corre-

sponding number at time t− 1, because the spot shares twenty-nine days of history.
We modify the tests based on the inverse probability functions to account for this

correlation between our random variables that are uniform under the null.

We find that the densities based on the American option markets for foreign

exchange do quite well for the thirty to sixty day time horizon. Less sophisticated

models of the diffusion process, such as the simple log normal Black-Scholes model,

do less well than more sophisticated models in forecasting the one-hundred-eighty

day horizon. However, all of the single state models described in this paper fail to

match the data for short time horizons.

The plan of the paper is this: first we describe our data. The next section lays

out the numerical methods we used to calculate the risk neutral densities implied

by American option prices based on a futures contract. Next we describe the tests

that we use to evaluate our implied densities, especially those that take into account

the time series nature of the overlapping windows of the forecasts. Our results are

detailed in the next section and are followed by a short section where we lay out

some of the implications that may be drawn from our study.
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2 The data

The American options are exchange-traded, approach a fixed expiration date and

can be exercised before maturity. Our data are over two million transaction prices

from the Chicago Mercantile Exchange (CME) for fifteen years of options based

on the US dollar DM futures prices. The prices are close of day transactions, and

they always represent prices which have been used in an exchange on that day.

While these data are advantageous in that they represent the most liquid market

for foreign exchange options, and they include more different strike prices each day

than all other data sources combined, they have a major disadvantage: because of

historical reasons, these are American style options based on an underlying future.

Because of this there is a substantial incentive to exercise the option early. One

can think of the underlying future as providing a continuous stream of “dividends”

as the future price changes to reflect the known expected change of the foreign

exchange. As is well known, an American style option on an underlying stock which

provides a continuous stream of dividends does not always provide incentive to hold

the option until its expiration date. For some values of the underlying price, a trader

can do better by cashing in the option early. This provides a “boundary” of prices,

under or over which (depending on whether the option is a call or a put) the trader

always exercises the option before the expiration date. This early exercise boundary

is something that we take account of in calculating our risk neutral densities.

In addition, some of the data are especially noisy. As a result we imposed some

requirements which all our data had to meet. All options included in the data set

had to have both a volume of exchange and an open interest that were positive on

the trading day. In addition, because of the historical illiquidity in certain markets,

other prices were excluded: options expiring within 10 days of the current trading

date, options expiring more than 100 days from the current trading date, and options

with strike prices that are greater than .05 in relative, time normalized moneyness.

In other words, options are excluded if
¯̄̄
Xt−K
K
√
T−t

¯̄̄
> .05, with K being the strike price,

Xt the actual futures rate and
√
T − t =

√
τ the normalizing time factor, which

is the difference between expiration date T and the actual date t . This excludes

those options in the extreme tails where prices are known to be driven more by
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illiquidity than by market expectations. The time period under investigation runs

from January 25, 1984 to December 31, 1998. Days with traded options that did

not include at least 8 different strike prices were excluded. This left us with 3900

separate trading days with which to estimate densities. The number of different

options on the days where densities were estimated ran from a low of 8 to a high

of 106. An average day included about 58 options prices that were usable. Note

that all option prices that matched the above filters were used, even those that

occasionally did not meet the arbitrage conditions implied by option theory. (In the

two million data points this happened about 20 times). In the case of our estimation,

these anomalies were considered part of the error term in the non-linear least squares

technique.

3 Estimation of the Densities

Following Dumas et.al. (1998), our procedure is to estimate the parameters of a

diffusion process in order to approximate the risk neutral density for each day. Thus

we first calculate the instantaneous volatility of the spot, σ̂t(X, τ, bβ), a function of
the state of the exchange rate and of time to expiration τ of the contract. We estimate

the diffusion function, σ̂t(X, τ, bβ), parametrically, by minimizing with respect to a
parameter vector bβ the sum of the squared deviations of the observed option prices
from the prices implied by σ̂t(X, τ, bβ). This function is estimated separately for
each day for which we have options price data. Each function implies a distinct risk

neutral density for any period ahead for which one wishes to forecast.

