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A Unified Framework for Monetary Theory 
And Policy Analysis

by Ricardo Lagos and Randall Wright

Search-theoretic models of monetary exchange are based on explicit description of the frictions that make
money essential.  However, tractable versions usually have strong assumptions that make them ill-suited
for discussing some policy questions, especially those concerning changes in the money supply.  Hence
most policy analysis uses reduced-form models.  We propose a framework that attempts to bridge this
gap: it is based explicitly on microeconomic frictions, but allows for interesting macroeconomic policy
analyses.  At the same time, the model is analytically tractable and amenable to quantitative analysis.



\The matching models are without doubt ingenious and beau-
tiful. But it is quite hard to integrate them with the rest of
macroeconomic theory { not least because they jettison the basic
tool of our trade, competitive markets."

Kiyotaki and Moore (2001)

1 Introduction

This paper is an attempt to provide a uni¯cation, or at least to develop some

common ground, between micro and macro models of monetary exchange.

Why? First, existing macro models are all to some extent reduced-form

models. By this we simply mean they make assumptions, such as putting

money in the utility function or imposing cash-in-advance constraints, that

are presumably meant to stand in for some role for money that is not made

explicit but ought to be { say, that it helps overcome spatial, temporal,

or informational frictions. Second, attempts to provide micro foundations

for monetary economics using search theory, with explicit descriptions of

specialization, the pattern of meetings, the information structure, and so on,

typically need very strong assumptions for tractability. For example, there

are often extreme restrictions on how much money agents can hold, and this

makes the analyses of some policy issues di±cult at best.1

We have several goals. We want a framework that, like existing macro

models, allows one to analyze standard issues in monetary economics in both

a qualitative and quantitative fashion; an example is to determine the welfare
1In terms of the literature, the reduced form approach is vast, but examples include

Lucas and Stokey (1983, 1987), Cooley and Hansen (1989) and Christiano et al. (1997); see
Walsh (1998) for other references. We go into more detail below on the search literature,
but examples include Kiyotaki and Wright (1989, 1991), Shi (1995), Trejos and Wright
(1995), Kocherlakota (1998) and Wallace (2001).
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cost of in°ation. At the same time we want a model where the role for

money is explicit so that we can to address some issues that are studied more

naturally with search-based than reduced-form models; examples include, to

ask exactly what frictionsmake the use of money an equilibrium or an e±cient

arrangement, and to show how di®erent regimes lead to di®erent outcomes

(say, commodity versus ¯at money). Finally, we want the framework to be

tractable and capable of delivering clean analytic results, but at the same

time we want that it will be relatively easily and realistically calibrated.

There are of course previous attempts to provide search-based monetary

models without the severe restrictions on money holdings. Trejos and Wright

(1995) present a general version of their model where agents can hold any

m 2 R+ but cannot solve it, and resort to assuming m 2 f0; 1g. The

model with m 2 R+ was studied numerically by Molico (1999). Although his

¯ndings are interesting, unfortunately the framework is quite complicated.

Not many results are available, except those found by computation, and even

numerically the model is di±cult to analyze. And numerical methods are not

especially useful for looking at existence, multiplicity, dynamics, and a host

of other issues that are important in monetary economics. One of the main

problems with the model is the endogenous distribution of money holdings

across agents, F (m), is nondegenerate, and hence the model has a built-in

heterogeneity that is hard to handle analytically.

The approach pioneered by Shi (1997) gets around the problem by mak-

ing some creative assumptions to render F (m) degenerate. In our model

F (m) will also be degenerate, although the economic and technical details

of the model will di®er signi¯cantly. We will have a lot to say about the

comparison between our framework and various alternatives later. Here we
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simply mention that at the end of the day some but not all of our results will

look similar to previous search models, and some even look a lot like what

comes out of reduced form models { which is as it should be, since those

models are meant to be descriptive of what one sees in actual economies. At

the same time, it is clearly desirable to have solid micro foundations, and

making these explicit not only leads to new insights, it can also change the

quantitative answers to some basic economic issues, like the welfare cost of

in°ation.

The rest of the paper is organized as follows. Section 2 presents the basic

model, de¯nes equilibrium, gives the main results, and compares our frame-

work to the related literature. Section 3 presents extensions and a discussion

of monetary policy, including a fully calibrated version of the model. Section

4 concludes. Many technical results are contained in the Appendix.

2 The Basic Model

2.1 Environment

Time is discrete. There is a [0; 1] continuum of agents who live forever and

have discount factor ¯ 2 (0; 1). In the interest of integrating standard macro

and search models, we assume there are two types of commodities: general

and special goods. As in standard macro models, all agents consume and

produce general goods. The utility of consuming Q units of the general

good is U (Q) and the disutility of producing Q units is C (Q). Here agents

produce this good themselves, but one can recast things by letting them

supply labor h at disutility C(h), and have ¯rms convert this into general

goods via a standard production function (see Aruoba and Wright [2002]).
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It is important that either U or C is linear. We assume here C (Q) = Q, and

that U is C2 (twice continuously di®erentiable) with U 0 > 0 and U 00 · 0.

Also, U is either unbounded or at least satis¯es a condition in Lemma 6, and

U 0(X¤) = 1 for X ¤ 2 (0;1) with U(X¤) > X¤.

In contrast to general goods, each agent produces a subset and consumes

a subset of special commodities, as in search models. In particular, given

two agents i and j drawn at random there are four possible events. The

probability that both consume something the other can produce (a double

coincidence) is ±. The probability that i consumes something j produces

but not vice-versa (a single coincidence) is ¾. Symmetrically, the probability

that j consumes something i produces but not vice-versa is also ¾. And the

probability that neither wants anything the other can produce is 1¡ 2¾ ¡ ±,
where 2¾ · 1 ¡ ±. This notation captures several explicit speci¯cations

for specialization in the literature as special cases.2 In a single coincidence

meeting, if i wants what j produces we call i the buyer and j the seller.

Let u(q) be the utility of consumption and c(q) the disutility production

of any special good, where u and c are Cn with n > 2. We assume u(0) =

c(0) = 0, u0(q) > 0, c0(q) > 0, u00(q) < 0, c00(q) ¸ 0, and u(¹q) = c(¹q) for some

¹q > 0. We use q¤ to denote the e±cient quantity of special good production,

which solves u0(q¤) = c0(q¤); q¤ is what all agents would agree to ex ante

if they had some way of committing to or enforcing the agreement. Note

that we can always normalize c (q) = q, without loss in generality, as long
2For example, in Kiyotaki and Wright (1989) or Aiyagari and Wallace (1991) there are

N goods and N types, where type n produces good n and consumes good n +1 (mod N ).
If N > 2 we have ¾ = 1=N and ± = 0, while if N = 2 we have ± = 1=2 and ¾ = 0. In
Kiyotaki and Wright (1993), the event that i consumes what j produces is independent
of the event that j consumes what i produces, and each occurs with probability x. Then
± = x2 and ¾ = x(1 ¡ x).
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as we re-scale u(q); this merely amounts to measuring output in utils rather

than physical units. At one point we use a condition on the third derivative,

u000 · (u00)2=u0; a simple way to state this is to say that marginal utility is

log-concave { i.e., logu0 is concave.

General and special goods are nonstorable, but there is another object

called money that can be stored. Money, like goods, is perfectly divisible and

agents can hold any quantity m ¸ 0. Money has no intrinsic value but could

potentially be used in trade { although it is not necessary to use money; it

is generally possible, e.g., to barter special goods directly. One cannot trade

special for general goods, however, due to the following assumption: in each

period there are two sub-periods, day and night, and special goods are only

produced during the day while general goods are only produced at night.

Given these goods are nonstorable, the only feasible trades during the day

are barter in special goods or the exchange of special goods for money, and

the only feasible trades at night are barter in general goods or the exchange

of general goods for money.

Figure 1: Timing.

During the day agents participate in a bilateral matching process, as in

standard search theory. In this decentralized market there is a probability ®

of a meeting each period, each meeting is a random draw from the population,

and the terms of trade are determined by bargaining. At night there is
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a frictionless centralized market where one dollar buys Á units of general

goods { i.e., pg = 1=Á is the nominal price, and agents take it parametrically.

The timing is illustrated in Figure 1. All trade in the decentralized market

must be quid pro quo, either goods for goods or goods for money; there is

no credit, because the matching process is anonymous and hence there is no

punishment for reneging on debt (Kocherlakota [1998]; Wallace [2001, 2002]).

We could allow intertemporal trade in general goods, but in equilibrium it

will not happen, at least in the basic model with no intrinsic heterogeneity.3

2.2 Equilibrium

In this subsection we build gradually towards the de¯nition of equilibrium.

We begin by describing the value functions, taking as given the terms of trade

and the distribution of money. In general, the state variable for an individual

includes his own money holdings m and a vector of aggregate states s. At

this point we let s = (Á; F ), where Á is the value of money in the centralized

market and F is the distribution of money holdings in the decentralized

market { i.e., F ( ~m) is the measure of agents in this market holding m · ~m.

Necessarily F satis¯es
R
mdF (m) = M at every date, where M is the total

money stock that is ¯xed for now (but see below). The agent takes as given
3We could price a bond, say, but it will not trade since we cannot ¯nd one agent who

wants to save and another who wants to borrow at the same interest rate. In a generalized
version of the model agents may want to engage in intertemporal trade. However, one
could rule it out by assuming agents are anonymous in the centralized market. There is,
of course, nothing inconsistent with anonymity and centralized trading; indeed, there is a
long tradition of interpreting competitive markets as anonymous. Wallace (2002) discusses
this further, and o®ers Levine (1991) as an example of a model with centralized trading
among anonymous agents where money is essential. Finally, we want to mention that what
is important here is that there are two types of markets { centralized and decentralized
{ and not that there are di®erent goods: everything goes through if there are no general
goods and special goods are traded in both markets.
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a law of motion s+1 = ¨(s), but it will be determined in equilibrium.4

Let V (m; s) be the value function for an agent with m dollars in the

morning when he enters the decentralized market, and W (m; s) the value

function in the afternoon when he enters the centralized market, given s.

