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Pricing Kernels, Inflation,
and the Term Structure of Interest Rates

by Ben R. Craig and Joseph G. Haubrich 

We estimate a discrete-time multivariate pricing kernel for the term structure of interest
rates, using both yields and inflation rates. This gives a separate estimate of the real
kernel and the nominal kernel, taking into account a relatively sophisticated dynamical
structure and mutual interaction between the real and nominal side of the economy.
Along with obtaining an estimate of the real term structure, we use the estimates to obtain
a new perspective on how real and nominal influences interact to produce the observed
term structure.
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1. Introduction

Despite its importance for pricing, hedging, and the conduct of monetary policy, the

relation between real and nominal interest rates remains somewhat elusive. The central

difficulty is that until recently, real rates are not observed. Both the nominal term structure

and inflation rates are observed, however, and these can act as inputs to a pricing kernel

model that can help sort out the real and nominal elements. Our paper thus unites two

somewhat separate lines of research: models based on pricing kernels and models that

explicitly account for inflation.

The pricing kernel, or stochastic discount factor, is the stochastic process governing

the prices of state contingent claims. Given a pricing kernel, we can compute the price of

any financial asset. Given asset prices free from arbitrage opportunities, a pricing kernel

exists.1

The pricing kernel approach unifies many aspects of asset pricing theory. Some work

only implicitly defines pricing kernels, deriving them from utility functions and returns

technology (Cox, Ingersoll and Ross, 1985, Pennacchi, 1991) or from consumption patterns

(Campbell, 1986). Starting directly with the pricing kernel, however, has advantages of

flexibility, generality, and tractability, as Constantinides (1992) and Backus and Zin (1994)

have shown to great effect. Given the problems with correctly specifying the return process

in CIR type models (Constantinides 1992) and the failures of consumption based models

(Hansen and Jaganathen, 1991), the pricing kernel approach offers a different avenue of

progress.

Most work using the pricing kernel, however, has assumed a “nominal” pricing kernel,

1 Sargent (1987) refers to it as the pricing kernel. Harrison and Kreps (1979) and
Kreps (1981) use the concept to characterize price systems without arbitrage opportunities,
where a variant appears as the martingale equivalent measure. See Huang and Litzenberger
(1988), chapter 8, and Duffie (1992), chapters 2-4.
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which confounds real interest rates and inflation. This approach is inadequate for questions

of extracting real and nominal information, be it from the term structure, inflation indexed

bonds, or CPI futures.

This paper explicitly adds inflation into the pricing kernel approach. It splits the

nominal kernel into a real kernel and an inflation process, assuming neither independence

nor a complete representative agent model. In this case, the kernel approach is particularly

appealing. It allows interaction between the real and nominal sides without having to reach

a consensus on the proper fully specified dynamic general equilibrium model with a role

for money.2

This paper complements two other papers that specifically address the relation be-

tween real and nominal rates. Pennacchi (1991) directly models the real rate and the

inflation rate in a Cox-Ingersoll-Ross framework and uses survey measures of expected

inflation. We use a discrete-time kernel framework in conjunction with the actual inflation

process, and estimate a richer dynamic structure on both the real and inflation components

of interest rates. We also look at the term structure out to 120 months, whereas Pennac-

chi stops at 12. Evans (1998) uses UK index-linked gilts to look at real rates, expected

inflation, and inflation risk premia. As mentioned before, we take as our two observables

the actual inflation rate and nominal bond prices, in part because we have concerns about

the comparability of US inflation-indexed securities, mainly because of liquidity and tax

differences. We also impose more structure on the underlying kernel in the estimation

procedure, a process useful for general hedging and monetary policy considerations.

This paper most closely follows Backus and Zin (1994) in adopting the log-linear

2 For interesting work on the term structure in general equilibrium models with money,
see Boudoukh (1993), Labadie (1994), den Haan (1995), Buraschi and Jiltsov (1999), T.
Wu (2000), and S. Wu (2001).

2



discrete time approach to pricing bonds. This allows for complicated dynamics moving

substantially beyond mean reversion. The added flexibility gives the model a better chance

of matching the time series and cross-sectional properties of the interest rate data. On one

level, this paper may be viewed as an elaboration of the Backus and Zin paper, formulating

and estimating a multifactor specification of the pricing kernel. Without downplaying such

a contribution, we prefer a different emphasis. Using the pricing kernel to combine inflation

and interest rates provides a more detailed analysis of the interaction between real and

nominal variables.