As is usual when handling option prices, a trade offmust be made between having

a rich enough parameterization of σ̂t(X, τ, bβ) to capture the details of the market’s
valuation of the risk and over fitting. Following the literature on fitting European
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options to single state diffusions, we fit four specifications of σ̂t(X, τ, bβ) in this paper.
σ̂t(X, τ, bβ) = β1X,

β0 + β1X,

β0 + β1X + β2X
2, (2)

β0 + β1X + β2X
2 + β3X

3

The first parameterization is the Black Scholes, log normal specification. The second

adds a normal term which has the effect of allowing for thicker tails on the density.

The third and fourth specifications are polynomial extensions to this which allow

for the standard volatility “smile” and “sneer” often observed in foreign exchange

options.

By estimating the diffusion process rather than the implied state space density for

each expiration date, we allow for tests of forecast densities of a variety of horizons,

not just the expiration dates for which we have option data. We obtain forecast

ahead densities for one, seven, fourteen, thirty, ninety and one-hundred-eighty days

ahead of the current information by using the separate estimates σ̂t(X, τ, bβ) for each
day, t. From these densities we acquire the series bΠθ,t(Xt+θ), which is the probability,

given the estimated density at t that the θ ahead forecast is less than or equal to the

observed θ ahead outcome, Xt+θ. For clarification reasons, we drop the θ notation

when we refer to an estimated density, so that bΠθ,t(Xt+θ) = bΠt(Xt).

Estimation of the daily diffusions σ̂t(X, τ, bβ) hinges on being able to calculate the
price of a given option quickly and accurately, given an arbitrary function σ̂t(X, τ, bβ).
We accomplish this by using higher order lattice methods. Lattices are simply dis-

cretizations of both the time and the state space that allow one to compute the value

function for each option directly. A binomial tree is a lattice with two branches.

Our initial work with binomial lattices suggested that they did not converge quickly

enough to provide accurate prices of the options. Therefore we use higher order

lattices that hold the intervals of discretization of the state space and time con-

stant and have more branches. In our case, we match the first five moments of the

Brownian motion process assumed in our parameterization of σ̂t(X, τ, bβ).
The probability weights for each branch are given in figure 1. They are derived
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Probability Structure for one Node
Pentinomial-Tree for  1/6<α<2/3

  Xi+2∆h,t+∆t  with probability p2=(1/2)α2-(1/12)α 

  Xi+∆h,t+∆t  with probability p1=-2α2+(4/3)α 

Xi,t   Xi,t+∆t  with probability   p3=3α2-(5/2)α+1

  Xi-∆h,t+∆t  with probability  p4=p1

  Xi-2∆h,t+∆t  with probability  p5=p2

Trinominal-Tree for  0<α<1/6  (low values of  σ2(X,τ,β))

Xi+∆h,t+∆t  with probability   p1=α/2 

Xi,t Xi,t+∆t  with probability    p2=1-α

Xi-∆h,t+∆t  with probability   p1=α/2 

with 
with         , is initial guess of the diffusion process
with ∆h: equally spaced absolute value of the underlying in DM/US-$ exchange rate

β~))~,,(max(/)34( 22 βτσ Xht ∆=∆

22 2/)ˆ,,( htX ∆∆= βτσα

Figure 1:
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by solving six equations in seven unknowns (the probabilities pi, σ̂t(X, τ, bβ)2, ∆t),

giving one degree of freedom, which we employ to set new state depending proba-

bilities for each daily estimated diffusion process σ̂t(X, τ, bβ). The system to solve

is:

(3)

p1 + p2 + p3 + p4 + p5 = 1

E [X(t+∆t)−X(t)]1 = p1∆h+ p22∆h+ p30− p4∆h− p52∆h = 0

E [X(t+∆t)−X(t)]2 = p1∆h2+p2(2∆h)2+p30+p4∆h2+p5(2∆h)2 = σ̂t(X, τ, bβ)2∆t

E [X(t+∆t)−X(t)]3 = p1∆h3 + p2(2∆h)3 + p30− p4∆h3 − p5(2∆h)3 = 0

E [X(t+∆t)−X(t)]4 = p1∆h4+p2(2∆h)4+p30+p4∆h4+p5(2∆h)4 = 3σ̂t(X, τ, bβ)4∆t2

E [X(t+∆t)−X(t)]5 = p1∆h5 + p2(2∆h)5 + p30− p4∆h5 − p5(2∆h)5 = 0

For either tree in figure 1, pi depends upon α =
σt(X,τ,bβ)2∆t

2∆h2
. For the pentionomial

tree the pi are positive if and only if α ∈
£
1
6
, 2
3

¤
. For α ∈ £0, 1

6

¤
, i.e. for c.p. small

values of σ̂t(X, τ, bβ)2, we reduce the pentionomial model to a trinomial model, by
dropping the equations for the fourth and fifth moment and cutting the further

