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1. Introduction.

 An increasingly common approach to the theoretical analysis of monetary policy

is to ensure that a proposed policy does not introduce real indeterminacy and thus sunspot

fluctuations into the model economy. Policy is typically conducted in terms of directives

for the nominal interest rate. For example, a simple Taylor (1993) rule posits that the

central bank conducts policy according to the following rule: Rt = B.(πt)
τ , where Rt  and

πt denote the (gross) nominal interest and inflation rate (between t and t+1).1  That is, the

central bank varies the nominal rate in relation to movements in inflation with an

elasticity of τ.  In this context, an important policy question is what restrictions on τ are

needed to ensure real determinacy.

 Carlstrom and Fuerst (1998) took a first step to answering this question by

analyzing a flexible price economy.  They suggest that what is crucial in whether or not

there is indeterminacy is how much the Fed increases the nominal rate with respect to

increases in the economy’s underlying real rate.  Thus a more natural (although

equivalent) way to rewrite the Taylor rule (in order to analyze indeterminacy) is

 Rt = A.(Rt /πt)
γ . 2    

 The basic conclusion of the Carlstrom-Fuerst analysis is something of a ½ rule—to

ensure real determinacy, we need γ < ½.  That is, for a given 100 basis point movement in

                                                          
 1 In a model with uncertainty this corresponds to targeting the expected inflation rate, a policy consistent
with the practice of many central banks.  Taylor’s (1993) original rule has the central bank responding to
past inflation rates.  Since lagged inflation rates are good predictors of the future inflation rate, Taylor’s
empirical formulation of the rule can be viewed as a reduced form representation of a structural policy of
targeting expected inflation.  For the indeterminacy issues of this paper the structural version of the rule is
more appropriate.  The original Taylor Rule also had the central bank responding to output.  This addition
has no quantitative importance for the issues of this paper.
 
 2 There is a one-to-one mapping between a policy rule in terms of the real rate and a policy rule in terms of
the inflation rate, τ = γ/(γ-1).



3

the real rate the central bank must limit the movement of the nominal rate to under 50

basis points.3  The intuition for determinacy vs. indeterminacy goes something like this:

Suppose that the real rate rises by 1%, and that the central bank allows the nominal rate to

rise by γ%.  This increase in the nominal rate depresses current real activity (i.e.

consumption) thus leading to a higher real rate.  This completed circle is suggestive of

sunspots.  Whether sunspots arise depends upon the elasticity, γ—with a small response,

there is real determinacy, with a large response there are sunspots.

 The contribution of this paper is to demonstrate the sensitivity of these stability

conclusions to apparently small changes in the modeling structure. We utilize a money-

in-the-utility function (MIUF) environment because of its generality.  Feenstra (1986)

demonstrates that any transactions cost (TC) economy can be written as a MIUF

economy.  Similarly, a shopping-time (ST) model can be rewritten as a MIUF economy.

Finally, cash-in-advance (CIA) models are extreme versions of MIUF and TC economies.

Thus, a MIUF environment is quite general.  The TC, ST, and CIA assumptions simply

imply particular functional forms for the MIUF economy.

 We analyze a MIUF economy under differing assumptions about the money

balances that enter into the utility function.  In Model 1, we assume timing that is a direct

extension of typical CIA timing.  That is, the money available to satisfy consumption

needs is the money the household has left after leaving the bond market and before

entering the goods market.  In contrast, in Model 2 we assume that goods market trading

                                                                                                                                                                            
 
 3 The exact quantitative details differ depending on the assumptions on the real environment.  The ½ rule is
approximately correct.  In terms of the typical Taylor rule formulation, γ < ½ implies τ within the unit
circle.
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occurs first, and that bond trading occurs at the end of the period.  Finally, in Model 3 we

assume that end-of-period money balances enter the utility functional, net of current

income and current consumption.

