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I. Introduction.

It has become conventional wisdom that central banks should target interest rates

and not monetary aggregates.  There are at least two reasons for this preference.  First,

following the classic arguments of Poole (1970), the apparent evidence of exogenous

shocks to velocity leads to a preference for interest rate targeting.  Second, a more recent

line of research suggests that even in the absence of velocity shocks, money growth

targeting may be problematic because it is more prone to real indeterminacy.  For

example, Matsuyama (1990) and Woodford (1994) show that money growth targeting

can allow extrinsic uncertainty (“sunspots”) to be introduced into an otherwise

determinate real economy.

The purpose of this paper is to challenge the assertion that real indeterminacy is

likely with money growth targeting.  Although it is theoretically possible for an

exogenous money growth policy to introduce sunspot equilibria, this paper demonstrates

that in a reasonably calibrated monetary model with explicit production, money growth

rules produce real determinacy.  That is, money growth rules avoid the possibility of

sunspot equilibria.  We see the avoidance of sunspots as a necessary condition for any

good monetary policy rule.  Hence, exogenous money growth rules satisfy this minimalist

criterion.

In contrast, interest rate rules do not generally satisfy this minimalist criterion.

Interest rate rules are prone to sunspot equilibria because money growth is endogenous

under such a policy.  For example, consider the extreme case of an interest rate peg in

which the money supply is passively varied to hit an interest rate directive. The well-

known nominal indeterminacy under such a rule means that sunspot fluctuations in the
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price level naturally arise.  In environments with nominal rigidities, these nominal

fluctuations induce real fluctuations and are welfare-reducing.1

In contrast, we show that money growth rules ensure determinacy in a general

monetary environment for all plausible calibrations.  We utilize a generic money-in-the-

utility function (MIUF) model because of its generality as it encompasses rigid cash-in-

advance (CIA) models, transactions cost models (see Feenstra (1986)), shopping time

models, and the cash-credit model pioneered by Lucas and Stokey (1983,1987).2  These

models differ in the micro details of the trading arrangements, but since we calibrate the

models to aggregate monetary data (eg., the interest elasticity of money demand), these

micro differences are irrelevant.

We restrict the analysis to an infinitely-lived representative agent economy

because this has become the workhorse in theoretical monetary policy analysis.3  Since

we are concerned with issues of determinacy without loss of generality we limit the

discussion to a deterministic model.  As is well known, if the deterministic dynamics are

not unique, then it is possible to construct sunspot equilibria in the model economy.

Below we will use the terms “real indeterminacy” and “sunspot equilibria”

interchangeably.

Under the assumption of an exogenous money growth rate, we consider two types

of real indeterminacy.  First we analyze the possibility of self-fulfilling hyperinflations in

                                                          
1It is possible to design more complex interest rate operating procedures that avoid these problems.  For
example, Carlstrom and Fuerst (2000) argue that if the central bank uses an interest rate operating
procedure, then the only way of ensuring real determinacy in a sticky price model is for the central bank to
respond aggressively to lagged inflation.  For a related analysis see Benhabib, Schmitt-Grohe and Uribe
(2000).
2 For the case of the cash-credit model see footnote 7 of Lucas and Stokey (1983).
3 There is a vast literature on real indeterminacy in overlapping generations models of money.  See, for
example, Azariadis (1981).
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which the economy becomes de-monetized in the limit. We show that these can only

arise if the limiting elasticity of money demand is quite high.   This is in contrast to the

classic contribution of Obstfeld and Rogoff (1983) in which hyperinflations arise for all

money demand elasticities.  The difference arises because, following Carlstrom and

Fuerst (2000), we use cash-in-advance (CIA) timing in which the money that facilitates

transactions is the money the economic agent has in advance of entering the goods

market.  In contrast, Obstfeld and Rogoff assume that money balances held at the end of

the period facilitates trading earlier in the period or what we call cash-when-I’m-done

(CWID) timing.