2. A Theoretical Framework for Pricing Kernels and Inflation

The basic relationship in asset pricing, relating the expected real return on an asset

to the stochastic discount rate (or pricing kernel) takes the form

1 = Et[Mt+1R
n+1
t+1 ] (1)

where Rn+1
t+1 is the one-period gross real return and Mt+1 is the real pricing kernel or

stochastic discount factor (See chapter 11 of Campbell, Lo, and MacKinlay 1997). Such a

kernel exists under fairly weak assumptions, requiring little more than that bond traders

prefer more consumption to less, and act on that preference to eliminate arbitrage. With

more structure, we can split the kernel into real and nominal parts and estimate both from

the above pricing relation.

For nominal claims, let b$n
t be the dollar price at date t of an n-period discount bond:

a claim to $1 at date t+ n. Then, with the nominal price index at date t denoted Qt, the

real price of a bond is

bnt =
b$n
t

Qt
.

Applying the asset pricing condition to the real return on an n-period nominal bond results
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in

1 = Et[Mt+1

b$n−1
t+1 /Qt+1

b$n
t /Qt

].

This implies

b$n
t = Et[Mt+1b

$n−1
t+1

Qt

Qt+1
].

For n = 0, b$0t = 1, expressing the truism that $1 today costs $1. The price of $1 tomorrow

is

b$1t = Et[Mt+11
Qt

Qt+1
]

= Et[Mt+1
1

Πt+1
]

where Πt+1 is the gross inflation rate Qt+1/Qt. Note that this splits what might be

termed the“nominal pricing kernel” into two parts: the real kernel and inflation. In con-

trast to some earlier work, we do not assume independence between inflation and the

real side (Gibbons and Ramaswamy 1993), nor do we directly posit primitive assumptions

about the nominal kernel Mt+1/Πt+1 (Brown and Dybvig, 1986, Pennacchi, Ritchken, and

Sankarasubraniam, 1995).

The pricing kernel approach, or reverse engineering approach (to follow Backus and

Zin) then proceeds as follows. It first specifies a process for Mt and Πt and then uses

that process to price the term structure, i.e., derive the yield on zero-coupon bonds of

different maturities3. The time series and cross section properties implied by the theory

are then matched with the data to derive the parameters of the underlying process–to tie

down the pricing kernel and inflation. Once tied down, the two halves of the pricing kernel

can function as a metric for assessing asset pricing theories and as an engine for pricing

securities.
3 This contrasts with the consumption based view, in which the asset pricing equation

takes the form 1 = Et[βu′(ct+1)/u′(ct)R1
t+1] for time separable utility: the stochastic

process for consumption and the form of the utility function determine the pricing kernel.
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Kernel Structure

The general asset pricing condition (1) becomes a theory of bond pricing once we

characterize the pricing kernel Mt and the inflation rate Πt. A rich yet tractable choice is

a log-linear bivariate process for the two parts of the kernel. Specifically, let the log of Mt

follow an ARMA(1,1) in each shock, and let the log of Πt follow an AR(2) in each shock.

We choose the AR(2) process for inflation because classic Box-Jenkins analysis suggests it

as a likely representation.[
1− φL 0

0 1− ρ1L− ρ2L
2

] [
− logMt − δ
− log Πt − λ

]
=

[
1 + θ1L 1 + θ2L
vε vη

] [
εt

ηt

]
. (2)

In this equation, L denotes the lag operator and vε and vη are constants that allow the

shocks to have different influences on Mt and Πt. The log formulation is useful because

yields and interest rates are easier to work with than bond prices, and it allows us to

exploit the well-known property of lognormal distributions, that is, if X ∼ N(µ, σ2) and

if log Y = X, then log E(Y ) = µ+ σ2

2 .

In this form, Mt and Πt are not independent, but they do not depend directly on one

another. One interpretation of (2) has εt as the real shock and ηt as the nominal shock, but

this is not the only way to interpret the representation. Equally important, the process is

not univariate. Although for either inflation or the real kernel, a univariate process could

deliver the same autocorrelations, such a process would miss the interactions between the

two. Even with a reduced form for the kernel, autocorrelations do not suffice to price the

term structure. Different parameters delivering the same autocorrelations can result in

different term structures (Campbell, Lo, and MacKinlay, 1997 chapter 11.2.1).

