
w o r k i n g

p a p e r

F E D E R A L  R E S E R V E  B A N K O F  C L E V E L A N D

Currency Portfolios and Nominal
Exchange Rates in a Dual Currency
Search Economy

by Ben Craig and Christopher J. Waller

9 9 1 6



Working Paper 9916

Currency Portfolios and Nominal Exchange Rates in a
Dual Currency Search Economy

by Ben Craig and Christopher J. Waller

Ben Craig is at the Federal Reserve Bank of Cleveland.  Christopher J. Waller
is at the University of Kentucky.  The authors thank Gabriel Camera for his comments
on their work.

Working papers of the Federal Reserve Bank of Cleveland are preliminary materials
circulated to stimulate discussion and critical comment on research in progress. They
may not have been subject to the formal editorial review accorded official Federal
Reserve
Bank of Cleveland publications.  The views stated herein are those of the authors and are
not necessarily those of the Federal Reserve Bank of Cleveland or of the Board of
Governors of the Federal Reserve System

Working papers are now available electronically through the Cleveland Fed’s home page
on the World Wide Web:  http://www.clev.frb.org.

December, 1999



Currency Portfolios and Nominal Exchange Rates in a
Dual Currency Search Economy

Ben Craig
Research Department
Federal Reserve Bank of Cleveland,
OH 44101-1387
Ben.R.Craig@CLEV.frb.org

Christopher J. Waller
Department of Economics
University of Kentucky
Lexington, KY  40506-0034
cjwall@pop.uky.edu

Preliminary Draft: August 1999



1

Abstract
We analyze a dual currency search model in which agents are allowed to hold multiple units of
both currencies.  Hence, agents hold portfolios of currency. We study equilibria in which the two
currencies are identical and equilibria in which the two currencies differ according to the
magnitude of the ’inflation tax’ risk associated with each currency. The inflation tax is modeled
by having government agents randomly confiscate the two currencies at different rates. We are
able to obtain analytical results in a very special case but in general we must rely on numerical
methods to solve for the steady-state distributions of currency portfolios, prices and value
functions. We find that when one of the currencies has the right amount of ’risk’, equilibria exist
in which the safe currency trades for multiple units of the risky currency (pure currency
exchange). As a result, the steady state has a distribution of nominal exchange rates. The mean
and variance of the nominal exchange rate distribution is based on the fundamentals of the model
such as the risk of confiscation, risk preferences, matching probabilities and relative money
supplies.  The mean and variance of this distribution typically change in predictable ways when
the fundamentals change. While the ability to trade currencies improves average welfare, in
general, the benefits of currency exchange are small.

We would like to thank Gabriel Camera for his comments on our work.
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1.  Introduction

The search theoretic model of money has become the dominant framework for studying

monetary theory in the last few years. Until recently, a major drawback of the search theoretic

framework has been the underlying assumption that agents can only hold one unit of currency at

a time.  This inventory restriction on money is imposed for analytical tractability. More recent

work by Molico (1996), Green and Zhou (1996), Camera and Corbae (1998) and Taber and

Wallace (1998) has relaxed the inventory assumption and these authors have studied monetary

equilibrium when agents are allowed to hold multiple units of currency.  These models have been

used to study equilibrium price distributions, divisibility, and the welfare effects of changing the

money stock.

All of the models listed above study economies in which only one currency circulates. In

many countries around the world, two or more currencies act as a media of exchange and

governments in these countries often try and restrict the use of foreign currency in order to

maintain the value of the domestic currency. There are many papers in the search literature that

look at dual currency issues but all of them rely on the one-unit inventory restriction on money

holdings.1 Unfortunately, the inventory constraint prevents us from addressing many interesting

issues that arise in dual currency economies such as currency exchange, portfolio diversification

and the equilibrium determination of nominal exchange rates.  For example, a common situation

in developing or transitional economies is that local residents begin to use a foreign currency in

addition to the domestic currency to diversify against inflation risk associated with the domestic

currency.  The inflation risk creates incentives for local residents not only to acquire the foreign

currency via sales of goods but also to engage in currency exchange in order to diversify their

currency portfolios. As a result, currency exchange can be welfare improving. However, in a one

unit of money model, currency exchange will never occur so it is impossible to study how

changes in inflation risk affects portfolio diversification and nominal exchange rates.

In this paper we construct a one country, dual currency search model in which agents can

hold multiple units of currency subject to an inventory restriction.  In order to make the two

currencies different, we introduce an ’inflation tax’ that differs across currencies.  The inflation

tax is introduced as in Li (1995) by having government agents in the model randomly confiscate

one of the currencies.  As a result, we have a ’safe’ currency that is never confiscated and a ’risky’
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currency that is confiscated whenever a private trader runs into a government agent.2 By setting

the inflation tax to zero for each currency, we can also study ’symmetric’ equilibria in which the

currencies are identical. We allow three types of trades to occur in the economy -- money for

goods, money for goods and money, and money for money -- and study equilibria in which all or

only a subset of these types of trades occurs in equilibrium.

We are able to obtain analytical results for a very special case of the model that mimics

the equilibrium studied by Camera and Corbae (1998) in which agents only trade one unit of

currency at a time. In this special case, agents can hold up to a total of 2 units of currency and the

inflation tax on each currency is zero, hence they are identical. We find that that there many

steady-state distributions of portfolios that can support a given set of equilibrium value functions.

However, the marginal distribution of agents across portfolio size (0, 1, 2) is censored geometric

as in Camera and Corbae and in Green and Zhou (1996).

When we allow agents to hold more than 2 units of currency or when we introduce the

inflation tax, numerical methods are required to study the model. Our basic findings from these

exercises are as follows. First, we typically are able to find equilibria when the inventory restraint

is under 20 units although for large sections of the parameter space convergence to a steady state

does not occur.  For values over 20, our algorithm usually does not converge. Second, we are

able to find equilibria for all of the trading patterns described above: money for goods, currency i

for goods and some of currency j, and pure currency trades.  Interestingly, we are able to find

equilibria in which one of the currencies is more valuable in equilibrium even though they are

identical (zero inflation tax). This reflects the ’self-fulfilling belief’ nature of fiat currency

equilibria -- if traders believe one currency is more valuable, then it will be more valuable in

equilibrium.

Third, when we impose an inflation tax on the domestic currency, we can generate

equilibria in which the safe foreign currency trades for multiple units of the risky domestic

currency. Thus, we are able to obtain endogenously determined nominal exchange rates,

something, which has not been done to date in the search literature.3 The nominal exchange rate

                                                                                                                                                            
1 See Craig and Waller (1999) for a brief survey of the search literature on dual currency economies.
2 Curtis and Waller (1999) use a similar set-up to study currency restrictions that make one of the currencies ’illegal’
and thus subject to confiscation.
3 Zhou (1997) has a model in which currency exchange occurs but the nominal exchange is exogenous determined as
1 for 1. Head and Shi (1996) look at exchange rates in a search framework but under assumptions that eliminate all
distribution issues.
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reflects the inflation risk premium associated with domestic currency. When currency trades

occur we have a pure financial ’market’ -- even without a single coincidence of wants for goods,

traders may still find it optimal to trade financial instruments. Due to the bilateral nature of trades

in search models, within this financial market we observe an entire distribution of nominal

exchange rates, not just one.  Thus, one of the contributions of this paper is to use search

theoretic models to examine issues in the realm of international finance. For example, simple

comparative static exercises show higher inflation risk leads to a nominal depreciation of the

domestic currency relative to the foreign currency, lowers its purchasing power over goods and

leads to ’dollarization’ of the economy.

In Section 2 we describe the economic structure of the model and the bargaining

environment. Section 3 contains the definition of a stationary equilibrium that we employ. In

Section 4 we present a special case of the model and discuss our analytical results.  Section 5

contains a description of our numerical procedures. In Section 6 we present the results of our

numerical analysis. Finally, Section 7 summarizes our findings and suggestions for future

research.