The remainder of the analysis focuses on the second form of real indeterminacy;

the possibility of stationary multiple equilibria.  A key innovation is that we add a

standard CRS production technology to the environment. In this case, multiple stationary

equilibria arise only with implausibly low money demand interest elasticities.  This

contrasts with the high elasticities needed for rational hyperinflations.

To understand our results in the case of stationary equilibria, it is helpful to

compare them with the work of Matsuyama (1990) and Woodford (1994).  Matsuyama

analyzes an endowment MIUF model with an exogenous money growth policy.4  He

demonstrates that a necessary condition for stationary sunspot equilibria is that the cross-

partial of the utility function Ucm be sufficiently negative.

Woodford (1994) analyzes a Lucas-Stokey (1983,1987) cash-credit economy.

Surprisingly, Woodford’s analysis is consistent with the existence of sunspot equilibria in

                                                          
4 Another difference between the current paper and Matsuyama (1990) is that we utilize CIA timing, while
he uses CWID  timing.  This difference has a small effect on the existence of multiple stationary equilibria,
and is footnoted when appropriate.  See Carlstrom and Fuerst (2000) for a complementary analysis for
interest rate rules.
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a model in which the isomorphic MIUF has a positive cross partial, Ucm > 0.  Below we

will show that this discrepancy between Matsuyama (1990) and Woodford (1994) arises

because the former uses CWID timing, while the latter uses CIA timing.  More

importantly, the paper demonstrates that these sunspot equilibria with Ucm ≥ 0 arise only

with implausibly low interest elasticities. As for the sunspots when Ucm < 0, a second

contribution of the paper is to demonstrate that when a standard CRS production

technology is added to the model this possibility disappears.

The paper proceeds as follows.  The next section considers an endowment

economy, and develops conditions for indeterminacy.  Section three extends the analysis

to an environment with production and demonstrates that once we restrict the analysis to

the plausible parameter space that the sunspots of Matsuyama (1990) and Woodford

(1994) disappear, and money growth rules ensure real determinacy.  Section four

concludes.

II. A MIUF Endowment Economy.

The economy consists of numerous infinitely-lived households with preferences given by

 
t =

∞

∑
0

βtU(ct, At/Pt),

where ct and At/Pt denote consumption and real money balances, respectively.

 The household begins the period with Mt cash balances and Bt-1 holdings of nominal

bonds.  Before proceeding to the goods market, the household visits the financial market

where it carries out bond trading and receives a cash transfer of )1( −t
s
t GM  from the

monetary authority where s
tM denotes the per capita money supply and Gt is the gross
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money growth rate.  Hence, before entering goods trading, the household has cash

balances given by

 tttt
s
ttt BRBGMMA −+−+≡ −− 11)1( ,

 where Rt-1 denotes the gross nominal interest rate from t-1 to t.  Notice that following

Carlstrom and Fuerst (2000) we utilize CIA timing.  That is, the money balances that aid

in transactions are the money balances that the household has upon entering goods

market trading.  In contrast, Matsuyama (1990) utilizes end-of-period money balances,

what Carlstrom and Fuerst (2000) call CWID timing.  We will comment on these

differences below.

 After engaging in goods trading, the household ends the period with cash balances

given by the intertemporal budget constraint.

 tttttttt
s
ttt yPcPBRBGMMM +−−+−+= −−+ 111 )1( ,

 where yt = y denotes real household endowment income.  We will endogenize production

in the next section.

 The first order conditions to the household’s problem include the following:

 

 [Um(t)+Uc(t)]/Pt = Rtβ [Um(t+1)+Uc(t+1)]/Pt+1 (1)

 

 Um(t)/Uc(t) = (Rt-1). (2)
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Equation (1) is the Fisherian interest rate determination in which the nominal rate varies

with expected inflation and the real rate of interest on bonds.  Equation (2) is the model’s

money demand function.5  Money demand elasticity η ≡ -dlnm/dlni is given by

][ cmmm

m

iUUm
U
−

−=η  > 0,

where i = R –1 is the net nominal rate.