Let q (m; ~m; s) and d (m; ~m; s) be the quantity of goods and dollars that

change hands in a single coincidence meeting between a buyer with m and

a seller with ~m dollars. Let B(m; ~m; s) be the payo® for an agent with m

who meets an agent with ~m when there is a double coincidence of wants.

Bellman's equation is

V (m; s) = ®¾
Z

fu [q (m; ~m; s)] +W [m¡ d (m; ~m; s)]gdF ( ~m)

+®¾
Z

f¡c [q ( ~m;m; s)] +W [m+ d ( ~m;m; s)]gdF ( ~m) (1)

+®±
Z
B(m; ~m; s)dF ( ~m) + (1 ¡ 2®¾ ¡ ®±)W (m; s):

The ¯rst term is the expected payo® from a single coincidence meeting where

you buy q (m; ~m; s) and then go to the centralized market withm¡d (m; ~m; s)
dollars. Other terms have similar interpretations.

The value of entering the centralized market with m dollars is

W(m; s) = max
X;Y;m+1

fU (X) ¡ Y + ¯V (m+1; s+1)g

s:t: X = Y + Ám¡ Ám+1

where X is consumption and Y production of general goods, and m+1 is

money taken out of this market. We impose X ¸ 0 and m+1 ¸ 0, but we do
4The \trick" of putting Á in the state vector allows us to capture nonstationary equi-

libria while still using recursive methods; Du±e et al. (1994) use a similar approach in
an overlapping generations model. In any case, for much of this paper we focus on steady
states where Á (or some transformation, like ÁM ) is constant and the point is moot. For
now, we are not requiring anything to be stationary, but we omit the t subscript when
there is no risk of confusion; e.g., at t we write the current state as s and next period's
state as s+1.
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not impose Y ¸ 0. Rather, our approach is to allow any Y 2 R for now, and

then after ¯nding equilibrium we can impose conditions to rule out Y < 0.

Substituting for Y ,

W (m; s) = U(X¤) ¡X¤ + Ám+max
m+1

f¡Ám+1 + ¯V (m+1; s+1)g (2)

whereU 0 (X¤) = 1. This immediately implies the choicem+1 does not depend

on m. Moreover, it implies W is linear (a±ne) in m:5

W (m; s) = W (0; s) + Ám: (3)

We now consider the terms of trade in the decentralized market, which are

determined by bargaining. There are two bargaining situations to consider:

single coincidence and double coincidence meetings. In the case of a double

coincidence we adopt the symmetric Nash bargaining solution with the threat

point of an agent given by his continuation value W (m; s). Lemma 1 in the

Appendix proves that, regardless of the money holdings of the two agents,

this implies that in any double coincidence meeting the agents give each other

the e±cient quantity q¤ and no money changes hands. Thus, B(m; ~m; s) =

u(q¤)¡ c(q¤) +W (m; s).

Now consider bargaining in a single coincidence meeting when the buyer

has m and the seller ~m dollars. Here we use the generalized Nash solu-

tion where the buyer has bargaining power µ and threat points are given by
5Basically, it is the fact that utility over (X; Y ) is quasi-linear that rules out wealth

e®ects, which makes m+1 independent of m, and makes W linear, at least as long as we are
not at a corner solution. This is why we do not impose Y ¸ 0 for now. One could avoid
the issue entirely by assuming U(X) = X (utility is linear in X as well as Y ), or more
generally U (X) = ¹U (X) for X · X¤ and U(X) = ¹U(X¤) ¡ X¤ + X (it is asymtoptically
linear), since with these preferences Y ¸ 0 cannot bind. One can also simply say that
Y < 0 is ¯ne, and reinterpret the production of Y < 0 as the consumption of ¡Y > 0
(this works best when X and Y are di®erent goods). In any case, we will soon provide
conditions that guarantee Y > 0 in any equilibrium.
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continuation values. That is, (q; d) maximizes

[u (q) +W (m¡ d; s) ¡W (m; s)]µ [¡c (q) +W ( ~m+ d; s)¡W ( ~m; s)]1¡µ

subject to d · m. By virtue of (3), this simpli¯es to

max
q;d

[u (q) ¡ Ád]µ [¡c (q) + Ád]1¡µ (4)

subject to d · m. The constraint simply says you cannot spend more money

than you have. There are also two side conditions, u (q) ¸ Ád and c (q) · Ád,
but they never bind here.

The solution (q; d) to (4) does not depend on ~m, and depends on m only if

the constraint d · m binds. Also, it depends on s only through Á, and indeed

only through real balances z = Ám. We abuse notation slightly and write

q(m; ~m; s) = q(m) and d(m; ~m; s) = d(m) in what follows (the dependence on

Á is implicit). Lemma 2 in the Appendix proves that the bargaining solution

is

q =
½

bq(m) if m <m¤

q¤ if m ¸ m¤ and d =
½
m if m < m¤

m¤ if m ¸ m¤ (5)

where bq(m) solves the ¯rst order condition from (4), which for future reference

we write as

Ám =
µc(q)u0(q) + (1¡ µ)u(q)c0(q)
µu0(q) + (1¡ µ)c0(q) ´ z(q); (6)

and m¤ = z(q¤)=Á.

Hence, if real balances are at least Ám¤ the buyer gets q¤; otherwise he

spends all his money and gets bq(m), which as we soon will verify is less than

q¤. Since u and c are Cn the implicit function theorem implies that, for all

10



m <m¤, bq is Cn¡1 and from (6) we have bq0 = Á=z0(q). Inserting z0 explicitly
and simplifying,

bq0 = Á[µu0 + (1 ¡ µ)c0]2
u0c0[µu0 + (1¡ µ)c0] + µ(1¡ µ)(u¡ c)(u0c00 ¡ c0u00): (7)

Hence, bq 0 > 0 for all m <m¤. It is easy to check limm!m¤ bq(m) = q¤, and so

we conclude bq(m) < q¤ for all m <m¤, as seen in Figure 2.

Figure 2: Single-coincidence bargaining solution.

We now insert the bargaining outcomes together withW (m) into (1) and

rewrite it as

V (m; s) = max
m+1

fv (m; s) + Ám ¡ Ám+1 + ¯V (m+1;s+1)g (8)

where

v(m; s) = v0(s) + ®¾ fu [q (m)]¡ Ád (m)g (9)

is a bounded and continuous function and v0(s) is independent of m and

m+1.6 This not only gives us a convenient way to write Bellman's equation,
6In any equilibrium v(m; s) is bounded and continuous for the following reason. First,
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it allows us to establish that there exists a unique V (m; s) in the relevant

space of functions satisfying (8), even though this is a nonstandard dynamic

programming problem (because V is unbounded in m due to the linear term

Ám).

We give the argument here for the case where s is constant { which does

nothing to overcome the problem of unboundedness, but does simplify the

presentation { and relegate the more general case to Lemma 7 in the Ap-

pendix. Given s is constant, write V (m; s) = V̂ (m). Then consider the

space of functions V̂ : R+ ! R that can be written V̂ (m) = v̂(m) + Ám

for some bounded and continuous function v̂(m). For any two functions in

this space V̂1(m) = v̂1(m) + Ám and V̂2(m) = v̂2(m) + Ám, we can de¯ne°°°V̂1 ¡ V̂2
°°° = supm2R+ jv̂1 (m)¡ v̂2(m)j, and this constitutes a complete met-

ric space. One can show the right hand side of (8) de¯nes a contraction

mapping TV̂ on the space in question, and so there exists a unique solution

to V̂ = T V̂ .7

Given that it exists, it is evident from (8) and (9) that V is Cn¡1 with

respect to m except at m = m¤. For m > m¤, Vm = Á, since q0 = d0 = 0 in

this range. For m <m¤,

Vm = Á + ®¾ [u0 (q) bq0(m)¡ Á] = (1¡ ®¾)Á +®¾u0(q)Á=z0(q); (10)

Lemma 5 in the Appendix shows F is degenerate and Á+1 = ©(Á) for some well behaved
© in any equilibrium. Lemma 6 shows Á is bounded. Given this, the bargaining solution
implies v(m; s) is bounded and continuous. For the record, the term v0(s) is given by

v0(s) = ®¾
Z

fÁd ( ~m) ¡ c [q ( ~m)]g dF ( ~m) + ®±[u(q¤) ¡ c(q¤)] + U (X¤) ¡ X¤ :

7Operationally, the contraction generates the function v̂(m) and then we simply set
V̂ (m) = v̂(m)+Ám. Note that this is not the method usually used to deal with unbounded
returns (e.g., the method in Alvarez and Stokey [1998]).
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since bq 0 = Á=z0 and d0 = 1 in this range. Inserting z0 explicitly, we have

Vm = (1¡ ®¾)Á + ®¾Áu0[µu0 + (1 ¡ µ)c0]2
u0c0[µu0 + (1¡ µ)c0] + µ(1¡ µ)(u¡ c)(u0c00 ¡ c0u00): (11)

This implies that as m! m¤ from below,

Vm ! (1¡ ®¾)Á+ ®¾Á
1 + µ(1 ¡ µ)(u¡ c)(c00 ¡ u00)(u0)¡2 < Á: (12)

Hence, the slope of V with respect to m jumps discretely as we cross m¤,

which will important below.

The next thing to do is to check the concavity of V . To reduce notation,

at this point we normalize c(q) = q (with no loss of generality, since as

discussed above this just means we are measuring special good output in

utils). This reduces the algebra required to show that the derivative Vmm
takes the same sign as ¡ + (1 ¡ µ) [u0u000 ¡ (u00)2] for all m < m¤, where ¡ is

strictly negative but is otherwise of no concern. From this it is not possible

to sign Vmm in general, due to the presence of u000, but it does give us some

su±cient conditions for Vmm < 0. One such condition is µ ¼ 1. Another is

u0u000 · (u00)2, which follows if u0 is log-concave (given our normalization).

