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1. Introduction.

 An increasingly common approach to the theoretical analysis of monetary policy

is to ensure that a proposed policy does not introduce real indeterminacy and thus sunspot

fluctuations into the model economy. Policy is typically conducted in terms of directives

for the nominal interest rate. For example, a simple Taylor (1993) type rule posits that the

central bank conducts policy according to the following rule: Rt = A.(πt+1)τ  for τ ≥ 0,

 where Rt  and πt+1 denote the (gross) nominal interest and inflation rate (between t and

t+1).1  That is, the central bank varies the nominal rate in relation to movements in

inflation with an elasticity of τ.  In this context, an important policy question is what

restrictions on τ are needed to ensure real determinacy.

 A standard result in the literature is that a necessary condition for real determinacy

is τ > 1 (the sufficient condition is for τ to exceed one, but to not be too large).  See for

example, Bernanke and Woodford (1997) and Clarida, Gali, Gertler (1998). These

analyses are all reduced-form sticky price models, where the underlying structural model

is a money-in-the-utility function (MIUF) model with a zero cross-partial between

consumption and real balances.2  In sharp contrast, Carlstrom and Fuerst (1999a) analyze

a flexible price, cash-in-advance (CIA) model and demonstrate that a necessary and

sufficient condition for determinacy is τ < 1.3  The motivation for this paper is to help

                                                          
 1 This corresponds to targeting the expected inflation rate, a policy consistent with the practice of central
banks with explicit inflation targets.  In contrast, Taylor’s (1993) original rule has the central bank
responding to current and past inflation rates. As we demonstrate this difference is critical.
 2 A more complete analysis of these conditions is provided by Benhabib, Schmitt-Grohe, and Uribe (1998).
But as argued below, their continuous time analysis ignores the central issue of this paper.
 3 Carlstrom and Fuerst (1999a) consider interest rate rules in which the nominal rate responds to the real
rate with an elasticity of γ, and find that a necessary and sufficient condition for determinacy is γ < ½. There
is a one-to-one mapping between a policy rule in terms of the real rate and a policy rule in terms of  the
inflation rate, τ = γ/(γ-1), so that γ < ½ implies τ < 1.
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reconcile these differing results.

 The resolution does not come solely from the sticky price vs. flexible price

assumption.  For example, if we dropped the stick price assumption from the Clarida et al

(1998) environment, then any τ ≠ 1 yields determinacy.  Surprisingly, the major

difference comes from an even more fundamental assumption—which money balances

enter the utility function?  The traditional MIUF assumption and that assumed by Clarida

et al is that end-of-period balances enter the functional.  But a direct extension of a typical

cash-in-advance economy suggests that the money the household has left after leaving the

bond market and before entering the goods market is more appropriate.  Remarkably this

distinction is critical for questions of determinacy.

 We analyze a MIUF endowment economy under differing assumptions about

which money balances enter the utility function.4  The first timing convention we analyze

is a direct extension of typical CIA timing.  That is, the money available to satisfy

consumption needs is the money the household has left after leaving the bond market but

before entering the goods market.  In contrast, we also analyze “cash-when-I’m-done”

(CWID) timing where end-of-period money balances (net of current income and current

consumption) enter the utility functional. These differing assumptions lead to different

pricing equations for the nominal interest rate.  In a model in which the central bank

operates monetary policy via the nominal interest rate these differences have important

effects on the conditions for determinacy.

  We then extend this analysis to a model with production.  Surprisingly, a standard

                                                          
 4 We utilize a MIUF model because of its generality.  Feenstra (1986) demonstrates that any transactions
cost (TC) economy can be written as a MIUF economy.  Similarly, a shopping-time (ST) model can be
rewritten as a MIUF economy.  Finally, cash-in-advance (CIA) models are extreme versions of MIUF and
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production model with capital generates the same conditions for determinacy irrespective

of how money affects utility.  That is, the conditions for determinacy are identical to the

endowment economy model where consumption and real cash-balances are separable.

Thus for CIA timing the τ < 1 rule of Carlstrom and Fuerst (1998) continues to hold.

With CWID timing, however, the model is determinate for all τ ≠ 1.

 These results suggest that as monetary theorists we must be more careful in

writing down the basics of our models.  Relatedly, it suggests that there are concerns with

continuous-time analyses that simply sweep this fundamental timing issue under the rug,

i.e., in a continuous time model the time interval between bond and goods market

transactions collapses to zero.  Since these indeterminacy issues arise for any discrete but

arbitrarily small time period this resolution of the timing question is artificial.