Suppose that the central bank expands the money supply at a constant (gross)

growth rate of Mt+1/Mt = G > β.  Since the nominal interest rate is endogenous, one can

combine (1)-(2) to yield the following difference equation in real balances mt ≡ Mt/Pt.

 )]()([)( 111 +++ += tmtcttct mUmUmmUmG
β

. (3)

 An equilibrium consists of a non-negative mt sequence that satisfies (3) and the standard

transversality condition.

 Expressing mt+1 as an implicit function of mt, mt+1 = g(mt), we note first that g is

non-negative.  Under the assumption that money demand slopes down (η > 0), there is a

unique positive steady-state solution to (3) given by the fixed point g(mss) = mss.  One

equilibrium is of course mt = mss for all t.  The key issue is whether there are other

equilibria.  There are three possibilities.

 First, hyperdeflations in which mt explodes and goes to infinity in the limit.  These

paths are typically not equilibria as they violate the household’s transversality condition

(see Obstfeld and Rogoff (1986)).6  

                                                          
 5 In the case of “cash-when-I’m done” timing, the corresponding equations are Uc(t)/Pt = RtβUc(t+1)/Pt+1,

and Um(t)/Uc(t) = (Rt-1)/Rt.
6 A necessary condition for ruling out these equilibria is that G > 1, ie., that money growth is positive.
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 Second, hyperinflations where mt goes to zero (see Obstfeld and Rogoff (1983)).

We will discuss these in the next subsection.

 Third, and finally, stationary multiple equilibria in which for all starting values of

m, the path converges to mss in the limit.  The bulk of our analysis will revolve around

these equilibria.

 

 Self-fulfilling hyperinflations:

 Self-fulfilling hyperinflations (paths with mt converging to zero) are possible if

and only if 0)(lim
0

=
→

mg
m

, that is if there exists a non-monetary steady-state.  We adopt the

mild assumption that ),(sup
0

myU c
m≥

is positive and finite.  Given this assumption both

sides of equation (3) go to zero (as m goes to zero) if and only if

 .0),(lim
0

=
→

mymU mm
 (4)

 From the money demand relationship (2) and the assumption that ),(sup
0

myU c
m≥

is finite

and positive, (4) is equivalent to

 0)(lim
0

=
→

mmi
m

, 

 where i(m) denotes the inverted money demand curve.  This condition has an elasticity

interpretation: in the limit, money demand interest elasticity must exceed unity so that the

decline in real balances can occur without too large a movement in the nominal rate.

Obstfeld and Rogoff‘s (1983) analysis of hyperinflations is quite different.  In

particular, money demand interest elasticity has no role in their analysis.  The essential
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difference is that Obstfeld and Rogoff use CWID timing (utility depends on end-of-

period money, At ≡ Mt+1) so that the counterpart to (3) is

 )()]()([ 11 ++=− tcttmtct mUmmUmUmG
β

. (5)

Let mt+1 = h(mt) denote this mapping. Obstfeld and Rogoff assume that Ucm = 0, and that

there exists an m̂ > 0 such that )ˆ(mh  = 0.  This latter assumption arises from the

reasonable assertion that as m decreases Um eventually exceeds the constant Uc.7  In this

case h becomes negative for small 0 < m < m̂ , and there are hyperinflationary equilibria

if and only if h(0) = 0, or

 .0),(lim
0

=
→

mymU mm
(6)

 If condition (6) holds, then there are a countable infinity of equilibria that have as a

penultimate point m̂ .  Afterwards the economy jumps discontinuously to a completely

demonetized economy where m = 0.  All of these equilibria are found by backing up the

transition path from m̂ a countable number of periods.

 Although condition (6) is mathematically the same as condition (4), the

economics are quite different.  Condition (6) does not have an elasticity interpretation.