2 The Search Environment

 Our model is a standard random matching monetary model with divisible, non-storable

goods in which goods prices are determined via bilateral bargaining. There is a continuum of

agents uniformly distributed on the unit circle. Agents specialize in the production and

consumption of goods. An agent located at point i on the unit circle is assumed to consume goods

in the interval i + x and produce goods in the interval i - x. For x < 1/2, double coincidences of

wants cannot occur and thus no barter trades arise. This restriction on x greatly simplifies the

model and will be maintained throughout the paper. Hence a trading equilibrium requires the

existence of a medium of exchange.  Given the matching process described below, x is the

probability that a buyer meets a seller who produces a good in the buyer’s desired consumption

interval.

 

 2.1 Preferences and Costs of Production

 Agents are assumed to receive utility u(q) from consumption of q units of their desired

good and incur a utility loss of c(q) from producing q units of their good. Both u(q) and c(q) are
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continuous, twice differentiable with u’ > 0, c’ > 0, u’’ ≤ 0, and c’’ ≥ 0 with at least one of the

inequalities holding with strict inequality. Also assume that u(0) = c(0) = 0 with u’(0) > c’(0) and

there is a positive value of q, q , such that u( q ) = c( q ). For the remainder of the paper we will

assume that the cost function is linear and given by c(q) = q.

 

 2.2 Media of Exchange and Currency Portfolios

 In our economy, two fiat currencies can circulate as media of exchange. Let currency 1

denote the foreign currency (dollars) and currency 2 denote the domestic currency (rubles).  One

or both of the currencies are allowed to circulate in trade. Following Camera and Corbae, we

assume that agents are able to hold up to N total units of currency at zero storage cost. These N

units can be held in any combination of domestic and foreign currency and the support of N is

given by the set N={0,1,2,…,N}.  Consequently, agents are able to hold portfolios of currencies

whose support is the simplex S1 = {ni
jt ∈ N: ni

1t + ni
2t ≤ N} where ni

jt denotes the units of

currency j = 1,2 held by individual i at time t. An individual’s portfolio at time t is thus an

ordered pair (ni
1t,n

i
2t) on S1.

 

 2.3 Aggregate Money Stocks

 Let mt(n1,n2) denote the proportion of the population holding currency portfolio (n1,n2) at

time t.  The per-capita foreign money stock is then given by
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 In a stationary steady state, mt(n1,n2) = m(n1,n2) for all t, n1 and n2.

 

 2.4 Government Behavior

 We distinguish the two currencies by their respective inflation tax.  The inflation tax is

modeled as in Li (1995).  We assume that a subset of the agents in the economy are classified as

government agents. The proportion of government agents in the economy is constant and given

by ρ.  Government agents consume but do not produce goods.  Their main purpose is to
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confiscate and issue units of the domestic currency. Upon meeting a private agent, a government

agent confiscates all or part of their domestic currency holdings with probability 0 ≤ µ  ≤ 1. The

foreign currency is not confiscated, hence its ‘inflation tax’ is zero. We assume that the

government agents destroy confiscated currency. Let τ(nI
2) denote the units of domestic currency

confiscated by the government agent when he meets an agent holding nI
2 units of the domestic

currency where 0 ≤ τ (nI
2) ≤ nI

2..   We also interpret µ = 0 as corresponding to the case where

inflation tax on the domestic currency is zero.  In order to have a stationary equilibrium with a

positive stock of domestic currency in circulation, we need an inflow of the domestic currency to

offset the outflow of currency arising through confiscation. When a government agent meets a

m(0,0) seller, with probability 0 ≤ η ≤ 1, he issues 0 ≤ λ ≤ N units of domestic currency in return

for goods.4

 

 2.5 Matching Process

 Agents meet at random according to a Poisson process with arrival rate α. With

probability x, a single coincidence of wants occurs and one of the agents becomes a seller and the

other a buyer.  Trade requires that the buyer hold at least 1 unit of currency.  Both the buyer and

the seller may hold both currencies. When a single coincidence of wants occurs there are two

possible types of trades: 1) The buyer gives money (foreign, domestic, or some of both) to the

seller for some amount of goods, and 2) the buyer gives the seller some currency for the good and

the seller 'makes change' by also giving the buyer some of the opposite currency in addition to the

goods.  For example, a buyer could give the seller 3 units of foreign currency for some units of

the good and 1 unit of the domestic currency.

 When a single coincidence of wants does not occur, traders may still face gains from

trade via a pure financial transaction.  Since the domestic currency is 'risky', traders may decide

to diversify their portfolios by trading currencies.  For example, a trader with many dollars and

no rubles may meet a trader with many rubles and no dollars. By swapping dollars for rubles, the

ruble trader gets rid of some of the risky currency and acquires the safe currency.  If the dollar

trader gets enough rubles per dollar, he will be willing to take on a greater risk position in order

                                                
4 We could have modeled the government agents as using confiscated currency to buy goods rather than destroying
it. However, this would have required us to solve for the distribution of portfolio holdings held by government agents
in steady state. Therefore, modeling the government’s behavior as we have greatly simplifies the numerical routines.
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to increase his total currency holdings.  The amount that they trade will determine the nominal

exchange rate.  In general, the nominal exchange rate that occurs will be a function of the

composition of the traders’ current portfolios and the underlying trading values of the current

portfolios.  As a result, the nominal exchange rate occurring in these financial trades will vary

across matches.

 

 2.6 Bargaining

 When a single coincidence of wants occurs, we assume that the buyer makes a take-it-or-

leave-it offer to the seller.  As a result, the buyer will offer a trade of goods for currency such that

he extracts the entire trading surplus from the seller.  The seller is indifferent between accepting

and rejecting this offer and thus accepts the offer.5  The buyer’s offer, d, is a pair of foreign and

domestic currency transfers d = (d1,d2) in return for goods. If d1 > 0 and d2 = 0, the buyer offers

to pay with the foreign currency while the reverse is true if d1 = 0 and d2 > 0.  If both are greater

than zero, than the buyer offers to pay the seller with a mixed bundle of foreign and domestic

currency in return for goods. These are ’money for goods’ trades. If d1 > 0, d2 < 0, the buyer

offers d1 units of foreign currency in return for goods and d2 units of domestic currency. If the

inequalities are reversed, the buyer offers domestic currency units in return for goods and units of

the foreign currencies.  Thus, d1 > (<) 0, d2 < (>) 0, will be referred to as ’making change’ trades.

Finally, we assume that the government agent who meets a m(0,0) seller also makes a take-it-or-

leave-it offer to the seller in return for λ units of the domestic currency.

 When a single coincidence of wants does not occur but a currency swap is beneficial to

both parties, we assume that each trader has a probability of 1/2 of making a take-it-or-leave-it

offer to the other trader, which is either accepted or rejected.  The first mover offers to trade y1

units of currency 1 for y2 units of currency 2. If y1 > 0, y2 < 0 and vice versa.  The trader making

the offer tries to extract as much surplus as possible from the other trader. However, unlike goods

trades, the discreteness of the currency unit means the seller may end up with some of the surplus

from trade.  In the case where the seller is indifferent between accepting and rejecting the offer,

we assume the offer is accepted. Thus, let 1
iy denote the units of currency i given up when an

                                                
5 Since q is continuous, the buyer can offer to take an infinitesimally smaller amount of q to induce the seller to
accept the offer.
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individual is the first mover and 2
iy denote the units of currency i received when an individual is

the second mover.

 

 2.7 Value Functions

 In a stationary steady-state, the returns to search for an agent with money holdings (n1,n2) will be

given by
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 where Ω denotes the set of feasible sellers, ψ denotes the set of feasible buyers and K denotes the

set of feasible currency traders.  The first summation term of (3) is the expected payoff from

being a buyer and offering the currency bundle d = ( ),,,(),,,,( 2121221211
ssss nnnndnnnnd ) for the

quantity ),,,( 2121
ss nnnnq from a seller with portfolio ),( 21

ss nn .  The second summation term is the

expected payoff from being a seller and producing ),,,( 2121 nnnnq bb for a buyer who pays offers

them a currency bundle d = ( ),,,(),,,,( 2121221211 nnnndnnnnd bbbb ).  The third double summation

term captures the return from currency exchange with another trader holding portfolio ),( 21
kk nn  .

The last term is the expected loss of running into a government agent and having τ(n1) units of

the domestic currency confiscated.