 The paper proceeds as follows.  Section 2 lays out the basic environment.  Section

3 presents the determinacy results for different modeling assumptions.  Section 4 adds

production to the model. Section 5 takes a brief look at a sticky-price model, and Section

6 concludes.

2. A MIUF Economy.

 The economy consists of numerous infinitely-lived households with preferences

given by

 
t =

∞

�
0

βtU(ct, At/Pt),

 where ct and At/Pt denote consumption and real money balances, respectively.  The key

issue is what measure of money appears in the utility function.  We will turn to this

                                                                                                                                                                            
TC economies.  Thus TC, ST, and CIA models imply particular functional forms for the MIUF economy.
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shortly.  The household begins the period with Mt cash balances and Bt-1 holdings of

nominal bonds.  Before proceeding to the goods market, the household visits the financial

market where it carries out bond trading and receives a cash transfer of Xt from the

monetary authority.  Hence, before entering goods trading, the household has cash

balances given by Mt + Xt + Bt-1Rt-1 – Bt, where Rt-1 denotes the nominal interest rate

from t-1 to t.

 After engaging in goods trading, the household ends the period with cash balances

given by the intertemporal budget constraint.

 Mt+1 = Mt + Xt + Bt-1Rt-1 - Bt - Ptct + Ptyt, (1)

 We now turn to the central issue of the paper—what money balances aid in

contemporaneous transactions, i.e., what is At?  The existing literature contains two

prominent choices5:

 Model 1: CIA Timing

 At  = Mt + Xt + Bt-1Rt-1 – Bt   (2)

 Model 2: CWID Timing

 At  = Mt+1 = Mt + Xt + Bt-1Rt-1 - Bt - Ptct + Ptyt   (3)

  Model 1 assumes that what matters for time-t transactions is the money with

which one enters the time-t goods market, i.e., cash held in advance of goods market

trading.  This timing assumption is always used in models with strict CIA constraints (eg.,

Lucas (1982), and Lucas and Stokey (1987)), but is typically not used in MIUF

                                                          
 5 The working-paper version of this paper also considers a related CIA model in which time-t goods market
trading precedes time-t bond market trading so that At  = Mt + Xt.  As noted in Farmer’s text (1993), it is
quite easy to get real indeterminacy in such a model.  This timing seems artificial since agents would prefer
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environments.

 In contrast, the traditional MIUF approach is to assume Model 2 timing, i.e., that

end-of-period balances, At  = Mt+1, enter into the utility function.6  It is very difficult to

justify CWID timing on theoretical grounds. Using end-of-period money implies that

money at the beginning of t+1 reduces transactions costs in period t.  Equivalently,

Model 2 implies that what matters for transactions purposes is the money you leave the

goods market with, net of current consumption and current income.  That is, what aids in

current transactions is the money I leave the supermarket with not the money I entered the

market with.

 With CWID timing current income is included as part of current money balances.

This violates Clower’s (1967) dictum that “money buys goods, and goods buy money, but

goods do not buy goods.”  One can imagine trading environments in which this violation

is possible.  But it is very difficult to defend the subtraction of current consumption from

current money balances.

 To see these differences more starkly, consider a Leontief MIUF specification so

that optimal behavior is given by the constraint Ptct = At.  In the case of Model 1 timing,

the substitution of At yields the standard CIA constraint, Ptct = Mt + Xt, where we have

dropped the bond trading for simplicity.  But in the case of CWID timing this substitution

yields Ptct = Mt + Xt + Ptyt – Ptct.  This is a peculiar transactions constraint.7

                                                                                                                                                                            
to have the bond market precede the goods market.
 6 In fact, Model 2 is typically used in all monetary models (MIUF, TC, ST) except CIA models.
 7 This constraint is so peculiar that it is natural to ask why the profession ever made Model 2 its choice for
MIUF, TC, and ST models.  One explanation suggested by Ben Eden is that when Patinkin (1965) and
others first wrote down MIUF models, for mathematical simplicity the profession used a finite horizon
model as a proxy for an infinite-horizon model.   In order for money to be held in the final period, the
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 We now present the different bond-pricing and money demand and equations that

arise from these two timing conventions.8

 Model 1: CIA Timing (At  = Mt + Xt + Bt-1Rt-1 – Bt).