This is because the economy has become demonetized in the previous period when mT =

m~ and nominal rates are infinite.  After this money demand ceases to hold as both interest

rates and prices are infinite.  Why then is money held in this penultimate period (T) if

nominal rates are infinite and the price level tomorrow (T+1) is infinite?  Equivalently,

                                                          
7 If Um never exceeds the constant Uc, then h(m) is always nonnegative, and there are a continuum of
equilibria in which real balances go to zero only in the infinite limit.  Since i(m) = [Um /(Uc-Um)], these
equilibria have the property that nominal rates are typically finite even with zero real balances.  In the
hyperinflationary equilibria considered by Obstfeld and Rogoff (1983), real balances “jump” to zero in
finite time, and in the penultimate period nominal rates are infinite.
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why are money balances held at the end of this penultimate period even though they can

never be used for transactions?  Because under the peculiar assumption of CWID timing

households receive utility from end-of-period money, that is, transactions in time-t are

facilitated with the nominal money balances the household has at the beginning of time

t+1. Condition (6) is thus a restriction devoid of economic content.  The usual argument

that hyperinflationary paths are always possible in infinite horizon monetary models

results from a very peculiar timing assumption.  In contrast, in the case of CIA timing a

continuum of hyperinflationary paths are possible if and only if the limiting interest

elasticity is quite large, in excess of unity.8

 

 Multiple Stationary Equilibria:

 Our primary focus for the remainder of the paper is on the third equilibrium

possibility: multiple stationary equilibria.  We find these more compelling than the

hyperinflationary equilibria because, as noted by Obstfeld and Rogoff (1983), even if the

interest rate elasticity of money demand exceeds unity, these hyperinflations can still be

ruled out under the mild assumption that the government guarantees a minimal real

redemption value for money.  In contrast, the existence of stationary sunspot equilibria is

much more troubling.  Since all of these paths converge to the monetary steady-state,

simple limiting arguments cannot rule them out.

 Returning to condition (3) and the implicit g-mapping, it is straightforward to

calculate the slope of g at mss:

                                                          
8 Typical estimates of money demand elasticity are far below unity.   However, in the case of
hyperinflations the evidence is less clear.  Cagan (1956) estimates a semi-elasticity of about 4.5, implying
an elasticity of 4.5 times the nominal rate.  During the high inflation periods this elasticity will exceed
unity.
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1

)/1(
)1/(1)(

−









+

+−=′
ccm

ss UmU
iimg

η
, (7)

where η = -dlnm/dlni > 0 is the interest elasticity of money demand.  Recall that

][ cmmm

m

iUUm
U
−

−=η .  (8)

For what follows, it is helpful to note that the values of η and Ucm are logically distinct.

Although economic theory and empirical evidence implies that η is positive, Feenstra

(1986) demonstrates that there is no theoretical restriction on the sign of Ucm.9  For any

given value of Ucm, there exists a value of Umm < 0 that maps into any estimated η.

Holding Ucm fixed, η varies inversely with the absolute value of Umm.

 A necessary and sufficient condition for local real indeterminacy is that g′(mss) is

within the unit circle.  The expression for g′(mss) thus implies that there exist stationary

sunspot equilibria in this endowment model only if (1+mUcm/Uc ) < 0 or if η is

sufficiently small.

 What is the intuition for these multiple stationary equilibria?  Suppose that real

balances begin below steady state, mt < mss.  Since the path is stationary, it must be the

case that mt < mt+1, ie., the path is moving back to the steady-state.  For mt < mss, it must

be the case that the nominal rate at time-t is above steady-state.  But given a constant

money growth rule it also must be the case that inflation is below steady-state.  Therefore

the real rate of interest must be sufficiently above steady-state.  Hence, stationary sunspot

                                                          
9 For example, using  Feenstra’s (1986) transactions cost model, c denotes total consumption expenditures,
including transactions costs.  These expenditures are turned into actual consumption (ac) with the
assistance of real cash balances, ac = φ(c,m).  Utility is thus given by U(ac) = U(φ(c,m)).  Since U is
concave, assuming that the cross partial of φ is positive does not guarantee that the cross partial of U is
positive.
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equilibria are possible only if lower real balances (mt < mss) lead to increases in the real

rate of interest.  From (1), the effect of real balances on the real rate of interest depends

upon the sign of (Umm + Ucm ).  If this term is sufficiently negative, then there are sunspot

equilibria.

