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I. Introduction.

The celebrated Taylor (1993) posits that central bank behavior can be described

by a fairly simple rule linking nominal rate movements to movements in inflation and

output.  This seminal paper has spawned a large literature concerned with issues of

stability: under what situations can a Taylor-rule formulation of monetary policy create

real indeterminacy and thus sunspot1 fluctuations in the model economy?  See for

example, Benhabib, Schmitt-Grohe and Uribe (1999), Bernanke and Woodford (1997),

Carlstrom and Fuerst (2001a,2001b,2000a), Clarida, Gali and Gertler (2000), and Kerr

and King (1996).  As forcefully argued by Evans and Honkapohja (2001), sunspot

equilibria are compelling only if they are not “fragile” to reasonable assumptions about

“learning”.  We follow Evans and Honkapohja (2001), and interpret “learning” as E-

stability, so that an equilibrium is “fragile” if it is not E-stable.  The issue raised in this

paper is whether the sunspot equilibria induced by some Taylor-rules are E-stable.2,3

A robust result of the papers on indeterminacy is that sunspots are most likely in

cases in which the central bank responds to forecasted inflation.   We will thus focus on

Taylor rules in which the central bank responds to forecasted inflation.  Honkapohja and

Mitra (2001) analyze the basic monetary model considered here, and conclude that the

sunspot equilibria arising from a forward-looking monetary policy are not E-stable.4

                                                          
1 The term “sunspot” is in one sense misleading since these shocks are accommodated by monetary policy.
But we use the term since the central bank introduces real indeterminacy by responding to forecasts which
can be driven by sunspots.
2 E-stability typically implies that least-squares learning converges to the rational expectations equilibrium,
although there are some technical issues in the case of a continuum of equilibria (as is the case with the
sunspot equilibria examined below).  See Evans and Honkapohja (2001) for a detailed discussion.
3 Woodford (1990) was the first to demonstrate the learnability of stationary sunspot equilibria in an
overlapping generations model.

4 However, Honkapohja and Mitra (2001) demonstrate that “resonant frequency” sunspot equilibria may be
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They show that the only equilibria that are E-stable are the minimum state vector (msv)

solutions where inflation depends only on fundamental shocks.  McCallum (2001)

concludes from this that only the msv solution is empirically relevant.

In this paper we consider two variants of the analysis in Honkapohja and Mitra

(2001) and demonstrate the existence of E-stable sunspot equilibria.  First, we consider a

different timing scenario.  A microfoundation of the model analyzed by Honkapohja and

Mitra is that money balances at the end of goods market trading is what aids in

transactions.  Carlstrom and Fuerst (2001) refer to this as “cash-when-I’m-done” (CWID)

timing.  In a model with CWID timing Honkapohja and Mitra demonstrate that sunspot

equilibria are not E-stable.  But CWID is a peculiar timing convention.  In contrast,

suppose that cash balances held in advance of goods trading are the balances that aid in

transactions, what Carlstrom and Fuerst (2001) call “cash-in-advance” (CIA) timing.  One

contribution of this paper is to demonstrate that in a model with CIA timing there exist E-

stable sunspot equilibria.

Our second modeling variation is a different assumption on the nature of learning.

Honkapohja and Mitra (2001) examine a model in which there is symmetric learning by

both the public and the central bank.  That is, both the central bank and private sector

have common expectations. This can be interpreted as the private sector learning, and the

central bank operating off of private sector forecasts.  In contrast, this paper examines a

case in which the forecasts of the central bank and private sector differ, and coincide only

in the long run.  There are many possible differential learning scenarios.  Here we take

one extreme: We assume that only the central bank is subject to a learning process, while

learnable under certain policy rules.



3

private sector expectations are always rational.  This assumption is analogous to the

assumption in Sargent’s (1999) analysis of The Conquest of American Inflation.  A

second contribution of this paper is to demonstrate that in the case of central bank

learning the sunspot equilibria are typically E-stable.  In essence, central bank policy can

lead the public to believe in sunspots.