If only the autocorrelation properties are considered, the whole nominal kernel can

be represented as an ARMA(4,4) process.4 As such, it allows richer dynamics than the

4 This uses the Granger and Morris (1976) formula, ARMA(p,m) + ARMA(q, n) =
ARMA[(p+ q),max(p+ n, q +m)].
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ARMA(2,3) kernel used by Backus and Zin.5 To reiterate, though, splitting out inflation

involves more than merely using a more complicated ARMA process. It requires us to

explicitly consider the interactions between real and nominal rates.

Equation (2) is rather difficult to work with directly. Of more use is the infinite-order

moving average form. Equation (2) reduces to

− logMt = δ +
1

1− φL
(1 + θ1L)εt +

1
1− φL

(1 + θ2L)ηt

− log Πt = λ+
vε

1− ρ1L− ρ2L2
εt +

vη

1− ρ1L− ρ2L2
ηt.

Putting this in MA(∞) form yields:

− logMt = δ + [1 + (θ1 + φ)L+ φ(θ1 + φ)L2 . . .]εt + [1 + (θ2 + φ)L+ φ(θ2 + φ)L2 . . .]ηt

− log Πt = λ+
∞∑

j=0

ψjvεεt−j +
∞∑

j=0

ψjvηηt−j .

Here ψj is defined recursively from the AR(2) process (as in the Yule-Walker equations).

Combining the two, as we must for asset pricing, recalling that log(Mt/Πt) = logMt −

log Πt, yields

− logMt + log Πt = (δ − λ) + [(1− vε)εt +
∞∑

j=0

[(θ1 + φ)φj − ψj+1vε]εt−j−1

+[(1− vη)ηt +
∞∑

j=0

[(θ2 + φ)φj − ψj+1vη]ηt−j−1.

(3)

This, in conjunction with equation (1), prices assets. It describes how the pricing kernel

evolves over time, or equivalently, how the rate at which we discount the future depends

on both real and nominal shocks.

Pricing the Term Structure

5 The richer dynamics do not constitute a full generalization because our process allows
only some subsets of the ARMA(4,4) process.
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The framework for pricing is now in place. The next step in obtaining predictions

about the term structure involves describing the assets to be priced. Recall that b$n
t

denotes the dollar price at date t of an n-period discount bond. The dollar yield on such

a bond is

yn
t ≡ −(1/n) log b$n

t .

The short rate, or yield on a one-period bond, is

rt ≡ y1
t ≡ − log b$1t . (A)

Forward rates, also called implied future rates, are defined from the prices of longer term

bonds:

fn
t ≡ log(b$n

t /b$n+1
t ). (B)

Definitions (A) and (B) imply that yields are averages of forward rates.

yn
t =

1
n

n∑
j=1

f j−1
t .

This does not imply that forward rates are unbiased or accurate predictors of future short

rates, as nothing in the model implies that forward rates are unbiased or accurate predictors

of future short rates.

Bond prices and yields then follow using the techniques of Backus and Zin (1995,

section 3 and appendix B). They show how to combine the log linearity of the stochastic

process with the definition of the yield as a log to simplify the basic asset pricing equation

into an expression involving only means and variances. It is then straightforward, if tedious,

to compute the forward rates,

fn
t = (δ − λ)− (1/2)(A2

1,nσ
2
ε +A2

2,nσ
2
η) +

∞∑
j=0

α1,n+1+jεt−j +
∞∑

j=0

α2,n+1+jηt−j (4)
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the yields,

yn
t =(δ − λ)− σ2

ε

2n

n∑
j=1

A2
1,j−1 −

σ2
η

2n

n∑
j=1

A2
2,j−1

+
1
n

∞∑
j=0

(A1,n+j −A1,j)εt−j +
1
n

∞∑
j=0

(A2,n+j −A2,j)ηt−j

(5)

and the short rate,

rt =(δ − λ)− (1− vε)
σ2

ε

2
− (1− vη)