Hence, we have simple su±cient conditions to guarantee that V is strictly

concave in m for all m < m¤, given any F and Á.8

To summarize the discussion to this point, we ¯rst described the value

function in the decentralized market, V (m; s), in terms of W (m; s) and the

terms of trade. We then derived some properties of the value function in the
8To understand the issues, observe that Vmm = (q0)2u00 +u0q00 for all m < m¤. The ¯rst

term is negative but the second takes the sign of q 00, which may be positive. Intuitively,
q00 > 0 means that having more money gets you a lot better deal in bargaining. The
assumption µ = 1 implies q(m) = Ám (given our normalization), and hence Vmm < 0 for
sure. If µ < 1, however, q(m) is nonlinear and we need some condition such as log-concavity
to restrict the degree of nonlinearity.

13



Figure 3: Value function.

centralized market, includingW (m; s) =W (0; s)+Ám. This made it easy to

solve the bargaining problem for q(m) and d(m). This allowed us to simplify

Bellman's equation considerably, to establish existence and uniqueness of a

solution, and to give several properties of the V , including di®erentiability

and under certain assumptions strict concavity in m for all m < m¤. The

proof of existence and uniqueness for V was outlined assuming a steady state,

but the Appendix proves it even if Á and F vary over time.9

Given these results we can now solve the problem of an agent deciding

how much cash to take out of the centralized market: maxm+1f¡Ám+1 +

¯V (m+1; s+1)g. First, Lemma 3 in the Appendix proves Á ¸ ¯Á+1 in

any equilibrium by a simple arbitrage argument. This implies ¡Ám+1 +

¯V (m+1; s+1) is nonincreasing for m+1 > m¤+1. But recall from (12) that the

slope of V (m+1; s+1) jumps discretely asm+1 crossesm¤+1, as shown in Figure

3. From this it is apparent that any solution m+1 must be strictly less than
9This is important because we want to establish that under our assumptions any equi-

librium (and not only any stationary equilibrium) has certain features.
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m¤+1. This is good to know since now the bargaining solution says d = m and

q = bq(m) < q¤. Moreover, given that V is strictly concave for m+1 < m¤+1,

there exists a unique maximizer m+1. This is especially good to know since

then F is degenerate: m+1 =M for all agents in any equilibrium.10

The ¯rst order condition for m+1 is

¡Á + ¯V1(m+1; s+1) · 0; = 0 if m+1 > 0: (13)

An equilibrium can now be de¯ned as a value function V (m; s) satisfying

Bellman's equation, a solution to the bargaining problem given by d = m

and q = bq(m), and a bounded path for Á such that (13) holds at every date

with m =M . Implicit in this de¯nition is F , but it is degenerate. Of course,

there is always a nonmonetary equilibrium where Á = 0 at every date; in this

case decentralized trade shuts down, although the centralized markets are

still active. In what follows we focus on monetary equilibria, where Á > 0

and (13) holds with equality.

2.3 Results

We now reduce the equilibrium conditions to one equation in one unknown.

First insert Vm from (10) into (13) at equality to get

Á = ¯Á+1

·
1¡ ®¾ + ®¾u

0(q+1)
z0(q+1)

¸
:

Then insert Á = z(q)=M from (6) to get

z(q) = ¯z(q+1)
·
1 ¡®¾ + ®¾u

0(q+1)
z0(q+1)

¸
: (14)

10Although these results are clear from the ¯gure, they are proved rigorously in Lemmas
4 and 5 in the Appendix, where we note that we do note use the value function V (so that
we can use the results in proving the general existence of V ).
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This is a simple di®erence equation in q. A monetary equilibrium can now

be characterized as any path for q that stays in (0; q¤) and satis¯es (14).

Things simplify a lot in some cases. First, consider µ = 1 (take-it-or-

leave-it o®ers by buyers). In this case, (6) tells us z(q) = c(q) = q (given our

normalization) and then (14) reduces to

q = ¯q+1 [1¡ ®¾ + ®¾u0(q+1)] :

Second, regardless of µ, if we restrict attention to steady states where q+1 = q,

(14) becomes

1 = ¯
·
1 ¡ ®¾ +®¾ u

0(q)
z0(q)

¸
:

For convenience, we rearrange this as

e(q) = 1 +
1 ¡ ¯
®¾¯

; (15)

where e(q) = u0(q)=z0(q). From now on we focus on steady states, and

relegate dynamics to a companion paper (Lagos and Wright [2002]).

Consider ¯rst steady states with µ = 1, which means z(q) = q and (15) is

u0(q) = 1 +
1 ¡ ¯
®¾¯

: (16)

Since u0(q¤) < 1 + 1¡¯
®¾¯ , a monetary steady state qs 2 (0; q¤) exists i® u0(0) >

1 + 1¡¯
®¾¯ , and if it exists it is obviously unique. More generally, for any µ

a monetary steady state exists if e(0) > 1 + 1¡¯
®¾¯ , but we cannot be sure of

uniqueness since we do not know the sign of e0. However, we claim that if

u0 is log-concave then e0 < 0 and qs is unique. We also claim that e(q) is

increasing in µ; hence if it is unique then @qs=@µ > 0. It is also clear that

@qs=@® > 0, @qs=@¾ and @qs=@¯ > 0. For µ = 1, notice qs ! q¤ as ¯ ! 1;
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for µ < 1, however, q is bounded away from q¤ even in the limit as ¯ ! 1.

We return to this below.11

We summarize the main ¯ndings in a Proposition. The proof follows

directly from the discussion in the text, although two technical claims in the

previous paragraph need to be established: that e is increasing in µ, and

that e is decreasing in q for any µ if u0 is log-concave. This is done in the

Appendix.

Proposition 1 Any monetary equilibrium implies that 8t > 0, m = M with

probability 1 (F degenerate), d = m, and q = bq(m) < q¤. Given any µ > 0,

a steady state qs > 0 exists if e(0) > 1 + 1¡¯
®¾¯ . It is unique if µ ¼ 1 or u0 is

log-concave, in which case qs is increasing in ¯, ®, ¾ and µ. It converges to

q¤ as ¯ ! 1 i® µ = 1.

We close this subsection by returning to the issue of nonnegativity. Recall

that we have not imposed Y ¸ 0, but we can now give conditions to rule out

Y < 0 in equilibrium. To make the point clearly, assume the economy begins

at t = 0 in the second subperiod, with the centralized market. Ignoring

nonnegativity, we have shown X = X¤ and m+1 = M , and so an agent

endowed with m supplies Y (m) = X¤ + Á(M ¡ m). From (6), Á is an

increasing function of q and, since q < q¤, Á is bounded above by Á¤ =

[µc(q¤) + (1¡ µ)u(q¤)]=M . Hence, in the worse case scenario Á = Á¤, we have

Y (m) ¸ 0 if

m ·M +
X¤

Á¤
=M

·
1 +

X¤

µc(q¤) + (1 ¡ µ)u(q¤)

¸
: (17)

11In case it is not obvious, we also mention that the model displays classical neutrality:
since M has vanished from (14), the set of equilibrium q paths is independent of M and all
nominal variables are proportional to M . Real variables will not generally be independent
of the growth rate of M , however, as we will see in the next section.
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As long as (17) holds for all agents at t = 0, they all choose Y0 ¸ 0.

One can regard this as a restriction on the exogenous initial distribution

of money F0 { basically, it cannot be too disperse { or, for a given F0, a

restriction on preferences though X¤ and q¤. For t > 0, to guarantee Yt ¸ 0

we need (17) to hold for every agent entering the centralized market with

the endogenous m they brought in from decentralized trading. The binding

agent is the one with the greatest m, which is anyone who sold goods on the

decentralized market and now holds 2M dollars. Setting m = 2M in (17)

and simplifying, we get

X¤ ¸ µc(q¤) + (1 ¡ µ)u(q¤): (18)

This guarantees that in equilibrium Yt ¸ 0 for all t > 0.

2.4 Discussion

Trejos and Wright (1995) discuss a model where agents can hold any m 2 R+

and present a Bellman equation essentially identical to (1), except that since

there are no centralized markets, W (m) = ¯V (m). With no centralized

meetings the distribution F is not degenerate, and very little can be done

with the model. Hence, Trejos and Wright (1995) and also Shi (1995) studied

themodel under the restrictionm 2 f0; 1g. This keeps things tractable but is
obviously a severe restriction. Molico (1999) allowed agents to hold any m 2
R+ and studied the model numerically.12 Although computational results

can be useful, there is also something to be said for analytic tractability. For

one thing, if one has to resort to computation it is hard to say much about
12Other models that relax the restriction m 2 f0; 1g to a greater or lesser extent include

Green and Zhou (1997), Camera and Corbae (1999), Taber and Wallace (1999), Zhou
(1999) and Berentsen (2002).
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existence, uniqueness, and other general properties even for steady states, to

say nothing of dynamics.

The analysis in this paper is much simpler due to the presence of the

centralized market, which does several things. First, it yields the linearity of

W with respect to m, which simpli¯es Bellman's equation and the bargaining

solution considerably. Additionally, as all agents take the same m+1 out of

the centralized market F is degenerate. This comes to us at a cost: we miss

the way changes in parameters or policy variables might a®ect an endogenous

distribution and how this could a®ect other variables, including welfare. But

the advantage is that we can prove a lot of results in our framework, and it

is very easy to put to use both qualitatively and quantitatively.

There is a related approach due to Shi (1997), where there is also a

degenerate F but for a di®erent reason.13 Hismodel assumes the fundamental

decision-making unit is not an individual but a family with a continuum of

agents. Each household'smembers search in a standard decentralized market,

but at the end of each round they meet back at the homestead to share their

money. By the law of large numbers, each family has the same total money,

and it divides it evenly among its buyers for the next round. Hence, all

buyers in the decentralized market have the same m. The large-household

\trick" is a similar device to our assumption of a centralized market, at least

in the sense that both render F degenerate.

While both approaches are useful, it seems incumbent upon us to suggest

some relative merits for our \trick." First, some people view the in¯nite

family structure as unappealing for a variety of reasons. Whether or not one
13See also Shi (1998,1999), Rauch (2000), Head and Shi (2000), Berentsen and Rocheteau

(2000a, 2000b), Berentsen, Rocheteau and Shi (2001), Faig (2001), and Head and Kumar
(2001).
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agrees with this view, it seems good to have an alternative lest people think

that tractable monetary models with search-theoretic foundations require

in¯nite families. Second, there are some technical complications that arise in

family models because in¯nitesimal agents bargain over trades that bene¯t

larger decision-making units (Rauch [2000]; Berentsen and Rocheteau [2002]).