branches (i.e., those branches with an increment of 2∆h)1.

The time step ∆t is determined by the size of a chosen state space increment, ∆h,

a chosen value of α and the maximum eσt(X, τ, eβ) at the end of the lattice, given the
initial guess eβ of the diffusion process on day t. A reasonable value of ∆h proved to

be 10−7. This space increment yielded very acurate prices for European options for
which an analytical solution exists. In our scheme we used a value for the time step

of ∆t = 4
3

∆h2

max(eσt(X,τ,eβ)2) , which allowed the fourth moments to be matched for the
largest part of the state space. This lays down the tree structure in terms of ∆t and

∆h for the whole estimation procedure for a trading day. To simplify the notation,

we drop the bar and write ∆t = ∆t. The probabilities are modified appropriately for

fractional values of ∆t when needed to place the lattice on those whole numbered

1In another version of this paper we circumvent the problem of ”too small” values of
σ̂t(X, τ, bβ)2, and therefore of values of α below 1/6, by augmenting, if necessary, the state space
increment ∆h , so that the critical value of α is only reached by smaller values of σ̂t(X, τ, bβ)2. In
this case we have therefore an adaptive tree structure which allows for every value of σ̂t(X, τ, bβ)2
to match the first 5 moments.
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days when the options expire (so that the end condition can be set.) The value of the

options on day t is calculated using the probabilities pi of figure 1. The pi change for

each node, according to the diffusion process σ̂t(X, τ, bβ) and the value of the state
X, since α is a function of X.

In contrast to a scheme using approximations that calculate the value of the

option only at the trading date, the early exercise boundary is easily incorporated

within this framework by adding a maximization operator into the calculation of the

discretized value functions at each node and at each time. Thus, for a call option,

the value of the node at state X and time t−∆t, is

V (X, t−∆t) = max{e−ρ∆tPVXt, Fp(X, t−∆t)−K},

where

(4)

PVXt ≡Pu(V(X+∆h,t)+V(X-∆h,t))+P2u(V(X+2∆h,t)+

V(X-2∆h,t))+(1-2Pu-2P2u)V(X,t)

and whereK is the strike price, Fp(X, t−∆t) is the value of the underlying future

price.

For a given diffusion, a higher order lattice approximates the value function

of each option by using the higher order terms of a moment generating function

for the true value function. The comparison of using a binomial tree to using a

higher order approximation in evaluation a diffusion expectation is analogous to the

comparison of using a sum of binomial variables to using the sum of multinomial

variables that are close to the normal in evaluating a normal expectation. Because

of central limit theorems, averaging the binomial outcomes does approximate the

normal distribution, but it does so more slowly than the sum of variables drawn

from a distribution closer to the normal.

The American option adds a complication to the calculation of a standard diffu-

sion process. The argument above relies on the underlying true value function being

smooth. This is a problem with options in general (because the value at the expira-

tion date contains a point at the strike price where it is clearly non-differentiable)
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and with American options in particular (because the early exercise also creates a

non-differentiability in the value function at the boundary). We handle this by using

kernel smoothers. Thus, for a small distance around the early exercise boundary,

in the neighborhood where e−ρ∆tPVXt and Fp(X, t−∆t)−K are nearly equal, we

use the value function, φ(e−ρ∆tPVXt) + (1 − φ)(Fp(X, t − ∆t) − K) where φ is a

many times differentiable kernel between 0 and 1, with the property that φ→ 1 for

values of e−ρ∆tPVXt that are ‘much’ greater than Fp(X, t−∆t)−K and φ→ 0 for

e−ρ∆tPVXt that are ‘much’ smaller than Fp(X, t−∆t)−K. The kernel that we use

is a Logistic cumulative distribution function, φ(e
−ρ∆tPVXt−(Fp(X,t−∆t)−K)

ω
), where ω

is the bandwidth. The bandwidth parameter ω, defines the term ”‘much’ greater

than” by determining how quickly φ(e
−ρ∆tPVXt−(Fp(X,t−∆t)−K)

ω
) goes to one or zero for

positive or negative values. Choosing ω too large over-smoothes in the sense that the

underlying function evaluation is completely dominated by the smoothing function.