 [Um(t)+Uc(t)]/Pt = Rtβ [Um(t+1)+Uc(t+1)]/Pt+1 (4)

 Um(t)/Uc(t) = (Rt-1) (5)

 

 Model 2: CWID Timing (At  = Mt + Xt + Bt-1Rt-1 - Bt - Ptct + Ptyt).

 Uc(t)/Pt = RtβUc(t+1)/Pt+1 (6)

 Um(t)/Uc(t) = (Rt-1)/Rt (7)

 

 Note the fundamental differences between the Fisher equations in Models 1 and 2

(equations (4) and (6)).  In Model 1, if the household liquidates a bond for cash with the

intention of increasing current consumption this bond trade increases the utility from

current consumption Uc(t) and current liquidity Um(t).  In contrast, in Model 2, a bond

sale that is used for consumption purchases has no effect on current liquidity so that only

Uc(t) enters the bond equation.  In effect, Model 2 assumes that a marginal bond sale can

directly finance an increment to consumption.  This seems to violate the essential nature

of a monetary economy.

 In Model 2, therefore, we get the standard Fisherian decomposition that results

                                                                                                                                                                            
modeler had to assume that the household had preferences over end-of-the-world money.  Instead of simply
tacking on an additional utility functional, a more symmetric choice was to simply slide the entire
sequencing backwards so that time T+1 money was in the time T utility functional.
 8 Equation 4-5 (6-7) can be derived from substituting 2 (3) into utility and maximizing subject to (1) with
respect to ct, Bt, and Mt+1.  The Lagrangian associated with (1) was then substituted out.



6

from an entirely real model.  Namely the real rate is given by the ratio of the marginal

utilities of consumption.  But with CIA timing, the fact that this is a monetary economy is

paramount.  The real rate of interest now depends on the marginal utilities of

consumption and real cash balances, i.e., the utility of $1 is more than its ability to

purchase consumption but also its liquidity value.  These differences in real rate

determination imply that changes in real cash balances can directly influence the real rate

in Model 1, while they do so only indirectly (via the cross partial Ucm) in Model 2.

 Notice that in Model 1 we can use the money demand relationship (5) to rewrite

the Fisher equation (4) as

 Uc(t)/Pt = Rt+1βUc(t+1)/Pt+1. (8)

 Hence, one manifestation of our CIA timing is that one can use the traditional Fisher

expression (equation 6) but with the nominal rate scrolled forward one period.9  This

difference has important effects on issues of equilibrium determinacy.  The remainder of

the paper illustrates these differences.  Our focus will be on interest rate rules.10

3. Real Indeterminacy in an Endowment Economy with Ucm = 0.

 Suppose that the central bank conducts policy according to the following rule:

 Rt = A(πt+1)τ , (9)

 where τ ≥ 0, τπ −≡ ssssRA , and Rss and πss are the steady-state values.  That is, the central

bank varies the nominal rate in relation to movements in expected inflation with an

elasticity of τ.  Under such a policy we get the standard result that there is nothing to pin

                                                          
 9 In a model with a strict CIA constraint the Fisher equation is of the form given by (6).  This arises because
the implicit Leontief transactions technology implies that Um = 0 in equilibrium, ie., if m = c, additional real
balances have no effect on the ability to transact, while if m < c, it is impossible to transact.
 10 These timing issues also have a dramatic effect on the conditions for real indeterminacy when central



7

down the initial πt ≡ Pt/ Pt-1.  This is a pure nominal or price level indeterminacy which in

this flexible price economy has no effect on real behavior.  Instead our focus is on real

indeterminacy—is the path for expected inflation, the nominal interest rate, and thus real

cash balances pinned down by the interest rate policy?  If not, then we will conclude that

the economy suffers from real indeterminacy and thus sunspot fluctuations.11, 12

 How could real indeterminacy arise?  Consider the following scenario.  Suppose

that there is an increase in expected inflation of 1%.  The central bank responds by

increasing the nominal rate by τ% thus producing a decline in real cash balances (because

of the higher nominal rate) and a change in the real interest rate of (τ − 1)%.  This

expected inflation change, therefore, can only be self-fulfilling if the movement in real

cash balances produces a movement in the real rate of (τ-1)%.  Since real interest rate

determination is different in the two models, whether or not this is possible will depend

crucially upon the timing assumption.