 These differing assumptions lead to different pricing equations for the nominal

interest rate.  In a model in which the central bank operates monetary policy via the

nominal interest rate these differences have important effects on the conditions for

stability.  Surprisingly in a model with production the ½ rule of Carlstrom and Fuerst

holds for Model 1 timing irrespective of how money affects utility.  With model 2’s

timing, however, the model is always indeterminate while model 3 is always determinate.

 The paper proceeds as follows.  Section 2 lays out the basic model.  Section 3

presents the determinacy results for different modeling assumptions.  Section 4 adds

production to the model.  Section 5 compares the results to the continuous time analysis

of Benhabib, Grohe, and Uribe (1998).  Section 6 concludes.

 

2. A MIUF Economy.

 The economy consists of numerous infinitely-lived households with preferences

given by

 
t =

∞

∑
0

βtU(ct, At/Pt),

 where ct and At/Pt denote consumption and real money balances, respectively.  The key

issue is what measure of money appears in the utility function.  We will turn to this

shortly.  The intertemporal budget constraint is given by
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 Mt+1 = Mt + Xt + Bt-1Rt-1 - Bt - Ptct + Ptyt,

 where Mt denotes money balances at the beginning of time t, Xt denotes a monetary

transfer from the government, Bt-1 are bond-holdings acquired in period t-1, Rt-1 denotes

the nominal interest rate from t-1 to t, and the endowment is normalized to yt = 1.  Below

we extend the analysis to an economy with endogenous production.

 There are several possible ways to model At.   The central issue is what money

balances aid in contemporaneous transactions.  The existing literature contains three

possibilities:

 

 Model 1:

 At  = Mt + Xt + Bt-1 Rt-1 – Bt

 Model 2:

 At  = Mt + Xt

 Model 3:

 At  = Mt+1 =  Mt + Xt + Bt-1Rt-1 - Bt - Ptct + Pty

 

 Models 1 and 2 assume that what matters for time-t transactions is the money with

which one enters the time-t goods market.  The two models differ in the order in which

bonds and goods trading occurs.

 In Model 1, net bond trading is included in time-t money holdings since the bond

market is assumed to open before (or concurrently with) the goods market, and therefore
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bonds can be transformed into money in advance of goods market trading.  This

assumption is typically used in CIA models (eg., Lucas (1982) and Lucas and Stokey

(1987)).4

 In contrast, Model 2 assumes that goods market trading occurs before the bond

market opens, so that net bond trading is not included in current money balances.  Lucas

(1997) uses this convention in a MIUF setting, while Farmer (1993) uses it in a CIA

model.

 The traditional MIUF approach5 is to assume Model 3 timing, i.e., that end-of-

period balances, At  = Mt+1, enter into the utility function.  It is very difficult to justify

this choice on theoretical grounds. Using end-of-period money implies that money at the

beginning of t+1 reduces transactions costs in period t.  Equivalently, Model 3 implies

that what matters for transactions purposes is the money you leave the goods market with,

net of current consumption and current income.  Including current income as part of

current money balances violates Clower’s dictum that “money buys goods, and goods buy

money, but goods do not buy goods.”  One can imagine trading environments in which

this violation is possible.  But it is very difficult to defend the subtraction of current

consumption from current money balances.

 To see these differences another way, Model 1 and Model 2 both have the

characteristic that under a reasonable MIUF specification, these models collapse to a CIA

model as we drive the interest elasticity to zero.  In sharp contrast, this is never possible

                                                          
 4 Many CIA models never distinguish between models 1 and 2.  This is because in equilibrium bonds are in
zero net supply and are typically not included unless they are specifically priced.
 5 In fact, Model 3 is typically used in all monetary models (MIUF, TC, ST) except CIA models.  The reason
for this dichotomy is not clear.
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in Model 3.  Models 1 and 2 assume that what matters for transactions purposes is the

cash one has in advance of goods trading, while Model 3 assumes that what matters is the

cash one has after completing goods trading.  Models 1 and 2 are thus models where

“cash in advance” matters, while Model 3 assumes that “cash when I’m done” is what

matters.