Choosing ω too small does not solve the problem caused by non-differentiability for

the higher order lattice. However, for a wide range of ω, calculation of the value of

an option quickly converged to the theoretical true value where these were known.

We report results for values of ω of .005 for the value function boundary and of

.003 for the early exercise boundary. Although the kernel smoothing adds a lot of

computation and complication even for small bandwidths, we find it makes a large

difference in the calculated theoretical price of an option (and was much closer to

the actual value of the option when we had a solution to compare our solution to.)

4 Evaluating density forecasts

Different methods of estimation lead to different forecasting densities, some of which

necessarily must be wrong. The ranking of these non correct density forecasts is a

difficult task. This is because a ranking depends on the often unknown individual

loss function of agents, that may include more arguments than the first two moments.

For example, decision makers with non symmetric expected loss indexes care about

more than the mean and the variance of a distribution. Moreover, different agents

have different loss functions, so that it is often impossible to find a ranking upon
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which all individuals agree unanimously. However, it can be shown, that the correct

density is always preferred over false densities. Therefore, as a second best solution

one tries to approximate the true density as good as possible.

To assess whether there is significant evidence whether the estimated densities

coincide with the true densities at a first step we perform the probability integral

transforms of the actual realizations. Under the hypothesis that the true densities

functions correspond to our estimated densities the transformed realizations are

uniformly distributed. To assess this property of the transformed realizations we

suggest as a second step two different tests, based upon the distance of the observed

distribution of the transformed random variables from the uniform distribution.

This distance is in the L2 topology, and was first suggested by Cramer in the 1920’s.

These tests are robust to time dependence in the data.

The basic univariate integral transformation theorem is due to Fischer (1930)

and has been generalized for the multivariate case by Rosenblatt (1952). A thor-

ough overview of transformation methods in Goodness-of-Fit techniques is given by

Quesenberry (1986). Recently, Diebold et.al. (1998) apply this concept to time se-

ries, evaluating the densities implied by a MA(1)-t-GARCH(1,1) model. Clements

and Smith (2001) use the probability integral transforms for evaluating the density

forecast of a self-exciting threshold autoregressive model.

The basic idea is to evaluate a sequence of actual exchange rate realizations

{Xt}Nt=1 with respect to a sequence of densities {bπθ,t}Nt=1 ³= {bπt}Nt=1´ estimated
at time t, with the information available at t. Again, the forecast horizon is θ. The

probability integral transforms zt correspond to the function values of the cumu-

lative density functions, evaluated at Xt+θ. For simplification Xt+θ is written as

Xt.

zt =

XtZ
−∞

bπt (u) du = bΠt (Xt) t = 1, ..., N (5)

Under the null hypothesis of correct forecast densities (i.e. Πt (Xt) = bΠt (Xt)), the

sequence of integral transformed realization {zt}Nt=1 is U [0, 1] and their theoretical
cdf F (prn) = prn is equal to the proportion of zt’s that is less than a number prn in
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the interval (0, 1) (see appendix).

The step between our estimates of the diffusion function, σ̂t(X, τ, bβ), and calcula-
tion of the cumulative distribution of the observed t day ahead draw, X, is easy. We

simulate a large number of draws from the diffusion process defined by σ̂t(X, τ, bβ)
(through a discrete Markov approximation) and record the proportion less than or

equal to X, to get the estimated cumulative distribution (Ecdf) bΠt (Xt) = zt.