The outline of the paper is as follows.  In the next section we present the basic

CWID monetary model and the results of Honkapohja and Mitra (2001).  We then

consider the CIA variant of this model.  Here sunspots can be learnable. In section 3, we

demonstrate that sunspots are typically learnable when there is asymmetric learning and it

is the central bank doing the learning.  We also briefly discuss the limplications of

different types of asymmetric information.  Section 4 concludes.

I. Symmetric Learning in a Sticky Price Model.

A.  Sunspots and Learnability in the CWID Model.

The analysis is conducted using the now-standard sticky price model that is given

by the following two equations:

ttttt uEz ++= +1πβλπ (1)

11 ][ ++ +−−= tttttt zEERz π (2)

where

ttt uu ερ += −1 ,

)ln()ln( 1−−≡ ttt PPπ denotes the inflation rate from time t-1 to time t, zt denotes marginal

cost, Rt is the nominal interest rate between t and t+1, and ut denotes a shock to the
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pricing equation.5   All variables are expressed as log deviations from the non-stochastic

steady-state.  Below we find it convenient to make the weak assumption that β+λ>1.

To close the model we need to specify the central bank reaction function.  In what

follows we assume a reaction function where the current nominal interest rate responds to

expected inflation:

,1+= ttt ER πτ (3)

where τ > 0 is the response of the nominal interest rate to movements in expected

inflation.  Under any such interest rate policy the money supply (not modeled) responds

endogenously to satisfy the interest rate rule.  It is this endogeneity of the money supply

that leads to the possibility of real indeterminacy and sunspot equilibria.  That is, there is

real indeterminacy if different money growth rules support the interest rate target (3).6

These are then associated with different real outcomes because of the sticky price

assumption (1).

To proceed, use (1) to eliminate zt from the system:

tttttttttttt uEEERuE ρβπππλβππ −−+−−=−− ++++ 2111 ][ . (4)

Using (3) to eliminate the nominal rate, we have a second-order difference equation in πt.

For determinacy, we need both roots of the corresponding characteristic equation to be

outside the unit circle.  Straightforward calculations imply that there is real determinacy if

                                                          
5 See Clarida, Gali, and Gertler (2000), and the references therein.  Following Yun (1996), Carlstrom and
Fuerst (2000b) demonstrate that with a linear production technology, the system can be written in the
marginal cost form used above.  In this case, λ represents the link between marginal cost and prices, while
in the Clarida, Gali, and Gertler (2000) framework λ represents the link between output and prices.  One
can transform the current model by replacing our λ with Clarida et al.’s λσ, where σ is the elasticity of
intertemporal substitution.

6 See Carlstrom and Fuerst (2000b) for a discussion.



5

and only if

λ
λβτ ++<< )1(21 .

For reasonable calibrations (β = .99, λ = .3), the upper bound is quite high, about 14, so

that the basic conclusion is that a τ greater than unity will achieve determinacy.  If there is

determinacy, the equilibrium can be written as

tmsvt uγπ =

where γmsv is unique and denotes the “minimum state vector” (msv) solution.  If τ lies

outside the determinacy region, then we still have the MSV solution above but more

importantly for this analysis we also have an AR1 solution.  There are two cases to

consider.  For τ < 1 only one root of the characteristic equation given by (4) is explosive,

while the other is in (0,1).  If  
λ

λβτ ++> )1(2 , one root is explosive while the other is in

(-1,0).  In either case we have real indeterminacy and multiple equilibria.  In particular

there are sunspot equilibria given by

12111 +++ +++= ttttt su σεσγαππ (5)

where α ∈ (-1,1) is unique, γ ≠ γmsv is unique, σ1 and σ2 are arbitrary, εt+1 is the

innovations in the ut process, and st+1 is an arbitrary iid, mean-zero sunspot shock.  Note

that although the msv solution uniquely determines the response of πt+1 to εt+1, σ1 is

arbitrary in the case of sunspot equilibria because both εt+1 and st+1 are white noise.