 

 2.8 Bargaining
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 When a potential trade for goods occurs, the buyer makes a take-it-or-leave-it offer to the

seller.  This offer is a triplet (q,d1,d2) that satisfies

 

 (4)
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 and the constraint that d1 and d2 are feasible transfers of currency given the buyer’s and seller’s

portfolios.  When a trade actually occurs, the buyer’s offer extracts the full surplus from the seller

such that the constraint in (4) is satisfied with equality.  This is possible because q is a

continuous variable.  As pointed out by Camera and Corbae, in general, there will be matches

with a single coincidence of wants but no offer can be made which satisfies (4). Since the value

functions are concave in money holdings, a currency ’rich’ seller may not be willing to give up

enough of the good for another unit of currency from a currency ’poor’ buyer.  The high price of

the good makes the buyer willing to wait for a better deal than to trade now.  Since the seller

receives zero surplus when a goods trade occurs, the second double summation term in (3) will

be zero.

 Since agents without any currency units can only be sellers and sellers receive zero net

surplus from trade, the returns to search for an agent without any currency units is

 

(5) 0)00( =,rV .

 

 When potential currency swaps exist, a coin flip determines who is the first mover and

the first mover makes a take-it-or-leave-it offer to the other trader.  The first mover chooses a

currency swap y = ( 1
2

1
1 , yy ) to
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 subject to the constraint that the proposed portfolio changes are feasible.  Unlike goods trades,

the discreteness of the currency units will make it difficult for the first mover to extract the entire
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surplus from the second mover. Hence, in general each side will receive some surplus from

currency exchange.

 

 

 2.9 The Distribution of Portfolios

 Let Ft(n1,n2) denote the probability at time t that an individual agent has a portfolio that is

smaller than or equal to (n1,n2).  Thus, Ft(n1,n2) is given by

 (7) ∑∑
= =

=
1 2

0 0
21 ),(),(

n

a

n

b
tt bamnnF

 A stationary distribution of portfolios has Ft(n1,n2) = F(n1,n2) for all t, n1 and n2.

 At each point in time there are flows of agents into and out of each portfolio state.  In

steady state, the flows of agents out of a particular portfolio state must be matched by an inflow

of agents into that portfolio state.  Writing down these flow equations for each possible portfolio

state is complicated. Nevertheless, it is relatively easy to describe what happens regarding

matches at time t.

 With regards to the inflows and outflows of the domestic currency, the government meets

an agent at state (n1,n2) with probability ρ and confiscates their domestic currency holdings with

probability µ.  This reduces the proportion of people in that state by a factor of ρµ.  Of course the

proportion of the population, m(n1,0) increases by ρµ∑
1

),( 21
N

nnm . At the same time, those traders

at m(0,0) get the opportunity to receive a transfer from the government.  Thus, if the transfer is

one unit of domestic currency, the proportion of people at )1,0(m  will increase by the amount

)0,0(mµη .  In steady state, this outflow of the domestic currency must be equal to the inflow of

domestic currency so )(),( 221

1

nnnm
N

τµ∑  = )0,0(mηλ . Note that when λ = 1 and τ(n2) = n2, the

proportion of agents at m(0,0) is given by 2212 )/(),()/()0,0(
2

Mnnmnm
n

ηµηµ == ∑ .  For given

values of µ and η, M2 will be endogenous since m(0,0) is endogenous. Thus, if we set µ and η, M1

can be chosen ex ante but M2 cannot.6

                                                
6 In other words, adding this flow condition creates an extra equation in the model, hence an additional endogenous
variable is needed to ensure that a solution exists. Thus, M2 is the new endogenous variable.
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 Agents who are not matched with a government agent ’go to market’.  Some of these

matches generate a single coincidence of wants and thus a potential trade of goods for currency.

Each trade of money for goods involves a flow into a new currency holding state and a flow out

of the old currency state for both seller and buyer.  For a transaction that involves the buyer

paying ),,,( 21211
ss nnnnd and ),,,,( 21212

ss nnnnd to use the notation above, the proportions

),( 2211 dndnm −− and ),( 2211 dndnm ss ++  both increase by the amount ),,(),( 2121
ss nnmnnm because

of the new currency holdings. The old currency-holding proportions, ),( 21 nnm and ),,( 21
ss nnm are

decreased by the same amount.  Matches that without a single coincidence of wants do not cause

a change in portfolio positions.  However, when currency trades are possible, these same matches

can produce changes in portfolio positions and so the flow equations for each portfolio position

must account for these pure currency trades. A steady-state equilibrium is achieved when the

flows out of a given currency state are equal to the flows into it.

 

3 Equilibrium

 We can define a stationary equilibrium as a set of functions V*(n1,n2), ),,,( 2121
ss nnnnq ,

),,,( 21211
ss nnnnd , ),,,( 21212

ss nnnnd , ),,,( 2121
1
1

ss nnnny , ),,,( 2121
1
2

ss nnnny , ),,,( 2121
2
1

ss nnnny ,

),,,( 2121
2
2

ss nnnny , F(n1,n2) such that (1)-(7) are satisfied.

 

4 A Special Case: Camera-Corbae with Two Currencies

In general there are three classes of monetary equilibria that can occur in our dual

currency model:

1. Equilibria in which trades only involve money for goods.
2. Equilibria that involve type 1 trades plus trades involving currency i for goods plus some

amount of currency j, j≠ i.
3. Equilibria that involve type 2 trades plus pure currency trades of currency i for currency j.

We cannot solve this model analytically for the general case, hence it is difficult to study the

steady-state distribution of money holdings.  However, there is a special trading equilibrium that

we can solve analytically in the two-currency model -- the Camera and Corbae (1998)

equilibrium. Camera and Corbae study transaction patterns in a model where agents can hold up

to N units of a single currency. They then look at a particular equilibrium in which agents only

trade one unit of currency for goods, regardless of the quantity of money held by the buyers and
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sellers. They then show that the steady-state distribution of money holdings in this case is a

censored-geometric distribution. Finally, they determine the parameter values needed to ensure

that this trading strategy is optimal.

In this section we study a special case of the Camera-Corbae equilibrium in our two-

currency model.  In particular we concentrate on equilibria where:

i. agents can hold up to N = 2 units of currency (total).
ii. agents only trade one unit of currency for goods, regardless of: a) the currency used and

b) the portfolio holdings of the buyers and sellers. This rules out the ’making change’
equilibria.

The assumption that N = 2 implies that there are 6 portfolio states: m(0,0), m(1,0), m(0,1),

m(2,0), m(0,2) and m(1,1).

Within this class of equilibria, we examine ’symmetric’ equilibria. By symmetry we mean

1. currencies are identical (there is no confiscation or inflows of the domestic currency and the
per-capita holdings of the foreign and domestic are the same).

2. equilibrium price distributions are symmetric, i.e., one unit of the domestic currency buys the
same amount of goods from a given seller as a unit of the foreign currency.

3. equilibrium value functions are identical for portfolios with the same total amount of money
holdings (i.e., V(n1,n2) = V(n2,n1)  for all n2 + n1 = ι  , ι  = 0,1,2).

These latter conditions do not restrict the steady-state distribution of portfolios to be symmetric.

In general, there are three types of steady-state distributions:

a) Super symmetric probability distributions

� The portfolio distribution of money holdings is symmetric (i.e.,  m(n1,n2) =

m(n2,n1)).

� Since agents only trade one unit of currency, super symmetry means that the

m(1,1) buyer’s choice of whether to give up the foreign or domestic currency is

symmetric across sellers and does not depend on the seller’s portfolio state.

b) Weak symmetric probability distributions

� The portfolio distribution of money holdings is symmetric (i.e.,  m(n1,n2) =

m(n2,n1)).

� Since agents only trade one unit of currency, symmetry requires that the m(1,1)

buyer’s choice of whether to give up the foreign or domestic currency is symmetric

across sellers and does depend on the seller’s portfolio state.
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c) Asymmetric probability distributions.

� The portfolio distribution of money holdings is not symmetric (i.e.,  m(n1,n2) ≠

m(n2,n1)).

� The m(1,1) buyer’s choice of whether to give up the foreign or domestic currency

is not symmetric across sellers.

