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A b s t r a c t  

This  paper develops a simple model for pricing interest rate options. Analytical solutiorls are devel- 

oped for European claims and extremely efficient algorithms exist for tile pricing of American opciolls. 

T h e  interest rate claims are priced in the Heath-Jarrow-klorto~i paradigm, and  hence illcorporate 

full information on the  term structure. T h e  volatility. structure for forward rates is humped, and  

includes as a special case the exponentially dampened volatility structure used in tile Generalized 

Vasicek model. T h e  structure of volatilities is captured without using time varying parameters. As 

a result, the volatility structure is stat iollav.  I t  is not possible to have all ttle above properties hold 

in a Heath Jarrow Morton model with a single s t a t e  variable. I t  is show11 t h a t  the  full dvliarnics 

of the  term structure can, however, be captured by a three s ta te  rCIarkovia11 system. As a result, 

simple path reconecting lattices cannot be constructed to  price American claims. Nonetheless, we 

provide extremely efficient lattice based algorithms for pricing claims, which rely on carrying small  

matrices of information a t  each node. Empirical support  for the models developed zre provided. 





Introduction 

Tills article deals with the pricing of interest rate claims when interest rates are stochastic. The 

rrlethodology incorporates all current information ill  the yield curve. !:I particular, the lliodels 

developed are all cast iu the Heath, darrow arid Morton (1992) paradigm (hereafter HJhI). The 

nlodels we propose have the following properties. First. sirrlple alialytical solutions are available for 

most Europearl claims. Second, the volatility of forward rates is humped, coiisistellt with elripirical 

evidence. Third, the volatility structure of forward rates is a stationary function, in that it ollly 

depends or1 the maturity of the rate.' Fourth, the model includes, as a special case, the geueralized 

Va~icek models developed by .Jamsilidian (1989), HJXI (1992) arid Hull and White (1990), as well 

as the continuous time Ho-Lee (1988) model. Fifth, the model permits the efficient computation 

of American interest rate claims. Finally, the single factor models we present readily generalize to 

niultifactor models. 

The need for simple analytical solutions for ~ u r o ~ e a n  claims cannot be understated. 111 partic- 

ular, an important property of any derivatives model is that it not only prices discount bonds at 

their observable values, but it also produces theoretical prices for an array of liquid derivatives that 

closely match their observable values. Typically, the calibration procedure is accomplished using the 

discount function as well as the prices of liquid caps and swaption contracts. In the HJh.1 paradigm, 

all discount bonds will be automatically priced correctly. The parameters of the volatility structure, 

however, need to be determined so as to closely price a set of interest rate derivative contracts. This 

is usually zccomplished by minimizing the sum of squared residuals. With many parameters, and 

with a highly non linear objective function, the optimization problem is no11 trivial, and multiple 

calls to vaiuation routines for the individual contracts arise. If these individual routines are not 

efficient, then implied estimation of the parameters becomes difficult. As a result, an important 

criterion For successful implementation is the ease in which the model's parameters can be readily 

calibrated. Since our simple model can easily be calibrated, it is likely to be more successful than a 

more complex model which might capture more precisely the volatility structure. but at the expense 

of forgoing analytical solutions and hence incurring costly calibrations. 

The article proceeds as follows. In the next section we review the pricing rnechanisrn in the HJhI 

paradigm as well as the empirical evidence regarding the volatility hump. In section 3 we develop 

specific models for pricingEuropean.claims. We construct a two and three state-variable model, 

which includes as a special case the one state generalized Vasicek model. Analytical  solution^ for 

European options are provided. In section 4 efficient algorithms for pricing American claims are pro- 

'In particular, there are no time vKying parameters in the model. 



vided. The algorithms are similar in spirit to those of Li. Ritchken and Sankarasubramanian (1995). 