σ2
η

2

+
∞∑

j=0

[(θ1 + φ)φj − ψj+1vε]εt−j +
∞∑

j=0

[(θ2 + φ)φj − ψj+1vη]ηt−j .
(6)

In these equations, α1,j denotes the coefficient on εt−j in the nominal kernel (eq. 3) so that

α1,0 = (1−vε), α1,1 = (θ1+φ)−ρvε, and so forth. Similarly, α2,j denotes the corresponding

coefficient on ηt−j , so that α2,2 = (θ2 + φ)φ− ψ2vη. We let A1,n =
∑n

j=0 α1,j . In moving

from (5) to (6), since the short rate rt is just y1
t , we use A1,j+1 −A1,j = α1,j+1.

In equation (6), even though inflation and real rates can be additively decoupled,

the Fisher equation does not hold. Because E(logπ) 6= logE(π), simply subtracting off

expected inflation does not give the real interest rate. Mathematically, in the lognormal

framework, that means variance terms, σ2
ε and σ2

η, show up in addition to expected values.

Economically, it means that inflation risk matters. Equation (6) also shows that any shock

moving inflation will almost surely move the real rates. It would be wrong to take a single

piece of information, say that inflation is high this month, and assume that it indicates

a decrease in real rates, as the shocks increasing inflation also move the real rate. Naive

decompositions are misleading.

3. Estimating the Kernel

Splitting the kernel into real and inflation components means that information about

inflation can help estimate the kernel. Following what Backus and Zin (1994) call the
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“reverse-engineering” approach, this takes place in two steps. The first step uses equations

(4-6) to obtain theoretical moment predictions for

(i) Time-series (autocorrelation) properties of the short rate

(ii) Mean values of the yield spreads (average slope of the term structure)

(iii) Time-series properties of inflation.

The next step chooses parameters to give the best fit with the data. Specifically, that

means using GMM (generalized method of moments) to choose θ1, ρ1, and so forth to

match the theoretical moments as closely as possible to the sample moments in the data.

Other methods, such as maximum likelihood, would work as well.

In principle, there is no reason to restrict assets and moments to discount bonds. The

same techniques could use data on swaps, options, or structured notes, but fitting the term

structure is challenge enough for one paper.

Moment Predictions

Starting from equations for yields (eq. 4-6) the model’s prediction for mean spreads

and autocorrelations follows in a straightforward fashion. The moments naturally cluster

into four areas: autocovariances of the short rate, mean values of yield spreads, autoco-

variances of inflation, and correlations between inflation, the short rate and yield spreads.

For the autocovariances of the short rate, collecting terms depending on k, the lag,

results in

Cov(rtrt−k) = σ2
ε [
∞∑

j=1

α1,jα1,j+k] + σ2
η[
∞∑

j=1

α2,jα2,j+k] (7)

For the mean yield spreads,

E(yn
t − y1

t ) =
σ2

ε

2
(1− vε)−

σ2
ε

2n

n∑
j=1

A2
1,j−1 +

σ2
η

2
(1− vη)−

σ2
η

2n

n∑
j=1

A2
2,j−1. (8)
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In evaluating (8) note that

n∑
j=1

A2
1,j−1 = [1− vε]2

+[1− vε + (θ1 + φ)− vεψ1]2

+[1 + (θ1 + φ) + (θ1 + φ)φ− vε(1 + ψ1 + ψ2)]2

+ . . . .

These are the squared coefficients of vε in the Wald representation of the kernel (3). For

inflation, note that

E(− log Πt) = λ.

V ar(− log Π) =
ρ1

1− ρ2
(v2

εσ
2
ε + v2

ησ
2
η). (9)

E(log Πt log Πt−1)/V ar(− log Πt) =
1− ρ2

(1 + ρ2)[(1− ρ2)2 − ρ2
1]
.

Data and Estimation Procedures

The estimation procedure chooses the parameters of the bivariate ARMA process for

the real kernel and inflation to make the theory “close” to the data in a precise sense.

First, we need to impose one identifying restriction so that GMM can fit the moment

conditions provided by the cross-section and time-series data for interest rates and inflation.

Implementing GMM requires choosing the exact moments to match, that is, a set of

autocovariances and yields spreads. It also requires choosing a data set.