It turns out that there is one super symmetric equilibrium but many weak symmetric

equilibria. Super symmetry imposes the condition that the m(1,1) buyer use a mixed strategy such

that he gives up the domestic currency with probability 1/2 and the foreign currency with

probability 1/2 when meeting any seller.7

The plethora of weak symmetric equilibria occurs because of an indeterminacy associated

with the buying strategies used by a buyer with a (1,1) portfolio. Under symmetry, when buying

from a seller with either a (1,0) or (0,1) portfolio, the buyer is indifferent as to which currency he

gives up since they have equal value and buy the same quantity of goods. Thus, the buyer resorts

to using a mixed strategy in determining which currency to give up. Symmetry restricts the

choice of mixed strategy in that the buyer must treat identical sellers symmetrically. However, it

does not mean that the buyer treats all sellers identically.  In fact, there are an infinite number of

mixed strategies, conditioned on the currency portfolio of the seller, which generate a symmetric

steady-state portfolio distribution.  For example, the strategy "give up the currency opposite the

seller’s currency holding with probability p ∈  [0,1]" is symmetric conditional on the seller’s

portfolio state; a seller with a unit of the domestic (foreign) currency will receive a unit of the

foreign (domestic) currency with probability p.  There is nothing in the model to pin down the

solution for p under weak symmetry. Yet for every value of p, there is a different symmetric

distribution of portfolio holdings and value functions.8

                                                
7 In actuality, the mixed strategy used by a m(1,1) buyer when meeting a m(0,0) seller turns out to be irrelevant for
both the steady state distribution and the value functions. Its only important that the mixed strategy used when
meeting a m(1,0) and m(0,1) seller equal 1/2.
8 Indeterminacy also arises in Camera and Corbae and in Taber and Wallace (1998) but in a different fashion. In one-
currency models, there is a possibility that a buyer is indifferent between giving up d units of a currency or d+1 units
of the currency in exchange for goods. When this situation arises agents must resort to mixed strategies to determine
which offer to make to the seller.  In our model, this problem also arises but the addition of a second currency creates
another source of indifference for the buyer which is the choice of giving up d units of the domestic currency or d
units of the foreign currency.
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With regards to the asymmetric probability distribution, there are mixed strategies the

m(1,1) buyer can use that treat sellers the same but not symmetrically. For example, a m(1,1)

buyer can adopt the strategy of always giving up the domestic currency first regardless of the

seller’s portfolio state.9 However, this strategy does not treat sellers symmetrically, since it moves

the sellers to portfolio states that are not symmetric; the m(1,0) seller moves to m(2,0) while the

m(0,1) seller moves to m(1,1).

What is interesting about our solutions for the steady state distribution is that when measured

by portfolio size, our solution for the steady-state distribution is equivalent to that obtained by

Camera-Corbae and Green and Zhou (1996).10  In other words, the proportion of agents holding

two units of currency, regardless of the nationality of the currency, is equal to the proportion of

agents holding two units of a single currency in Camera and Corbae for N=2. Furthermore, this is

true for the super symmetric, weak symmetric and asymmetric equilibria. In short, it is not

affected by the mixed strategy used by the (1,1) buyer.  Thus, define

µ2 = m(2,0) + m(0,2) + m(1,1)

µ1 = m(1,0) + m(0,1)

1 = m(0,0) + µ1 + µ2

then it can be shown that the steady-state distribution across portfolio size is given by

n

n

m
m 





−
−=

2

0
0 1

1

µ
µ      for n = 0,1,2.

We suspect that this result holds for all N but have not tried to prove it. Hence, we

conjecture that under symmetry, the steady-state distribution of currency holdings across

portfolio size will be censored geometric. If this conjecture is true, then what remains to be

determined is the marginal distribution of portfolios conditioned on portfolio size for N > 2.

Determining a steady-state equilibrium for this version of the model requires determining

the steady state distribution of money holdings (portfolios) under the assumption that only one

unit of currency is exchanged. We then solve for the value functions under symmetry. Given the

solutions for the steady-state distribution and the value functions, we then need to determine the

                                                
9 These are sometimes referred to as ’non-discriminatory’ mixed strategies.
10 In order to make the numerical values the same, one must adjust the per capita money stock in Camera and
Corbae, in order to have equivalent aggregate per capita money stocks across the two models.



15

conditions under which it is optimal for buyers to follow the strategy of only giving up one unit

of currency per trade.

In the appendix, we determine the conditions under which the super-symmetric

equilibrium exists and obtain analytical expressions for the steady-state distribution.  We do so

under that specification that u(q) = qσ with 0 < σ < 1.11 The equilibrium solutions are:
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where m(0,0) = m00, m(1,0) = m(0,1) = m1, m(2,0) = m(0,2) = m2 and m(1,1) = m11.  Equation (8)

contains the equilibrium values of the value functions, (9) is the buyer-incentive compatibility

constraint that must be satisfied to ensure that trading one unit of currency is optimal for all

buyers, (10) gives the equilibrium quantities of goods given up by sellers with no currency and

one unit of currency respectively under buyer-take-all bargaining, (11) is the money supply

equation for each currency under symmetry, (12) is the adding up constraint under symmetry and

(13) contains the solutions for distribution of money holdings.

As in Camera and Corbae, the value functions are concave and linearly dependent.

Furthermore, the concavity of the value functions means that the marginal value of acquiring an

additional unit of either currency is diminishing. Hence, as shown in (10), a seller with no

                                                
11 Given the assumption of linear costs, this utility specification implies that the equilibrium quantities must lie in the
unit interval, qi ∈  [0,1] in order to have u(q) - c(q) ≥ 0.
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currency will give up more units of the good for a unit of currency than will a seller with one unit

of currency.  Thus, (10) is the price distribution case of symmetric value functions.  Finally, the

incentive compatibility constraint is more likely to hold the greater the concavity of u(q) (σ→0)

and the smaller are the search frictions associated with trading (αx/r → ∞). 12 The greater the

concavity of u(q) the smaller is the intertemporal elasticity of substitution, and the less likely

buyers will be to postpone trades to the future. This basically means ’poor’ buyers will not wait to

find a better price tomorrow when they meet a ’rich’ seller today. On the other hand, if search

frictions are low, the likelihood of meeting a desired seller again tomorrow is reasonably high.

This prevents ’rich’ buyers from giving up more than one unit of currency today.

Under the assumption of super symmetry, the marginal distribution across the portfolios

with 2 units of currency can be determined. Using the first expression in (13) we find that m2

=(1/4)µ2 and m11 = (1/2)µ2.  This essentially means that there are as many ’undiversified’ 2 unit

portfolios as ’diversified’ 2 unit portfolios (m11 = m20 + m02).

In the case of weak symmetry, equations (8)-(12) still hold but (13) does not. In this case, the

four portfolio states, m0, m1, m2, m11, can be solved for using (11), (12) and the following two

equations obtained from the steady-state flow conditions on m2 and m11:

(14)
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where p is the probability a (1,1) buyer gives up the ’left’ currency to a seller at (1,0) and the

’right’ currency to a (0,1) seller.  When p = 1/2, the (1,1) buyer treats all sellers the same. When p

differs from 1/2, the buyer’s mixed strategy is conditioned on the seller’s portfolio state. So for

each value of p, a symmetric portfolio distribution can exist. Figure 1 shows a symmetric

equilibrium with p = 0 for the parameter values σ = .5,

αx/r = 5 and M = 2/3. The probability distribution is saddle-shaped. Given these parameters, we

get the following proportions (with rounding) for p =0, .5, 1:

                                                
12 In fact, the solutions are exactly the same as in CC except that they use u(q) = σ-1qσ  rather than u(q)=qσ. For this

utility specification, the intertemporal elasticity is 1/(1-σ).



17

                      p = 0                       p = .5                        p = 1

m0

m1

m2

m11

0.18085

0.15247

0.06974

0.374697

0.18085

0.15247

0.12854

0.25709

0.18085

0.15247

0.15925

0.19568

The values of m0 and m1 are unchanged across the values of p, hence µ1 and µ2 are constant. The

only change is the marginal distribution across the portfolios with 2 currency units. Since the

shares across portfolio sizes are constant for all values of p, the value functions will be constant

since (8) shows that the solution for V1 only depends on the portfolio shares m0 and µ1 which are

constant given our results above.