 In any event, the  Euler equations that define equilibrium in the three models are

given by:

 Model 1:

 [Um(t)+Uc(t)]/Pt = Rtβ [Um(t+1)+Uc(t+1)]/Pt+1 (1)

 Um(t)/Uc(t) = (Rt-1) (2)

 

 Model 2:

 Uc(t)/Pt = Rt β Uc(t+1)/Pt+1 (3)

 Um(t+1)/Uc(t+1) = (Rt-1) (4)

 

 Model 3:

 Uc(t)/Pt = RtβUc(t+1)/Pt+1 (5)

 Um(t)/Uc(t) = (Rt-1)/Rt (6)

 

 Note the differences between the Fisher equations in Models 1 and 2 (equations

(1) and (3)).  In Model 2, the household can substitute current goods for current bonds

with no change in the money balances that enter the current utility function.  Instead,
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purchasing a bond sacrifices future transactions facilitation. In contrast, under Model 1,

an increase in bond purchases come at the expense of current money balances and the

resulting ability to carry out current transactions.  Thus, the time-t marginal utility of

money enters into (1) but not (3).   These differences in timing also manifest themselves

in the timing differences in the money demand equations (2) and (4).

 As for Model 3, the Fisher equation (5) is symmetric with Model 2 because (like

Model 2) it is possible to substitute consumption for bonds with no change in the money

balances that enter the current utility functional.  The money demand equation is

essentially the same as in Model 1 but with the added discounting that arises because end-

of-period money balances enter the utility function.  Model 3 is thus a peculiar

combination of Models 1 and 2, a combination that (as argued above) is difficult to

motivate intuitively.

 These differences in timing across the models have no effect on equilibrium

determinacy under some natural choices for monetary policy.  For example, if the central

bank engineers a constant money growth rate (or a money growth rule that depends on

state variables) the conditions for determinacy in the three models are nearly equivalent.

This arises because the Euler equation for money holdings are quite similar across the

models.  In Models 1 and 2 this Euler equation is given by

 






 +++
β=

+1

)1()1()(

t

mc

t

c

P

tUtU

P

tU
,

 while in Model 3 we have

 






 +
+=

+1

)1()()(

t

c

t

m

t

c

P

tU

P

tU

P

tU β .



9

 The timing difference between the first two models and Model 3 arises because in the

latter model current consumption is subtracted from current money holdings.

 However, these modeling differences have an important effect when one assumes

that the central bank conducts policy according to a nominal interest rate rule.  For

example, suppose that the central bank conducts policy according to the following rule:

 Rt = A.(Rt /πt)
γ (7)

 That is, the central bank varies the nominal rate in relation to movements in the real rate

with an elasticity of γ.  The different Fisher equations across the models leads to the

following money reaction functions (real money supply curves):

 

 Model 1:

 
γ







+++

+=
)1()1(

)()(
tUtU

tUtU
RR

mc

mc
ss

s

t
(8)

 

 Model 2 and Model 3:

 
γ
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

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=
)1(
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tU

tU
RR

c

c
ss

s

t
(9)

 

 The bounds on γ for real determinacy are quite different across the models.

 The economic intuition for real indeterminacy revolves around the slope of these

real money supply curves.  In the case of Model 1, equation (8) implies that (for a given

mt+1) an increase in mt decreases the real rate if and only if (Umm + Ucm ) < 0.  This is

typically the case.  For example, henceforth assume that preferences are given by



10

 00)],([),( <′′>′≡ handhwith
c

m
hcUmcU .

 The homotheticity assumption implies a unit consumption elasticity.  The properties of

h(.) determine the interest elasticity of money demand with concavity needed to ensure

that money demand is decreasing in the nominal rate.  These preferences are consistent

with any sign for Ucm, but in either case we have (Umm + Ucm ) < 0.  Thus, regardless of

the sign of Ucm, the money supply curve (8) in Model 1 slopes up if γ < 0, and slopes

down if γ > 0. Now suppose that real balances fall, implying an increase in the real rate of

interest.  If the supply curve slopes down so that the nominal rate rises by an appropriate

amount, then the initial decline in real balances is rational.  Hence, under Model 1

monetary policies with positive γ’s will tend to generate sunspots.