We then test the null that the observed sequence of zt’s is a sequence of uniformly

(though not necessarily independently) distributed random variables. In this paper,

we use inference based upon bootstrap samples that preserve the time series prop-

erties of our original sample, z1, ...zt, ..., zN . From this bootstrap we can construct

confidence intervals for a variety of statistics. We report results from a distance

statistic, the so-called Cramer-von Mises statistic [von Mises (1931)]. This statistic

is defined as

dCvM ≡ 1Z
0

(F (prn)− bF (prn))2d(prn). (6)

Note that this is a distance in the L2 topology between the empirical distribution

function (Ecdf) of zt, bF (prn), and its theoretical value, F (prn) = prn, representing

the uniform null. A similar statistic that was also computed with the same results

lies in the L∞ topology, the so called Kolmogorov-Smirnov statistic,

KS ≡ sup
prn

|F (prn)− bF (prn)|. (7)

This bootstrap procedure is lacking in that rejection of the null does not indicate

where the proposed densities apparently fail.

For this, we test whether the Ecdf (where in the following definition, In(zt ≤
prn) = In,t is the indicator function),

bF (prn) ≡
NP
t=1

In(zt ≤ prn)

N
, (8)

is equal to prn for a large number of different prn in the interval (0,1). We perform

this test separately for each prn. These tests have the advantage of showing what
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quality of the outcome density is missing in the estimated forecasting density. For

example, if the option implied densities have thicker tails than the forecasting out-

comes then this shows up graphically as bF (prn) < prn for values of prn close to 0 or

1 and as bF (prn) > prn for values close to 0.5. However, this is not a powerful test

because it fails to account for the departures of bF (prn) from prn jointly for all n.

One possible way to jointly test the departures for each prn would be to sum up

their squares, as was suggested by Karl Pearson (1905) very early in the history of

specification tests. However, this leads to problems of choosing the individual prn,

and, ultimately, to the theory of inference in the presence of unbounded operators.

We pursue that line of research in a separate paper.

First we expand our discussion of the tests based on the stationary bootstrap.

4.1 The stationary bootstrap approach

The stationary bootstrap approach (IFSB) of Politis and Romano (1994) uses a

resampling procedure to calculate standard errors of estimators that account for

weak data dependence in stationary observations. The procedure requires a sample

of random blocks of random lengths out of the original time series, where the length

L of each block is drawn from a geometric distribution, so that the probability of

drawing a block of length L is (1−prob)L−1prob for L = 1, 2, .... End effects (in case of
a block going beyond the last observation) are handled by ordering the observations

in a circle, so that the series ”restarts” after the last observation. A difficult aspect in

applying this procedure is the choice of the parameter governing the stochastic length

of the blocks, prob. Politis and Romano suggest a data-based choice of prob so that

prob = probN → N−1/3, with N equal to the number of observations. By this choice

the mean squared error of bσ2bt,probN as an estimator of σ2N is minimal. Fortunately,
as long as prob → 0 and Nprob → ∞ fundamental consistency properties of the

bootstrap are unaffected by choosing prob suboptimaly. As can be directly seen,

these requirements are clearly met by the choice of prob = N−1/3.
We use the sample sequence {zt} to calculate the Cramer-von Mises statistic dCvM

directly for our sample Ecdf , bF (prn), and then to calculate whether this is a signif-
icant distance from the 45◦-line through the bootstrapped samples. Bootstrapped
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distribution functions, Fb(prb) are also formed and the CvMb statistic,

CvMb ≡
1Z
0

(F (prb)− Fb(prb))
2d(prb) (9)

is evaluated for each bootstrapped sample. Because the sample distribution functiondCvM and all bootstrapped sample distribution functions CvMb are step functions,

the integral expression in CvMb is calculated directly. We computed CvMb for

100,000 replications and report a number, CvMb which is the proportion of boot-

strapped distances, CvMb, that are greater than dCvM, the distance between our

sample distribution function and the null, the uniform distribution function. A value

of CvMb less than some critical value, α0, rejects the hypothesis of z1, ...zt, ..., zN
being drawn from a uniform distribution at the α0 level.