In addition to symmetric distributions, we have asymmetric portfolio distributions even

though the value functions are symmetric. Asymmetry in the distribution arises when the mixed

strategy used by the (1,1) buyer is not symmetric across seller’s portfolio states. For example, the

(1,1) buyer may always give up the domestic currency first or vice versa. Figure 2 shows such a

distribution

Finding that the shares of agents at each portfolio size is constant regardless of the mixed

strategy used by the (1,1) buyer is important because it implies that the value functions are

unaffected by the choice of mixed strategy.  Hence, for parameter values such that (9) holds,

there are multiple probability distributions, both symmetric and asymmetric, that can support the

equilibrium value functions given in (8).  In a sense this is not surprising. For example, if

currency one was Federal Reserve Bank of Cleveland dollars and currency 2 was Federal Reserve

Bank of Atlanta dollars, then we would expect that there are many equilibrium distributions of

these two types of dollars that support the same equilibrium value functions associated with

holding those dollars. The implication of this multiplicity of distributions is that when we let N >

2 and make the currencies identical, there are many steady-state portfolio distributions that can

support the same set of symmetric value functions.

5 Numerical Methods
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 Numerical solution of the system of equations follows a classic fixed-point procedure.

With assumed initial value functions, V0, currency exchange functions, d10 and d20, and

probability distributions, M0, we recursively calculate the economy where:

 

 d1,t+1 d2,t+1 = argMax(for the buyer){Feasible Bargain Conditions(Vt,Mt)}

 Mt+1 = Implied new Probability Distribution(d1,t+1 d2,t+1,Mt)

 Vt+1 = Value from the Search Conditions(d1,t+1 d2,t+1,Mt+1)

 

 and where convergence is achieved if the maximum difference between d1,t+1 d2,t+1, Mt+1, Vt+1,

and d1,t  d2,t , Mt , Vt  is under a specified tolerance.  (In general the results did not differ for a

wide range of tolerances.)  The search conditions were rewritten in the numerical work to ensure

a contraction mapping was as likely as possible.  Under most initial conditions that we tried, the

routine converged.  In addition, we took the maximum operation globally for the bargaining

conditions over all feasible bargains, which was allowed by the discrete number of currency

units.  Thus, we did not need to strongly specify local conditions in order to achieve an optimum.

 

6 Numerical Results

6.2 No Inflation Tax

6.1.1 Symmetric Value Functions with M1 =M2

In this section we explore the behavior of equilibria when N > 2. Given that we have

some analytical results for symmetric equilibria in the N = 2 case, we will use these results as a

guide and initially study symmetric equilibria when N > 2. In these simulations, there is no

inflation tax on either currency and we only consider trades in which currency trades for goods.

In these equilibria, the value functions should be symmetric since the currencies are identical.

Our analytical results were based on the 1 unit of currency per trade equilibrium first

studied by Camera and Corbae. Their basic finding was that the 1 unit currency exchange

equilibrium would most likely satisfy the buyers’ incentive compatibility constraint if the

intertemporal elasticity of utility was sufficiently low and search frictions were sufficiently low.

Figure 3a shows a symmetric equilibrium in which only one unit of currency trades for N = 10, σ

= .15, αx/r = 5 and M = 3.33 and µ  = η = 0.  The value functions are symmetric and, similar to

the 2 unit of currency example, the equilibrium distribution is ’saddle shaped’.  However, the
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probability distribution is not symmetric due to the fact that it is almost impossible for the

numerical routine to find a symmetric distribution when the inventory constraint gets large.13 As

a result the distribution in Figure 3a is skewed to the left much like it is in Figure 2.

Table 1 contains summary statistics for this economy:

Table 1

Economic Data for Symmetric, No Inflation Tax Economy:

Expected ruble holdings:     3.33
Expected dollar holdings:     3.33
Expected quantity produced per match:     0.067
Expected dollar price per unit of output:     6.34
Expected ruble price per unit of output:   11.73
Implied real exchange rate from goods trades:     1.74

(Rubles per dollar)
Percentage of matches producing goods trade:    35.3%
Percentage of goods trades involving:

Dollars only:   61.3%
Rubles only:   38.7%

Given the equilibrium distribution, dollars are more frequently used than rubles and it appears

that dollars are more valuable than rubles. However, this is simply a reflection of the asymmetric

distribution of traders.  Furthermore, there is a concentration of ’rich’ ruble traders and ’poor’

dollar traders. Since ’rich’ ruble sellers give up relatively less for an additional unit of currency,

on average the ruble has a higher monetary price per unit while the ’poor’ dollar sellers give up

relatively more for another unit of currency, hence the dollar price is much lower.  However, a

dollar buys the same quantity of goods as a ruble for any matched pair of traders.

                                                
13 Our numerical routine could only find symmetric distributions when N=2
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Figure 3b and 3c show the same parameterizations except that we increase the degree of

intertemporal substitution by having σ = .5 and σ = .75. Increasing the rate of intertemporal

substitution makes buyers less willing to wait for goods tomorrow, hence they are more likely to

trade more than one unit of currency today when they meet a seller of their desired good. The

equilibria depicted in Figure 3b and 3c have agents trading up to 3 units of currency per trade.

However, the value functions are still symmetric.

However, we know from the 2-unit example that there are multiple distributions that

support the same set of symmetric value functions. Although the numerical routine always finds

the same distribution, we can ’trick’ it by starting with a positive inflation tax on the domestic

currency and letting it approach zero rather than starting at zero. Figure 3d shows an equilibrium

in which µ = η = 0.0000001. The value functions are identical in Figure 3d as in Figure 3a but

the portfolio distribution has essentially flipped. This is what you would expect -- with identical

currencies, you should be able to re-label the portfolio states and the distribution should simply

flip as a result. This is essentially what we find from Figures 3a and 3d.

In Figure 4 we show outcomes for portfolio size N = 15.  The value function maintains its

symmetry and the distribution begins to take on a dome-like shape with most of the mass in the

middle portfolios.  However, the lesson of the N=2 analytical model is that under symmetry of

the currencies there are many probability distributions that can support the value functions and

that we have found only one of them in Figures 3a-3d and Figure 4.

6.1.2 Symmetric Value Functions with M1 ≠ M2

In the section above, not only were the currencies identical but the per capita money

stocks were the same for both currencies.  Figure 5 shows the equilibrium associated with the

parameter values in Figure 3a but now the per capita money stocks are different. In figure 5 the

per capita value of dollars has been increased to 5.5 and the per capita stock of rubles has been

lowered to 2.25. The value functions are still symmetric but, not surprisingly, since there are

relatively more dollars in the economy there has been a dramatic shift of the probability

distribution towards portfolios consisting of dollars.

6.1.3 ’Making Change’ with M1 =M2
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Another type of equilibrium that can occur in dual currency models is that one currency

may trade for a quantity of goods and some amount of the other currency. We call these ’making

change’ equilibria.  What is interesting about these types of equilibria is that they can arise even

though the currencies are identical in the sense that the inflation tax is zero for both currencies.

This is a true ’belief’ equilibrium -- if people believe that one currency is more valuable, they will

act that way in trade and it will become more valuable in equilibrium.  However, if this type of

equilibrium exists then there must be two of them since you can arbitrarily reverse the labels on

the currencies and get the mirror image of any equilibrium you find. This case is comparable to

the two currency, one unit of money inventory restriction model in Aiyagari, Wallace and Wright

(1996).