 In sharp contrast to Model 1, in Models 2 and 3 the slope of the supply curve

depends on the sign of Ucm.  If  Ucm  > 0,  then equation (9) implies that (for a given mt+1)

a decrease in mt decreases the real rate, so that the supply curve slope has the same sign

as γ.  Suppose that real balances fall.  This implies that the real rate falls.  If the nominal

rate rises by an appropriate amount (a downwardly sloped supply curve), then the initial

decline in real balances is rational.  Hence, under Models 2 and 3 monetary policies with

negative γ’s will tend to generate sunspots—exactly the converse of Model 1.  If instead

Ucm  < 0, then monetary policies with positive γ’s will tend to generate sunspots—

consistent with Model 1.  In the next sections we develop the quantitative details of this

basic intuition.

 

3. Real Indeterminacy in an Endowment Economy.
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   A.  Model 1

Using the monetary policy rule (8), money supply equals money demand for model

1 can be collapsed into

)(

)()(

)1()1(

)()(

tU

tUtU

tUtU

tUtU
RR

c

cm

mc

mc
sst

+
=





+++

+
=

γ

Given this is an endowment economy we normalize ct = y = 1.  Let ∆ denote the

derivative dmt+1/dmt.  Straightforward calculations yield

η
ε+−=∆ 1

where 
)( cmcmmm

c

RUUUm

RU

−+
=η < 0 is the (gross) interest elasticity of money demand

and 
)( mmcm

c

UUm

RU

+γ
=ε  is the (gross) interest elasticity of money supply (holding period

t+1 money constant).6  For real determinacy, we need ∆ to be outside the unit circle.  That

is,

η<ε 2 or  0>ε .

Thus, a necessary and sufficient condition for indeterminacy is that

02 <ε<η .

A necessary condition for indeterminacy is that money supply, like money

demand, slope down.  The intuition for this can be broken into two parts.  Suppose that

2η< ε < η (∆>0) so that money supply cuts demand from above.  In this case an

exogenous increase in future real balances rise shifts out the supply curve of money today
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leading to higher real balances today.  Since ∆>0 higher real balances today lead to higher

real balances tomorrow thus completing the circle.  The other possibility is for η<ε <0

(∆<0) so that supply cuts demand from below.  In this case, things work the opposite of

above: An increase in future real balances shifts today’s supply curve out leading to lower

current real balances.  Now ∆<0 so that lower real balances today lead to higher real

balances tomorrow.

Solving for a condition in γ yields:

Proposition 1: Under Model 1 timing, a necessary and sufficient condition for real

determinacy is

)(22

1

mmcm

cm

UU

RU

+
−+<γ .

Notice that for separable preferences the condition for determinacy is γ < ½. This is the

same condition as in Carlstrom and Fuerst (1998).  We will return to this similarity

below.

B.  Model 2.

 Proceeding as before, under the posited policy rule Model 2’s money supply equal

money demand implies:

 

                                                                                                                                                                            

6 The condition ε−=+

)ln(

)ln( 1

t

t

Rd

md
 is also used to calculate ∆.
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 Let ∆ denote the derivative dmt+1/dmt:

 




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
η
ε+

=∆

D

s

1

1

 where 
)( cmcmmm

c

RUUUm

RU

−+
=η  is the elasticity of mt+1 with respect to Rt and

cm

c

Um

U

γ
=ε  is the (gross) interest elasticity of money supply (holding period t+1 money

constant).  Note that time-t money demand schedule is perfectly elastic with respect to Rt

and shifts in mt+1 shift down time-t demand (η denotes this elasticity).  The conditions for

real indeterminacy are ε < 0 (1>∆>0) or ε >-2η (-1<∆<0).  The intuition is similar to

before.

 If ε < 0 then the downward sloping supply curve always cuts demand from above.

