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Abstract
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fare for search-theoretic models of money that extend the literature in sev-
eral ways. For example, we provide results for general bargaining param-
eters while previous papers consider only special cases. Also, we present
two versions of the model: in one agents holding money cannot produce,
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1. Introduction

We present new results on existence, the number of equilibria, and welfare for
search-theoretic models of monetary exchange that generalize the existing litera-
ture in several ways. The first and most straightforward extension is that we allow
money to yield a positive rate of return. Although straightforward, this is inter-
esting because, even in the simplest model with indivisible goods and money like
Kiyotaki and Wright (1993), one now has to determine not only if agents are will-
ing to trade goods for money but also if they are willing to trade money for goods,
and this changes the set of equilibria qualitatively. Second, when we make goods
divisible and let agents bargain, as in Shi (1995) or Trejos and Wright (1995), we
present results for all values of the parameter 6 representing bargaining power,
where previous authors considered the symmetric case § = 1/2 or the extreme
case 0 = 1. This generality is useful not only for its own sake, but also because it
allows us to discuss the relationship between bargaining power and efficiency, as
is done in labor market theory (Hosios [1990]; Mortensen and Pissarides [1994]).

The third and perhaps most interesting extension is that even though we focus
attention on models where agents hold either zero or one unit of money, we present
two very different versions of such models. In one version, we assume that after
producing an agent needs to consume before producing again, which means that
in equilibrium agents holding money cannot produce and so cannot acquire more
than one unit of cash. In the other, we assume that agents holding money can still
produce, and simply impose a unit bound on money holdings. This is interesting
for the following reason. Although the former model where agents with money
cannot produce is the one used in essentially all of the previous literature, it has
several undesirable implications. The alternative model does not share some of

these undesirable implications, but almost nothing is known about its properties;
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hence, it seems worth investigating it in detail, and comparing the results to the
standard model

An example of an undesirable implication of the standard model where agents
holding money cannot produce is that if two agents with money meet and there
is a double coincidence of wants, they do not trade. A related implication is that
as we increase the fraction of agents holding money we necessarily decrease the
productive capacity of the economy, which makes it very difficult to interpret the
effects of changes in the money supply on endogenous variables such as welfare
in the standard model. The alternative, where agents with money can produce,
does not have these implications. Indeed, for many issues it is arguably the
more reasonable model. Yet, as we said above, very little is known about this
version. This paper provides a fairly complete set of results for both models, so
that economists who use this type of monetary theory will understand what the
alternative assumptions are doing, and so that they can choose the version that
works best for their applications.®

The rest of the paper proceeds as follows. The next section considers the case
of indivisible goods and provides results on existence, the number of equilibria, and

welfare for the two versions of the model. The section after that considers the case

!There is by now an extensive literature in search-based monetary economics (over 100 papers
are listed in Rupert et al. [2000]). All of the simple models in this literature adopt what we are
calling the standard assumption, that agents with money cannot produce, with the exception
of some unpublished work by Siandra (1993,1995). However, Siandra only considered a special
version of the model — in particular, he only considered the model with indivisible goods —
and also made some other assumptions that one might want to think about, as we discuss
below. There are more complicated models where agents can hold more general inventories of
money, including Green and Zhou (1998), Camera and Corbae (1999), Molico (1999), Taber
and Wallace (1999), and Zhou (1999). This branch of the literature does allow agents with
money to produce, but also typically assumes that there are no meetings that generate a double
coincidence of wants, or makes other assumptions that render the main issue in this paper much
less interesting. Moreover, it seems clear that models where agents hold only 1 or 0 units of money
are still useful for many purposes (e.g., they deliver analytic results), and so it seems worthwhile
studying these simpler models in this context, to see what the alternative assumptions imply.
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of divisible goods and bargaining, and provides results for arbitrary bargaining
power parameters for the two versions of the model. In the final section we

conclude.

2. The Indivisible Goods Model

There is a [0,1] continuum of agents who live forever and discount at rate r.
There are a variety of nonstorable and for now indivisible consumption goods.
Each agent i produces just one type of good, at unit cost ¢ > 0. We model
preferences as follows: Given two agents ¢ and j, let i/ j indicate “i wants to
consume the good that j produces” in the sense that i derives utility u > ¢ from
consuming what j produces if {Wj and ¢ derives utility 0 from consuming what j
produces otherwise. For no agent 7 is it the case that iWW4, so trade is necessary
for consumption. For a pair of agents ¢ and j selected at random, pr(iWj) = x
and pr(jWiliWj) = y. Thus, zy is the probability of a double coincidence of
wants.?

There is an exogenous quantity M € [0, 1] of money. Storing a unit of money
yields a utility flow v per unit time. If v > 0 money has a dividend, if v < 0 it
has a storage cost, and if v = 0 it is pure fiat money. Initially one unit of money
is given to each of M agents chosen at random. To simplify the presentation,
we begin by assuming money cannot be disposed of, and relax this later. Agents
meet bilaterally according to a Poisson process with parameter cv. Upon meeting,
agents trade iff mutually agreeable; e.g., if two agents without money meet, a

direct barter trade occurs iff there is a double coincidence of wants.