Are these sunspot equilibria learnable?  Following the methodology outlined in

Evans and Honkapohja (2001), posit the following perceived law of motion (PLM):
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ttttt sdcuba 111111 +++= −− εππ . (PLM)

Notice that this PLM has the same form as the sunspot equilibria (5).  Using this PLM

scrolled forward to eliminate the forecasts in the equilibrium condition (4), we can then

solve for the implied actual law of motion (ALM):

ttttt sdcuba 221212 +++= −− εππ . (ALM)

By replacing all expectations with this common PLM, we are assuming symmetric

learning between the public and the central bank.7  We now have the mapping

T(a1,b1,c1,d1) = (a2,b2,c2,d2).  The fixed points of this T-mapping are the rational

expectations equilibria.  An equilibrium is said to be E-stable if this mapping is stable

evaluated at the equilibrium in question.  Bullard and Mitra (2000) study the E-stability of

the msv equilibrium.8  Our focus is on sunspot equilibria.

It is straightforward to demonstrate that if agents know πt when forecasting πt+1

and πt+2, then the coefficient a1 maps into zero so that the sunspot equilibria are not E-

stable.  Hence, Honkapohja and Mitra  (2001) extend the analysis by assuming that when

forming expectations agents do not know πt, so that time-t forecasts are functions only of

πt-1 and the exogenous shocks.  As noted by Evans and Honkapohja (2001), this increases

the chances for E-stability.  One contribution of Honkapohja and Mitra  (2001) is to

demonstrate that even in this case the sunspot equilibria are still not E-stable so that

sunspots are not learnable.9

                                                          
7 In the next section we will consider a particular form of asymmetric learning in which only the central
bank is learning.  In this case we replace only the central bank’s forecast with the PLM.
8 It is important to note that our PLM does not include a constant term, while a constant term is central to
the results in the Bullard-Mitra paper.
9 However, Honkapohja and Mitra (2001) demonstrate that a different type of equilibria, “resonant
frequency” sunspot equilibria, may be learnable under certain policy rules.
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B.  Sunspots and Learnability in the CIA Model.

Before abandoning the possibility of E-stable sunspots in the case of symmetric

learning, consider the alternative money-demand timing convention suggested by

Carlstrom and Fuerst (2001).  The Fisher equation given by (2) has as its

microfoundations the assumption that money balances at the end of the period (after

leaving the goods market) aid in transactions—what Carlstrom and Fuerst call “cash-

when-I’m-done” timing (CWID). If we instead assume that cash available before entering

the goods market aid in transactions—what Carlstrom and Fuerst call “cash-in-advance”

timing (CIA), equation (2) becomes

111 ][ +++ +−−= tttttt zEERz π . (6)

As before we use (1) to eliminate zt from the system.

tttttttttttt uEEERuE ρβπππλβππ −−+−−=−− +++++ 21111 ][ (7)

In this case Carlstrom and Fuerst (2001) demonstrate that there is real indeterminacy

under the forward-looking Taylor rule for all values of τ.  Are any of these sunspot

equilibria E-stable?  Yes, but only a few.  We first characterize the indeterminacy, and

then look at E-stability.

Proposition 1: Under the assumption of CIA timing there is real indeterminacy for all

values of τ.  In particular:

a. If τ < 1, the equilibria are characterized by the AR(1) process

 12111 +++ +++= ttttt su σεσγαππ AR(1) (8)

 where 0 < α < 1 is unique, γ is unique, and σ1 and σ2 are arbitrary.
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b. If  ( ) *
2

4
411 τ

λ
βλβτ ≡�
�

�
�
�

� −++<< , there are two stable real roots to the characteristic

equation, so that there are two distinct AR(1) processes of the form (8) where 0 < α <

1 takes on one of these two values.  There are also AR(2) equilibria characterized by

 121111
11

++−+ +++
+
−+

+
++= tttttt su σεσγπ

λτβ
π

λτβ
λβπ . AR(2) (9)

c. If τ > τ*, the roots of the characteristic equation are complex with norm in (0,1) so

that the equilibria are characterized by the AR(2) process (9).