 Now increases in mt+1 shifts time-t supply to the right and time-t demand down.  This

increases mt and since ∆>0 completes the circle.  If ε>-2η, however, then the upward

sloping supply curve always cuts demand from below.  Now increases in mt+1 shifts time-

t supply to the right and time-t demand down.  As long as supply compared to demand is

sufficiently elastic this decreases mt and since ∆ < 0 completes the circle.

 We can now state:
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 Proposition 2:   For model 2 timing if Ucm > 0 a necessary and sufficient condition for

real determinacy is

 .
2 cm

c

mU

U

η
γ −>

 If Ucm < 0 a necessary and sufficient condition for real determinacy is

 .
2 cm

c

mU

U

η
γ −

<

 If Ucm = 0, there is indeterminacy for all values of γ.

 

C.  Model 3.

In the case of Model 3, the equilibrium condition is given by

.
)1(

1)(,
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
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γ

The function q( ) is needed because of the unusual form of the money demand equation

(6) in Model 3.  This modification is minor for small nominal rates since q is

approximately equal to R.  Proceeding as before, we have

η
ε+−=∆ 1

where
cm

c

UmRq

qU

γ
=ε

'
 is the (gross) elasticity of supply with respect to q and

)( cmcmmm

c

qUUUm

qU

−+
=η  denotes the (gross) elasticity of demand with respect to q.

Since η < 0, a necessary and sufficient condition for determinacy is ε > 0, or ε < 2η.  As

before, a necessary condition for indeterminacy is that the supply curve slope down (the
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intuition is symmetric with Model 1).  As with Model 2, the supply curve slope depends

upon γ and the sign of Ucm.  Thus we have two separate cases:

Proposition 3:   If Ucm > 0 a necessary and sufficient condition for real determinacy is

.
2 cm

c

mU

qRU

η
γ >

If Ucm < 0 a necessary and sufficient condition for real determinacy is

.
2 cm

c

mU

qRU

η
γ <

If Ucm = 0, there is determinacy for all values of γ.

1.  Real Indeterminacy in a Production Economy.

 The previous sections developed the numerical details of the intuition discussed in

section 2.  In short, a necessary condition for indeterminacy is that the real money supply

curve slope down, ε < 0.7  Under the posited interest rate rule (7), the central bank moves

the nominal rate in response to the real rate with elasticity γ.  Thus the sign of ε depends

upon the sign of γ and the effect of real balances on the real rate. One major reason why

the conditions for determinacy differ across the models is because of differences in the

effect that real balances have on the real rate. In Model 1, higher real balances

unambiguously lower the real rate, so that ε has the opposite sign of γ.  In Models 2 and

3, the effect of real balances on the real rate depends upon the sign of Ucm.  If Ucm > 0, ε

has the same sign as γ; if Ucm < 0, ε has the opposite sign of γ.  The other major difference

                                                          
 7 For model 2 there is indeterminacy for ε > -2η as well as ε < 0.
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is between models 1 and 2.  The difference is whether today’s interest rate determines

money demand today (model 1) or money demand tomorrow (model 2).  This difference

is what flips the results of these two models on their heads.

 Carlstrom and Fuerst (1998) examine a standard real business cycle model in

which money is added to the environment with either a CIA constraint or a transactions

cost (TC) function.  In both cases, the timing used is Model 1’s timing. Carlstrom and

Fuerst demonstrate that indeterminacy arises if and only if γ > ½.8  For the TC model the

result that indeterminacy arises for positive γ’s is to be expected from the results of

Section 3.

 However, in the case of the CIA model, this result is unexpected, or at least not

predicted by the results of Section 3. In a CIA endowment economy with Model 1 timing

one would expect that we would have determinacy for all values of γ.  In such a model,

bond pricing is given by the standard Fisherian decomposition (3) because the implicit

Leontief transactions technology implies that Um = 0 in equilibrium.  That is, if m < c, it

is impossible to carry out transactions; while if m = c, any additional cash has no

transactions value.  Thus, the real rate is constant and the real money supply curve is

perfectly elastic (ε = ∞).