The estimation applies GMM to the US term structure data set of McCulloch and

Kwon (1993).6 Discarding data prior to the Treasury-Fed Accord, the estimation uses

monthly data from January 1952 though February 1991. The parameters are estimated

separately on two subsamples, January 1952 through October 1982 and November 1982

6 The program was written in OX, and run on a Dell Pentium 4.
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through February 1991. Inflation is the monthly percent change in the CPI over the same

period.

We estimate the nine parameters of our normalized system, (φ, ρ1, ρ2, θ1, θ2, σε, ση,

νε, and νη) using a total of 19 moment conditions. These moments are the variance and

autocovariances of the short rate at 1, 3, 12, and 24 months, the spread between the short

rate and yields at 3, 12, 60, and 120 months, the variance and the autocovariance of inflation

at 1, 3, 12, and 24 months, and the cross-correlations of the yields with the inflation rate

(short rate and 3, 13, 60 and 120 months). The widely separated autocovariances and

yield spreads maximize the amount of information derived from the estimation procedure

because interest rates show high correlation both among different maturities and with

past rates. The five conditions each for the short rate autocovariances and the mean yield

spreads (the spread between the long rate and the one-month rate) follow Backus and Zin

(1994).

The GMM estimation uses a constant weighting matrix, Ω. The yield-curve moment

conditions are represented as simple deviations whereas the autocovariance conditions and

the cross-covariances are represented as deviations of squared interest rates. Because

of this, choosing Ω to be the identity matrix heavily weights the yield-curve moments.

Indeed, the magnitudes prove so dissimilar that estimates produced in this way clearly

fit the yield curve well at the expense of the other moments. Yet Monte-Carlo studies

(Hayashi 2000, chapter 3) suggest that using a constant Ω (or a single iteration to produce

an Ω̂ based on the inverted sum of the squared deviations from the moment conditions),

often produces estimates with better small sample properties than those produced by the

multiple-iteration technique proposed by Hansen, Heaton, and Ogaki (1989).

Our solution was to choose Ω initially to be a diagonal matrix with the inverse of
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average squared sample moments. This placed each moment condition at a roughly equal

magnitude.

In addition, as with most highly parameterized term structure models, we need an

additional identifying restriction. Surprisingly, because of the model’s structure and the

many moments available for use, we need only one. We impose ση = σε = σ.

Estimates

Table 1 reports the output from the GMM estimation. The parameter estimates imply

a theoretical term structure and theoretical autocovariances for inflation and the short

rate. To continue the reverse engineering metaphor, the question is now comparability—

how closely does the reverse engineered term structure look like the original given by the

data?

An informal but informative answer comes from visually comparing the theoretical

prediction with the values given by the data. Figure 1 plots the actual and estimated term

structure (i.e. that implied by the model parameterization), expressed as spreads over

the one-month rate. Qualitatively, the model reproduces the term structure’s concave,

upward slope, though both the fit and the estimates differ across subsamples. For the

pre-82 period, the model matches 6 and 12 months well but seriously overpredicts the 5

year rate, coming in a bit low on the 10 year rate. This produces a yield curve with less

of a kink at one year than actually seen in the data. Furthermore, the predicted curve

actually slopes downward (slightly) between 5 and 10 years.

The model does better in the post-1982 sample, though it again comes in too high for

the 5-year rate and too low for the 10-year rate. Perhaps unsurprisingly, the model has a

bit of trouble matching the rather sharp kink in the actual yield curve at one year. As a

result, it predicts too high a value at 3 months and too low at 5 years.
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Figure 2 makes a similar comparison for the autocovariances of the short rate. Partic-

ularly for the post-1982 sample, the model has a difficult time matching the slow decline

of short rate autocovariances (as did Backus and Zin). It was this pattern that led Backus

and Zin, in an earlier paper, to consider fractionally differenced stochastic processes, which

can mimic such hyperbolic decay. As Backus and Zin point out, such a specification pro-

duces a mean yield curve that eventually slopes downward, something not observed at the

maturities used in their (and our) paper. The term structure often does slope downward

at maturities above 10 years, however, so such nonstationarity is not ruled out a priori

by the data. In our case, the numerical methods we used become unreliable with extreme

persistence, so we ruled out nonstationarity on computational grounds. The fit for the

later sample is noticeably better, in part because the autocovariances themselves show a

more geometric decline.