Proof:  Since questions of determinacy depend only upon deterministic dynamics, the

proof focuses only on the AR coefficients without loss of generality.  The characteristic

equation of (7) is given by

1)1()()( 2 +++−+= eeeh λβλτβ .

We have h(0) > 0, h’(0) < 0, and h(1) = λ(τ-1).  Hence, if τ < 1 there is one root in (0,1)

and one outside (0,1).  Since there are no predetermined variables we have real

indeterminacy.

Now suppose that τ > 1.  In this case we have h’(1) > 0.  Hence, if the roots are real,

they are both in (0,1).  These two roots are both possible AR(1) coefficients.

Alternatively, we can write this as the AR(2) in (9).  The roots are real if and only if

)(4)1( 2 λτβλβ +>++

Solving this for τ yields the τ* in the proposition.  If the roots are complex, their norm is

in (0,1) and the equilibria are then characterized by the AR(2).  QED

In contrast to the CWID model in which there is indeterminacy only for very small
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or very large values of τ, Proposition 1 implies that in the case of CIA timing real

indeterminacy arises for all values of τ.  Note that the nature of the equilibria varies

around τ = 1.  For τ < 1, the sunspot equilibria are of the AR(1) form given by (8), while

for τ > 1 there are sunspot equilibria of the AR(2) form given by (9).   It turns out that

sunspots may be learnable with CIA-timing precisely because for τ > 1 there is double

indeterminacy so that sunspot equilibria are of the AR(2) form.

We will now turn to E-stability of these equilibria.  If we assume that πt is known

when generating forecasts the earlier discussion applies and the sunspot equilibria are not

E-stable.  Hence, we once again must restrict the information set by assuming that πt is

not known when generating forecasts.

Proposition 2:  Assume CIA timing and that πt is not observable for time-t forecasting.

For τ < 1 the AR(1) equilibria given by (8) are not E-stable.  However, for

( )
�
�

�
�
�

� −++<<
λ

βλβτ
2

211
2

the AR(2) equilibrium given by (9) are E-stable.

Proof:  Let us first consider the AR(1) case.  Suppose that the PLM is given by

ttttt sdcuba 111111 +++= −− εππ .

Under the assumption that πt is not observable for time-t forecasting, we have

tttttttt bubsdacaubaaE ερεππ 11111111111
2

1 1
+++++= −−−+

))(( 1111
2

1
2

11
2

1
3

2 1111 tttttttt uabsdacaubaaE ερρεππ ++++++= −−−+

Substituting this into (7) we have that the PLM maps into the ALM via:

3
1

2
111 )()1()( aaaT λτβλβ +−++=
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ρρρρλτβρλβ )1()]()[())(1()( 11
2
11112 −++++−+++= baababT

)1()]()[())(1()( 111
2
111113 ρρλτβλβ −++++−+++= abcabcacT

1
2
11114 )()1()( dadadT λτβλβ +−++=

where the variable in parenthesis is what the function maps into. Since this system is

diagonal the eigenvalues are T1’(a1), T2’(b1), T3’(c1), and T4’(d1).   It is straightforward to

demonstrate that at a1 = α, T3’(c1) = T4’(d1) = 1, ie., there are no learning dynamics for

the coefficients on the innovations.  That is, your initial guess of c1 and d1 are

immediately learned.   Following Evans and Honkapohja (2001), this implies that for E-

stability of the sunspot equilibria we need focus only on the mappings of a1 and b1.  The

E-stability condition is that T1’(a1) < 1 and T2’(b1) < 1, evaluated at the sunspot

equilibria.   Consider a1 first:

2
1111 )(3)1(2)( aaaT λτβλβ +−++=′

The AR(1) solution is α such that T1(α) = α.  Using this fact we have that E-stability

requires

λβ
α

++
>

1
2

It is straightforward to show that only the larger of the two real roots satisfies this

condition.  When τ < 1, the larger root is outside the unit circle so the AR(1) equilibria

are not E-stable.10

                                                          
10 If  1 < τ < τ*, the larger root is inside the unit circle so that a1 = αhigh is E-stable.  In this case, we must
examine T’(b1):