Their model involves one source of l~ncertainty, yet req~iire two state variables. Here, we also have 

olie source of uncertaintv. However, up to three state variables are necessary to fully c a p t r ~ r e t h e  

dynamics of the term structure. We illustrate the collvergeIlce behavior of our algorith!ris. Sec- 

tiori 5 illustrates how the analysis geiieralizes to two sources of uricertainty, section 6 provides some 

empirical support for tile huniped volatility nlodel arid section i sumlnarizes our findirigs. 

2 Pricing Mechanisms for Derivatives 

Let f ( z ,  T )  be the forward rate a t  date z for the instantaneous rate beginning a t  date T .  Forward 

rates are assumed to follow a diffusion process of the form 

df ( r ,  T )  = p ( z ,  T ) d t  f a  (z, T ) d u j ( z )  ( 1 )  

with the forward rate function f (0, -) initialized to its currently observable value. Here p ( z .  T )  and 

o ! ( z ,  T )  are the drift and volatility parmeters which could depend on the level of the forward rate 

itself, and d w ( z )  is the standard Wiener increment. HJkl  (1992) have shown that to avoid riskless 

arbitrage the drift term must be linked to the  volatility term by: 

where u p ( z , T )  = J: u f  ( z , v ) d v  and A(=) is the market price of interest rate risk, which is indepen- 

dent of the maturity date I. Substituting equation ( 2 )  into (I) and integrating leads to 

Now consider the pricing of an European claim that promises the  holder a payout of g(t)  a t  date  t .  

Here g( t )  is a cash Bow fully determined by the entire term structure a t  that date. The arbitrage 

free price of this claim a t  date 0 is given by: 

where P(0, t )  is the price a t  date 0 of a bond that pays $1 a t  date  T .  This expectation is computed 

under the forward risk adjrrsted process, which loosly speaking, is obtained by pretending X(v) = 

-op (v ,  t )  in equation (2) .  With this substitution, equation ( 3 )  can be written as: 



where 

For pricing Europeari claims it is usually easier to work ullcler the forward risk adjusted process. 

Irl contrast, for pricing America11 clainls, olle usually proceeds by valuing under the risk ner~trnlizcd 

process. In particular, as an alternative to equatiou (4), we have: 

The risk neutralized process can be viewed as a process where the market price of risk at  date c is 

taken to be 0. Under this process, equation ( 3 )  reduces to 

where 

From a valuation perspective, the HJbI paradigm provides a Framework where, given an initial 

term structure, the pricing mechanisin can proceed once the volatility structure of forward rates is 

specified. The simpliest volatility structure in the HJM paradigm is the  constant volatility structure 

given as T )  = u. This structure assumes all rates respond to a shock in the same way. Cursory 

empirical evidence suggests that volatilities of forward rates depend on their maturities. HJM (1993) 

and Jamshidian (1989) consider an exponentially dampened structure 

This structure, referred to as the Generalized Vasicek or  GV structure, implies that  distant forward 

rates are much less volatile than near forward rates. If volatilities have this structure, then it can be 

shown that the entire dynamics of the term structure can be characterized by a single s ta te  variable, 

which could be the instantaneous spot rate? r ( t )  = f ( t .  t ) ,  and that bond prices can be represented 

where 



Ritchken and Sankarasubramanian (1995) show that if volatilities are not of this form the11 there is 

no single state variable HJhi representation for the dynamics of the term structure. 

There appears to be very little empirical support for an exponentially dampened forward rate 

volatility structure. Several researchers report a hump in the volatility structure that peaks at aroulid 

the two year maturity. Heath, Jarrow Morton and Spindel(lW2) provide cursory evidence of such a 

hump. Amin and Morton (1994) use Eurodollar futures and options and obtain negative estimates of 

K over the short end of the curve. Since negative estimates over the entire maturity spectruln are not 

plausible, they argue that there is a hump in the structure. Goncalves and Issler (1996) estimate the 

term structure of volatility using a simple GV model. Their historical analysis of forward rates also 

reveals a hump.' In addition to not providing for a volatility hump, GV models have the undesirable 

property that volatilities of yields are independent of their levels. As a result, interest rates can go' 

negative. These problems have lead researchers to consider richer classes of volatility structures in 

which volatilities are linked directly or indirectly to the level of the term structure. 