2This specification nests several models in the literature. For example, in Kiyotaki and
Wright (1989) or Aiyagari and Wallace (1991), there are N goods and N types of agents, and
each type n produces good n and consumes good n + 1 (mod N). This yields z = 1/N, and
either y =0if N >2or y =1if N =2. In Kiyotaki and Wright (1993), the events {iWj} and
{jWi} are independent, so y = z, and the double coincidence probability is 2.
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We analyze two different versions of the model: in the first, following Kiyotaki
and Wright (1991,1993), agents holding money cannot produce; in the second,
following Siandra (1993,1995), they can. Call the first Model — K and the second
version Model — S. The Model — K assumption can be interpreted as saying
that after producing an agent needs to consume before producing again, which
implies that in equilibrium he will never acquire more than 1 unit of money.
However, as discussed in the Introduction, it has some other implications that
are not especially desirable. For instance, when two agents with money meet
they cannot trade even if there is a double coincidence. Also, the assumption ties
the number of productive agents, 1 — M, to the money supply in an unnatural
way. The Model — S assumption avoids these problems, but does not rule out the
accumulation of multiple units of money. Hence, we simply assume in Model — S
that agents can store at most 1 unit of money.

In Model — K, if you have money your only option is to try to trade it for
consumption since by assumption you cannot barter. In Model — S, however,
when there is a double coincidence you could offer to barter or pay with cash. We
will show below that the unique pure strategy equilibrium is for agents to barter
whenever they can. What remains to be determined is, what happens when ¢ with
money meets j without money and there is a single coincidence of wants (iWj but
not jWi). Thus, we have two endogenous variables: 7 is the probability agents
give up goods to get money, and 7 is the probability agents give up money to

get goods. If m = mym; > 0 we say that money circulates.

2.1. Model — K

Beginning with Model — K, let V; be the value function of an agent with j € {0,1}
units of money (these do not depend on agent type or time because we consider

only symmetric steady state equilibria). If time proceeds in discrete periods of
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length h, the Bellman equations can be written

1

V, = Tk {ahzm(1 — M)(u+ V) (2.1)
+[1 — azh(l — M)7|Vy +~vh + o(h)}
% o= s _:Th{ahxy(l CM)(u— e+ Vo) +aheMa(Vi—c)  (2.2)

+[1 — ahzy(l — M) — ahzM=|Vy + o(h)},

where o(h) captures the payoff in the event of two or more Poisson arrivals in a
period and, hence, o(h)/h — 0 as h — 0. For example, (2.2) sets the return to
having 7 = 0 units of money to the sum of three terms. The first is the probability
you meet someone without money, ah(1 — M), times the probability of a double
coincidence, xy, times the barter payoff, u — ¢+ V{. The second is the probability
you meet someone with money, ahM, times the probability he wants your good
(independent of whether you want his, since he cannot produce), z, times the
payoff (V] — ¢). The third term is the probability of no trade times Vj.
Rearranging (2.1) and (2.2), letting h — 0, and normalizing cx = 1, we arrive

at the continuous time equations

Vi o= w1 = M)(u+Vo— Vi) +n (2:3)
Vo = y(1—M)(u—c)+7M(Vi—Vy—c). (2.4)

Define the net gain from a monetary exchange for agents with and without money

by Ay =u+Vy—V; and Ag = Vi — Vi — ¢. Simplification yields
[Mm+ (1 — M)y](u—c¢) +ru—r

Ay = o= (2.5)
A = (1—M)(7T—g)_iu7r—c)—rc—|—’y' (2.6)

Then the strategies (mg,71) constitute an equilibrium if they satisfy the best
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response conditions

=1 >0
w4 =100,1 as A;q =0 forj=0,1. (2.7)
=0 <0

This is basically the model in Kiyotaki and Wright (1993), except in that paper
there is no mention of 7, because v = 0, and v = 0 (more generally v < 0) implies
71 = 1 is a dominant strategy by virtue of (2.5). With v = 0, the only interesting
decision is whether to accept money, and there are exactly three possible types
of equilibria corresponding to whether 7 is 0, 1, or between 0 and 1. If we allow
~v > 0, however, we need to determine m; endogenously, and there are potentially
nine types of equilibria corresponding to whether each m; is 0, 1, or between 0

and 1; however, only five types of equilibria actually can exist.

Proposition 1. In Model-K, there are five potential types of equilibria and they
exist in the following regions of parameter space:
mo=1andm =0 is an equilibrium iff r <7y
mo=0andm™ =1 is an equilibrium iff r > 73
mo =1 and m € (0,1) is an equilibrium iff 7 <1 < Ty
7o € (0,1) and 71 = 1 is an equilibrium iff 75 <r <7,
mo=1andm =1 is an equilibrium iff 7 <r <7y

where the critical values of r are given by

v = [M+ (1= M)yl(u—c)

(- Myl
(Mg
L MOy

We have 7y < 7y < F3 < T4. These are the only (steady state, symmetric)

equilibria.



Proof: For pure strategy equilibria, insert my and 7; into (2.5) and (2.6) and
determine the region of parameter space in which the inequalities in (2.7) hold.
Consider myp = m; = 1. For this to be an equilibrium we require Ay > 0 and
Ay > 0. Inserting myp = m; = 1 into (2.5) and (2.6), one finds Ag > 0 and A; >0
iff » € [F1,74), as stated in the Proposition. The other pure strategy cases are
similar. For mixed strategies, solve A; = 0 for 7; and then determine the region
of parameter space in which 7; € (0,1). Consider 7y € (0,1) and m; = 1. For this
to be an equilibrium we require Ag = 0 and A; > 0. Now Ay = 0 implies

rc—voy

(- M)(u—c)