Along with both the term spreads and autocovariances, the model must also fit two

additional sets of restrictions involving inflation. Figure 3 compares the predicted and

actual autocovariances of inflation. (Cross-correlations are not plotted. Backus and Zin,

with a purely nominal model, do not use the inflation process.) The second-order autore-

gressive process we use has mixed results. In the earlier period, though the process mimics

the slow decline in autocovariances seen at lags 1 through 24, it misses on the variance

(lag 0). In the later period, the model matches well at lags 0, 12, and 24, but does less

well at lags 1 and 3. The large value on the second AR coefficient leads to a spiked pat-

tern reminiscent of negative autocorrelation (though here the correlations are all positive).

While somewhat strange looking, similar patterns appear if an AR(2) is fit directly to the

inflation data, so this seems a robust characterization of the process. The earlier period

shows a pattern of autocovariances that are significantly lower and smoother: as expected,
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the estimated inflation process differs greatly across samples.

A more formal test of the model’s fit is given by the J-statistic, the sample size times

the value of the objective function at the estimated values, distributed as χ2, with degrees

of freedom equal to the number of overidentifying restrictions (see Hamilton 1994, section

14.1). The model fails the J-test. Unlike the simpler Backus and Zin model, which also

fails, this model fails largely because of the additional cross-covariance moments of the yield

curve with inflation. (A J-test without these moments does better). Putting a small weight

on these moments allowed us to match the autocovariances of the short rate and the yield

curve more closely. There is also some evidence that fitting the short rate process made

it harder for the AR(2) process to fit the inflation process. In one sense, considering an

additional variable—inflation—provides a more rigorous test than any model that looks

only at interest rates, no matter how many latent factors considered. Not surprisingly,

getting both interest rates and inflation right is harder than getting interest rates alone

right.

Robustness Issues

The fit of our model must also be judged against alternatives. To this end we looked

at whether all parameters were necessary (in the extreme case reducing to a single-factor

model) and the effect of alternative identifying restrictions. We also consider the possibil-

ities of generalizing the model.

Table 2 reports the tests on removing parameters. The tests reject the one-factor

model. Clearly θ1 6= θ2 and vη 6= vε. Further tests reject a simpler characterization of

the time-series properties of the system. The inflation process is certainly more complex

than a simple AR(1) (ρ2 6= 0), and the same can be said for the real kernel process as well

(θ1 6= 0 and θ2 6= 0). Simpler versions are all resoundingly rejected.
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Other identification schemes provided generally similar results. Thus we don’t report

the results for ση = 1 and vη = 1. Some other restrictions, such as vη = vε or θ1 = θ2 did

not identify the system.

At this stage we do not nest our model in a more general model. It is in principle

possible (with additional identifying restrictions) to add a richer time series component

to inflation or the real kernel. Alternatively, a third factor might be added. Given the

additional assumptions needed to identify the richer models, and the complexity of the

resulting estimation system, we feel it more useful to gain a basic understanding of the

strengths and limits of the current model.

4. Implications and Applications

It might be tempting to interpret our results so far as estimating a more complicated

(two-factor) stochastic process. While such an exercise has some use, we think the model’s

implications for real rates and inflation are more interesting. Our ARMA(4,4) process is

heavily constrained by the imposed structure of our inflation model. If merely fitting the

term structure were our goal, a purely nominal model unconstrained by the inflation data

would do a better job. Simple curve fitting based on the unconstrained nominal model

is likely to result in a better fit of the nominal term structure with a more parsimonious

ARMA structure. In contrast to such curve fitting, our structural model has a natu-

ral interpretation, and an added benefit of providing most of the identifying restrictions

needed.

Our model allows a closer look at interest rate dynamics and real interest rates. The

dynamics implied by the estimated model show how real and nominal shocks interact to

produce the observed nominal term structure. The model’s explicit distinction between

real and nominal produces estimates of the mean real term structure and historical real
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rates.

Interest rate dynamics

One advantage of the reverse-engineering approach is that it gives an estimate of the

dynamics of the pricing kernel, and thus of the short-term interest rate. Figures 4 (pre-

1982) and 5 (post-1982) provide one view of these dynamics via a series of impulse response

functions for the two components of the short rate, the real rate, and inflation. These trace

out the estimated responses to a one-standard-deviation shock over 36 months.