4.2 Tests based on deviations of the empirical density from
individual quantiles, prn

Figure 2 depicts the integral transformation. The simulated density bΠt of the dif-

fusion function σ̂t(X, τ, bβ) is on the right side at the top and bπt, the corresponding
first empirical derivative of bΠt with respect to K, is situated at the bottom. The

sequence of actual {z1, ...zt, ...zN} are on the left side at the top and the estimatedbF (prn) are plotted below. Note, that the whole sequence of N actual zt is generated

by N diffusion functions, since for each diffusion process, estimated on t, one obtains

only one zt. However, the bΠt, bπt and the sequence {z1, ...zt, ...zN} in figure 2 share
the same forecast horizon θ (here θ = 30 days).

The null hypothesis of correct forecasts corresponds to the dashed 45◦-line that
connects the origin of the diagram (on the left side at the bottom) to the upper

left corner. The empirical proportion bF (prn) of the sequence {zt} being less than
F (prn) is represented by the nth bar. The total number of bars is N. The basis of

each bar equals 1/ N and F (prn) = prn =
nP
i=1

1/ N . Under the null, each bar is

crossed by the dashed line at its right corner.

To address the question whether violations of the uniformity ( bF (prn) 6= F (prn))
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are significant we need to estimate the standard deviations of bF (prn). However, since
our θ-days ahead forecast densities are calculated daily, the evaluated realizations

Xt and consequently the sequence of {zt} are time dependent due to the overlapping
data problem. This issue arrises when the forecast horizon is longer than the sample

frequency. If i.e. the sample frequency is daily and the forecasts are 1-month ahead

(24 business days), the overlap amounts to 24 days. Thus, the forecast errors are

no longer iid but follow a moving average process (MA) equal to the length of the

forecast horizon θ. In this case inference from standard tests, which are based on the

assumption of iid observations, is misleading. If the forecast errors are dependent,

different types of standard tests, as Chi-squared tests and Ecdf tests i.e., lead the

researcher to reject the true null hypothesis too often.

Our test consists of calculating confidence intervals for individual bF (prn) by using
the function values In,t(zt ≤ prn) of the indicator function. The time dependence of

the observations is considered up to the order of the theoretical data overlap θ.

dvar( bF (prn)) = bσ2( bF (prn)) = 1

N

"bγn(0) + 2 θX
j=1

µ
1− j

N

¶bγn(j)# (10)

where the sample autocovariance is defined by bγ(j).
bγn(j) = 1

N

NX
t=j+1

¡
In,t − In

¢ ¡
In,t−j − In

¢
(11)

Under the null hypothesis, the ratio t = (F (prn) − bF (prn))/bσ( bF (prn)) has a t dis-
tribution with N − 2 degrees of freedoms.

5 The results

The results of the CvMb statistics are reported in table 1. These tables present the

probabilities that bootstrapped samples differ from original sample in the Cramer-

von Mises distance by as much as the original sample differs from the null of the

45◦-line. Lower values than .05 imply a rejection of the null at the five percent
level. Several things are immediately clear from these tests. First, the data strongly
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support the options price densities as useful forecasting densities at the one to three

month forecast horizon. In no case was the model rejected. Second, all of the models

do a poor job of predicting the densities at the one week or shorter time horizon.

Third, the simpler models and the more complicated models do about equally well

at the thirty to ninety day horizon, and all do extremely poorly at the very short

time horizon. Fourth, the complicated cubic polynomial does a better job of fitting

the density for the half year horizon than the less complicated models. Indeed, it

can not be rejected as a forecasting model of the density for this long horizon.

Horizon θ in days 1 7 14 30 90 180

Specification*

β1X .001 .004 .049 .225 .204 .015

β0 + β1X .005 .006 .059 .218 .160 .008

β0 + β1X + β2X
2 .001 .005 .055 .230 .133 .023

β0 + β1X + β2X
2 + β3X

3 .001 .002 .035 .166 .151 .058

*Bold numbers indicate, that the hypothesis of an accurate density can’t be rejected.

table 1: Test results of the stationary bootstrap approach

These broad patterns were also supported by other tests based on the boot-

strapped variance of the CvMb. To assess where the forecast densities fail, we plot

the actual Ecdf of the zt against the theoretical cdf for the extremely long and

extremely short forecasted densities of the log Normal model. Results are shown

in figures 3a and 3b. The number of bins N is 40, so that the basis of each bin

corresponds to a probability mass of 0.025. Here, the nth bar shows the function

value bF (prn), while the theoretical cdf value F (pr) is given by the dashed 45◦-line
above bin no. n. The thick bulging out lines surrounding the estimated bF (prn)
indicate approximately the 95% confidence interval (±2bσ bF (prn)), where bσ( bF (prn))
are calculated by (10).2