 CWID Timing:

 Suppose that utility is separable and we normalize Uc(t) in this endowment

economy to unity.  In Model 2, this implies that the real rate of interest is constant so that

real indeterminacy is not possible (except for τ = 1).  To be specific, substituting the

interest rate rule into the Fisher equation for CWID timing implies the following:

 11 ++ = ttA ππβ τ . (10)

                                                                                                                                                                            
banks utilize money growth rules.
 11 With an endowment economy and separable preferences this indeterminacy has no effect on consumption
but does affect utility (through real cash balances), so we classify this as real indeterminacy.
 12 As is well known, in some monetary models there are also the possibility of equilibria with self-fulfilling
hyperinflations in which real balances go to zero in the limit.  We ignore these non-stationary equilibria as
they are easily eliminated if the central bank stands ready to redeem fiat money at an arbitrarily small but
nonzero real value.  Our focus is on stationary sunspot equilibria.
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 Notice that while πt is free (nominal indeterminacy) future inflation and nominal

interest rates are nailed down (when τ ≠ 1).  (Since βA = τπ −1
ss , πt+j = πss for all j ≥ 1.)

Hence, with Model 2 and separable preferences there is never real indeterminacy except

for the borderline case (τ = 1). 13  The key is that today’s real interest rates are not affected

by an increase in expected inflation. The extreme borderline case does produce

indeterminacy since nominal interest rates and expected inflation move one-for-one so

that real interest rates in this case are not affected by changes in expected inflation.

 CIA Timing:

 The story is quite different in Model 1.  Even with separable utility (so that Uc(t) is

constant) the real rate is still variable since from (4) the marginal utility of money (Um(t))

affects the real rate of interest.  This feedback to the real rate of interest creates the

possibility of sunspots. Turning to the details, substituting the assumed monetary

reaction function (9) into (8) for CIA timing yields the following:

 12 ++ = ttA ππβ τ . (11)

 Once again we always have nominal indeterminacy since πt is free.  For real

determinacy, we need πt+1 and hence Rt to be pinned down.  This arises if and only if the

above mapping is explosive or if τ < 1.  In contrast, τ >1 generates real indeterminacy

since all choices of πt+1 converge to πss.

 The intuition is as follows: Suppose there is a sunspot-driven increase in expected

inflation of 1%.  Given the policy rule (9) this increases the nominal rate by τ% and the

real rate of interest by (τ−1)%. The increase in the nominal rate leads to a decline in real

                                                          
 13 Real indeterminacy could arise if Rt depended on πt+k for k  ≥ 2.
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cash balances, which in turn increases the real rate (since U is concave in m). When τ > 1

the initial sunspot-driven increase in expected inflation is equivalent to an increase in the

real rate so that the circle is complete and there is real indeterminacy.

 The above analysis made a very special, and implausible, assumption.  Namely that

utility is separable between money and consumption. The next section generalizes the

above analysis by adding production to the above endowment economy.  Remarkably this

general model generates the exact same conditions for indeterminacy as derived above.14

4.  Real Indeterminacy in a Production Economy with Ucm ≠≠≠≠ 0.

 Carlstrom and Fuerst (1999a) examine a standard real business cycle model with

production in which money is added with a CIA constraint.  They demonstrate that

indeterminacy arises if and only if τ > 1, the same condition derived above for CIA timing

in an endowment economy and separable preferences.15  This section illustrates that the

nature of this result does not depend on a strict CIA constraint but merely on CIA-timing.

The key is that with some fairly standard assumptions a model with production will

generate the same conditions for indeterminacy as a model where Ucm = 0.   This

equivalence will be true for both the CWID- and CIA-timing MIUF models.

 Assume that preferences are separable and linear in labor (L) and given by

 ALmcVLmcU −≡− ),()1,,( ,

 and that production takes the standard Cobb-Douglas form:

 αα −= 1LKy  with a constant depreciation rate of δ.

                                                          
 14 The working paper version of this paper derives the conditions for indeterminacy in the endowment
economy when utility is not separable between real money and consumption.
 15 This “1” result is exactly true for linear leisure.  For more general preferences the numerical differences
are trivial.
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 The additional Euler equations for labor choice (12) and capital accumulation (13) are

familiar:

 )(
)(
)( tf

tU
tU

L
c

L = (12)

 )]1()1()[1()( δβ −+++= tftUtU Kcc . (13)

 1
1 )1( +

α−α −δ−+= ttttt KKLKc . (14)

 These Euler equations are common across the two models because consumption

and output enter symmetrically in both models.  Real money balances indirectly enter

both of these marginal conditions via the cross partials (Ucm) of the utility function.  As a

result the behavior of the nominal interest rate (and hence real balances) typically distorts

the economy’s behavior relative to an otherwise standard real business cycle (RBC)

model.