This is not the case here since individuals bargain for themselves. Hence, we

can use standard bargaining theory with impunity. Indeed, the linearity of

W (m) makes bargaining extremely simple here.

Third, there is the related but distinct point that individual incentive

conditions are not taken into account in family models: agents act not in

their own self interest, but in accordance with rules prescribed by the head

of the household. Every time an agent produces to acquire cash he su®ers

a cost, but in principle he could report back to the clan without cash and

claim he had no customers. This would save the cost with no implication for

his future payo®. For the family structure to survive, then, agents must act

in the interest of the household and not themselves. In our model, agents

produce for money not out of brotherly love, but because they want cash for

their own consumption.

Fourth, we simply ¯nd our model more transparent and easier to use { not

least because (to paraphrase Kiyoyaki and Moore from the epigram) it relies

on the basic tool of our trade, competitive markets. For many extensions and

applications one may want to introduce centralized trading anyway, perhaps a

centralized bond, capital, or labor market. In our model centralized markets

are already up and running and we do not need to add one to the in¯nite-

family structure. Still, having all this, we reiterate that large families and

centralized markets are both potentially useful modeling devices, and the
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choice may sometimes come down to tastes or to the particular application

at hand.14

Of course, we actually need more than centralized meetings to make F

degenerate: we also need quasi-linear preferences. Given a general utility

function for goods in the centralized market Û (X;Y ), agents will still try to

adjust their money holdings by producing or consuming di®erent quantities,

but only if Û = U(X) ¡ Y or Û = X ¡ C(Y ) will they necessarily all

adjust to m = M . Our preferences are special, but while it is easy to set

up the generalized version it does not entail much of a gain in tractability

over a model with no centralized meetings. Hence, here we prefer to pursue

a speci¯cation that, while special, is simple. It is an open question whether

the wealth e®ects we ignore are empirically important. Presumably, they will

be relatively important for some issues and not for others.

3 Applications and Extensions

3.1 In°ation

We begin this section by generalizing the model to allow the money supply

to grow over time, say M+1 = (1 + ¿)M . New money is injected as a lump-

sum transfer, or tax if ¿ < 0, that occurs after agents leave the centralized
14A generalization of these models may be worth considering, since they are all based on

somewhat special assumptions about the timing and nature of meetings. One can imagine a
general pattern of meetings over time { some in small groups, some in centralized markets,
some in familes. Pure bilateral matching and pure centralized markets are obviously
special cases, and so is the setting here where we alternate between these two pure cases
each period. We could in principle allow n periods of bilateral matching followed by a
centralized market or family gathering (our case is n = 1; pure bilateral matching is
n = 1). Alternatively, we could allow some large groups to meet every alternate period
but keep other individuals out of these meetings. With such generalizations F will not be
degenerate, but it may have a fairly simple structure.
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market. Bellman's equation becomes

V (m;Á) = max
m+1

©
v (m;Á) + Ám ¡ Ám+1 + ¯V

¡
m+1 + ¿M; Á+1

¢ª

where v is de¯ned in (9) and we write s = Á since F will still be degenerate.

In general, ¿ could vary with time, but if it is constant then it makes sense to

consider steady states where q and real balances z = ÁM are constant; that

is, where Á+1 = Á=(1+ ¿ ). As in the previous section, Á ¸ ¯Á+1 is necessary

for an equilibrium to exist, by Lemma 3. This implies ¿ ¸ ¯ ¡ 1.

Following the same procedure as before, we insert Vm and Á = z(q)=M

into Á = ¯Vm to get the generalized version of (14):

z(q)
M

= ¯
z(q+1)
M+1

·
1 ¡ ®¾ +®¾u

0(q+1)
z0(q+1)

¸
: (19)

Given M+1 = (1 + ¿ )M , with ¿ constant, if we focus on steady states things

simplify a lot. After some algebra, the generalized version of (15) is

e (q) = 1 +
1 ¡ ¯ + ¿
®¾¯

(20)

where again e(q) = u0(q)=z0(q). Assuming a unique monetary steady state

qs exists, which it will under the same conditions given in Proposition 1,

@qs=@¿ < 0.

From (20) it appears that all one needs to do to achieve the e±cient

outcome qs = q¤ as a steady state monetary equilibrium is to set ¿ = ¿¤ =

¯ ¡ 1 ¡ ®¾¯ [1 ¡ e (q¤)]. However, as we said above, the simple arbitrage

argument in Lemma 3 implies Á ¸ ¯Á+1 and this implies ¿ ¸ ¯ ¡ 1. Hence,

there is a bound on feasible policies: we cannot contract the money supply

any faster than Friedman's (1969) rule, which is to de°ate at the rate of time

preference, ¿F = ¯ ¡ 1. Any attempt to contract the money supply faster

than this and the monetary equilibrium will break down.
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If µ = 1 and we set ¿ = ¿F then from (20) the steady state is indeed

qs = q¤. If µ < 1, however, then at ¿ = ¿F we have qs < q¤. The Friedman

rule always maximizes qs, which is the optimal constrained policy, but it

achieves the e±cient outcome q¤ i® µ = 1. The reason is that in the model

there are two types of ine±ciencies, one due to ¯ and one to µ. To describe

the ¯rst e®ect, note that when you accept cash you get a claim to future

consumption, and because ¯ < 1 you are willing to produce less for cash than

the q¤ you would produce if you could turn it into immediate consumption

(recall qs ! q¤ as ¯ ! 1 when µ = 1). The Friedman rule simply generates

a rate of return on money due to de°ation that compensates for discounting.

The wedge due to ¯ < 1 is standard, and the only di®erence from, say, a

cash-in-advance model on this dimension is that here the frictions show up

explicitly: (20) makes it clear that for a given ¯ and ¿ the ine±ciency gets

worse as ®¾ gets smaller. The novel e®ect here is the wedge due to µ < 1.

One intuition for this is the notion of a hold-up problem. Think of an agent

who carries a dollar into next period as making an investment with cost Á.

When he spends the money he reaps all of the returns to his investment i®

µ = 1; otherwise the seller \steals" part of the surplus. Thus µ < 1 reduces

the incentive to invest, which lowers the demand for money and hence q.

Therefore µ < 1 implies qs < q¤ even at the Friedman rule.15

The wedge due to µ < 1 does not come up in the usual reduced-form

models, but it can be important. Consider the welfare cost of in°ation.

When µ = 1, welfare, as measured by the payo® of the representative agent
15Recall Hosios' (1990) general condition for e±ciency in search models, which bascially

says the bargaining outcome should split the gains from trade so as to compensate each
party for his contribution to the match-specī c surplus. Here the match-speci¯c surplus in
a single-coincidence meeting is all due to the buyer, since the bargaining solution depends
on his money holdings but not those of the seller. Hence, e±ciency requires µ = 1.
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Figure 4: Welfare e®ects of in°ation.

V , is maximized at the Friedman Rule ¿F and achieves the e±cient solution

V ¤ = ®(± + ¾) [u(q
¤) ¡ c(q¤)] + U(X ¤) ¡X ¤

1¡ ¯ :

See Figure 4 (drawn for the calibrated parameter values discussed below).

With µ = 1, just like in a typical reduced-form model, small deviations from

¿ = ¯¡1 have very small e®ects on welfare by the Envelope Theorem. When

µ < 1, ¿ = ¿ ¤ < ¿F would achieve V ¤ if it were feasible, but it is not. At the

constrained optimum the slope of V with respect to ¿ is steep, so a moderate

in°ation will have a much bigger welfare cost.

3.2 Calibration

Here we calibrate the model to quantify the e®ects identi¯ed above. While

we do not intend this to be the last word on calibrating this model, it seems

important to illustrate these e®ects can be sizable, and also that the model
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can easily be taken to the data. We use the utility function

u(q) =
(b+ q)1¡´ ¡ b1¡´

1 ¡ ´ ; (21)

where ´ > 0 and b 2 (0; 1). This generalizes the standard constant relative

risk aversion preferences by allowing b 6= 0, which forces u(0) = 0. It implies

relative risk aversion is given by ´q=(b + q), which is increasing in q, while

absolute risk aversion is given by ´=(b + q), which is decreasing in q. We

normalize c(q) = q so the e±cient solution is q¤ = 1 ¡ b.
Our base parameter values are chosen as follows. First, we set the period

to one week (unlike in some models, we can easily calibrate to any frequency).

This means setting ¯ = (1 +r)¡1=52 where r is an estimate of the annual real

interest rate, which we take to be 4%. We choose the base value of ¿ to

generate an annual in°ation rate of 4%. In terms of the arrival rates, we

normalize ® = 1 since it is only the products ®± and ®¾ that matter. We

set ± = 0 since direct barter as relatively rare in modern economies, but

this does not matter at all for the results. We then set ¾ to match velocity.

If we take M to be the monetary base, the weekly velocity with respect to

consumption (nondurables and services) was on average 0:2 for the period

1980-2000. This implies ¾ = 0:1.16

The model predicts all sales in the decentralized market have a markup

(price over marginal cost) equal to ¹ = ÁM=q. Numerically, this markup

depends on µ as well as the preference parameters b and ´. We calibrate µ

and b so that in the benchmark steady state equilibrium the model generates

a markup of ¹ = 1:17 (as in Rotemberg and Woodford [1995]) and relative
16It would be relatively easy to endogenize ® through a search intensity decision or ¾

through a specialization decision, and thereby have velocity respond to policy or other
shocks; we leave this for future work.
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risk aversion for consumption equal to 1 (to facilitate comparison with some

well-known in°ation studies such as Cooley and Hansen [1989]). This leaves

´ as a free parameter; we take as a benchmark ´ = 5, but we tried other

values and, as we report below, the results were not very sensitive to this

choice. Table 1 summarizes these parameter values.

® ± ¾ µ ´ b ¯ ¿
1:0 0:0 0:1 0:828 5:0 0:773 (1:04)¡1=52 (1:04)1=52

Table 1: Baseline calibration.