To =Y+

It is easy to see that o > 0 iff r > 73 and my < 1 iff r < 74, and the condition
A; > 0 is redundant. Hence, this equilibrium exists iff r € (73, 7,), as stated. The
other mixed strategy cases are similar. In this way we get the complete set of

equilibria. Routine algebra yields 7 < 7y < 73 < 74. This completes the proof. B

2.2. Model — S

Now suppose agents with money can produce. The first issue that needs to be
resolved is, what happens in a double coincidence when you have money and
the other person does not — do you barter or pay with cash?? In this situation,
with probability § the agent with money and with probability 1 — § the agent
without money is chosen to propose either barter, cash, or no trade. The other
responds either by accepting, which executes the proposal, or rejecting, which

implies they part company. See Figure 1. Note that rejecting a barter trade is

3This is the only ambiguous case, since in every other meeting there is only one feasible
transaction (e.g., if you encounter a double coincidence and have no money, barter is the only
option). Note that in Model — K the issue does not come up, since agents with money cannot
barter. Also note that Siandra simply assumes “that if a barter and a monetary transaction
are possible upon a meeting, barter will always take precedence over monetary exchange ... the
main justification is just tractability.” (Siandra [1995, p.5]).
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strictly dominated by accepting, and proposing no trade is strictly dominated by
proposing barter. Hence, all we need to determine is (v, 1,), where ¥, is the
probability the agent with j units of money proposes barter and 1 — ¢, is the

probability he proposes cash.

Lemma 1. In a double-coincidence meeting between an agent with and an agent

without money, generically the unique subgame-perfect equilibrium in pure strate-

gies is Yy =1, = 1.

Proof: See the Appendix. B
Having resolved the ambiguity between barter and cash when both are avail-

able, the Bellman equations can be written

Vi = s _:Th{oahxy(u S e+ V) +aha(l— y)(1— M)m(u+ Vi) (2.8)
+[1 — ahzy — ahx(l —y)(1 — M)7|Vi + ~vh +o(h)}
W = 1+1Th{ozhxy(u—c+vo) + ahz(l —y)Mn(V; — ¢ (2.9)

+[1 — ahzy — ahz(1 — y)M=|Vy + o(h)},

where we temporarily reintroduce ax to facilitate comparison to (2.1) and (2.2).
In particular, observe that in Model — S the only time you use money is when you
meet someone who produces what you want but does not want what you produce.

Rearranging, letting h — 0, and normalizing az = 1 as before, we have

Wio= ylu—c)+ (1 -yl = M)(u+Vo—V1)+7 (2.10)
Vo = ylu—c)+ 1 —y)mM(Vy — Vo —c). (2.11)

Although the value functions are different across the two models, we compute A;

and define equilibrium exactly as in Model — K.



Proposition 2. In Model-S there are five potential types of equilibria and they

exist in the following regions of parameter space:

mo=1andm =0 is an equilibrium iff r <7y
mo=0and m =1 is an equilibrium iff r > 73
mo =1 and m € (0,1) is an equilibrium iff 71 <1 < 79
mo € (0,1) and 7y =1 is an equilibrium iff 73 <r <7y
mo=1andm =1 is an equilibrium iff 71 <r <7y

where the critical values of r are given by

P o= V_M(l_y)(u_c)

Ty = vy/u

f3 = q/c

B e V) [ ()

We have 71 < 79 < 3 < 74. These are the only (steady state, symmetric)
equilibria, given that agents play pure strategies in the game determining whether

to use barter or cash in a double coincidence meeting.
Proof: The argument mimics Proposition 1 exactly. B

2.3. Discussion

The regions of (v, r) space where the different equilibria exist in Model — K and
Model — S are shown in Figures 2a and 2b. The same five types of equilibria exist
in both models, and the regions where they exist are similar but quantitatively
different (unless y = 0, since the models are identical when there is no barter). If
v is very low the only equilibrium is where no one accepts money, and if 7y is very
high the only equilibrium is where no one spends it; hence, money circulates iff
its intrinsic properties are not too bad or too good. Also, in both models there

is a region where the unique equilibrium is 7 = 1, but in other regions there are
9



multiple equilibria: in one region we must have m; = 1 but my can be either 0, 1,
or between 0 and 1; and in another region we must have my = 1 while 7 can be
0, 1, or between 0 and 1.

In terms of how the two models differ, it is actually more difficult to get money
to circulate in Model — S (the region in which 7 > 0 is possible is smaller). This
is because agents with money are more willing to spend it in Model — K, since
by doing so they can then barter. If v = ¢ = 0, the differences between the two
models are especially stark: in Model — K there are always three equilibria, 7 = 0,
7w € (0,1), and 7 = 1; and in Model — S there are two, 7 = 0 and 7 = 1. The
intuition is as follows. In Model — S, there is no cost associated with acquiring
money when 7 = ¢ = 0, and so as long as there is a strictly positive probability of
money being accepted you should always accept it. This is not true in Model — K,
because even when v = ¢ = 0 there is the opportunity cost of giving up your barter
option.

To continue the comparison of the two models, define welfare by W = MV; +
(1 — M)Vq. Algebra yields

rWs = My+[y+ M(1—M)(1—y)r)(u—c)
™Wg = My+(1—-M)[(1—-M)y+ Mnr|(u—-c)
in model j = S, K. Given any 7, we have Wg > Wy with strict inequality as long

as y > 0 and M > 0, because in Model — K money crowds out barter. Given

m = 1, maximizing W with respect to M yields:

L if v > (1 y)(u—c)
Mg = 0 if v < —(1—9)(u—c)
% otherwise.

41t is well known that there is a strategic complementarity in the decision to accept money,
mo- It is less well understood, however, that the same is true of 7y: for some parameters, you
are more willing to spend money if you believe other agents will do the same. Notice this only
occurs when v > 0, which is why it does not arise in the standard model.