Figure 6 shows this equilibrium under the same parameter values as Figure 3a. In this

case, the domestic currency (rubles) is viewed as being more valuable in equilibrium than the

foreign currency (dollars) and so the value functions are asymmetric. The distribution becomes

’igloo’ shaped. In this equilibrium, there is a wide range of quantities that are exchanged for the

same currency exchange.  Table 2 shows the transaction patterns for a subset of matches that

involve making change:

Table 2

  Buyer Seller        Currency Exchange
 R      $          R $    R        $   Quantity of Goods
 0     3      1     0     -1     3     0.315205

      0     3      1     1     -1     3     0.244833
      0     3      1     2     -1     3     0.192668
      0     3      1     3     -1     3     0.148377
      0     3      1     4     -1     3     0.111199
      0     3      1     5     -1     3     0.080804
      0     3      1     6     -1     3     0.055992
      0     3      1     7     -1     3     0.035733

In all of these trades, the seller gives up one ruble and some of the good for three dollars.  It is

clear that the ’richer’ is the seller, the less output he is willing to give for the same exchange of

currency. This just reflects the diminishing marginal value of additional units of currency.  One

ruble and goods for three dollars is not the only exchange of currency that occurs in the making

change equilibrium, there are many types of trades involving the making of change. Table 3 gives

the reverse portfolio case for the buyer:
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Table 3

  Buyer Seller        Currency Exchange
 R      $          R $    R        $   Quantity of Goods
 3     0      1     1      1    -1     0.289271

      3     0      1     2      1    -1     0.235117
      3     0      1     3      1    -1     0.194010
      3     0      1     4      1    -1     0.159778
      3     0      1     5      1    -1     0.131915
      3     0      1     6      1    -1     0.109233
      3     0      1     7      1    -1     0.090737
      3     0      1     8      2    -4     0.010707
      3     0      1     9      2    -4     0.010906

In these subsets of trades, the seller has relatively more dollars and the buyer has many rubles

but no dollars. Hence the seller gives up dollars and goods in return for rubles. In this specific

example, no pure currency exchanges occur.

6.2 A Positive Inflation Tax

 In the earlier exercises, the only way we allowed the two currencies to differ was by

having different per capita money stocks. However, the currencies themselves were

fundamentally identical. In this section we want to see how making the two currencies

fundamentally different affects the equilibrium behavior of our dual currency economy.

 

6.2.3 Changing the Rate of Confiscation (No Making Change)

A common feature of developing and transitional economies is that the domestic

currency is subject to a substantial amount of inflation risk. Inflation risk arises because of

variability in the policymaker’s use of money as a source of seigniorage. Consequently, agents in

these economies resort to the use of a second currency that has a much lower inflation risk.

Since one of the currencies is safe and the other is risky, there is an incentive for currency

exchange in order to diversify currency portfolios. In this section, we explore how varying the

degree of inflation risk affects the steady-state equilibrium.
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In our model, the government has two methods for altering the stock of domestic

currency in the economy. It can alter its confiscation policy or its injection policy. With regards

to confiscation, it can increase the probability of confiscation and the amount of domestic

currency confiscated. Similarly, it can alter its probability of injecting currency (via trades with

m(0,0) sellers) and the amount transferred. In this section, we examine how changing the rate of

confiscation affects the equilibrium.

We introduce confiscation and injection starting from the same parameterization as

in Figure 3a.  Initially we set the probabilities of confiscation and injection to be very small,

µ =0.0025 η = 0.001. While the probability of confiscation is low, we assume that the

government agent confiscates all of an agent’s domestic currency τ(n2) = n2. Furthermore,

we assume the injection is only one unit of currency small λ = 1.

Table 4 contains summary statistics for this economy:

Table 4

Economic Data for Small Inflation Tax Economy:

Expected ruble holdings:     1.92
Expected dollar holdings:     3.33
Expected quantity produced per match:     0.0993
Expected dollar price per unit of output:     6.86
Expected ruble price per unit of output:   5.02
Implied real exchange rate from goods trades:     0.732

(Rubles per dollar)
Percentage of matches producing goods trade:    36.8%
Percentage of goods trades involving:

Dollars only:   26.0%
Rubles only:   74.0%

Comparing these data to that in Table 1, we see that introducing a small inflation tax has two

very important effects.  First, because of the severity of the inflation tax (complete confiscation
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of ruble holdings) the number of ’rich’ ruble sellers declines significantly and the number of

sellers with no money at all increases, means that rubles will now buy more goods on average.

Hence, the purchasing power of a ruble actually increases relative to the dollar. The second

major change from Table 1 is that the percentage of trades involving rubles as completely

reversed -- agents are trying to get rid of rubles to avoid confiscation.

Figure 7 shows the value functions and probability distributions for this economy.

Compared to the Figure 3a, which has the same parameters but no confiscation, the value

functions for both currencies have increased in magnitude but the value of the risky domestic

currency is marginally lower than the safe foreign currency at all portfolio sizes. For example,

V(10,0) = 2.858 while V(0,10) = 2.793.  Even though the probability of confiscation is small

and the value functions similar, because of the severity of the confiscation policy, the

distribution is dramatically shifted towards agents holding portfolios containing only the foreign

currency or small amounts of the domestic currency.

We believe the intuition for higher value of both currencies is similar to the risk results

found by Curtis and Waller (1999). Introducing confiscation makes the domestic currency more

risky, hence the value of the foreign currency rises as traders substitute out of rubles and into

dollars.  This is a classic case of currency substitution.  Since the domestic currency is risky,

sellers have to be compensated to accept it in trade. Compensation can take one of two forms.

Sellers will accept the risky currency if they believe they will get more goods for it when they

become ruble buyers. In a steady-state equilibrium, in order for today’s sellers to get more when

they become buyers they must give up more for the currency today.  As a result, the quantity of

goods given up for the risky currency rises in equilibrium and thus so does the value of the

currency. The alternative form of compensation to the seller is to give up less today in return for

a unit of the risky currency. In equilibrium, the quantity traded per ruble then falls, as does the

value functions associated with ruble portfolios. In Figure 7, the first effect is at work.

6.2.2 Nominal Exchange Rates

In the example above, despite the fact that the domestic currency is risky relative to the

foreign currency, it is not risky enough to induce pure currency exchanges. For example, a 1-for-

1 swap is not attractive to the dollar holder and a 10-for-9 swap (the largest possible) is too

expensive for a ruble holder.  However, if we made the degree of relative risk aversion very
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large, 1 - σ ≈ 1, we could induce currency exchange even at this low probability of confiscation.

Furthermore, if we increased the inventory constraint, for the same parameter values we can

obtain currency exchange since large quantities of currency can be traded to obtain exchange

rates very close to one. To show this, we increase the inventory constraint to N = 15.

In Figures 8a-8c we simulated an economy with N = 15, for three different rates of

confiscation: µ =0.00125, 0.0025, and 0.005. The value functions shift down slightly along the

ruble axis showing the rubles are less valuable due to the risk of confiscation.  The probability

distributions shift towards dollar-weighted portfolios since more and more rubles are being

drained from the economy.  What is interesting about the change in the probability distribution

is that we can see ’dollarization’ of the economy occurring -- more and more agents in the

economy are holding dollar-weighted currency portfolios. Dollarization does not mean the

domestic currency is driven out completely, but rather means that it becomes a minor part of

agents’ portfolios. This is what we see in Figures 8a-8c.

With sufficient risk aversion or sufficiently large portfolio constraints, we now get

currency exchange occurring.  However, due to the decentralized nature of the economy we do

not typically observe just one exchange rate but an entire distribution of nominal exchange

rates.14 Table 5 shows the nominal exchange rate distributions for these three economies and

Figure 8d shows these exchange rates graphically.