)()()1(1)( 11 ρρλτβρλβ ++−+++=′ abT
For stability, we need this within the unit circle.  Using a1 = α and T(α) = α we have

0)()()1( 1 <++−++ ρρλτβρλβ a
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We now analyze the case where τ > 1 so that we have AR(2) equilibria.  Let the

PLM be given by

tttttt sdcubaa 1111221 ++++= −− επππ .

Using this PLM and the assumption that πt is not part of the information set, we have the

following T-mapping from PLM to ALM:

)2)(())(1()( 12
3
12

2
111 aaaaaaT ++−+++= λτβλβ

))(()1()( 2
22

2
12122 aaaaaaT ++−++= λτβλβ .

)1())(())]((1[)( 1
2

211113 ρρρλτβρλτβλβ −+++−++−++= babaabT

)1())(())]((1[)( 112111114 ρρλτβλτβλβ −+++−++−++= bcabcaacT

1211115 )()](1[)( dadaadT λτβλτβλβ +−+−++=

Note first that after T1(a1) and T2(b1) this system of derivatives is once again block

recursive.  This implies that three of the eigenvalues of the system are given by T3’(b1),

T4’(c1), and T5’(d1).   As before we have T4’(c1)=T5’(d1) = 1, ie., there are no learning

dynamics in these coefficients.  Our focus is on the system in a1, a2, and b1.  Evaluating

the derivatives at the equilibrium values of

τλβ
λβ

+
++= 1

1a

τλβ +
−= 1

2a

we have T3’(b1) = -(β+λτ)ρ2 < 1.  Hence, we need only examine the subsystem in a1 and

Note that if ρ = 0, we have instability, but in this case the sunspot equilibria would not depend upon ut-1.  If

ρ > 0, then E-stability requires ρ
τλβ
λβα −

+
++> 1 .
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a2. The characteristic equation of this sub-matrix (evaluated at the AR(2) values) is

4)1(,)(
2

2 −
+

++≡∆∆−∆+=
λτβ

λβwhereeeeg

Note that g(1) > 0 and g(0) = -∆.  Recall from Proposition 1 that the roots of h (the

characteristic equation of (7)) are real when ∆ > 0.  If ∆ > 0, g(0) < 0 so that the two roots

of g are below unity and we have E-stability.  If ∆ < 0, the roots of g are complex, and we

need the real part to be less than unity.  Expressing this condition in terms of τ yields the

expression in the proposition.   QED

Proposition 2 implies that the AR(2) sunspot equilibria are learnable for an

empirically relevant range.  For example, with β = .99, λ = .3, we have E-stability for 1 <

τ < 5.44.  This region includes the celebrated Taylor coefficient of 1.5.11

III. Asymmetric Learning in a Sticky Price Model.

The former section made an extreme assumption: both the public and the central

bank have common forecasts, both of which are rational only in the limit.  In contrast, in

this section we assume that the private sector’s forecasts are rational but that the central

bank uses a forecasting rule that is rational only in the limit.  In this case it is much more

likely for real indeterminacy to be learnable.  If the central bank uses current inflation to

                                                          
11 Curiously, this range gets arbitrarily large as the economy approaches a flexible price model (λ→∞).
Yet for an economy which is perfectly flexible (so that equilibrium is given by (6) with zt = 0) there is real
indeterminacy but sunspots are never learnable (this is immediate given that πt no longer enters into the
system).  This suggests there might be a problem in the above analysis.  The problem may lie with
Honkapohja and Mitra’s  (2001) assumption that when forming expectations agents do not know πt.  But
actual inflation in the pricing equation (1) was assumed observable.  Following Yun (1996) the
microfoundations of this pricing equation are that firms who set prices in time-t base their prices on the
current price level and forecasts of future prices.  If the current price level is assumed to be not observable,
then presumably we should replace πt in equation (1) with the expectation of πt given current information.
In this case we would have an actual law of motion (ALM) solely in πt-1 so that the coefficient a1 maps into
zero.  (A similar argument holds in the case of the AR(2) equilibria.)  Under this interpretation the sunspot
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forecast future inflation, and if the public knows that the central bank is doing so, then the

AR(1) and AR(2) sunspot equilibria may be learnable.  The central bank can lead the

economy to indeterminacy.