It is easy to solve (20) numerically for the steady state as a function of ¿ ,

qs = qs(¿). We then compute the welfare cost of in°ation two ways. First,

we simply consider the percent reduction in q from the value that would arise

under the Friedman rule: w1 =
£
qs(¿F )¡ qs(¿)

¤
=qs(¿). This captures how

much in°ation a®ects the value of money, or the amount of special goods

one can buy with one's money. However, this measure does not capture the

economic intuition behind Figure 4, since it does not incorporate the idea

that the utility function can be steep at the constrained optimal policy ¿F .

Hence, we also ask how much consumption agents would be willing to give

up to change policy from ¿ to the Friedman rule.

To be more precise, notice that in equilibrium for any ¿ we have

(1¡ ¯)V = U (x¤)¡ x¤ + ®¾ fu[qs(¿)] ¡ qs(¿ )g : (22)

Suppose we run the Friedman rule but reduce consumption and production

of general goods in the centralized market by a factor w2; then

(1¡ ¯)V = U [x¤(1 ¡ w2)] ¡ x¤(1 ¡ w2) +®¾
©
u[qs(¿F)] ¡ qs(¿F )

ª
: (23)
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Our second welfare measure is the value of w2 that equates the right hand

sides of (22) and (23). To calculate this we use U(x) = u(x) { i.e. the same

functional form for general and special goods. The measure w2 captures the

idea that agents are willing to give up a bigger fraction of consumption when

they are close to than when they are far from the e±cient level.

Figure 5 shows the welfare measures w1 and w2 as functions of the annual

in°ation rate ¼, where ¼ ranges from the Friedman rule to 50%. It also shows

the corresponding measures ~w1 and ~w2 that one would get if one ignored the

holdup problem by setting ¹ = 1.17 Notice ~wi < wi, for i = 1;2, but the

di®erence is much bigger for the w2 measures. A key observation here is that

not only do we have w2 > ~w2, but also w2 is steep near the Friedman rule,

due to the envelope theorem as discussed above. Hence, w2 will be especially

large relative to ~w2 at fairly low to moderate in°ation rates.

Table 2 reports the actual numbers. Notice that even a constant price

policy ¼ = 0 implies a sizable drop in q of w1 = 0:79% from the q implied

by the Friedman rule. This is equivalent to a reduction in general good

production and consumption of w2 = 1:44%. The corresponding numbers

when we ignore the holdup problem by setting ¹ = 1 are ~w1 = 0:75% and

~w2 = 0:23%. When we get as high as 10% in°ation we ¯nd that the drop

in q is w1 = 2:72% and this is equivalent to a reduction in general good

consumption of w2 = 2:73%. The corresponding numbers when we ignore

the holdup problem are ~w1 = 2:58% and ~w2 = 0:80%. The general conclusion

is clear: the distortion due to µ < 1 makes a big di®erence, especially at

relatively low in°ation rates and especially for the measure w2.
17To obtain ~wi , the model was recalibrated so that ¹ and relative risk aversion are both

1 at the benchmark steady state. The implied parameter values are µ = 1 and b = :798.
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Figure 5: Welfare cost for baseline calibration.

To put this into perspective, consider the welfare costs of in°ation Lucas

(2000) calculates in a reduced form model. He ¯nds that a drop in in°ation

from 10% to 0% is worth slightly less than 1% of income (the exact number

depending on some details). Here, a drop in in°ation from 10% to 0% is worth

2:32% of general goods consumption. If we do the same calculation ignoring

the holdup problem by setting µ = 1, a 10% in°ation is worth only 0:76%

of general goods consumption, consistent with the Lucas estimate. Other

studies ¯nd results about the same as those in Lucas, so we conclude that

our results are due mainly to the distortion due to the bargaining wedge.18

18In Cooley and Hansen's (1989) cash-in-advance model the welfare cost of a 10% in-
°ation relative to the Friedman rule is 0:152% of consumption when the cash-in-advance
constraint is monthly, and 0:52% if the constraint is quarterly. In Cooley and Hansen's
(1991) model with cash and credit goods, the result is 0:27%, and by adding distorting
capital and labor taxes they get it up to 0:68%. Gomme (1993) ¯nds even lower numbers
in an endogenous growth model. In a cash-in-advance model, Wu and Zhang (2000) argue
that the welfare cost of in°ation is larger if one introduces monopolistic competition, and
also give some additional references.
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¼
(% annual in°ation)

w2 ~w2 w1 ~w1

-3.85 0 0 0 0
0 1.44 0.23 0.79 0.75
5 2.18 0.52 1.78 1.68
10 2.73 0.80 2.72 2.58
15 3.18 1.06 3.63 3.45
20 3.57 1.31 4.50 4.29
25 3.92 1.54 5.35 5.10
30 4.23 1.77 6.17 5.88
35 4.52 1.99 6.96 6.64
40 4.79 2.19 7.73 7.37
45 5.05 2.39 8.47 8.09
50 5.28 2.58 9.20 8.78

Table 2: The welfare cost of in°ation.

One would like to know how robust our results are to alternative calibra-

tions. In terms of the free parameter ´, we tried values of 0:5, 10 and 20 and

the results were not very di®erent: at ¼ = 10%, the results are w2 = 2:78%,

2:70% and 2:69% (for these alternative values of ´ we recalibrated b and µ to

keep ¹ at 1:17 and risk aversion at 1). We also considered changing the target

level of ¹ and risk aversion. Table 3 reports w2 for a 10% in°ation, where in

each case we kept ´ = 5 and recalibrated b and µ to generate each (¹;RRA)

pair. Naturally, w2 is larger when we assume a bigger markup ¹, since this

exacerbates the holdup problem. Also, reducing risk aversion increases w2,

since this makes q more sensitive to ¼. But the basic result remains that we

are ¯nding sizable welfare e®ects.

As an additional robustness check, we considered the following alternative

calibration procedure. Rather than setting µ to match the markup ¹, we

tried setting µ = 1=2 in the interest of symmetry. Given this, we then chose

b to match the markup. This leaves ´, which we set to ´ = 5 (the same
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¹ n RRA 0.5 1.0 1.5 2.0
1.0 1.58 0.80 0.53 0.40
1.17 4.75 2.73 2.09 1.75
1.3 6.37 3.30 2.51 2.10
1.4 7.49 3.65 2.73 2.29

Table 3: Sensitivity analysis.

benchmark as in the previous procedure). Calibrating to ¹ = 1:17, we ¯nd

that w2 = 2:97% for 0% in°ation; while w2 = 6:01% for 10% in°ation. These

numbers are bigger than in our base case, but mainly due to the fact that

the implied risk aversion is low for these parameters, which as we said above

makes q more sensitive to ¼. Hence, we conclude that while the exact results

depend somewhat on the exact parameterization, the essential ¯nding is that

the model can generate large welfare e®ects from in°ation.

3.3 Uncertainty

So far we have dealt with deterministic environments, and shown that the

constraint d · m is always binding. We now show that with stochastic

shocks the constraint does not have to bind with probability 1, which could

be important in some applications since it makes velocity vary. We begin with

match-speci¯c uncertainty: when two agents meet they draw " = ("b; "s) from

H ("), independently across meetings, implying utility and production cost

in that meeting are "bu(q) and "sq. For simplicity, we set c(q) = q, µ = 1,

and ± = 0 in this section, mainly to reduce the notation.

The bargaining solution generalizes (5),

q =
½ bq(m; ") if m <m¤(")
q¤ (") if m ¸ m¤(") and d =

½
m if m < m¤(")
m¤(") if m ¸ m¤(")

where bq(m; ") = Ám="s, u0[q¤(")] = "s="b, and m¤(") = "sq¤ (") =Á (these are
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simple because µ = 1 here). For a given "s, buyers with high realizations

of "b will spend all their cash but those with low "b may not. Let C =

f"jq¤ (") > Ám="sg be the set of realizations such that d = m. Bellman's

equation is still given by (8) but now

v (m; s) = ®¾
Z

f"bu[q(m; ")] ¡ Ád(m; ")g dH(") + U(X ¤)¡X ¤

Since vmm < 0, V is strictly concave and F is degenerate, as in the

deterministic case. Substituting Vm into the ¯rst order condition Á = ¯Vm,

after rearranging we get
Z

C

·µ
"b
"s

¶
u0

µ
MÁ+1

"s

¶
¡ 1

¸
dH (") =

Á¡ ¯Á+1

®¾¯Á+1
: (24)

If u0(0) is big, there is a unique monetary steady state Ás > 0, and from

this q = q (M; ") and d = d (M; ") are obtained from the bargaining solution.

Clearly d · m must bind with positive probability, since otherwise (24) could

not hold. However, it is an easy exercise to work out examples where it binds

with probability less than 1.19

We now return to "b = "s = 1 and consider uncertainty in M . We ¯rst

consider random transfers across agents: before the start of trade, an agent
19Rather than interpreting " as match-speci¯c, the same results hold if it is an i.i.d.

aggregate shock. Now suppose " is an aggregate shock with conditional distribution
H ("+1j"). Then Bellman's equation satis¯es a version of (8) where

v (m; ") = ®¾ f"bu [q (m; ")] ¡ Ád (m; ")g + U (X¤) ¡ X¤:

Substituting Vm into Á = ¯Vm, we get

Á (") = ¯
Z

Á ("+1)
µ

1 + I ("+1) ®¾
½

"+1;b

"+1;s
u0

·
Á ("+1)M

"+1;s

¸
¡ 1

¾¶
dH("+1j")

where I(") is an indicator function that equals 1 if " 2 C and 0 otherwise. In general this
is a functional equation in Á(¢). In the i.i.d. case the right hand side is independent of ",
so Á(") is constant and things are the same as the match-speci¯c case.
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who brougt m to the decentralized market gets m + ½ dollars, where ½ has

distribution H(½) with E½ = 0. Bellman's equation is still given by (8), but

now

v (m; s) = U (X¤) ¡X¤ + ®¾
Z

fu[q (m+ ½)] ¡ Ád (m+ ½)gdH (½):

Again, vmm < 0 and F is degenerate. Substituting Vm into Á = ¯Vm now

yields

½̂Z

½

©
u0[(M + ½) Á+1] ¡ 1

ª
dH(½) =

Á ¡ ¯Á+1

®¾¯Á+1
: (25)

where ½̂ = q¤=Á+1 ¡ M is the minimum transfer that makes the constraint

slack. If u0(0) is big there exists a unique monetary steady state Ás.