While the HJM paradio- permits the volatility structure to be quite general, unless constraints 

are imposed on the family of volatilities, a finite state representation of the term structure is not 

permissible. Ritchken and Sankarasubramanian (1995) characterize the set of restrictions on volatil- 

ities that  permit a two state variable representation. In particular they show that if the volatility 

has the form 

g i ( t ,  T )  = gt-(t)k(t, T)  

where a,(t) is a function that depends on all information up to date t, and k(t ,T)  is a deterministic 

function satisbing the following serni-goup property: 

then, conditional on knowing the initial term structure, knowledge of any two points on the term 

structure a t  date t is sufficient to characterize the full yield curve a t  that date. The  class of volatility 

structures in this family is quite large. However, no analytical solutions have been derived for - 

European claims. As a result, calibration issues remain, which inhibit the easy implenientation of 

these models. 

'Not dl studies indicate the existence of a hump. For example, Bl'ks and Ritchken (1995) use term structure data 

alone and find that relative to the volatility at the short end, forward rate volatilities appear to decline with maturity. 



111 the next section we propose generalizing the GV model in such a way ttrat the volatilitv 

structure is humped. By maintaining deterministic volatility structures, aiialytical sohttio~is to 

irlterest rate claims is plausible. While deterministic structures do trave li~nitatiorls, by iircorporatirig 

the volatility hump, and by yieldirig a pricing mechanism that permits allalytical solutioris to be 

derived for European options, efficient calibration and yields efficient pricing of American claims can 

be accolnplished. 

3 Option Pricing with a Volatility Hump 

Assume the volatility structure is given by: 

This volatility function reduces to the GV structure when a1 = bo = 0. Bhar and Chiarella (1995) 

have considered similar structures for volatilities. Indeed, they show that  a finite state hIarkov 

representation is permissible for the term structure if the coefficient of the exponentially dampened 

term is a finite degree polynomial in the maturity T - z. Figure 1 shows a typical curve, ill which 

the peak occurs around the two year point. 

[Figure 1 Here] 

For 0 5 z < t ,  the volatility structure can be expressed as: 

a,(=, T )  = do( t .  T )  + d l ( t ,  ~ ) e - ~ ( ' - ~ )  + d 2 ( t . T ) [ t  - ~ ] e - ~ ( ' - ~ )  

where 

Substituting equation (10) into equation ( 5 )  yields: 

where 

d ~ u  (u) 

5 



t V 2 ( t )  = ( t  - lJ)r-K(t-"!  I' rill1 ( v )  

and the exact expression for h l ( t , T )  is provided ill the appendix. 

P r o p o s i t i o n  1 If the volatility stnrctr~re is given by eqt~ation (9), and the dynamics of the fanlrard 

rates nre given by eqiration(l), then, rtnder the FRA process, bond prices at dnte t art: linked to prices 

at dnte 0 through three state variables, CVo(o(t), CVl(t) and I.F2(t) as: 

where 

and 

T h e  dynamics of the state variables, t V l ( t ) ,  and W 2 ( t )  are: 

Proof: See Appendix. 

When bo = 0, D o ( t , T )  = 0, and the number of state variables reduces to 2. Further, when 

a1 = bo = 0, then, the number of state variables reduces to 1, the GV volatility structure is 

recovered and the bond pricing equztion reduces to equation (8 ) .  

Under the FRA process, viewed from date 0, the bond price, P ( t ,  T ) ,  has a lognormal distribution. 

I n  particular, R ( t ,  T )  is normal with mean 0 and variance r 2 ( t ,  T ) ,  where: 



and 

tVe now can compute analytical solutions for a large family of European interest rate claims. Propo- 

sition 2 provides the solution to an European option on a discount bond. 