A.  The CWID Model.

Let us begin with the case of CWID timing.  The relevant equilibrium is given by

tttttttttttt uEEERuE ρβπππλβππ −−+−−=−− ++++ 2111 ][ (10)

The sunspot equilibria are of the AR(1) form in (8).  Since only the central bank is subject

to learning we substitute the PLM only into the bank’s forecast:

][ 111 ttt
cb
tt ubaER +== + πτπτ (11)

As will soon be evident, because of the dynamics of asymmetric learning, the sunspot

equilibira can be E-stable even if the central bank observes πt when forecasting πt+1 .

Without loss of generality, we thus proceed under this assumption.  Notice that with

asymmetric learning the forward rule with parameter τ corresponds to (roughly) a current

rule with parameter τa1.  Substituting (11) into (10), we have a second order system in πt.

This system is indeterminate, with one root in the unit circle.  This root is the ALM.

Under this mapping, is the AR(1) coefficient ever E-stable?  Yes.

Proposition 3:  Assume CWID timing, and central bank learning.  If τ < 1, then there is

real indeterminacy and the AR(1) equilibria of the form (8) are E-stable. If

λ
λβτ ++> )1(2 , then there is real indeterminacy but the AR(1) equilibria of the form (8)

are not E-stable

equilibria are not E-stable.  This criticism does not apply to the analysis in Section III as we assume that πt
is known when making forecasts.
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Proof:  Substituting (11) into (10), we have the following system:

tttttt ubEEa )1()1()1( 1211 λτρβππλβλτπ −−+−++=+ ++

In the neighborhood of the AR(1) equilibria, a1 = α, this system is subject to

indeterminacy so that we can use the method of undetermined coefficients to solve it for

the ALM:

1111 )()( −− += ttt ubTaT ππ

where without loss of generality we ignore the sunspot coefficients.  The mapping T(a1) is

given by the stable root (the smaller root) of the system:

β
βλτβλλβλβ

2
41)(2)()1(

)( 1
2

1

a
aT

−+−++−++
=

so that

1
211

41)(2)(
/)(

a
daadT

βλτβλλβ
λτ

−+−++
= .

For E-stability we need this to be less than one.  Exploiting the fact that T(α) = α, where

α is the AR(1) solution, we can eliminate the square root and obtain:

αβλβ
λτ

21
/)( 11 −++

=daadT (12)

We can now consider the two cases:

Case 1: 
λ

λβτ ++> )1(2 .

αβλβ
βλ

αβλβ
λτ

21
)1(2

21
/)( 11 −++

++>
−++

=daadT

where the inequality follows from the restriction on τ.  Since the AR(1) α < 0 in this case,
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we have that 1/)( 11 >daadT , so that the solution is not E-stable.

Case 2:  τ < 1.

Expression (12) is increasing in α.  Setting α = 1 we have

1
1

/)( 11 <
−+

<
βλ

λτdaadT

where the last inequality follows from τ < 1.  Hence, we must proceed to the T(b1)

mapping:

)()1(
)1()( 1

1 ραβλβ
ρλτ

+−++
−−

=
bbT .

For the case τ < 1 we have 0 < α < 1, so that T’(b1) < 1.  Hence, in the case of τ < 1 we

have E-stability.  QED

Remark:  It is curious to note that the sunspots fail to be E-stable only when τ is large so

that the equilibria are oscillatory, α < 0. However, Honkapohja and Mitra (2001)

demonstrate that the “resonant frequency” sunspot equilibria are learnable when the

equilibria are oscillatory.