 We now state our principle result:

 Proposition 1: Assume that preferences are separable and linear in leisure, U(c,m,1-L) =

V(c,m) – AL, and that the production technology is CRS and Cobb-Douglas.  Then with

CIA timing a necessary and sufficient condition for determinacy is τ < 1; with CWID

timing, the equilibrium is determinate for all values of τ ≠ 1.

 Proof:    See the Appendix.

 Although the proof of the proposition exploits the linearity in labor preferences,

this assumption is theoretically convenient but computationally irrelevant.  For example,

if instead of linear leisure there was a constant labor supply elasticity of 0.1 then with

plausible calibrations the bounds for determinacy are largely unchanged in both models.

The model with CIA timing is determinate if and only if τ < 1.004, while a search for a τ
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that produces indeterminacy in the model with CWID timing proved futile.  The

assumption that leisure is separable in utility also proved to have no quantitative

importance.

 It is important to note that these conditions for determinacy are identical to an

endowment economy with Ucm  = 0.  The additional restrictions on Uc implied by

endogenous labor choice and capital accumulation cause the model to behave as if Ucm  =

0.   For example, consider a model without capital and with constant returns to labor (α =

0).  In this case linear leisure and (12) implies that Uc is constant!

 With capital and CRS Cobb-Douglas technology this basic logic carries through.

The key is that (given the above assumptions) we can rewrite (12) and then substitute (12)

into (13) to obtain.

 
)1(

)(
α

α

−
= t

c
xtU . (15)

 
t

t
tttt K

L
xwherexxx =−+= ++ ,)1( 11

αα δβαβ . (16)

  The equilibrium marginal utility of consumption is not directly affected by real money

because it is entirely determined by the capital-labor ratio.  This implies that the marginal

product of capital is unaffected by changes in real money balances.  Linearity implies that

if Ucm>0 an increase in real money balances increases the marginal utility of consumption

which elicits more production until the marginal utility of consumption returns to where it

was before the increase in real money balances.

5. Timing and Sticky Prices.

 This paper’s analysis has been conducted in the context of flexible price models.
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However, these timing concerns can arise in sticky price models as well.  One example

will illustrate this point.

 Clarida, Gali, and Gertler (1998) analyze a sticky-price monetary model and

conclude that a necessary condition for real determinacy is τ > 1 – the exact opposite

condition for determinacy in a flexible price economy with CIA timing!

 Assuming constant potential output, their log-linearized system of equations is

 11
~]~~[~

++ +−−= tttt yRy πσ (17)
 