P ropos i t i on  2 If the volatility structure i s  given by e p ~ a t i o n  (g), then  the price of a contract that 

provides the holder with the right to buy nt  date t ,  a bond that matrrres at  date T ,  for $X is given 

by: 

C ( 0 )  = P(O,  T ) N ( d l )  - X P ( 0 ,  t ) N ( d 2 )  (19 )  

where 

and 7 * ( t ,  T )  is given by equation (18). 

Proof: See Appendix. 

Notice that when a1 = bo = 0 ,  the formula reduces to the GV option model of Jamshidian (1989) .  

4 Pricing American Options Under Humped Volatilities 

The advantage of a simple deterministic volatility structure as it, equation (9), is that it permits the 

development of analytical solutions for many European claims including caps, floors, and swaptions. 

The resulting expressions have the same form as their simple GV counterparts, except the volatility 

expression ( 7 ( t , T ) )  takes on a more complex form. Analytical solutions for suchclaims are useful 

since they reduce the complexity of the calibration process. Once the parameters are estimated, 



then lattice based algorithms can be used to price a variety of American clainis some interest 

rate exotics. In  this section we describe such algorithms. 

The valuation procedure takes place using the risk neutralized measure. Under this measure the 

term structfire at date t  is given by: 

f ( t .  T )  = f ( 0 . T )  + hz( t .  T) + ~ t u p ( l l .  T)dUJ(V)  

and the bond pricing equation is: 

where 

A t )  = P(0.T)e-fi2(t,r) 
P(O,t)  

Assume the time interval [0, t]  is partitioned into n equal subintervals of width h. A simple binomial 

lattice is used to approximate the standard Wiener process. Let LV& approximate the process at 

time ih for i = 0 , 1 , 2 ,  ...., n, with W&, = 0. Given W&, the next permissible values are W& + fi 
and LV& - A, which both occur with probability 0.5. For pricing purposes, the term structure cac 

be recovered a t  each node of the lattice if the exact values of the three state varibales are given. 

Let (WP, Lr.20) be the values of the two state variables a t  a particular node, where the first state 

variable has value W:. The number of different values for the state variables WP and W; a t  this 

node equals the number of different paths that can be traversed from the originating node to this 

poin't. Rather than keep track of all these values, we follow the basic idea of Li, Ritchken and 

Sahrasubramanian (1996) and only keep track of the maximum and minimum values that each of 

the two state variables can attain at each node. The range between the maximum and minimum 

values is then partitioned into kl and k2 pieces respectively. Option prices are then kept track of a t  

the resulting kl x k2 points. Thus a t  each node in the lattice, a matrix of option values needs to be 

established. 

Let C( i ,  j) be the (i, j)'h entry for a price that is to be computed a t  the node LV; and assume 

Wp = y and W; = z .  Assume the date is mh say, for some integer m 5 (n - 1); Given these.two 

state  variables, their successor values a t  date ( m  + l ) h  can be computed using approximations -to 

equations (16) and (17) .  In particular, the two successor nodes are (a + f i )  and (u - &) both of 



which occur with probability 0.5. The values of the two state variables, obtained using eq~latioiis (16) 

a i d  (17). a t  these two nodes, are (!I - ( ~ ~ 1 1 )  +- fi, z +(!I - riz) l t )  and (!I - (K!/ l I )  - fi. : +(!I - ~ = ) l r )  

respectively. Option prices a t  the succcessor nodes, for these particular s ta te  variables. I I ~ H V  i ~ o t  

be available. However, option prices at  "surrounding" states will Le available. aiid irlterpoiatiotl 

procedrires can be used to establish an option price. The average of the optioil prices cou~puted in 

both the up state and down state can then be computed, and the resultirlg value discou~ited by the 

current one period bond price, provides the value of the option unexercised a t  the current location. 

Tile maximum of this value and the exercised value of the claim provides tlie ~iumerical value for 

C ( i ,  3 ) .  