Table 5

Economy 1: µ = 0.00125

Nominal Exchange Rate   Proportion of CurrencyTrades
1.077 1.00

Economy 2: µ = 0.0025

Nominal Exchange Rate   Proportion of Currency Trades
1.0909 0.000112
1.1000 0.202889
1.1111 0.491631
1.1250 0.284835
1.1429 0.019895

                                                
14 This distribution is a cross-section of exchange rates, not a time series. Hence, discussion of the variance of the
nominal exchange rate in this model differs from the traditional discussion of exchange rate variance that one would
find in the international finance literature. Our nominal exchange rate distributions are more related to the dispersion
of exchange rates observed in kiosks across a city at a point in time.
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1.1667 0.000589
1.2000 0.000049

Mean exchange rate =1.1135
Standard Deviation = 0.009833

Economy 3: µ = 0.005

Nominal Exchange Rate Proportion of  CurrrencyTrades
1.1250 0.724278
1.1428 0.192227
1.6667 0.080782
1.2000 0.001919
1.2500 0.000798
1.2857 0.000000
1.3333 0.000000

Mean exchange rate =1.1320
Standard Deviation = 0.013237

In the first economy there was only one observed exchange rate since the probability of

confiscation and injection are so low.  As the rate of confiscation increases, the domestic

currency becomes riskier, hence there is a greater incentive to trade the risky currency.  As a

result, there are more currency trades occurring and over a wider range of nominal exchange

rates.  In economies 2 and 3 there are 7 observed exchange rates, although the bulk of currency

trades are occur at only three exchange rates. The increase is risk associated with a higher rate of

confiscation shows forces the risk premium on the domestic currency to rise and this appears as

a depreciation of the domestic currency against the foreign currency.  It is also interesting to

note that as the level of the ’inflation tax’ increases, the variance of the nominal exchange rate

distribution also increases. However, despite the fact that the variance of the nominal exchange

rate is greater in economy three, 72% of currency trades take place at the mode exchange rate

while in economy 2 only 49% of trades occur at the mode exchange rate. Thus, while the

variance increases, there nevertheless appears to be a tendency for the currency market to move

towards a single exchange rate.

Although we found that the variance of the nominal exchange rate distribution increases

as the risk of confiscation increases (starting from a low rate of confiscation), this is not a

general result. At some point, the variance begins to decline. The reason is that as the rate of

confiscation gets too large, the domestic currency gets too risky and agents willingness to accept

it decreases.  Associated with that is a decrease in the range of nominal exchange rates observed
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and consequently a decrease in the variance of observed exchange rates. Of course, at a

sufficiently high rate of confiscation, currency exchange stops completely and the variance

trivially goes to zero.

When the probability of meeting a seller in a single-coincidence match is set at .45, the

unconditional probability of a no-coincidence match is .10.  So less than 10% of all matches

involve potential currency trades.15   However, for the three economies simulated in Figures 8a-

8c, the percentage of no coincidence matches that lead to currency trades is 0.119 E -18, only

0.23 E -11 and .258 E -9 respectively. In short, these economies have ’thin’ financial markets

since there is little trading volume. In general, we found through experimentation and intuition

that the trading volume increased when: the discount rate was decreased (currency trades today

were more highly valued), the probability of meeting a seller decreased, (the relative risk of

meeting a government agent before traded increased), the foreign money stock is relatively low,

the rate of injection is high and the rate of confiscation is low. The highest trading volume we

found was 0.3098 E-02 or 31% of all no-coincidencematches. This occurred for the parameter

values N=10, M1=1, M2=3.33, αx =.2, r = .05, η = .75, µ = .01.

6.2.3 Changing the Amount of Foreign Currency (No Making Change)

In the simulations shown in Figures 8a-8c, in equilibrium, the per capita holdings of the

foreign currency are greater than the per capita holdings of the domestic currency. This would

be a case of extreme dollarization of the economy. However, in many countries in which two

currencies serve as a medium of exchange, agents still hold a larger portion of their wealth in the

domestic currency even though it is risky.  In order to study this case, we repeated the

simulations corresponding to Figures 8a-8c but now we significantly reduce the equilibrium per

capita holdings of the foreign currency from M1 = 5 to M1 = 3 in order to see how the

equilibrium exchange rate distribution is affected.  Figure 8e replicates the nominal exchange

rate distribution in Figure 8d but with a smaller amount of dollars per capita in the economy.

Table 6 compares the means and variances. As the supply of dollars in the economy decreases,

its value increases relative to the risky domestic currency and the domestic currency depreciates

in value. This is show by a shift to the right of all three distributions in figure 8e relative to their
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positions in Figure 8d. While this is not a surprising result, what is surprising is that the variance

of all three distributions in Figure 8e increases compared to the ones in Figure 8.

Table 6

M1 = 5 M1 = 3

Economy 1: µ = 0.00125

Mean exchange rate 1.077 1.083310141
Standard Deviation 0 0.000384877

Economy 2: µ = 0.0025

Mean exchange rate 1.1135 1.130727134
Standard Deviation 0.009833 0.015634396

Economy 3: µ = 0.005

Mean exchange rate 1.1320 1.15643755
Standard Deviation 0.013237 0.02075545

We suspect that this result is due to the fact that with fewer dollars in the economy and more

traders holding portfolios with large amounts of the risky domestic currency. Thus, holders of

foreign currency can extract a larger amount of domestic currency for each dollar traded from

these ’rich’ domestic currency traders. This cannot be done with ’poor’ domestic currency holders

since they have smaller margins to extract. As a result, the range of possible exchange rates

increases. Furthermore, because these matches with ’rich’ domestic currency holders occur with

a greater frequency than before, there is more mass at this part of the probability distribution as

well. Both effects lead to an increase in the variance of the distribution.

7. Conclusions

In this paper we have contributed to the growing literature involving the distribution of

money and prices in search theoretic model.  We have shown that monetary equilibria exist in

which both currencies circulate as media of exchange and have shown that multiple equilibria

exist even when the two currencies are indistinguishable. New aspects of our work that have not

been studied in previous work are the issue of portfolio diversification, the endogenous

determination of nominal exchange rates and the role of risk aversion in portfolio choice.  Our

comparative static analysis revealed sensible predictions regarding how the value of currencies

                                                                                                                                                            
15 For this economy, 41.4% of matches involved goods trades. This is less than 45% because potential sellers for
whom the inventory constraint is binding cannot sell their goods for currency and because potential buyers without
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change after various changes in policy regimes. They also revealed some surprising results

regarding the behavior of the nominal exchange rate distributions that need to be explored

further.

                                                                                                                                                            
any currency cannot buy.
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Appendix

Steady state flows:

There are 6 flows conditions, 2 money supply equations and 1 adding up constraint for
determining the 6 steady state portfolio proportions.  Thus, 3 of the flow equations are redundant.
This implies we only need to consider 3 of the flow conditions to determine the equilibrium
steady state.  The other 3 flow conditions can be shown to be linear combinations of the other 3.
Without loss of generality, we use the 3 flow conditions associated with the 2 unit of currency
portfolios. We can then solve for the proportions of agents at the 1 unit portfolio state and the 0
unit portfolio state using the money supply equations and the adding up constraint. Under the
assumption that only one unit of currency is traded we have the following 6 equations for
determining the steady state distribution of portfolios:

(A1) )( 2
1001200020

10
10111020 mmmmmpmmxm +−−= α�

(A2) )( 2
0110020002

01
01110102 mmmmmpmmxm +−−= α�

(A3) )2( 1100
01
011101

10
10111001101002012011 mmpmmpmmmmmmmmxm −−−++= α�

(A4) 1120101 2 mmmM ++=
(A5) 1102012 2 mmmM ++=
(A6) 1102200110001 mmmmmm +++++=

where m(0,0) = m0, m(1,0) = m(0,1) = m1, m(2,0) = m(0,2) = m2, m(1,1) = m11, 
10
10p  is the

probability a (1,1) buyer gives up the ’left’ (foreign) currency to a seller at (1,0) and 01
01p  is the

probability a (1,1) buyer gives up the ’right’ (domestic) currency to a seller at (0,1). Consequently,
101

10
10
10 =+ pp  and 101

01
10
01 =+ pp . In steady state, (A1)-(A3) equal zero.

Censored Geometric Marginal Distribution:
Let

µ2 = m20 + m02 + m11

µ1 = m10 + m01

1 = m00 + µ1 + µ2

The sum of (A1)-(A3) gives the net flow into µ2 and this sum equals zero in steady state, yielding

(A7) 00
2
12 / mµµ =  .

Substitute (A7) into (A6) and solve for µ1 as

(A8) )1/()1( 200001 µµ −−= mm .

Substituting back into (A7) yields
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(A9) 2
2

2
00001 )1/()1( µµ −−= mm .

(A8) and (A9) show that the marginal distribution of portfolios conditioned on portfolio size is
censored geometric.