Just as the inflation process differs across time periods, the response of inflation to

shocks differs as well. For the pre-1982 sample, the η shock has an immediate negative

impact on the inflation rate of 14 basis points; for ε, the impact is a positive 9 bp. The

difference in sign suggests there is some wisdom in calling η a “real” shock and ε an

“inflation” shock. The impulse responses for both ε and η decay quite slowly, still being

nearly one-half of their original value after 24 months.

For the post-1982 period, the one-standard-deviation shocks again have opposite signs,

but with a rather different impact on inflation : 55 basis points for η and 8 bp for ε. In

addition, the impulse response functions decay faster than they did in the earlier period,

though not, as it happens, monotonically.

The real rate, with an underlying ARMA structure, displays less interesting dynamics,

also illustrated in figures 4 and 5. A large contemporaneous shock emerges as the major

feature in either subsample. The 1,000 basis point effect (a full 10%) in the pre-1982

period looks suspiciously large, though the 500 basis point effect post-1982 is a bit more

reasonable. We simply don’t see frequent changes of that magnitude in the data. Possibly,

negative correlation between εt and ηt, not picked up by our model, may lead to shocks

that tend to offset one another. In both periods, the ε effect turns slightly negative at one
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month and then approaches zero. The impact of η drops effectively to zero immediately

after the instantaneous response.

The response of the nominal rate is of course a combination of the two effects, with

the effect on the real interest rate dominating, particularly in the immediate response.

Perhaps interestingly, the pattern, that of a large initial shock followed by overshooting,

matches that predicted by many limited participation models (such as Fuerst, 1992), where

a restrictive monetary policy shock increases interest rates today because people cannot

adjust their portfolios. Next period, when the adjustment takes place, the lower money

supply means prices fall, and the Fisher effect reduces real rates by the expected deflation.

Of course, we have not explicitly modeled these effects nor identified any monetary policy

shock, so this pattern can only be construed as suggestive. More broadly, however, the

results indicate that movements in short-term nominal rates are dominated by changes in

the underlying real rate.

One very clear result is that η and ε each contribute to both the inflation and the

real components of interest rates, so these cannot be considered independent. A shock

to inflation will also be a shock to real rates.7 In macroeconomic models, of course, it is

not surprising that underlying shocks have both real and nominal effects, but our results

underscore the danger of identifying “inflation” or “the real side” as independent factors

behind the term structure.

Real Rates

One straightforward application of the estimated model is an estimate of the real term

structure. This follows from using the techniques of section 2 on mt, the real kernel, and

effectively ignoring the ρ terms in equation (3). That is, we use the process for the real

7 Algebraically, of course, one could find shock values that produce a real effect with
no impact on inflation, but that calculation is unlikely to be informative.
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kernel,

− logmt = δ +
1

1− φL
(1 + θ1L)εt +

1
1− φL

(1 + θ2L)ηt

to price real bonds, using an appropriately reduced version of equation (8). For the mean

real yield spreads,

E(yn
t − y1

t ) =
σ2

ε

2
− σ2

ε

2n

n∑
j=1

B2
1,j−1 +

σ2
η

2
−
σ2

η

2n

n∑
j=1

B2
2,j−1.

Here we also do the recursion only on the real terms of A, which we denote as B.

n∑
j=1

B2
1,j−1 = [1]2

+[1 + (θ1 + φ)]2

+[1 + (θ1 + φ) + (θ1 + φ)φ]2

+ . . . .

(10)

Determining the mean real term structure then involves simply substituting estimated

parameter values into equation (10). Figure 6 plots the mean real term structure estimated

from the model and provides as a comparison the mean predicted nominal rates as well.

First note, as is expected, the real term structure is lower than the nominal, reflecting

the positive average inflation in both samples, 1951-1982 and 1982-1991. The difference

tends to widen with maturity, supporting the not surprising view that long bonds are

more vulnerable to inflation risk. During the early period, however, the difference does

decrease at the long end; we conjecture that the markets felt some sort of nominal anchor

existed—high inflation rates would not be permitted to continue, and thus longer bonds

had less of an inflation premium. For the early sample, however, the inflation premium is

reasonably large: 21 basis points at 12 months, 37 bp at 10 years.