10



1 ify>u—c
My = {0 ity < —(1-2y)(u—c)
% otherwise.
Hence, Mg > Mp, again because money crowds out barter in Model — K.
The preceding calculation ignores the fact that 7 = 1 is not an equilibrium
for all parameters. If v = 0 then it is easy to see m = 1 is an equilibrium iff

M<M=1- m Then maximizing W subject to M < M implies:

Mg = mim(l M)

29

{o ify >1/2

My = min(ﬂ M) if y < 1/2

2-2y°

In Figure 3a, the labels Wf , W({? and W#O denote welfare in model j = S, K in
an equilibria with 7y = 1, m¢ = 0, and 7y € (0,1) (recall m; = 1 is a dominant
strategy when v = 0). The curves are only drawn for values of M such that the
equilibria exist. Figure 3b shows welfare as a function of y, given we set M = M7
(which depends on y). These figures illustrate various properties, including: W is
always higher in Model — S; W increases with m; and M7 = 0 for big y.?

We close this section by mentioning two details. First, the above results are

predicated on the assumption that agents cannot freely dispose of money.
Lemma 2. No free disposal is not binding, except if 7o = 0 and v < 0.

Proof: See Appendix.
Second, the results for Model — S are predicated on the condition that when

there is a double coincidence and one agent has money but the other does not,

5 Assuming the constraint M < M is not binding (e.g., 7 is small), we have Mg = 1/2 for all
parameter values, and Mg < 1/2 with strict inequality as long as y > 0. To understand this,
note that the role of money is to allow trade when ¢Wj but not vice-versa, and ¢ has money but
j does not. Maximizing the probability of this event implies giving money to 1/2 the agents.
This explains Mg = 1/2. In Model — K, however, we also have to take into account the fact
that money crowds out barter.
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they will barter. Lemma 1 shows this is the unique subgame perfect equilibrium
in pure strategies. However, if we allow mixed strategies, there actually can be
other equilibria. These other equilibria are not robust to various perturbations,®

but we record them here as follows.

Lemma 3. In Model-S there are two other equilibria where barter is not the
outcome in a double-coincidence meeting between an agent with money and an
agent without money. These equilibria both have m = 1, and they exist in the
following regions of parameter space:

1y € (0,1) and ¢, =1 is an equilibrium iff 7o <r <

o =1and i, € (0,1) is an equilibrium iff 74 <1 < 73

where 71 and 7, are defined in Proposition 2 and

e (L L B Vo ) Ut
S (L L Y R O}

We have 7y < 7 and 75 > 4. These are the only (symmetric steady state)

equilibria other than those given in Proposition 2.

Proof: See the Appendix.

3. The Divisible Goods Model

Assume now that goods are perfectly divisible, and when ¢ units are exchanged,

the consumer derives utility u(¢q) and the producer incurs disutility —c(q), where

6For example, in a double coincidence meeting where an agent proposed a cash trade instead
of a barter trade, if the other agent could respond with a counteroffer (rather than simply
accepting or rejecting), these equilibria would not exist. Allowing for “trembles” also eliminates
these equilibria. That is, for any positive probability that a cash offer is rejected (note that in
any of the mixed strategy equilibria described in the lemma, the agent is indifferent between
acccepting and rejecting), proposing barter becomes strictly dominant.
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u'(g) > 0 and (q) > 0. Also, ¢"(¢) > 0 and u"(q) < 0 with at least one of
the inequalities strict. Finally, u(0) = ¢(0) = 0, «/(0) > ¢(0) = 0, and there
exists ¢ > 0 such that u(q) = ¢(¢). Otherwise, everything is the same as in the
previous section, except to simplify the presentation we set v = 0 and focus only
on equilibria with 7 = 1 (equilibria with 0 < 7 < 1 do not exist with divisible
goods). Also, we will first present results for Model — K and Model — S when
y > 0, and then give results for y = 0, in which case the two models are equivalent.

Assume ¢ solves the generalized Nash bargaining problem,
q = argmax[u(q) + Vo — T1)°[Vi — ¢(q) — To)*? (3.1)

subject to the constraints ¢ > 0, Ay = u(q)+Vo—Vi > 0and Ag = Vi —Vy—c(q) >
0. In (3.1), Tj is the threat point of the agent with j units of money and 6
represents bargaining power. We allow 6 to take on any value in [0, 1] and consider
two cases for T that have been analyzed in the literature: 7; = V; and T; = 0.
Note that in Shi (1995) and Trejos and Wright (1995) only the special case § = 1/2

is considered.”
3.1. Model — K

Given @), the Bellman equation are

M= (1= M)u(Q)+Vo— Vil (32)
Vo = (1= M)yB+ M[Vi =V, —c(Q)], (3.3)

where B denotes the payoff to barter. We assume that in a barter trade each

agent produces ¢* for the other agent, so that B = u(q*) — c(¢*), where ¢* satisfies

7As is well known, the Nash solution corresponds to the equilibrium of an explicit strategic
bargaining model, where 6 and T depend on details of the game; see Osborne and Rubinstein
(1990) or Coles and Wright (1998).
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' (q*) = d(q*).2 We are interested in determining the ¢ that is traded for money.

Taking as given the () that other agents are trading, any two agents bargain over

the g they will exchange for the money. In equilibrium, of course, ¢ = Q.
Consider the case where the threat point is 7; = V;. Then the first order

condition for (3.1) is
0lVi = Vo — c(g)lu'(q) — (1 = O)[ulq) + Vo — Vi]d'(q) = 0. (3-4)

Solving (3.2) and (3.3) for Vj}, setting ¢ = (), and inserting the results into (3.4),

we have e(q) = 0, where

e(q) = O[(1— Mu(q) — (r+1— M)c(q)]u'(q)
—(1=0)[(r + M)u(q) — Mc(q)]c'(q) (3.5)

A solution ¢ > 0 to e(q) = 0 would constitute a monetary equilibrium if there
were no other constraints. The constraint A; > 0 can be shown to be redundant
if Ag > 0 holds, and Ag > 0 iff ¢ is below a threshold given by the ¢ that solves
c(q) =Vi— V.