Symmetric steady-state distributions:
Under symmetry, m10 = m01 = m1 and m20 = m02 = m2. Imposing these conditions on (A1)-(A6)
yields:

(A10) 02
112002

10
1011120 =+−−= mmmmmpmmm�

(A11) 02
112002

01
0111102 =+−−= mmmmmpmmm�

(A12) 022 1100
01
01111

10
10111

2
11211 =−−−+= mmpmmpmmmmmm�

(A13) 11211 2 mmmM ++=
(A14) 11212 2 mmmM ++=
(A15) 112100 221 mmmm +++=

Symmetry requires M1 = M2 = M and (A10) = (A11) which imposes 01
01

10
10 pp = . This condition

implies that a (1,1) buyer treat sellers symmetrically conditional on their portfolio state but it
does not require 2/101

01
10
10 == pp .  It merely requires that a (1,1) buyer give up the ’left’ currency

to a seller holding the ’left’ currency with the same probability he gives up the ’right’ currency to a
seller holding the ’right’ currency. We define a super symmetric equilibrium to correspond to the
case where 2/101

01
10
10 == pp  and we define a weak symmetric equilibrium to correspond to the

case where 2/101
01

10
10 ≠== ppp .  Under either definition of symmetry, (A11) and (A12) are used

to solve for the steady state values of m2 and m11:

(A16) 02
1120021112 =+−−= mmmmmpmmm�

(A17) 0222 1100111
2
11211 =−−+= mmpmmmmmm� .

It is easy to see that when p = 1/2,  m11 = 2m2 satisfies both equations. Using this expression in
(A13) yields m2 = (1/4)(M - m1). (A15) shows that m00 = 1- M - m1 which requires M < 1 to
ensure a non-negative value of m00 for positive values of m1.  Using these three expressions in
(A16) produces a quadratic equation in m1. Non-negativity of  m1 requires the positive
discriminant as the solution. The solution for m1 is given in equation (13) in the text.

Symmetric Value Functions
When the currencies are identical, it is reasonable to conjecture that the value functions will be
symmetric across portfolio size. Under symmetry, V(2,0) = V(0,2) = V(1,1) = V2 = V11 and
V(1,0) = V(0,1) = V1. As a result of symmetry, the inventory constraint, buyer-take-all and the
conjecture that only one unit of currency trades at a time, we only have two equilibrium
quantities to determine; the quantity given up by a (0,0) to move to V1 and the quantity a (1,0) or
(0,1) seller will give up to move to V2 or V11.  Thus, buyer-take-all implies
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(A18) 1
0001 qVV =−

(A19) 2
111112 qVVVV =−=− .

When the currencies are identical, currency trades do not occur. Hence, under the conjecture that
only one unit of currency trades per transaction, the returns to search show that the values
functions can be written as;

(A20) V00 = 0

(A21) )]()([
))1((

2
11

1
000

2
1 ququm

xr

x
V µ

µα
α +

−+
=

(A22) 

1

1
2

22
11

1
000

2
112

)1(             

))1((

)1(
)]()([

))1((

VA

V
xr

x
ququm

xr

x
VV

+=
−+

−++
−+

==
µα

µαµ
µα

α
  .

Using (A21) and (A22) in (A18)-(A19) yields equation (10) in the text. Furthermore,
substituting, 1

01 qV = and 2
1112 qAVVV ==− into (A21) and using u(q) = qσ yields equation (8) in

the text.

Incentive Compatibility
Given the solutions in (A20)-(A22), we need to verify when it is individually rational for a buyer
to trade and, conditional on choosing to trade, they only trade one unit of currency per
transaction.  Buyers will choose to trade when

(A23) 11
2
1 )()( VAVuqu ≥=

(A24) 11
1
0 )()( VVuqu ≥=

(A25) 1121
2
1 )()( AVVVAVuqu =−≥=

(A26) 1121
1
0 )()( AVVVVuqu =−≥=   .

Since 0 ≤ A ≤ 1, if (A23) holds, (A24)-(A26) holds. Thus from (A23) we obtain an upper bound
on V1 that ensures all buyers will trade

(A27)  1
)91/ VA ≥−σσ .

Since 0 ≤ A ≤ 1, from (A27), in equilibrium 0 ≤ V1 ≤ 1.  Finally, we need to determine, under the
conjectured equilibrium, whether or not it is rational for an individual buyer with 2 units of
currency to spend only 1 unit of currency rather than both units when meeting a seller with no
currency.  This condition imposes the constraint that

(A28) )()()()( 02
2
012

1
0 VVquVVqu −−≥−−
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where 2
0q is the quantity a seller with no currency would give up to acquire two units of currency.

Under buyer-take-all bargaining, the best the buyer could do is offer 102
2
0 )1( VAVVq +=−=  to

the seller.  Thus we have

(A29) 111 ))1(()( VVAuVu −+≥ .

Substituting in the utility function and rearranging generates

(A30) )1/(1
1 ]1)1[( σσ −−+≥ AV

which places a lower bound on V1.
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Figure 1
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Figure 2
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Figure 3a

N =10, Symmetric Currencies M1=M2=3.3 αx/r = 4.5, σ = .15 µ=η=0

Figure 3b

N =10, Symmetric Currencies M1=M2 =3.3 αx/r = 4.5, σ = .5 µ=η=0
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Figure 3c

N =10, Symmetric Currencies M1=M2=3.3 αx/r = 4.5, σ = .75 µ=η=0

Figure 3d

N =10, Symmetric Currencies M1=M2=3.3 αx/r = 5, σ = .15 µ = η = 0.0000001

Figure 3d

N =10, Symmetric Currencies M1=M2=3.3 αx/r = 4.5, σ = .15 µ=η=0.0000001
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Figure 4

N =15, Symmetric Currencies M1=M2=5 αx/r = 4.5, σ = .15 µ=η=0

Figure 5

N =10, Symmetric Currencies M1= 5.5,  M2= 2.25,  αx/r = 4.5, σ = .15,  µ=η=0
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Figure 6

Making Change, N =10, Symmetric Currencies M1=M2=3.3 αx/r = 4.5, σ = .15 µ=η=0



41

Figure 7

N =10, M1= 3.3, M2=1.9, αx/r = 4.5, σ = .15 µ=0.0025, η=0.01
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Figure 8a

N =15, M1= 5, M2 =2.36, αx/r = 4.5, σ = .15 µ=0.00125, η=0.01

Note: Axis reversed on the right probability distribution for graphical clarity.
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Figure 8b

N =15, M1= 5, M2 =2.36, αx/r = 4.5, σ = .15 µ=0.0025, η=0.01
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Figure 8c
N =15, M1= 5, M2 = 1.15, αx/r = 4.5, σ = .15 µ=0.005, η=0.01

Note: Axis reversed on the right probability distribution for graphical clarity.



45

Figure 8d

Distribution of Exchange Rates

N =15, M1 = 5,  αx/r = 4.5, σ = .15, η=0.01

Nominal Exchange Rate Dist.
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Figure 8e

Distribution of Exchange Rates

N =15, M1 = 3,  αx/r = 4.5, σ = .15, η=0.01

Nominal Exchange Rate Dist.
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0.1
0.2
0.3
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0.6
0.7
0.8
0.9

1

1.08 1.08 1.09 1.1 1.11 1.13 1.14 1.17 1.2 1.25 1.33

µ=.00125 µ=.0025 µ=.005





Abstract

We analyze a dual currency search model in which agents are allowed to hold multiple
units of both currencies.  Hence, agents hold portfolios of currency. We study equilibria
in which the two currencies are identical and equilibria in which the two currencies differ
according to the magnitude of the ’inflation tax’ risk associated with each currency. The
inflation tax is modeled by having government agents randomly confiscate the two
currencies at different rates. We are able to obtain analytical results in a very special case
but in general we must rely on numerical methods to solve for the steady-state
distributions of currency portfolios, prices and value functions. We find that when one of
the currencies has the right amount of ’risk’, equilibria exist in which the safe currency
trades for multiple units of the risky currency (pure currency exchange). As a result, the
steady state has a distribution of nominal exchange rates. The mean and variance of the
nominal exchange rate distribution is based on the fundamentals of the model such as the
risk of confiscation, risk preferences, matching probabilities and relative money supplies.
The mean and variance of this distribution typically change in predictable ways when the
fundamentals change. While the ability to trade currencies improves average welfare, in
general, the benefits of currency exchange are small.
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