To analyze risk, consider a family of distributionsH (½;§) where §2 > §1

implies H (½;§2) is a mean preserving spread of H (½;§1); that is, ¥ (~½;§) =
R e½
½ H2 (½;§) d½ ¸ 0 for any e½ with equality at e½ = ¹½. Notice H2(½;§) =

H2 (½;§) = 0. Then @Ás=@§ is equal in sign to20

ª =

½̂(Á)Z

½

fu0[(M + ½)Á] ¡ 1g dH2(½;§)

= [fu0[(M + ½) Á] ¡ 1gH2(½;§)]
½̂
½ ¡

½̂(Á)Z

½

Áu00[(M + ½)Á]H2(½;§)d½

= ¡Áu00 (q¤)¥ (½̂;§)+

½̂(Á)Z

½

Á2u000[(M + ½)Á]¥ (½;§) d½:

20The second line follows if one integrates by parts. The last line follows as soon as one
notices that the ¯rst term in the second line vanishes, because u0 = 1 at ½̂ and H2(½; §) = 0,
and then integrates by parts again.
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The ¯rst term is positive but the second depends on u000; as long as u000 ¸ 0,

we have ª > 0 and more risk increases the value of money.

The e®ect of § on Ás is due to a precautionary demand for money: given

u000 ¸ 0 an increase in risk makes agents want to hold more cash, which

raises its value. However, it can be shown that an increase in risk unam-

biguously reduces welfare. This contrasts with some other models, where the

distribution of money holdings F is nondegenerate in equilibrium, and ran-

dom transfers may be welfare improving (Molico [1999]; Berentsen [2002]).

The reason is that in those models random transfers can make the distribu-

tion of real balances less unequal. Here, the distribution of real balances is

degenerate in equilibrium, so random transfers cannot help.

For our ¯nal experiment we let the growth rate of M be random with

distribution H (¿+1j¿ ). Bellman's equation now satis¯es a version of (8)

with

v (m; ¿ ) = U (X¤) ¡X¤ + ®¾ fu [q (m)] ¡ Ád (m)g :

Again F is degenerate, and the usual procedure yields

Á = ¯
Z

Cc

Á+1dH (¿+1j¿ ) + ¯
Z

C

Á+1
£
®¾u0(Á+1m+1) + 1 ¡ ®¾

¤
dH (¿+1j¿)

where C = f¿ j (m+ ¿M ) Á < q¤g. If we focus on stationary equilibrium, we

can write

z (¿ ) = ¯
Z

Cc

z(¿+1)dH(¿+1 j¿)
1+¿+1

+ ¯
Z

C

f®¾u0 [z(¿+1)]+1¡®¾gz(¿+1)dH(¿+1 j¿)
1+¿+1

(26)

where z(¿) is real balances in state ¿.
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This is a functional equation in z (¢). If shocks are i.i.d., z (¿ ) is constant

and the constraint binds with probability 1; in this case z solves

u0 (z) = 1 +
³¡1 ¡ ¯
¯®¾

where ³ =
R
(1 + ¿ )¡1 dH (¿). When ¿ is persistent the in°ation fore-

cast depends on ¿ and so does z. Suppose ¿ 2 f¿1; ¿ 2g, with ¿ 1 > ¿2,

pr (¿ = ¿ ij¿ i) = pi, pr (¿ = ¿ 1j¿2) = s2 and pr (¿ = ¿2j¿1) = s1 where p1 > s2

(persistence). We write (26) as two equations in (z1; z2), and look for a solu-

tion (z¤1; z¤2) such that z¤i < q¤. These equations, shown in Figure 6, can be

rearranged as

z1 = z1 (z2) =
h
p1
s2

¡ ¯(1¡®¾)(p1p2¡s1s2)
s2(1+¿2)

i
z2 ¡ ¯®¾(p1p2¡s1s2)

s2(1+¿2)
u0 (z2) z2

z2 = z2 (z1) =
h
p2
s1

¡ ¯(1¡®¾)(p1p2¡s1s2)
s1(1+¿1)

i
z1 ¡ ¯®¾(p1p2¡s1s2)

s1(1+¿1)
u0 (z1) z1:

Figure 6: Equilibrium with random ¿ .

Notice zi (0) = 0 and lim
z!1
zi (z) = 1. It may be shown that z0i > 0 as

long as ¡u00 (z) z=u0 (z) ¸ 1. Let zi = zi (zi) be the point where the zi(¢)
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function crosses the 45o line (see the Figure), given by the solutions to

1 +®¾ [u0 (z2) ¡ 1] =
(1 + ¿ 1) (p2 ¡ s1)
¯ (p1p2 ¡ s1s2)

1 +®¾ [u0 (z1) ¡ 1] = (1 + ¿ 2) (p2 ¡ s1)
¯ (p1p2 ¡ s1s2)

:

These imply z2 < z1 if ¿ 1 > ¿ 2, and given z0i > 0 this implies z¤1 < z¤2.

Hence, when the shocks to the money supply are persistent real balances are

smaller in periods of high in°ation, simply because in these periods beliefs

about future in°ation are higher.21 While it may be interesting to purse

these models with uncertainty, qualitatively or quantitatively, we leave this

to future work.

4 Conclusion

This paper has presented a framework based on the explicit frictions that

make money essential in the search-theoretic literature, but without the ex-

treme restrictions usually made in those models about individuals' money

holdings. The key innovation is that agents sometimes interact in decen-

tralized meetings and sometimes in a centralized market. Although this is

obviously not the most general case, we concentrated on the situation where

these two types of meetings occur one right after the other. In this case, if

we assume agents have quasi-linear preferences over the good traded in the

centralized market, the distribution of money holdings will be degenerate in

equilibrium. This makes the model very tractable.

We characterized equilibria and showed how to use the model to study
21One detail remains: recall that the equilibrium was constructed conjecturing z¤

i < q¤.
Since z¤

i < z1, for the conjecture to be correct it is su±cient to ensure z1 · q¤, which
holds i® (1 + ¿ 2) (p1 ¡ s2) ¸ ¯ (p1p2 ¡ s1s2).
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some policy issues. The model displays classical neutrality, although in°ation

matters. The Friedman rule is optimal, although for values of the bargaining

power parameter below 1 this policy does not achieve the ¯rst best. This

has implications for the welfare cost of in°ation, as we discussed in detail

in a calibrated example. We also sketched how to extend the basic model

to allow uncertainty in real and monetary variables. We think all of this

constitutes progress in terms of bringing micro and macro economic models

of monetary economics closer together. We also think that we have only

scratched the surface, and much more could be done with the framework in

terms of applications and extensions.
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A Appendix

In this Appendix we ¯rst verify that the bargaining solutions are as claimed in

the text. We then use these results to derive, without using value function V ,

certain properties any equilibrium must satisfy. We then use these properties

to establish the existence and uniqueness of V . Finally, we provide some

details for the proof of Proposition 1.

Lemma 1 In a double coincidence meeting each agent produces q¤ and no

money changes hands.

Proof. The symmetric Nash problem is

max
q1 ;q2 ;¢

[u (q1) ¡ c (q2) ¡ Á¢] [u (q2) ¡ c (q1) + Á¢]

subject to ¡m2 · ¢ · m1, where q1 and q2 denote the quantities consumed

by agents 1 and 2 and ¢ is the amount of money 1 pays 2. There is a unique

solution, characterized by the ¯rst order conditions

u0 (q1) [u (q2) ¡ c (q1) + Á¢] = c0 (q1) [u (q1) ¡ c (q2) ¡ Á¢]

c0 (q2) [u (q2) ¡ c (q1) + Á¢] = u0 (q2) [u (q1) ¡ c (q2) ¡ Á¢]

u (q1)¡ u (q2) + c (q1) ¡ c (q2) ¡ 2Á¢ = (2=Á)( 1̧¡¸2)
f[u(q1)¡c(q2)¡Á¢][u(q2)¡c(q1)+Á¢]g¡1=2

where ¸i is the multiplier on agent i's cash constraint. It is easy to see that

q1 = q2 = q¤ and ¢ = ¸1 = ¸2 = 0 solves these conditions.

Lemma 2 In a single coincidence meeting the bargaining solution is given

by (5).
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Proof. The necessary and su±cient conditions for (4) are

µ [Ád¡ c (q)]u0 (q) = (1¡ µ) [u (q) ¡ Ád] c0 (q) (27)

µ [Ád ¡ c (q)]Á = (1¡ µ) [u (q) ¡ Ád]Á (28)

¡¸ [u (q)¡ Ád]1¡µ [Ád¡ c (q)]µ

where ¸ is the Lagrange multiplier on d · m. There are two possible cases:

If the constraint does not bind, then ¸ = 0, q = q¤ and d = m¤. If the

constraint binds then q is given by (27) with d = m, which is (6).

We now present some arbitrage-style arguments to establish that any

equilibrium must satisfy certain conditions. These arguments do not use any

properties of V or F .

Lemma 3 In any equilibrium, ¯Át+1 · Át for all t.

Proof. First, note that lifetime utility is ¯nite in any equilibrium. Now

suppose by way of contradiction that ¯Át+1 > Át at some t. In this case, an

agent could raise his production of Yt by dY and sell it for dY=Á dollars, then

use the money at t+1 to reduce Yt+1 by dY=Át+1 without changing anything

else in his lifetime. Since utility is linear in Y , the net gain from this is

dY (¡1 + ¯Át+1=Át) > 0. Hence ¯Át+1 > Át cannot hold in equilibrium.

Lemma 4 In any equilibrium, mt+1 < m¤t+1 for all t and for all agents.

Proof. Suppose mt+1 > m¤t+1 for some t and some agent. At t he can

change Yt by dY < 0 and carry dmt+1 = dY=Át fewer dollars into t + 1.

Given mt+1 >m¤
t+1, for small dY , the bargaining solution says this does not

a®ect his payo® in the decentralized market. Hence, he can increase Yt+1 by
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dYt+1 = ¡dY Át+1=Át and not change anything else in his lifetime, for a net

utility gain of dY (1¡¯Át+1=Át) > 0 by Lemma 3. This proves mt+1 · m¤t+1.