So, an unconstrained monetary equilibrium is given by a value of ¢ > 0 such
that e(¢) = 0 and Ag > 0. Another type of monetary equilibrium occurs when a
constraint binds. Suppose Ag = 0 at some §; then the constraint binds at ¢ = ¢
and is violated for any ¢ > ¢. Thus, if e(¢) > 0 then ¢ is a constrained solution
to the Nash bargaining problem. It is easy to see that Ag = 0 iff ¢ = g or ¢ = ¢,

where g and ¢ are the zeros of the strictly concave function

flg) = (1= M)u(q) = (r + 1= M)e(g) — (1 = M)yB.

81t is easy to motivate this assumption, since this outcome is the unique equilibrium of a
natural bargaining game; however, it actually does not matter, since all that we require for the
results is the very weak assumption that B does not exceed ﬂq—%q—l.
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See Figure 4a. Note that f shifts down with an increase in r, and for small r
the two zeros ¢ and g exist, while for big r there are no solutions to f(q) = 0.
Clearly, q € (g, ) implies A¢ > 0, and so any ¢ € (g, ¢) such that e(q) = 0 is an
unconstrained equilibrium. Also, if e(g) > 0 then g is a constrained equilibrium,
and if e(q) > 0 then ¢ is a constrained equilibrium.

Results on existence and the number of equilibria follow. The key functions
used in the constructions and the resulting set of equilibrium values for ¢ as a
function of @ are depicted in Figures 4 and 5 for the case of T; = V; and T; = 0,

respectively.

Proposition 3. Consider Model-K with T; = V; and y > 0. There exists 7 > 0
such that no monetary equilibria exist if r > ¥, while if r < 7 there exists 6 € (0, 1)
(that depends on r) such that the following is true: for § < 6 no monetary
equilibria exist; and for @ > 0 there exists a generically even number of monetary

equilibria. All monetary equilibria are unconstrained.

Proof: Consider the limiting case of » = 0. By inspection of f, there exists
g > 0 and ¢ > ¢ such that f(q) = f(q) = 0, as in Figure 4a. It is easy to
check that e(q) < 0 and e(q) < 0, with equality iff & = 1. This implies that
no constrained equilibria exist (when ¢ = 1 we actually have an equilibrium
where the constraint is satisfied at equality, but since the first order condition also
holds with equality we say that the solution is unconstrained). Moreover, if any
unconstrained monetary equilibria exist, generically there will be an even number
since e will have an even number of zeros in (¢,7). Setting § = 0 implies e < 0 for
all ¢, so no monetary equilibria exist. Recall that # = 1 implies the existence of
monetary equilibria. It can be shown that % e—0 > 0 (see the Appendix), so that

decreasing 6 shifts e down in Figure 4a. This implies the existence of a unique

6 such that monetary equilibria exist iff # > 6. See Figure 4b. All of the above
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statements are for » = 0; by continuity, the results are the same for small positive
r. It is easy to see that e is monotonically decreasing in r (for ¢ > 0), and that
e < 0 for all ¢ € (¢,9) when 7 is sufficiently big. Hence, there is a unique 7 such
that no monetary equilibria exist for any 6 when » > 7.

Things are similar for the case T; = 0, except for two things: now we can say
that (generically) there exist 2 monetary equilibria when any exist, as opposed
to simply an even number; and now one or both of the monetary equilibria is

constrained, while in the case of T; = V; they are all unconstrained (see Figures

4b and 5b).

Proposition 4. Consider Model-K with T; = 0 and y > 0. There exists ¥ > 0
such that no monetary equilibria exist if r > 7, while if r < ¥ there exists § € (0, 1)
(that depends on r) such that the following is true: for § < 6 no monetary
equilibria exist; and for > @ there are exactly two monetary equilibria. Both
equilibria are constrained if 6 is large, while one equilibrium is constrained and

the other unconstrained if 6 is not so large.
Proof: With T; = 0, the analogue of (3.5) is

elg) = {1 —M)(r+ Mu(q) — [r(1+r) + M(1 - M)]c(q) }u'(q)
—(1=O{[r(A+r) + M1 — M)Ju(q) = M(r+1— M)c(q)}¢(q)
+(1 = M)yB[o(1 = M)u'(q) — (1 = 0)(r +1 = M)c(q)].

See Figure 5a. As before, r = 0 implies that ¢ > 0 and ¢ > ¢ exist. If 6 = 0,
e(q) < 0 for any ¢ > 0 and no monetary equilibria exist. If § = 1, e(q) > 0 for all
q € (0,q], and both g and 7 are constrained equilibria. One can check %\ezo > 0,
so there exists a critical value § > 0 such that monetary equilibria exist iff > 6.

Also, for # > 6 but not too large, e(g) < 0, and so one monetary equilibrium is

16



unconstrained at ¢ € (¢,q) and one equilibrium is constrained at g, while for very
large 6, e(q) > 0 (for arbitrary r), so both monetary equilibria are constrained.

This can be seen by noting that

e@lo=1 = (M+7)[(1—=Mu@) — (r+1—M)c(@)]u' ()
+(1 — M)*yBu/(q)
= (14+7)(1— M)yBu'(q),

which is positive for any r, combined with the fact that e is continuous and
increasing in 6.