 There are thus two cases, one corresponding to Ucm being sufficiently negative

and the other to Umm being sufficiently negative.  First, if Ucm is sufficiently negative so

that (1+mUcm/Uc ) < 0, then we have non-oscillatory sunspot equilibria (0 < g′(mss) < 1)

for all values of η.  These are akin to those discussed in Matsuyama (1990).10

 Second, even if (1+mUcm/Uc ) >0, there are sunspot equilibria if Umm is

sufficiently negative.  Recalling that η varies inversely with Umm, this corresponds to an

η that is sufficiently small. These equilibria are oscillatory because with an extremely

small money demand elasticity a given movement in real balances requires an extremely

large movement in the nominal rate and hence the real rate.  Such a large real rate

movement requires real balances between t and t+1 to be sufficiently different (mt< mss <

mt+1), that is for real balances to be oscillatory.  In particular, if η satisfies

 





+





+

<
ccm UmUi

i
/1

1
)1(2

η , (9)

 then -1 < g′(mss) < 0 and we have oscillatory sunspot equilibria.  As η increases and

g′(mss) falls below -1, the Hopf-Bifurcation theorem implies that the two-period cycles

associated with an Eigenvalue of –1 eventually increase until the cycles become infinite,

                                                          
10 Matsuyama (1990) assumes CWID timing, which implies









+

++=′
)/1(

)1/(1)(
ccm

ss UmU
iimg

η
.  Matsuyama thus concludes that (1+mUcm/Uc) < 0 is necessary for

real indeterminacy but not sufficient.  In the case of CIA timing, this negativity condition is sufficient, but
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that is chaotic dynamics emerge.11  In these cases sunspot equilibria are also possible

although the economy is not locally stable.  If η becomes large enough this possibility

disappears.  For example, given (1+mUcm/Uc ) >0, a sufficient condition for determinacy

is







+








+
>

ccm UmUi
i

/1
1

1
η , (10)

so that g′(mss) > 1.  For the remainder of the paper our focus will be on local analysis, but

the reader may note that there is a small range between conditions (9) and (10) in which

the local determinacy conditions are not sufficient for global determinacy.

In summary, there exist stationary sunspot equilibria if and only if (i) Ucm is

sufficiently negative, or (ii) Umm is sufficiently negative.   In the next section we will

demonstrate that the former equilibria disappear in a model with explicit production as

the optimization conditions for production constrain the behavior of Uc.  As for the latter,

these equilibria arise only under implausibly low interest elasticities.  The following

example will provide a precise bound.

An Example: Suppose preferences are given by

[ ] ρ
σ

ρρ

σ
−
−

−− +
−

= 1
1

11

1
1 AmcU .

In this case there is a unit consumption elasticity, and η = 1/ρ is the interest elasticity.

The sign of Ucm is given by the sign of ρ-σ.   As ρ goes to infinity the utility function

                                                                                                                                                                            
not necessary.

11 See Fukuda (1993), Matsuyama (1991), and Michener and Ravikumar (1998).
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becomes Leontief and the model collapses to a rigid cash-in-advance constraint.

Straightforward calculations imply:

( )
1

)1(
)(1)(

−









−++

+−=′
σρ

ρ
ivR

ivimg ss

where v = c/m denotes steady-state velocity.  Henceforth we will typically assume v > 1.

(However, as ρ goes to infinity, v will converge to one.)  There are two cases:

(1) If 0)1( <−++ σρiv , then 1)('0 << ssmg , and we have non-oscillatory sunspot

equilibria.  Since velocity is large relative to the nominal rate, we need σ quite large

for these sunspots to arise, ie., Ucm must be sufficiently negative.

(2)  If 0)1( >−++ σρiv , then we can have oscillatory sunspot equilibria

( 0)('1 <<− ssmg ) if and only if v-1-R > 0 and if ρ is sufficiently large (η is

sufficiently small):

[ ]
[ ]Rvi

ivR
−−

−+>
1

)1(2 σρ .