To establish the strict inequality, assume mt+1 =m¤
t+1. Again change Yt

by dY < 0 and carry dmt+1 = dY=Át fewer dollars into t+ 1. If he buys in

the decentralized market next period he gets a smaller q but the continuation

value is the same from then on (he still spends all his money). If he is not

a buyer then he can increase Yt+1 by dYt+1 = ¡dY Át+1=Át and not change

anything else in his lifetime. The net expected utility gain from this is

D = ¡dY + ¯
£
®¾u0(qt+1)bq0(mt+1) + (1 ¡®¾)Át+1

¤
dY=Át

= ¡dY (Át ¡ ¯Át+1)=Át + ¯®¾
£
u0(qt+1)bq 0(mt+1) ¡ Át+1

¤
dY=Át:

The ¯rst term on the right hand side is positive by Lemma 3, and the second

is positive for small dY because then mt+1 is near m¤t+1 and this implies

bq0(mt+1) < Át+1=u0(qt+1) from (7).

Lemma 5 If µ ¼ 1 or u0 is log concave then F is degenerate in any monetary

equilibrium: all agents havemt+1 = M. Given F is degenerate, Át = G
¡
Át+1

¢

for all t where G is a time-invariant continuous function.

Proof. Consider the following sequence problem: given any path fÁt; Ftg
and m0,

max
fmt+1g1t=0

1X

t=0

¯t [v (mt; Át; Ft) + Át (mt ¡mt+1)]

where v is de¯ned in (9) (which does not use V and is de¯ned in terms date

t variables only). We know v is Cn¡1; thus, if a solution exists it satis¯es the

necessary conditions

¯v1
¡
mt+1; Át+1; Ft+1

¢
+ ¯Át+1 ¡Át · 0, = 0 if mt+1 > 0: (29)
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We have v1(m;Á; F ) = ®¾ [u0(q)bq 0(m) ¡ Á], since we know m < m¤, where

bq0(m) is given in (7).

In any (monetary) equilibrium, at least one agent must choose mt+1 > 0,

and for this agent

¯v1
¡
mt+1; Át+1; Ft+1

¢
+ ¯Át+1 ¡ Át = 0: (30)

A quick calculation veri¯es that if µ ¼ 1 or u0 is log concave then v11 < 0,

which implies (30) has a unique solution: all agents choose the samemt+1 =

M . Hence Ft+1 is degenerate in any monetary equilibrium. Finally, (30)

implies Át = G
¡
Át+1

¢
, where G is continuous because v1 is.

We have established F degenerate in any equilibrium, without using dy-

namic programming. This is a step towards constucting a simple proof that

V exists. However, at this point an issue arises: although we know in any

equilibrium that Át = G
¡
Át+1

¢
, for dynamic programming purposes we would

like to know Át+1 = © (Át), and G may not be invertible. Our strategy is to

restrict attention to equilibria where Át+1 = © (Át) and © is continuous. Ob-

viously this includes all steady state equilibria, all possible equilibria in the

case where G is invertible, and many other dynamic equilibria, but it does

not include all possibilities. First note that any equilibrium involves selecting

an initial price Á0, or equivalently q0 since we can invert Á0 = Á(q0) by (6),

and then selecting future values from the correspondence Át+1 = G¡1(Át).

We impose only that the selection Át+1 from G¡1(Át) cannot vary with time

or the value of Át.

That is, while the value Át+1 obviously varies with Át, the rule for choosing

which branch of G¡1 from which to select Át+1 is assumed to be constant. We

know that this is possible for a large class of dynamic equilibria; e.g., one can

always use the rule \select the lowest branch of G¡1" and construct equilibria
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where Át ! 0 from any initial Á0 in some interval (0; ¹Á0). While we may not

pick up all possible equilibria given our restriction, we pick up a lot. And

we emphasize that the purpose of this restriction is limited: we already know

that ¯Át+1 · Át for all t and that F is degenerate in any equilibrium; all we

are doing here is trying to guarantee Át+1 = © (Át) where © is continuous in

order to prove the existence of the value function V in order to use dynamic

programming (and for steady states, there is no problem).

In any case, even given Át+1 = © (Át) where © is continuous, we still need

to bound Á. We do this with M constant, but the arguments are basically

the same when M is varying over time if we work with real balances.

Lemma 6 Assume supU(X) > V ´ u(q¤)+U(X¤)
1¡¯ . Then in any equilibrium

Á is bounded above by Á = z=M , where U(z) = V .

Proof. Clearly lifetime utility V in any equilibrium is bounded by ¹V . Con-

sider a candidate equilibrium with ÁM > ¹z at some date. In the candidate

equilibrium, an individual with m = M would want to deviate by trading

all his money for general goods since U (ÁM ) > V . Hence, ÁM is bounded

above by ¹z.

Now we can we verify the existence and uniqueness of the value function.

Lemma 7 Let S = R£ £
0; Á

¤
with Á de¯ned as in Lemma 6, and consider

the metric space given by C = fv̂ : S!R j v̂ is bounded and continuousg
together with the sup norm, kv̂k = sup jv̂ (m;Á)j. De¯ne

C0 =
n
V̂ : S!RjV̂ (m;Á) = v̂ (m;Á) + Ám for some v̂ 2 C

o
:
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Let © :
£
0; Á

¤
!

£
0; Á

¤
be a continuous function, and de¯ne the operator

T : C0 ! C0 by
³
TV̂

´
(m;Á) = sup

m+1

n
v (m;Á) + Ám¡ Ám+1 + ¯V̂ [m+1;© (Á)]

o

where v(m;Á) is de¯ned in (9). Then T has a unique ¯xed point V 2 C0.

Proof. First we show T : C0 ! C0. For every V̂ 2 C0 we can write
³
TV̂

´
(m;Á) = v (m;Á) + Ám+ sup

m+1

w [m+1;© (Á)]

where w [m+1;© (Á)] = ¯v̂ [m+1;©(Á)] + ¯Ám+1 ¡ Ám+1 for some v̂ 2 C.

Since v̂ is bounded, there exists a m such that ¯w[0;© (Á)] > ¯w [m+1;© (Á)]

for all m+1 ¸m. Therefore,

sup
m+1

w [m+1;© (Á)] = max
m+12[0;m]

w [m+1;© (Á)] ;

and the maximum is attained. Using w¤ (Á) to denote the solution, we have

TV̂ (m;Á) = v (m;Á) + w¤ (Á) + Ám 2 C0, since w¤ (Á) 2 C by the Theorem

of the Maximum and v (x; Á) 2 C from the bargaining solution.

We now show T is a contraction mapping. De¯ne the norm
°°°V̂1 ¡ V̂2

°°° =

sup jv̂1 (m;Á)¡ v̂2(m;Á)j and consider themetric space (C0; k¢k). Fix (m;Á) 2
S. Letting mi+1 = arg max

m+12[0;m]

n
¯V̂i [m+1;© (Á)] ¡ Ám+1

o
, we have

TV̂1 ¡ T V̂2 =
n
¯V̂1

£
m1

+1;© (Á)
¤
¡ Ám1

+1

o
¡

n
¯V̂2

£
m2

+1;© (Á)
¤
¡ Ám2

+1

o

· ¯
¯̄
¯V̂1

£
m1

+1;© (Á)
¤

¡ V̂2
£
m1

+1;© (Á)
¤¯̄
¯ · ¯

°°°V̂1 ¡ V̂2
°°° :

Similarly, TV̂2 ¡ TV̂1 · ¯
°°°V̂1 ¡ V̂2

°°°. Hence
¯̄
¯TV̂2 ¡ TV̂1

¯̄
¯ · ¯

°°°V̂1 ¡ V̂2
°°°.

Taking the supremum over (m;Á) we have
°°°TV̂1 ¡ T V̂2

°°° · ¯
°°°V̂1 ¡ V̂2

°°°, and
T satis¯es the de¯nition of a contraction.
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We now argue that (C0; ½) is complete. Clearly, if V̂n(m;Á) = v̂n(m;Á) +

Ám is a Cauchy sequence in C0 then fv̂n(m;Á)g is a Cauchy sequence in C.

Since (C; k¢k) is complete (see, e.g., Stokey and Lucas [1989], Theorem 3.1),

v̂n ! v 2 C. If we set V = v + Ám it is immediate that V̂n ! V 2 C0.

Therefore (C0; ½) is complete. It now follows from the Contraction Mapping

Theorem (see, e.g., Stokey and Lucas [1989], Theorem 3.2) that T has a

unique ¯xed point V 2 C0.

The ¯nal thing to do is l̄l in some details for the proof of Proposition 1.

Proof of Proposition 1: Most of what is stated follows directly from the

analysis in the text, but two details need to be addressed. First, consider

the uniqueness of the solution to e(q) = 1 + 1¡¯
®¾¯ for a general µ. This would

follow if e0(0) < 0. Given the normalization c(q) = q,

e(q) =
(µu0 +1 ¡ µ)2u0

(µu0 + 1¡ µ)u0 ¡ µ(1¡ µ)(u¡ c)u00 :

Therefore e0 takes the same sign as

D1 = [(µu0 + 1¡ µ)u0 ¡ µ(1 ¡ µ)(u¡ c)u00] [(µu0 +1 ¡ µ)u00 +2µu0u00]

¡u0(µu0 + 1 ¡ µ) [(µu0 + 1¡ µ)u00 + µu0u00]

+u0(µu0 + 1¡ µ) [µ(1¡ µ)(u0 ¡ 1)u00 + µ(1¡ µ)(u¡ c)u000] :

After simpli¯cation we arrive at

D1 = ¡2µ2(1¡ µ)(u ¡ c)u0u002 + µ(µu0 + 1¡ µ) [u0 + (1¡ µ)(u0 ¡ 1)u0u00]

¡µ(1¡ µ)(µu0 + 1¡ µ)(u¡ c)u002 + µ(1 ¡ µ)(µu0 + 1¡ µ)(u¡ c)u0u000:

Since qs < q¤, we have u0 > 1 and all but the ¯nal term are unambiguously

negative. If µ = 1 this term vanishes and D1 < 0. For any µ 2 (0;1), if u0 is
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log-concave then u0u000 < u00, and this term is bounded by the previous term

and so again we have D1 < 0.