These results are qualitatively the same for small positive r. It is shown in
the appendix that, as long as e(g) > 0, we have %]ezo < 0. Note that this is all
we need as monetary equilibria exist iff e(g) > 0. Setting § = 1, there exists a
unique 7 > 0 such that no monetary equilibria exist when r > 7 for any . For any
r < 7, by the above reasoning, there exists # < 1 such that monetary equilibria,
exist for § > 0. To see that there are exactly two monetary equilibria (whenever
any exist), it is sufficient to show that any ¢ € (0,q) such that e(q) = 0 is unique.
This is verified by noting that at e = 0, we have
(1-6)° - % (1= M)(r+ Myu—[r(1+7) + M(L— M)l + (1 - M)*yB)

u
where D = [r(1+7)+ M(1 - M)ju— M(r+1—M)c+ (r+1—M)(1—- M)yB,
and that the left side is increasing and the right side decreasing in ¢. W

3.2. Model — S

In Model — S, the Bellman equations are’

Vi = yB+(1-M)(1—y)ulg) + Vo — Vi

9Given B = u(q*) — c(q*) > u(q) — ¢(q) for all g, a version of Lemma 1 holds here: when
someone with money meets someone without money and there is a double coincidence of wants,
they always barter.

17



Vo = yB+ M(1-y)[Vi—Vy—c(q)],

and the function f(q) becomes

flg) = (1= M)(1 =y)ulq) — [r+ (1 = M)(1 = y)]e(q).

Otherwise, the method is the same as in Model — K. However the results are
quite different: in Model — S there exists a unique monetary equilibrium for all
6 > 0. Graphically, this can be understood by noting that in this model, the
analogues to the functions e and f shown in Figures 4a and 5a now go through

the origin.'®

Proposition 5. Consider Model-S with T; = V; and y > 0. For any r > 0,
the following is true: if either 6 = 0 or y = 1, no monetary equilibrium exists;

otherwise, there exists a unique monetary equilibrium and it is unconstrained.

Proof: In this case the analogue of (3.5) is

e(q) = 0f(q)u'(q) — (1 = O){[r + M(1 - y)]u(q) — M(1 —y)c(q) }c (q).

For y = 1, we have ¢(0) = 0 and e(q) < 0 for ¢ > 0, and so no monetary equilibria
exist for any . Now suppose y < 1. It is easy to see that f(q) = 0 at ¢ =0
and ¢ > 0. It can also be verified that ¢(0) = 0 and e(q) < 0 for all 8, where the
inequality is strict for # < 1, implying that there are no constrained equilibria.
If § = 0, the only solution to e = 0 is ¢ = 0. For 0 € (0,1], ¢/(0) > 0, so that
there exists a ¢ € (0,9q] such that e(q) = 0. The monetary equilibrium is unique

because at e = (0, we have

ﬂ—9f¥—9 fa)

w [+ M(1—y)u— M(1—1y)

10Note however that multiple monetary equilibria can be recovered in Model — S if we rein-
troduce 7, since e(0) and f(0) need not be 0 if v # 0.
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where the left hand side is increasing and the right hand side decreasing in gq.
Finally, when 6 = 1, the (unconstrained) unique monetary equilibrium is at ¢ = g.

See Figure 6. B

Proposition 6. Consider Model-S with T; = 0 and y > 0. For any r > 0,
the following is true: if either § = 0 or y = 1, no monetary equilibrium exists;
otherwise, there exists a unique monetary equilibrium. It is unconstrained for

0 < 9, while it is constrained for 6 > 9, where.0 < 6 < 1.

Proof: In this case the analogue of (3.5) is

elg) = Or+M(1-y)flgv
—(1=0)r(1+7r—ylu+ M1 —y)f(q)l
+(1+7r—y)yBlou — (1 —0)].

The constraint is as before, and so f(¢) = 0 at ¢ = 0 and g > 0. For § = 0,
we have e(0) = 0 and €'(0) < 0, and so no monetary equilibrium exists, while at
y = 1, again, no monetary equilibria exist. Now assume y < 1. For 0 € (0, 1], we
have e(0) > 0. Note that for § = 0, e(g) < 0 and for § = 1, e(g) > 0. By
inspection e is monotonically increasing in 6. Thus, there exists 6 e (0,1) such
that the monetary equilibrium is unconstrained for § < 0 and constrained (at Q)

for 6 > 0. Uniqueness is shown in the usual way. See Figure 7. B

3.3. The Case y =0

Here we present the results for y = 0, which makes Model — S and Model — K
equivalent. It turns out that the results in this common case are most similar to
the Model — S results for y > 0: for all # > 0 there always exists a monetary

equilibrium and it is unique. Note that with y = 0, the equilibrium is always
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unconstrained. (This is not inconsistent with Proposition 6, because 6 defined in

that proposition goes to 1 as y goes to zero.)

Proposition 7. For either T; = V; or T; = 0, if y = 0 then for any r > 0, the
following is true: if 6 = 0 no monetary equilibria exist; and if @ > 0 there exists

a unique monetary equilibrium and it is unconstrained.

Proof: For y = 0, we have ¢ = 0 and g > 0 by inspection of f(q). For 6 = 0,
the only solution to e = 01is ¢ = 0. For 6 € (0,1) it can be verified that e(0) = 0
and e(g) < 0, implying that there are no constrained equilibria. Moreover, it is
easy to see that ¢/(0) > 0, which implies that there exists ¢ € (¢,q) such that
e(q) = 0. Finally, when 6 = 1, the unique non-zero solution to e = 0 is ¢ = ¢, and
so this is the (unconstrained) unique equilibrium. Function e and equilibria are

qualitatively the same as in Model — S with T; = V; and y > 0 (see Figure 6). B

3.4. Discussion

The main elements that distinguish our analysis of the divisible goods case from
the previous literature are: (i) we allow any 6 € [0, 1]; and (ii) we consider Model—
S as well as Model — K. We now discuss the implications of these generalizations.
First, note that many of the main results from the previous literature go through:
for example, for any 6, in Model — K with y > 0 the existence of monetary
equilibria depends on agents being sufficiently patient. Also, as in earlier analyses,
the equilibrium quantity ¢ is generically not socially efficient. However, given our
generalized model, the interaction between efficiency and bargaining power 6 can
be explored in more detail.