This region is quite small.  For σ =10, v = 3, R = 1.02, this region is ρ > 293, or η < .003.

This is an implausibly low interest elasticity.  A sufficient condition for global

determinacy (and hence to rule out chaotic equilibria) is  ρ < 147, or η > .006 (see (10)

vs. (9)).  Notice that for a rigid cash-in-advance constraint, ρ goes to infinity, but v goes

to one, so that the requirement v > 1+R is not satisfied, and there is determinacy.

Similarly, as we shrink the time period between visits to the bank, then v declines until

the condition v > 1+R is not satisfied so that the oscillatory sunspots disappear.

III. A Production Economy.
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 In this section we will add a standard production technology to the analysis. Assume

that preferences are separable and linear in labor (L) and given by

 
γ

γ

+
−≡−

+

1
),()1,,(

1LBmcVLmcU ,

 and that production takes the standard Cobb-Douglas form:

 αα −= 1LKy  with a constant depreciation rate of δ.

 We will consider more general preferences over labor below.

 The additional Euler equations for labor choice (12) and capital accumulation (13)

are familiar:

 )(
)(
)( tf

tU
tU

L
c

L = (12)

 )]1()1()[1()( δβ −+++= tftUtU Kcc . (13)

 1
1 )1( +

α−α −δ−+= ttttt KKLKc . (14)

 Real money balances indirectly enter both of these marginal conditions via the cross

partials (Ucm) of the utility function. As a result the behavior of real balances typically

alters the economy’s behavior relative to an otherwise standard real business cycle (RBC)

model.

For present purposes, a critical issue is that (12)-(13) place restrictions on the

behavior of Uc.  This is particularly clear in the case of linear leisure (γ=0).  Let xt =

(Lt/Kt) denote the labor-capital ratio.  Exploiting the linearity in leisure preferences, we

can use (12) to rewrite (13) as:

 α
++

α δ−β+αβ= 11 )1( ttt xxx .
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Since (12) implies that Uc depends only on x, then real balances, m, depend only on c and

x so that we can rewrite (14) as

),()1(1
1 tttttt mxcKxKK −−+= −

+ δα

Collecting these results, we can express (3) and (13)-(14) as the following linearized

functions:

)(1
1 tt xqx =+

),(2
1 ttt mxqm =+

),,(3
1 tttt KmxqK =+ .

It is immediately obvious that we have a block-recursive system, with eigenvalues given

by the diagonal elements.  For determinacy we need two explosive roots.  The first and

third eigenvalues are given by

1
)1)(1(11 <

−−−
=

δαβ
αe ,

1)1)(1(1
3 >−−−=

αβ
δαβe ,

so that we have determinacy if and only if 2
mq  is outside the unit circle. Equivalently, we

need to evaluate the slope of the g-function given by (3), holding xt, that is Uc(t),

constant.  This restriction imposes a relationship between c and m, c = c(m),  with dc/dm

= -Ucm/Ucc.  Imposing this restriction on the analysis of the previous section we have:

[ ]2

)1(
1

1)(
mcccmm

cc

ss

UUU
Ui

mmg
−

+
+

=′ .
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Concavity implies [ ]2
mcccmm UUU − > 0 and ccU < 0.  Hence, the only possible equilibria are

oscillatory.  The non-oscillatory equilibria have disappeared because the implicit conditions on Uc

make it impossible for (1+mUcm/Uc ) < 0.12  This suggests that we have sunspots only if η is

sufficiently small.  This is the case, as an example will demonstrate:

 

An Example: Suppose preferences are given by

[ ] BLAmcU −+
−

= −
−

−− ρ
σ

ρρ

σ
1
1

11

1
1 .

Recall that the consumption elasticity is unity and that η = 1/ρ is the interest elasticity.

We then have:

( )
1

)(1)(
−









+
+−=′

ρσ
ρσ

ivR
viimg ss .