The post-1982 sample shows a steeper real yield curve and much smaller inflation

premium. The 10-year 3-month real spread stands at 186 bp, compared with 62 in the
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earlier period. The inflation premium is quite small: at one year, the premium is 8 basis

points: at 10 years it has only increased to 10 bp.

Finally, the real term structure does indeed slope up: the slope of the nominal thus

reflects more than inflation fears. This is most noticeable after 1982 but exists even in the

earlier period. The most likely explanation for this real term premium is a risk premium.

Holding a 10-year bond, even a real one, for a year has risk because the next period’s price

is uncertain. This analysis of the real rate illustrates both the advantages and drawbacks of

the kernel approach: It has enough structure to obtain estimates of the real term premia,

but unlike an equilibrium model, it cannot give a fully satisfactory answer in terms of

consumption risk or liquidity differences.

5. Conclusions

Previous work on the term structure of interest rates has often made extreme as-

sumptions. This paper shows how the pricing kernel approach can be used to relax some

of those assumptions. By allowing inflation and the real economy to affect each other, it

generates results both for the term structure and the time path of interest rates. It thus

represents an advance on work that divorces inflation from the real economy, that ignores

inflation by working directly with nominal rates, or that specifies precise functional forms

for utility and money demand.

What does such a new approach buy us in terms of understanding the term structure?

For the average term structure, the estimated model confirms what should be an

intuitive result: both real and nominal factors contribute to the slope and curvature.

Inflationary expectations increase the slope and may increase or decrease the curvature,

but the real term structure slopes upward. Fitting the term structure, though, expresses

only the cross-sectional aspects of the model, which has time-series implications as well.
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An η shock initially pushes inflation down, and an ε shock pushes inflation up; both

push real rates higher, and the real effect has the dominant effect on short-term rates, at

least initially. Both underlying shocks to the economy affect nominal rates through “real”

and “nominal” channels. Economically, of course, this makes perfect sense, as an increase

in output will tend to decrease prices if money and velocity stay constant, and with sticky

wages a nominal shock can have real effects. Furthermore, the response to these shocks is

not always monotonic. The correlation between inflation and real rates depends heavily

on the lags considered.

In the end, there is no magical, simple relationship that explains the term structure.

We hope that our approach respects that complexity but at least partially untangles the

varied shocks and dynamics that determine interest rates.
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Table 1

Subsample 2-factor ARMA Parameter Estimates
variable estimate

1952-82 1982-91
φ 0.6544 0.9225

(0.0016) (0.0027)
ρ1 0.8163 0.0300

(0.0025) (0.0128)
ρ2 0.1510 0.2292

(0.0024) (0.0430)
θ1 -0.6802 -0.9499

(0.0022) (0.0021)
θ2 -0.6430 -0.9318

(0.0016) (0.0033)
vε -0.0096 0.0176

(0.0002) (0.0053)
vη 0.0129 0.0959

(0.0004) (0.072)
σε 0.1555 0.0473

(0.0084) (0.0016)
ση 0.1555 0.0473

(na) (na)
χ2(11)J 174.16 106.30
Prob < J 1.00 1.00
min value -0.4838 -4.204

Notes: N = 359 for the 1952-1981 subsample, and N = 111 for 1982-1991 subsample.
Standard errors of the estimates are in parentheses underneath the estimated coefficients.
Convergence using numerical derivatives was achieved for all specifications.
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Table 2

Tests of Parameter Reduction
Period 1 Period 2

restriction χ2 d.o.f. Pr < χ2 χ2 d.o.f. Pr< χ2

ρ2 = 0 3970.9 1 1.00 28.38 1.00 1.00
θ1 = 0 97599. 1 1.00 2.1x105 1.00 1.00
θ2 = 0 1.6x105 1 1.00 81824 1.00 1.00
ρ2, θ1, θ2 = 0 1.9x105 3 1.00 2.3x105 3 1.00
θ1 = θ2 1323.3 1 1.00 87.89 1.00 1.00
vη = vε 1448.6 1 1.00 59.47 1.00 1.00
vη = vε, θ1 = θ2 1457.0 2 1.00 136.52 2 1.00

Notes: N = 359 for the 1952-1981 subsample, and N = 111 for 1982-1991 subsample.
Tests for both periods based on the two factor estimates.
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