B.  The CIA Model.

In the case of CIA timing, the relevant equilibrium is given by

21111 ][ +++++ −+−−=− tttttttttt EEERE βπππλβππ (13)

As before, since only the central bank is subject to learning we only replace their

forecasts with the relevant PLM.  Recall that in the CIA model there are two forms of

indeterminacy, depending upon the size of τ.  For τ < 1, we have AR(1) equilibria of the

form in (8), so that we replace the interest rate with
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][ 111121 ++++ +== ttt
cb

t ubaER t πτπτ . (14)

In the case of τ > 1, we have indeterminacy of the AR(2) form given in (9), and replace

the interest rate with

][ 1121121 ++++ ++== tttt
cb

t ubaaER t ππτπτ . (15)

We now state:

Proposition 4:  Assume CIA timing, and asymmetric learning (central bank learning).

For τ < 1 the AR(1) equilibria in (8) are learnable if

1
2

++
<

λβ
ρ .

For τ > 1 the AR(2) equilibria in (9) are learnable for all values of ρ.

Proof:

Case 1:  ττττ < 1.  Substitute (14) into (13).   This system is indeterminate, with two positive

roots, one in (0,1).  This smaller root is the ALM and is given by T(a1):

2
/4

)(
2

1

β−−
=

xx
aT where 0)1()1( 1 >

++−
=

β
βτλ ax .

E-stability is given by dT(a1)/da1 < 1.

αββταλ
λτα

β
λτ

β 21)1(/422
1)()(

2
1

1

1

1

−++−
=��

�

�
��
�

� −
�
�

�

	






�

�

−

−+==
x

x
da
dx

dx
adT

da
adT

where the last equality comes from exploiting T(α) = α to eliminate the square root.  This

last term must be less than unity for E-stability.  This implies there is E-stability if and

only if

)(2
1

λτβ
λβα
+

++< . (16)
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For τ < 1 this is always satisfied as α is the smaller root of the characteristic equation.

We now must turn to the b1 coefficient:

βρλτβαλβ
ρρλτ

−+−++
−−

=
)()1(

)1(
)( 1

1
bbT

where we are evaluating this at a1 = α.  For E-stability we need T’(b1) < 1.  Imposing this

and using the fact that α is the root of the characteristic equation, we have

1
1

)( 1 <
−

=′
αβρ

αλτρbT .

Combining this with (16), we have that the equilibria are learnable if and only if

1
2

++
<

λβ
ρ .

Case 2:  ττττ > 1.  Substitute (15) into (13).  This system is indeterminate and in the

neighborhood of the candidate sunspot equilibria can be expressed as an AR(2).  This

AR(2) is our ALM:

[ ]112112 )1)(/1()1()1(1
+++ −−++−−++= tttt ubaa ρλτρρπλτπλτλβ

β
π

We thus have the mapping

βλτλβ /)1( 11 aa −++→

βλτ /)1( 22 aa +−→ .

βρρλτρ /)1( 11 bb −−→

Inspection reveals that this is E-stable.  QED
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C.  Other Asymmetries.

The previous discussion has considered only one of the three possible asymmetric

learning scenarios.  In this section we briefly discuss the other two logical possibilities.

First, suppose that the central bank has rational expectations, but that the public is

subject to learning.  This case is easily dealt with.  Since private sector expectations are

part of bond-pricing, then the law of iterated expectations immediately implies that the

analysis of this type of asymmetric learning will exactly parallel Section II’s discussion of

symmetric learning.

Second, suppose that both the central bank and the public are subject to learning,

but that their learning is asymmetric.  That is, the form of their PLM’s are the same, but

the initial coefficient values in these PLM’s may differ.  Matters are a bit more

complicated here, but the appendix demonstrates that once again the E-stability

conditions for this type of asymmetric learning are identical to the E-stability conditions

for symmetric learning examined in Section II.