2In case of independent data V ar(prn) = ((1−prn)prn)/N, which has its maximum at 2prn = 1.
Therefore at prn = 0.5 the bulging out of the confidence interval is biggest.
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Figure 3: The deviations of the empirical density from individual quantiles
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Figure 3a shows that the areas of rejection of the density, represented by the

greyed out areas, are somewhat symmetric. The density corresponding to the Ecdf ’s

displayed in figure 3a would be slightly below the uniform line on the extreme ends

of the distribution and then slightly above it on the other portions of the density.

Thus, the option forecast densities fail at the short horizon because they do not place

enough mass at the extreme ends of the densities. The tails are not fat enough. Note

also that the confidence bands are fairly tight with the one day horizon. The Cramer-

von Mises test has fairly good power at this horizon, due to the large number of

independent daily observations.

Figure 3b shows a very different picture for the longer time horizon. Although

the power of the graphic test is too small to reject the null (which is rejected over-

whelmingly by the Cramer-von Mises test) it is clear that the log Normal model

overpredicts very low outcomes of the Dollar to Deutsche Mark ratio. Following a

forecasting model based on a Black-Scholes model results in the lowest twenty per-

cent of possible outcomes being too pessimistic in terms of the value of the DM. The

confidence bands for these estimates are much wider because of the high correlation

of the actual outcomes in dates within a month of one another.

6 Concluding remarks

Our results fall into two groups, one the thirty to ninety day time horizon for which

the forecasting densities seem to fit the data fairly well, and the very short and the

very long horizons which are poor specifications for forecast densities (except for the

cubic diffusion model which is not rejected for the long horizon.)

Where the densities fail as forecasting tools, several points should be noted. First,

the polynomial expansion of a single state specification of the variance clearly limits

the set of models, that can be fitted to the date. More work can be done to specify a

set of models that are sufficiently rich to match the option prices, either by increasing

the dimension of the states, controlling the diffusion process or by incorporating time

dependence into the process. Second, the time horizons for which we do not fit the

data correspond exactly to the expiration dates of the option contracts which we
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cast out of our data set on the grounds that these are typically low liquidity markets.

Thus, we did not use all price data of options which expired within ten days of the

trading day, options that are perhaps best designed to forecast the future exchange

rate at one and seven days ahead. Clearly there is fruitful work to be done in

examining the trade-off in estimating risk neutral densities between the signal and

noise provided by thinly traded options.

The second group of conclusions concern the thirty to ninety day horizons where

our tests clearly do not reject any of the specifications of the diffusion process as

forecasting densities. This is in spite of the fact that we used techniques that allowed

the information from all of the daily observations between the years 1983 and 1998.

This finding is not solely a result of poor power of our tests. In other research

(Craig and Keller (2001)), we resoundingly reject densities on the thirty day horizon

implied by other methods, such as a GARCH technique, or based on other options

with lower liquidity, even though these tests are based only on less than three years

of data.

The implications of the lack of rejection of these state space densities are of some

importance. The first one is that the pricing of risk in these very liquid markets

is very low. In other words, any risk premium built into the state price densities

is small enough that the risk neutral implied density is indistinguishable from the

forecasting density. Any theory, such as uncovered interest rate parity, which relies

on large shifts in risk premia in order to reconcile it with the data is thus less

convincing.

Second, these risk neutral densities are fairly good estimates of the market’s fore-

cast of future prices. These densities can be computed daily, and thus form a useful

policy tool, as well as providing an important set of data with which to test deeper

theories of foreign exchange determination.

Having stated that, we must admit that there is much left to do in testing the

densities before we can say more. The tests are not powerful enough to distinguish

the fairly simple parameterization offered in this paper from each other, or from

more elegant parameterizations of the densities. The diffusion densities offered here

seem very crude approximations when compared with the densities often calculated
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with non-parametric techniques from European options. In contrast to these multi-

modal, quickly changing shapes, our densities are often unimodal, and usually are

close to the density of the previous day. Amore powerful test might have much to say

about which of the densities represent the market’s true assessment of possibilities.