It is easy to see that the efficient (welfare maximizing) ¢ is ¢*, the quantity
that solves u/(¢*) = ¢/(¢*), and that ¢* generically does not satisfy the equilibrium

conditions. For example, as remarked in Trejos and Wright (1995), in Model — K
20



with T; = 0 and 6 = 1/2, the equilibrium implies ¢ < ¢* for all » > 0, although
qg — ¢* in the limit as r — 0. Once we allow for general bargaining power,
however, any quantity ¢ € [¢,q] is an equilibrium for some 6 (in every version of
the model). At least if r is not too big, we have ¢* € [q, q], and so there exists

some #* such that the equilibrium value of money coincides with the efficient ¢*.!!

Proposition 8. In either model, for r < r* = (1—M)(1—y)B/c(q*) there exists
0* € (0,1) such that the equilibrium quantity is efficient: q = q*.

Proof. In Model — K, we have
f=Q-M)(u—c)—rc—(1—-M)yB.

From the proofs of the previous propositions we know that ¢* can be obtained by
choosing 6 appropriately iftf § > ¢*. We only need to determine when this is the
case. For r = 0, it is easy to see ¢ > ¢*. It is also easy to see that § — 0 as
r — 00. Because f is monotonically decreasing in 7, there exists »* > 0 such that
g > ¢ for r < r*. The critical r* is found by setting f(¢*) = 0 and solving for 7.
The proof for Model — S is analogous.

The value of 0" that generates ¢ = ¢* can be derived by setting e(q¢*) = 0
and solving for #. The resulting expressions are not particularly instructive, in
general, but simplify nicely when » — 0. On the one hand, when T; = 0 we have
0" = % in either Model — K or Model — S. Hence, at least in the limit as frictions
vanish, symmetric bargaining power generates the efficient ¢ in either model as
long as 7; = 0. On the other hand, when 7; = V; we have 6" = M + (1 — M)y in
Model — K and 0" = M in Model — S. Notice that 6" is greater in Model — K

for an exogenously fixed M. However, if we set M to maximize W, conditional

" This relationship between bargaining power and efficiency is reminiscent of a similar rela-
tionship in matching models of the labor market, as mentioned in the Introduction.
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on ¢ = q*, we have M = % in Model — S and M = % in Model — K. Inserting

these into 0" again yields 0" = % in both cases. Summarizing:

Proposition 9. For either Model — S or Model — K, in the limit as r — 0, we
have the following: when T; = 0 the efficient bargaining weight is § = 1/2 for any
M ; when T; = V; the efficient bargaining weight varies between 0 and 1 depending
on the exogenous value of M, but if M is set optimally then again § = 1/2.

Intuitively, in the case T; = V; the reason that 0" is greater in Model — K than
in Model — S for an exogenously fixed M can be understood as follows. First,
as illustrated in Figure 8a, the equilibrium ¢ is lower in Model — K, not only for
r = 0 but for any r, again because accepting money is more costly when it crowds
out barter.!? Hence, 6 has to be larger in Model — K to generate any given g,
including ¢*. Note, however, that it is not true in general that the equilibrium ¢
is lower in Model — K when T; = 0, as shown by example in Figure 8b, where
for low M we see that ¢ is higher in Model — K (the figure is drawn with u = ¢,
c=¢* y=0.1,r=0.5 and § = 0.5). It is also not true that welfare is necessarily
lower in Model — K here, contrary to the result in the indivisible goods model,;
see Figure 8a, where Ws < Wy for low M. The intuition is as follows. For
exogenously given values of r, M, 0 etc., suppose ¢ is much greater than ¢* in
Model—S. Then welfare can be higher in Model — K, even though money crowds

out barter in this model, because it generates a lower ¢.

2Note that ¢ is lower in Model — K iff e = 0 implies €® > 0, where e’ is the equilibrium
condition in model j = K, .S. By inspection,

e =e5 1001 — M)y(u—c)u' — (1 —0)yM(u—c)d — (1 — M)yB[ou' + (1 - 6)¢]
and so e = 0 implies
e =[(1—M)yB + My(u —¢)](1 —60)c +6(1 — M)yBu' — (1 — M)y(u — c)u’

which is positive since B > u(q) — ¢(q) for all g.
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4. Conclusion

We have extended search-theoretic models of money in several ways, including:
introducing a flow return to holding money; generalizing the bargaining solution;
and developing the model in which agents with money can produce and comparing
it to the conventional model where they cannot. Results on existence, the number
of equilibria, and welfare were derived for a variety of different versions of the
model. We hope that these results will be useful to others who want to extend or

apply search-based monetary theory in the future.

5. Appendix

Proof of Lemma 1: Suppose that the seller gets to propose, and he proposes a
cash transaction. There are three possibilities. First, if A; < 0 then the proposal
will be rejected, so the seller would have been strictly better off proposing barter
(Figure 1). Second, if A; > 0 then the proposal will be accepted, but in this
case Ag < u — ¢ (because Ay + A; = u — ¢), and so again the seller would have
been strictly better off proposing barter. So a seller would never propose a cash
trade over barter except possibly if A; = 0. A symmetric argument implies that
a buyer would never propose a cash trade except possibly if Ag = 0. So we have
two cases to consider: (i) Ag = 0, which implies Ay = u— ¢, which further implies
¥y =1 (since A; > 0 implies the seller strictly prefers barter), which is the only
case in which we can have 1, < 1; and (ii) A; = 0, which implies Ay = u — ¢ and
¥, = 1, which is the only case in which we can have ¢, < 1.