Second, we show that e shifts up with an increase in µ at the solution to

e(q) = 1 + 1¡¯
®¾¯ . To begin, note that @e=@µ takes the same sign as

D2 = 2(u0 ¡ 1) [(µu0 + 1¡ µ)u0 ¡ µ(1¡ µ)(u ¡ c)u00]

¡(µu0 + 1¡ µ) [u0(u0 ¡ 1) ¡ (1¡ 2µ)(u¡ c)u00]

= (µu0 +1 ¡ µ)(u0 ¡ 1)u0 ¡ (µu0 ¡ 1 + µ)(u ¡ c)u00

Now rearrange e(q) = 1 + 1¡¯
®¾¯ as

(u ¡ c)u00 = (µu0 + 1¡ µ)u0

µ(1¡ µ)
³
1 + 1¡¯

®¾¯

´
µ
1¡ ¯
®¾¯

+ µ ¡ µu0
¶

Substituting this into D2 and simplifying, at e(q) = 1 + 1¡¯
®¾¯ we see that D2

takes the same sign as 1¡¯
®¾¯ (1¡ µ)2+ µ2u0(u0 ¡ e). The desired result follows

if we can show u0 ¸ e, which is easy to establish.

44



References
[1] Aiyagari, S. Rao, and Neil Wallace. \Existence of Steady States with

Positive Consumption in the Kiyotaki-Wright Model." Review of Eco-
nomic Studies 58(5) (October 1991): 901-916.

[2] Alvarez, Fernando, and Nancy L. Stokey. \Dynamic Programming with
Homogeneous Functions." Journal of Economic Theory 82(1) (Septem-
ber 1998): 167-189.

[3] Aruoba, S. Boragan and Randall Wright. \Search, Money, and Capital:
A Neoclassical Dichotomy." Unpublished manuscript, 2002.

[4] Berentsen, Aleksander. \On the Distribution of Money Holdings in a
Random-Matching Model." International Economic Review 43(3) (Au-
gust 2002).

[5] Berentsen, Aleksander, and Guillaume Rocheteau. \Money and the
Gains from Trade." Unpublished manuscript 2001a; forthcoming in In-
ternational Economic Review.

[6] Berentsen, Aleksander, and Guillaume Rocheteau. \On the E±ciency of
Monetary Exchange. How Divisibility of Money Matters." Unpublished
manuscript 2001b; forthcoming in Journal of Monetary Economics.

[7] Berentsen, Aleksander, and Guillaume Rocheteau. \On the Friedman
Rule in Search Models with Divisible Money." Unpublished manuscript,
2002.

[8] Berentsen, Aleksander, Guillaume Rocheteau and Shouyong Shi. \Fried-
man Meets Hosios: E±ciency in Search Models of Money." Unpublished
manuscript, 2001.

[9] Camera, Gabriele, and Dean Corbae. \Money and Price Dispersion."
International Economic Review 40(4) (November 1999): 985-1008.

[10] Christiano, Lawrence, Martin Eichenbaum and Charles Evans. \Sticky
Price and Limited Participation Models: A Comparison,"European Eco-
nomic Review 41(6) (June 1997): 1173-1200.

45



[11] Cooley, Thomas and Gary Hansen. \The In°ation Tax in a Real Busi-
ness Cycle Model." American Economic Review 79(4) (September 1989):
733-748.

[12] Cooley, Thomas and Gary Hansen. \The Welfare Costs of Moderate
In°ations." Journal of Money, Credit and Banking 23, Part 2 (August
1991): 483-503.

[13] Du±e, Darrell, John Geanakoplos, Andreu Mas-Colell and Andrew
McLennan. \Stationary Markov Equilibria." Econometrica 62(4) (July
1994): 745-782.

[14] Faig, Miguel. \A Search Theory of Money with Commerce and Neoclas-
sical Production." Unpublished manuscript, 2001.

[15] Friedman, Milton. The Optimal Quantity of Money and Other Essays.
Chicago: Adeline, 1969.

[16] Gomme, Paul. \Money and Growth Revisited: Measuring the Cost of
In°ation in an Endogenous Growth Model." Journal of Monetary Eco-
nomics 32 (August 1993): 51-77.

[17] Green, Edward, and Ruilin Zhou. \A Rudimentary Model of Search
with Divisible Money and Prices." Journal of Economic Theory 81(2)
(August 1998): 252-271.

[18] Head, Allen and Shouyong Shi. \A Fundamental Theory of Exchange
Rates and Direct Currency Trades." Unpublished manuscript, 2000.

[19] Head, Allen and Alok Kumar. \Price-posting, price dispersion, and in-
°ation in a random matching model." Unpublished manuscript, 2001.

[20] Hosios, Arthur J. \On the E±ciency of Matching and Related Models of
Search and Unemployment." Review of Economic Studies 57(2) (April
1990): 279-298.

[21] Kiyotaki, Nobuhiro and John Moore. \Liquidity, Business Cycles and
Monetary Policy." Lecture 2, Clarendon Lectures, November 2001.

[22] Kiyotaki, Nobuhiro and Randall Wright. \On Money as a Medium of
Exchange." Journal of Political Economy 97(4) (August 1989): 927-954.

46



[23] Kiyotaki, Nobuhiro and Randall Wright. \A Contribution to the Pure
Theory of Money." Journal of Economic Theory 53(2) (April 1991):
215-235.

[24] Kiyotaki, Nobuhiro and Randall Wright. \A Search-Theoretic Approach
to Monetary Economics." American Economic Review 83(3) (March
1993): 63-77.

[25] Kocherlakota, Narayana. \Money is Memory." Journal of Economic
Theory 81(2) (August 1998): 232-251.

[26] Lagos, Ricardo and Randall Wright \Dynamics, Cycles and Sunspot
Equilibria in `Genuinely Dynamic, Fundamentally Disaggregative' Mod-
els of Money." Unpublished manuscript, 2002.

[27] Levine, David \Asset Trading Mechanisms and Expansionary Policy."
Journal of Economic Theory 54(1) (June 1991): 148-164.

[28] Lucas, Robert E. Jr. \In°ation and Welfare." Econometrica 68(2)
(March 2000): 247-274.

[29] Lucas, Robert E. Jr. and Nancy Stokey. \Optimal Fiscal and Monetary
Policy in an Economywithout Capital." Journal of Monetary Economics
12(1) (July 1983): 55-93.

[30] Lucas, Robert E. Jr. and Nancy Stokey. \Money and Interest in a Cash-
in-Advance Economy." Econometrica 55(3) (May 1987): 491-514.

[31] Molico, Miguel. \The Distribution of Money and Prices in Search Equi-
librium." unpublished manuscript, 1999.

[32] Rauch, Bernard. \A Divisible Search Model of Fiat Money: A Com-
ment." Econometrica 68(1) (January 2000): 149-156.

[33] Rotemberg, Julio J, and Michael Woodford. \Dynamic General Equilib-
rium Models with Imperfectly Competitive Product Markets," in Fron-
tiers of Business Cycle Research. Edited by Thomas F. Cooley, Prince-
ton University Press, 1995.

[34] Shi, Shouyong. \Money and Prices: A Model of Search and Bargaining."
Journal of Economic Theory 67(2) (December 1995): 467-496.

47



[35] Shi, Shouyong. \A Divisible SearchModel of Fiat Money."Econometrica
64(1) (January 1997): 75-102.

[36] Shi, Shouyong. \Search for a Monetary Propagation Mechanism." Jour-
nal of Economic Theory 81(2) (August 1998): 314-352.

[37] Shi, Shouyong. \Search, In°ation and Capital Accumulation." Journal
of Monetary Economics 44(1) (August 1999): 81-103.

[38] Stokey, Nancy and Lucas, Robert E. Jr. Recursive Methods in Economic
Dynamics. Cambridge: Harvard University Press, 1989.

[39] Taber, Alexander and Neil Wallace. \A Matching Model with Bounded
Holdings of Indivisible Money." International Economic Review 40(4)
(November 1999): 961-984.

[40] Trejos, Alberto and Randall Wright. \Search, Bargaining, Money and
Prices." Journal of Political Economy 103(1) (February 1995): 118-141.

[41] Walsh, Carl E. Monetary Theory and Policy. MIT Press, 1998.

[42] Wallace, Neil. \Whither monetary economics?" International Economic
Review 42(4) (November 2001): 847-870.

[43] Wallace, Neil. \General Features of Monetary Models and Their Signif-
icance." Unpublished manuscript, 2002.

[44] Wu, Yangru and Junxi Zhang. \Monopolistic Competition, Increasing
Returns to Scale and the Welfare Costs of In°ation." Journal of Mone-
tary Economics 46 (October 2000): 417-440.

[45] Zhou, Ruilin. \Individual and Aggregate Real Balances in a Random-
Matching Model." International Economic Review 40(4) (November
1999): 1009-1038.

48



PRST STD

U.S. Postage Paid

Cleveland, OH

Permit No. 385

Federal  Reserve Bank 

of  Cleve land

Research Depar tment

P .O.  Box 6387

Cleve land,  OH 44101

Address Correction Requested:
Please send corrected mailing label to the
Federal  Reserve Bank of Cleveland, 
Research Department, 
P.O. Box 6387, 
Cleveland, OH 44101


	Abstract
	1 Introduction
	2 The Basic Model
	2.1 Environment
	Figure 1: Timing.

	2.2 Equilibrium
	Figure 2: Single-coincidence bargaining solution.
	Figure 3: Value function.

	2.3 Results
	2.4 Discussion

	3 Applications and Extensions
	3.1 Inflation
	Figure 4: Welfare e®ects of in°ation.

	3.2 Calibration
	Table 1: Baseline calibration.
	Figure 5: Welfare cost for baseline calibration.
	Table 2: The welfare cost of in°ation.

	3.3 Uncertainty
	Figure 6: Equilibrium with random ¿ .


	4 Conclusion
	A Appendix
	References