 Carlstrom and Fuerst (1998) find a different result because they analyze a CIA

economy with production.  Although a CIA economy eliminates the velocity fluctuations

that are the central story of this paper (since the Leontief technology implies m = c), once

we add production to the model the basic indeterminacy logic reoccurs via the added

                                                                                                                                                                            
 
 8 This ½ result is exactly true for linear leisure.  For more general preferences the numerical differences are
trivial.
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margin of production choice.  This section explores how the indeterminacy results are

affected by adding endogenous production to the model.

 Assume that preferences are separable and linear in labor (L) and given by,

 ALmcVLmcU −≡− ),()1,,( ,

 Production takes the standard Cobb-Douglas form:

 αα −= 1LKy .

 The additional Euler equations for labor choice (10) and capital accumulation (11) are

familiar:

 )(
)(

)(
tf

tU

tU
L

c

L = (10)

 )]1()1()[1()( δβ −+++= tftUtU Kcc . (11)

 1
1 )1( +

α−α −δ−+= ttttt KKLKc . (12)

 

 These Euler equations are common across all three models because consumption and

output enter symmetrically in all three models.  Real money balances indirectly enter both

of these marginal conditions via the cross partials of the utility function.  As a result the

behavior of the nominal interest rate (and hence real balances) typically distorts the

economy’s behavior relative to an otherwise standard real business cycle (RBC) model.

 As an example of this distortion, recall that Model 1 timing (equation (2)) implies

that
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 






 +=
t

mc
c R

tUtU
tU

)()(
)( . (13)

 Note that [Uc(t)+Um(t)] is the marginal utility of an extra unit of real cash balances at the

beginning of time-t.  Substituting (13) into (10)-(11), the nominal interest rate in the

denominator of (13) can be interpreted as a tax on real balances, so that we have an RBC

economy with a distortionary tax. If in addition we assume a rigid CIA constraint so that

Um drops out of the system, this tax can be more directly interpreted as a consumption

tax.  As noted by Carlstrom and Fuerst (1998), a policy in which the central bank moves

the nominal rate (consumption tax) too sharply with the real rate of interest (a large γ) is

likely to produce real indeterminacy.

 In sharp contrast to the previous example, if utility is separable between

consumption and real balances then these monetary distortions have no effect on the RBC

economy.  Real indeterminacy will arise only in the behavior of real cash balances, an

indeterminacy that does not spill over into the rest of the model because of the

assumption of separability.  This implies that the indeterminacy results from the previous

section holds: with Model 1, we have determinacy for γ < ½; for Model 2, we never have

determinacy; and for Model 3, we always have determinacy.

 Surprisingly, if Ucm ≠ 0, but leisure is both separable and linear, the determinacy

results replicate those of an endowment economy with Ucm = 0.

 

 Proposition 4:  Assume that preferences are separable and linear in leisure, U(c,m,1-L) =

V(c,m) – AL, and that the production technology is Cobb-Douglas.  Then with Model 1

timing a necessary and sufficient condition for determinacy is γ < ½; with Model 2



19

timing, the equilibrium is indeterminate for all values of γ; and with Model 3 timing, the

equilibrium is determinate for all values of γ.

 Proof:    see the appendix.

 

 It is important to note that these conditions for determinacy are identical to an

endowment economy with Ucm  = 0.  The additional restrictions on Uc implied by

endogenous labor choice and capital accumulation cause the model to behave as if Ucm  =

0.   For example, consider a model without capital and with constant returns to labor (α =

0).  In this case linear leisure and (10) implies that Uc is constant!

 With capital and CRS Cobb-Douglas technology this basic logic carries through.