Consider case (ii), where Ay = 0, Ag = u—c, ¥y < 1 and ¢; = 1 in equilibrium.
Note Ay = u — ¢ implies my = 1. Suppose m; < 1; then the agent without money
gets mAg = 7 (u — ¢) from proposing a cash transaction, which is strictly less

than what he gets proposing barter. So 1, < 1 requires mom; = 1. Then the value
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functions generalizing (2.10) and (2.11) are

Vi = yM(u—c)+(1-y)(1— M)A +y(l — M)[BY; + (1 — B)bo)(u—c)
+y(1 = M)[1 = Bipy — (1 = B)g](1 — ) A1 +

Vo = y(1—M)(u—c)+ (1 —y)MAg+yM[Bi; + (1 — B)Y](u— )
+yM[1 — By — (1 = B)bo](1 — thg) Ao.

Since we are in case (i), we have Ay = 0, Ag = u — ¢ and ¥; = 1. Hence,

subtracting V; and Vj and simplifying, we have

ru—v+[1—y)M+y(d - M)A = B)j(u—c)
y(1 = M)(1 = B)(u—c)

This equality is violated for generic parameter values when 1, = 0. Hence there

Yo = (5-1)

is no equilibrium where sellers propose cash with probability 1. A symmetric
argument for case (i) implies there is no equilibrium where buyers propose cash
with probability 1. This means the unique pure strategy equilibrium is for agents
to propose barter with probability 1: ¢, =11, =1. R

Proof of Lemma 2: We need to be clear about what agents do after they
dispose of their money. In Model — K, they cannot trade, since they are not
able to produce. Hence agents will dispose of money and drop out of the trading
process iff V; < 0. Since it is easy to see that V5 > 0 in any equilibrium and
Vi > V4 in any equilibrium with 7 > 0, the only case where disposal could
potentially occur is my = 0, which implies V; = «/r. Hence, agents dispose of
money iff 7g = 0 and v < 0. In Model — S, if agents dispose of money they can
continue to barter. Hence, in this model they dispose of money iff V} < V4. Again
this occurs iff g =0 and v < 0. B

Proof of Lemma 3: The proof of Lemma 1 shows that there is potentially
an equilibrium with 7 = 1, Ay =0, Ag =u —¢, ¥y € (0,1) and 1p; = 1 as long
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as (5.1) holds. The only thing to check is ¥, € (0,1). It is straightforward to see
that this holds iff r € (7y,71), where 7 is defined in Lemma 3 and 7, is defined
in Proposition 2. One can show 7y < 7. Hence, the equilibrium with 7 =1, =1
and ¢, € (0,1) exists iff € (7y, 7). The symmetric argument shows that there is
potentially an equilibrium with 7 =1, A; =u—c¢, Ag =0, ¥, = 1 and ¢, € (0,1)

as long as
p et (L= g)(L= M)+ yMBl(u =)
e yMpB(u — c)
The only thing to check is ¥; € (0,1), which holds iff € (74,75), where 74 is

defined in Proposition 2 and 75 is defined in Lemma 3. Hence, the equilibrium
with 7 = ¢, = 1 and ¥, € (0,1) exists iff » € (7y,71). These are the only
possibilities. W

Claims in Proofs of Propositions 3 and 4: In Proposition 3, we claim

egle—o > 0. Differentiating (3.5) yields
eg=[1—Mu—(r+1—M)u' — (1 - M)yBlu -]+ [(r+ M)u— Mc|.
Using e = 0, we have
€gle—o = [ru+ M(u—c) + (1 — M)yB]d > 0.
In Proposition 4 we make the same claim. In this case,
€gle—o = [ru+ M(u—c)+ (1 — M)yB](r +1— M)c > 0.
We also claim e, |.—g < 0 if e(g) > 0. Differentiation yields
e, =0[(1— M)u— (1+2r)cju’ — (1 — M)yB(1—0)c — (1 —0)[(1+ 2r)u — Mc]d,
which can be rewritten
re, = e—0{(1—M)Mu—[M(1— M) —r*c}u
+(1 = O {[M(1— M) —r*ju— M(1 - M)c}

—(1— M)yB[o(1 2—5M)u’ —(1—0)(1 - M)<).



Setting e = 0 and rearranging, we have
rep|emo = —r2[0ct/ + (1 — O)uc] — [M(u—c) + (1 — M)yB](1 — M)[0u' — (1 —6)].

As the first term is strictly negative, a sufficient condition for e,|.—o < 0 is Ou’ —

(1 —0)c > 0. It can be shown easily that e(q) > 0 implies v’ — (1 — ) > 0,

verifying the claim. l
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Figure 1: Game Tree
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Figure 2a: Model-K
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Figure 3a: Welfare as a function of M
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Figure 3b: Welfare as a function of y (optimal M)
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Figure 4a: Functions e and f in Model-K withy >0, T;=V;
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Figure 5a: Functions e and f in Model-K withy >0, Tj=0
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Figure 6a: Functions e and f in Model-S withy >0, T; = V;
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Figure 6b: Equilibria as a function of  in Model-S withy >0, T; = V;




Figure 7a: Functions e and f in Model-S withy >0, T;=0
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Figure 8a: Welfare as a function of M in Model-S withy >0, T; = V;
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Figure 8c: Welfare as a function of M in Model-S withy >0, Tj=0
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Figure 8d: Welfare as a function of M in Model-S withy >0, Tj=0
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Figure 9a: Welfare as a function of M in Model-S, Model-K with T; = V;
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Figure 9b: Welfare as a function of M in Model-S, Model-K with T; =0
(6= 51r=5y=.1)
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