The tests of the densities that are explored in this paper are of lower power than

other more specific tests in part because of their all encompassing character. In

other words, the CvM test is designed to cover all possible specifications against

all possible alternatives. The CvM test does perform well against other such tests,

including the Kolmorgorov-Smirnov test, in terms of power. However, as shown

in Csőrgő and Horváth (1993), the CvM test does not exploit much information

that may be known about the null, such as behavior of the density in the tails.

Further, in the space of probability distribution functions, the CvM is only optimal

for deviations in the L2-direction cos(σx) as shown by Gregory (1980). The theory

of statistical distribution specification testing is still fruitful, offering major new

advances each year. It is our hope that with these advances tests of sufficient power

to distinguish different parameterizations of the diffusion process may be developed.
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Appendix

We are interested in the density of the integral transforms ft (zt) at time t + θ

From (5) we know that the integral transforms zt = bΠt (Xt) , where bΠt (Xt) is the

estimated cdf (and therefore monotonic function) of Xt based on information at

time t. Moreover, assume that the true density of Xt is πt (Xt) at t.

• Then, since bΠt (Xt) is monotonic, the inverse transformation Xt = bΠ−1(zt)
exists.

• The Jacobian of the transformation is the absolute value of the determinant
of the partial derivative J =

¯̄̄
(Xt

(zt

¯̄̄
=
¯̄̄
(bΠ−1t (zt)

(zt

¯̄̄
.

• Then the density ft (zt) = πt(Xt)
¯̄̄
(bΠ−1t (zt)

(zt

¯̄̄
= πt(bΠ−1(zt)) ¯̄̄(bΠ−1t (zt)

(zt

¯̄̄
.

• Inserting values for zt and bΠ−1t (zt) in ¯̄̄(bΠ−1t (zt)

(zt

¯̄̄
yields

¯̄̄
(Xt

(bΠt(Xt)

¯̄̄
= 1bπt(Xt)

• Therefore ft (zt) = π(bΠ−1(zt))bπt(Xt)
= πt(Xt)bπt(Xt)

.

Since bπt (Xt) is the estimated density and πt (Xt) is the true density of Xt,

ft (zt) ∼ U(0, 1) if bπt (Xt) = πt (Xt) .
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List of Variables

α : restriction parameter on probabilities pi within tree

α0 : critical valuebβ : parameter vector of diffusion process
β0, β1, β2, β3 : coefficients of parameter vector bβ
ct (K,X, τ) : option price (call option)

cdf : cumulative density functiondCvM : sample Cramer-von Mises statistics
CvMb : bootstrapped Cramer-von Mises statistics

∆t : time step within tree

∆h : state space step within tree

Ecdf : empirical or estimated cumulative density function

f(zt) : density of the integral transform zt, with f(zt) ∼ U [0, 1]

F (prn) : theroretical cdf of f , in fig. 2 (45◦-line).bF (prn) : Ecdf, in fig. 2 (bars deviating from 45◦-line).
Fp(X, t−∆t) : value of the underlying future price

In,t : indicator function

K : strike price

L : length of the bootstrapping block

L2 : distance in the L2 topology

φ(PV,X,Fp, ρ, ω,∆t) : exponential kernel smoother

n : no. of bins of indicator function In().

N : no. of observations

N : total no. of bins

pi : probabilties within tree at node i ∈ {1, 2, 3, 4, 5}
prn : proportion number prn ∈ (0, 1)
probN : data based choice of the bootstrap probability.

πT (X) theoretical risk neutral density over the state space of Xbπt : forecast density



bΠt : cumulative forecast density

ρ : discount factorbσt(X, τ, bβ) : diffusion process of the state space (spot rate)
t : actual date

T : expiration date

τ : time to maturity

θ : forecast horizon

U [0, 1] : uniform density

ω : bandwidth of kernel smoother

V (X, t−∆t) : value function of American option

X : state space (spot rate)

zt: integral transformed realizations of Xt, with zt = bΠt(Xt)
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