The reason why the conditions for determinacy are identical to an endowment economy

with Ucm  = 0 can be seen if (using the above assumptions) we rewrite 10 and then

substitute (10) into (11).

 
t

t
t

t
c K

L
xwhere

x
tU =

α−
=

α

,
)1(

)( (10’)

 α
++

α δ−β+αβ= 11 )1( ttt xxx (11’)

  The equilibrium marginal utility of consumption is not directly affected by real

money because it is entirely determined by the capital-labor ratio.  Although the proof of

the proposition exploits the linearity in labor preferences, this assumption is theoretically

convenient but computationally irrelevant.  For example, if instead of linear leisure there

was a constant labor supply elasticity of 0.1 then with plausible calibrations the bounds

for determinacy are largely unchanged in all three models.  Model 1 is determinate if and

only if γ < 0.5001, Model 2 is determinate if γ > 3740, while a search for a γ that would
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produce indeterminacy in Model 3 proved futile.  The assumption that leisure is separable

in utility also proved to have no quantitative importance.

 

2. Comparison to Continuous Time Models.

 Since at least the seminal work of Sidrauski (1967), many have used continuous

time MIUF models.  This is unfortunate as the continuous time assumption sweeps under

the rug the important timing issues emphasized by this paper, i.e., the time interval

between bond and goods market transactions collapses to zero in a continuous time

setting.

 For example, Benhabib, Grohe, and Uribe (1998) analyze a standard continuous-

time money-in-the-utility function (MIUF) endowment economy.9  The utility function

depends on current money balances, while the budget constraint is a differential equation

in money balances and bond holdings.  The discrete time analog to this assumption is

(roughly) Model 2 timing.

 Benhabib et al. restrict the analysis in two ways.  First, they only consider Taylor

rules with non-negative coefficients on inflation, τ > 0.  Since τ = γ/(γ-1), this implies that

they omit discussion of γ’s between zero and one.  Thus, τ > 1 (an “active” policy)

corresponds to γ > 1, while 0 < τ <  1 (a “passive” policy) corresponds to γ < 0.  Second,

the continuous time assumption implies that they restrict the equilibria to continuous time

paths for real balances (along a perfect foresight path).  This precludes oscillatory

dynamics (complex roots are not possible in the flexible price setting as the system is

                                                          
 9 Benhabib et al also analyze a Calvo-style (1978) money-in-the-production-function (MIPF) economy.  As
first noted by Feenstra (1986), such a model is isomorphic to a MIUF model with Ucm < 0.  Hence, MIPF
results are a direct extension of the MIUF results.
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one-dimensional) and corresponds to restricting ∆ = dmt+1/dmt to be nonnegative.

 Benhabib et al. conclude that if Ucm > 0 determinacy occurs for τ > 1 (γ > 1); and

if Ucm < 0 determinacy occurs for 0 < τ  < 1 (γ < 0).  Recalling our earlier discussion this

matches up with our results on Model 2 timing.   The conditions for real indeterminacy in

Model 2 were ε < 0 (1>∆>0) or ε >-2η (-1<∆<0).  The above discussion suggests that the

region ε >-2η (-1<∆<0) which produced indeterminacy in the discrete time problem will

be determinate with continuous time.  Therefore with continuous time determinacy will

occur if the supply curve (ε>0) slopes up.  This occurs for  τ > 1 (τ < 1) if Ucm > 0 (Ucm <

0).  Since Benhabib et al. do not consider negative τ’s ( 0 < γ < 1) their continuous time

model has essentially the same determinacy conditions as Model 2 with one important

exception.  In the case of Ucm = 0, they find that the system is always determinate (for all

γ’s), while in the deterministic framework Model 2 timing implies that there is always

indeterminacy for Ucm = 0.

 Continuous time “solves” the problem posed in this paper: what timing

 assumption should monetary modelers adopt?  It solves the problem in a very artificial

way by ignoring the important timing issue.  Since these issues arise with any discrete but

arbitrarily small time period this solution indeed appears artificial.