 1
~~~

++= ttt y πβλπ (18)
 

 1
~~

+= ttR πτ (19)

 where tildes denote log-deviations from steady-state, λ is the slope of the Phillips curve,

and σ is the intertemporal elastiticity of substitution. Equation (17) is the Fisher equation

with CWID timing and Ucm = 0 (with no investment consumption equals output);

equation (18) is the Phillips curve, and equation (19) is the forward-looking interest rate

rule.

 Unlike the flexible-price model, the Phillips curve implies that for there to be real

determinacy πt must be pinned down.  Straightforward calculations imply that there is real

determinacy if and only if

 
σλ

σλβτ ++<< )1(21 .

 For reasonable calibrations, the upper bound is quite high, about 14, so that the basic

conclusion is that a τ greater than unity will achieve determinacy.  This is the Clarida,

Gali, and Gertler (1998) result.

 With CIA timing, however, equation (8) implies that we must replace (17) with



13

 111
~]~~[~

+++ +−−= tttt yRy πσ . (20)

 To analyze the conditions for determinacy substitute (18)-(19) into (20) to eliminate

output and the nominal rate:

 0)1()( 12 =+++−+ ++ ttt ππβσλπβσλτ . (21)

 For real determinacy we need both roots of this equation to lie outside the unit

circle.16  A sufficient (but not a necessary) condition for all forward-looking rules to be

indeterminate is for σλ+β ≥ 1.  Estimates of λ are extremely difficult to come by.

According to Clarida, Gali, Gertler, estimates for λ range from 0.05 to 1.22.  Assuming

that β=0.99 then even if we take the lowest plausible estimates for λ the model will

always be indeterminate unless σ < 0.2.

 Recall that the essential difference between CWID-timing and CIA-timing is that

the nominal interest rate in the latter is scrolled forward one period.  This implies that the

conditions for determinacy with CIA timing and a current-looking interest rate rule are

identical to those for CWID timing and a forward-looking interest rate rule.  Thus if we

used CIA timing in Kerr and King’s (1996) model, there would be determinacy for τ > 1

(unless τ is too large) since their policy rule depends on current inflation. Carlstrom and

Fuerst (1999b), however, demonstrate that if we add investment to this model then an

aggressive backward-looking Taylor rule is necessary for real determinacy.

6. Conclusion.

Hippocrates advised the doctor to do no harm.  This minimal advice is equally

important to the central banker.  In particular, a necessary condition for good monetary

                                                          
 16 Because prices are sticky both πt and πt+1 must be pinned down – there is no pure nominal indeterminacy
in a sticky price model.
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policy is that it does not introduce sunspot fluctuations into the real economy.  This paper

has demonstrated that the class of policies that are “good” in this regard depends on basic

assumptions about the modeling environment.  Hence, a central conclusion of this

analysis is that we need to think much more carefully about basic modeling assumptions

when writing down monetary models.  A lot depends on apparently trivial assumptions.

These timing issues are of more than academic interest.  Central banks that have

adopted explicit inflation targeting all use inflation forecasts as an integral part of their

decision-making.  This corresponds to the forward-looking Taylor rule analyzed here.  In

a model with sticky prices and CWID timing, there is no problem as long as τ > 1.  In

contrast, with CIA timing, such a policy is potentially disastrous since it introduces real

indeterminacy and sunspot fluctuations into the real economy.  This suggests that central

banks should use either current or backward-looking Taylor rules.
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Appendix

Proposition 1: Assume that preferences are separable and linear in leisure, U(c,m,1-L) =

V(c,m) – AL, and that the production technology is CRS and Cobb-Douglas.  Then with

CIA timing a necessary and sufficient condition for determinacy is τ < 1; with CWID

timing, the equilibrium is determinate for all values of τ ≠ 1.

Proof:   The proof for both models begins with the following conditions (15-16) from the

text:

t

t
t

t
c K

LxwherextU =
α−

=
α

,
)1(

)( (A1)

α
++

α δ−β+αβ= 11 )1( ttt xxx (A2)

Notice that (A1) implies that Uc depends only on x, so that real balances, m, depend only

on c and x.

CIA timing: Defining )()( tUtUz mct += , and using the fact that m depends only on c and

x, the budget constraint can be written as

),()1(1
1 tttttt zxcKxKK −δ−+= α−

+ (A3)

Substituting the money demand equation (5) into (A1)

t

t
t

t

t

t

K
Lxwherex

R
z

=
α−

=
α

,
)1(

(A4)

Substituting the monetary policy rule (9) into the Fisher equation (4) yields

1

1

−

+
��
�

�
��
�

�
=

τ
τ

t

t
sst z

z
RR

Substituting this into (A4) gives
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α

α
τ

τ
τ

−
=−

+
−

1
1

1
1

1
t

ttss
xzzR . (A5)

Equations (A2), (A3) and (A5) can be written as

xt+1 = F(xt)

Kt+1 = G(xt,zt,Kt)

zt+1 = H(xt,zt)

The three Eigenvalues of the characteristic matrix are

1
)1)(1(11 <

δ−α−β−
α== xFe , ,1)1)(1(1

2 >
βα

δ−α−β−== KGe  
τ
1

3 == zHe .

Fx and Gk are the two Eigenvalues for the canonical real business cycle model.  Since

there is only one predetermined variable, for the economy to be determinate two

Eigenvalues need to lie outside the unit circle.  Therefore the economy is determinate if

and only if τ < 1.

CWID timing: Assume τ ≠ 1.  Substituting the labor equation (A1) and the monetary

policy rule (9) into the Fisher equation (6) gives

1

1

−

+
��
�

�
��
�

�
=

τ
τ

α
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t

t
t x

x
R . (A6)

Define )()( tUtUz mct −= .  From the money demand equation (7) this yields

t

c
t R

U
z = . (A7)

 (A7) therefore becomes
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=
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Substituting this into (A3) gives

xt+1 = F(xt)

Kt+1 = G(xt,xt+1,Kt)

The Eigenvalues are

1
)1)(1(11 <

δ−α−β−
α== xFe ,  .1)1)(1(1

2 >
βα

δ−α−β−== KGe

Since there is one predetermined variable the system is always determinate.  If τ = 1, the

nominal rate drops out of the Fisher equation so that the counterpart to (A7) is xt+1 = xt.

But now Rt and thus zt (from (A6)) are entirely free, so that we have real indeterminacy.

QED
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