In summary, the only case in which asymmetric learning gives novel results

(compared to the results on symmetric learning in Section II), in when the public has

rational expectations while the central bank is subject to a learning process.  As noted

earlier, this is also the assumption that Sargent (1999) utilizes in his analysis of the great

inflation.

IV. Conclusion.

This paper has shown that the developing consensus that policy-induced sunspots

are not learnable may be premature.  This paper has considered two modifications to the

typical model, either one of which leads to the learnability of sunspot equilibria.  First, if
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we replace CWID money demand timing with the more intuitive CIA timing, then

sunspots are learnable over a relevant range of the parameter space.  Second, sunspots are

learnable if the central bank is the one doing the learning.

There are several natural areas of further work.  First, the Taylor rule examined

depended only on expected inflation.  Future work will consider the case of including a

measure of output in the policy rule.  Second, the sunspot equilibria arise because of the

endogeneity of the supporting money supply process.  What features of this money supply

behavior lead to E-stability?  Finally, work by Carlstrom and Fuerst (2000a, 2001b)

suggests that sunspot equilibria are much more likely when investment spending is added

to the model.  Are any of these sunspot equilibria E-stable?

While addressing whether sunspots are learnable we have left unanswered the

question of how a particular sunspot is coordinated upon.  While far from being a

complete answer to this important question we note that if the monetary authority

believes in a particular sunspot, rational expectations on the part of the public dictates

that they too will believe in that sunspot.  The central bank can lead us to real

indeterminacy.
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Appendix

In this appendix we demonstrate that the conditions for E-stability when both the

public and the central bank are learning but with different coefficients in their PLM’s, are

identical to the conditions for E-stability when their PLM’s are identical.  The latter is

what we call symmetric learning in Section II.

In either the case of CWID or CIA timing, the key difference equation has the

form

214231211 +++++ +++= t
cb
t

p
tt

p
tt

cb
tt

p
tt EEfEfEfEf πππππ (A1)

where the fi’s are constants, p
tE  denotes private sector expectations, and cb

tE  denotes

central bank expectations.  We have omitted the stochastic shocks for simplicity and

without loss of generality.  In the case of CWID timing Rt enters the Euler equation so

that f2 = -λτ and f4 = 0 (see equation (4)), while in the case of CIA timing Rt+1 is in the

Euler equation so that f2 = 0 and f4 = -λτ (see equation (7)).

Let us consider AR(1) equilibria first.  Suppose the sunspot equilibria are

characterized by πt = γπt-1, where γ is in the unit circle.  In the case of symmetric learning

both the central bank and the public posit the same PLM,

1−= tt aππ .

The E-stability condition, evaluated at a = γ, is

.1)(3)(2 43
2

21 <+++ ffff γγ   (A2)

In contrast, in the case of asymmetric learning suppose that the private sector’s PLM is

given by

1−= tt aππ ,
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while the central bank’s PLM is given by

1−= tt bππ .

Substituting this into (A1), we have the PLM to ALM mapping:

3
4

3
3

2
2

2
1),( afafbfafbaT +++= .

Note that we have used an iterated expectations assumption

221 +++ = t
p

tt
cb
t

p
t EEE ππ .12 (A3)

Since a and b both map into the same scalar, the eigenvalues of the E-stability matrix are

0 and T1(a,b)+T2(a,b), evaluated at a=b=γ.  For E-stability we need

.1)(3)(2 43
2

21 <+++ ffff γγ (A4)

This condition is the same as the conditions for symmetric E-stability given in (A2).

What about the AR(2) equilibria?  Recall that these equilibria arise only in the

case of CIA timing in which case f2 = 0.  But then the assumption in (A3) immediately

implies that symmetric and asymmetric learning are identical.

                                                          
12 This assumption is only important for CIA-timing.  Note that iterated expectations is an assumption.
Without rational expectations the law of iterated expectations does not necessarily hold.  We are basically
assuming that the public’s best guess of the central bank’s estimate of inflation is their own inflation
estimate.  We could have made the alternative heroic assumption that the public knew the central bank’s
estimate of inflation and obtained the same result.
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