 

3. Conclusion.

Hippocrates advised the doctor to do no harm.  This minimal advice is equally

important to the central banker.  In particular, a necessary condition for a good monetary

policy is that the policy not introduce sunspot fluctuations into the real economy.  This
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paper has demonstrated that the class of policies that are “good” in this regard depends on

basic assumptions about the modeling environment.  Hence, a central conclusion of this

analysis is that we need to think much more carefully about basic modeling assumptions

when writing down monetary models.  A lot depends on apparently trivial assumptions.

One example will illustrate this point.  King and Wolman (1996) analyze a sticky-

price monetary model and conclude by advocating a price level target (this corresponds to

a Taylor elasticity of τ = ∞, or γ = 1).  By pegging the price level the sticky price model is

isomorphic to a flexible price model.  This is the advantage of price-level targeting.  King

and Wolman do not encounter an indeterminacy problem under such a policy because

they use Model 3 timing. If instead they had used either Model 1 or Model 2 timing, the

price level peg would produce real indeterminacy.  This illustrates the potential dangers

of providing policy advice based on existing monetary models.  Before such advice can

be safely given deeper structural models of money must be investigated to see which, if

any, of the three models explored above is most useful in giving monetary policy advice.
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Appendix

Proposition 4:  Assume that preferences are separable and linear in leisure, U(c,m,1-L) =

V(c,m) – AL, and that the production technology is Cobb-Douglas.  Then with Model 1

timing a necessary and sufficient condition for determinacy is γ < ½; with Model 2

timing, the equilibrium is indeterminate for all values of γ; and with Model 3 timing, the

equilibrium is determinate for all values of γ.

Proof:

The proof  for all three models proceeds by substituting equation (10) into (11)

α
++

α δ−β+αβ= 11 )1( ttt xxx (A1)

where x = L/K.  Defining )()( tUtUz mct += , and using the fact that Uc depends only on

x, the budget constraint can be written as

),()1(1
1 tttttt zxcKxKK −δ−+= α−

+ (A2)

Model 1:
Substitute equation (13) into (10)
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xwhere
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,
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Substituting the monetary policy rule (8) into A3 yields

α−
=

α
γ
+

γ−

11
)1( t

ttss

x
zzR (A3’)
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The function for c used labor’s f.o.c. (10).  Equations (A1), (A2) and (A3’) can be written

as

xt+1 = F(xt)

Kt+1 = G(xt,zt,Kt)

zt+1 = H(xt,zt)

The characteristic matrix is

















−
−

−

3

2

1

0

00

eHH

GeGG

eF

zx

zkx

x

The three eigenvalues are

1
)1)(1(11 <

δ−α−β−
α== xFe , ,1

)1)(1(1
2 >

βα
δ−α−β−

== KGe  
γ
−γ== 1

3 zHe .

Since there is only one predetermined variable, for the economy to be determinate two

eigenvalues need to lie outside the unit circle.  e3 is within the unit circle for ε ≥1/2.

Model 2

The proof mirrors that for model 1.  Substituting (6) into the f.o.c. for labor yields

)1(
11

α−
=

α
++ t

t

t x

R

z
(A3)

Substituting the monetary policy rule (9) and the definition of F into A1 gives
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γαγα

αα
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Following above three eigenvalues are

1
)1)(1(11 <

δ−α−β−
α== xFe , ,1

)1)(1(1
2 >

βα
δ−α−β−

== KGe  03 == zHe .

Since there is only one predetermined variable, for the economy to be determinate two

eigenvalues need to lie outside the unit circle.  Only one does so the system is always

indeterminate.

Model 3:

From equation (6) defining )()( tUtUz mct −= yields

t

c
t R

U
z = (A3)

From the monetary policy rule (9) we have

ss

tt

t R

xFx

z

γαγ−α
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
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=
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)1(

1
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Substituting this into (A1) and (A2) gives

xt+1 = F(xt)

Kt+1 = G(xt,xt+1,Kt)

The eigenvalues are



27

1
)1)(1(11 <

δ−α−β−
α== xFe ,  .1

)1)(1(1
2 >

βα
δ−α−β−== KGe

Since there is one predetermined variable the system is always determinate.  QED
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