Notice that the only type of real indeterminacy possible is of the oscillatory type.

As a special case let ρ go to infinity, that is, η goes to zero so that the utility

function becomes Leontief.  With v=1 the model collapses to a rigid CIA constraint.  In

this case 
σ−

=′
1

1)( ssmg  so that the model is indeterminate if and only if σ > 2.  This is

exactly the result derived by Farmer (1999) in his text and extended by Carlstrom and

Fuerst (1999) to a model with capital.   The result is also implicit in Woodford (1994) in

the Lucas-Stokey model. These results suggested that money growth rules were likely

                                                          
12 In the case of CWID  timing we have

[ ]2)1(1)( mcccmm
cc

ss UUU
U

mimg −+−=′

which always exceeds one so that we never have real indeterminacy.
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prone to sunspots.  But this result does not hold up under more reasonable calibrations of

money demand elasticity.

In general we have local indeterminacy if and only if σ(i+v) > 2R and if ρ is

sufficiently large:

[ ]Rvii
vR

2)(
2

−+
>

σ
σρ .

Notice that as in the case of a strict CIA constraint indeterminacy becomes more likely

the larger is σ.   Accordingly we choose σ =10 the upper end of plausible estimates to

demonstrate the implausibility of sunspots.  Calibrating to quarterly data we choose

R=1.02 (8% annualized).  Given these choices the larger is v the easier it is to get

sunspots.  Therefore we interpret money to mean the monetary base so that quarterly

velocity is 3.  Given these choices the indeterminacy region is ρ > 108, so that there are

sunspots only if η < .009!  This is an implausibly low money demand elasticity.13  As

before a sufficient condition for global determinacy is ρ < 54 or η > .018.

Notice that we calibrated according to quarterly data.  Most would contend that if

money is being held to facilitate transactions that the model should be calibrated to an

even higher frequency. Calibrating to a higher frequency, however, makes indeterminacy

even less likely since v and i decline so that the condition σ(i+v) > 2R no longer is

satisfied.

Moving away from linear leisure (γ > 0) has no quantitative effect on our results.

Remarkably, even with an extremely small labor supply elasticity (eg.,  γ = 100) the

cutoff for local indeterminacy is unchanged to the first decimal point. We conclude that
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for all reasonable calibrations there is real determinacy under an exogenous money

growth process.

IV. Conclusion.

One of the first papers to integrate money into a real business cycle model is

Cooley and Hansen (1989).  That paper assumed log preferences over consumption,

linear preferences over leisure, imposed a strict cash-in-advance constraint, and assumed

an exogenous money growth rate.  The model as written is determinate.  However, if the

risk aversion coefficient is greater than 2 (an entirely reasonable assumption), then the

real economy is indeterminate.  This has led Woodford (1994) and others to argue for the

inherent instability of money growth rules.

A surprising contribution of this paper is that even though estimated money

demand elasticities are fairly small, the absolute zero elasticity inherent in the cash-in-

advance constraint is critical for the existence of stationary sunspots in the Cooley-

Hansen model.  For all plausible money demand elasticities and risk aversion coefficients

within the reasonable range, the Cooley-Hansen model is determinate.

For self-fulfilling hyperinflationary equilibria to be rational, however, we show

that the interest elasticity of money demand must be quite large –exceeding unity.  This

contrasts with the results of Obstfeld and Rogoff who use CWID timing.

The paper’s analysis was conducted within the context of a generic aggregative

MIUF model, an environment that is incredibly general, encompassing transactions cost

models, shopping time models, rigid cash-in-advance models, and cash-credit models.

                                                                                                                                                                            
13 This is low even for short-run elasticities.  The relevant elasticity for stability analysis, however, is the
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Hence, it is hard to imagine a plausibly calibrated monetary environment in which money

growth rules are prone to stationary sunspots.  In contrast, stationary sunspots are

endemic under most interest rate operating procedures.  This result provides some

theoretical support for those who favor money growth targeting.

                                                                                                                                                                            
long-run elasticity which is substantially greater.
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