When computing option prices using backward recursion, variow interpolatior~ techiiiques can 

be used to establish the values of the claim in both succ&sor states. Li, Ritchkei~ and Sankarasubra- 

manian (1995), show that  relatively coarse partitions of the range of the s ta te  variable a t  each node, 

combined with simple linear interpolation methods produce satisfactory results for their problem.3 

\Ve first report on the performance of an  algorithm for the volatility structure ill equation (9) 

with a1 = 0. In this case there are only two state variables. Since analytical solutiolis are available 

for European options on  bonds, we use these contracts to illustrate the convergence behavior for the 

contract as the number of time partitions, n, and as the number of space partitions, kl, increase. 

Figure 2 reports the results for the one year at-the-money option, when a simple linear interpolation 

method is used. 

[Figure 2 Here] 

Notice: that for all time partitions, as kl is increased the convergence rate improves. Notice too, 

that reasonably accurate results for option prices are. obtained for 50  time partitioris and about 5 

space partitions.4 

Table 1 compares the convergence rate of prices for various space partitions using a linear in- 

terpolation scheme, to the case where only 3 points are used to approximate the s ta te  variable a t  

each node. but a quadratic approximation is invoked. As can be seen, the quadratic approximation 

works very effectively, producing accurate results even for a small number of time partitions. 

[Table 1 Here] 

"or example, they show that partitions of size 10 to 20 produce prices of options on bonds that are praqically 

indistinguishable. 
4Sirnilar results hold over the full range of pararnetrs for the volatility structure. 



Figure 3 shows the convergence of option prices to the analytical solutiori for the general volatility 

structure with a1 # 0. In Figure 3 the partition sizes ( k l  and ks) for the two state variables r l . * l ( t )  

and LV2(t) are taken to be equal. 

[Figure 3 Here] 

Table 2 shows the effects of using a quadratic approximation scheme rather than linear interpolatiori. 

Using just three points for each state variable a t  each node appears to suffice. These results are 

quite robust to the parameter values for the volatility structure. 

[Table 2 Here] 

5 Multifactor Models 

The above analysis readily generalizes to multifactor models. In this section we consider a specific 

two factor model which has the property that the factors are correlated. In particular assuming the 

following dynamics for forward rates: 

df ( t ,  T )  = p ( t , T ) d t  + uf l  ( t , T ) d w ~ ( t )  + 0 f 2 ( t , T ) d w 2 ( t )  

where 

u f l  ( t ,  T )  = aoe-R(T-t)  

u f 2 ( t , T )  = bo 

E [ d w l d w z ]  = pdt 

This model difiers from simple two factor GV model, in that the two factors are correlated. Trans- 

forming this model, we obtain: 

where d<1 and d<2 are standard independent Wiener increments with E[d< ld<2]  = 0. Moreover, 

under the forward risk adjusted process, 

Now, from equation (23 )  



where 

d ( t , T )  = aor 
- a ( x - t )  dl: 

Further, the bond price can be computed as 

where 

This two factor model is characterized by three state variables. Straightforward lattice procedures 

as outlined above can then be used to proxy the dynamics of the term structure. Analytical solution 

for European options on discount bonds are permissible. Similar to Proposition 2, we can obtain 

the price of a contract that provides the holder with the right to buy a t  date t, a bond that matures 

a t  date T ,  for $X as: 

C(O) = P ( o , T ) N ( ~ I )  - X P ( O ,  t ) ~ ( d ~ )  (24)  

where 

6 Empirical Tests 

In this section we provide some preliminary empirical tests on the GGV model: Our goal $ to 

establish if there is support for the one factor GGV model and to establish whether the model can 

reduce out of sample biases that exist in applying the simple GV model. 



We obtained a set of daily caplet data, and zero curves from Bean Stern. Tile data cotlsists 

of prices of at-the-money capiets with maturities ranging from 1 year to 9 years in increments of 1 

year. Each caplet is on a 3 month LIBOR rate. The prices are reported in Black volatility form. 

To translate these numbers into prices we require the discount rates for the appropriate maturities. 

The discount function for each day, computed using the par swap rate curve was also s~ipplied. 13 

weeks of data were provided. 

In our analysis, we assume all the parameters remain constant over a week. Then we use all 

9 x 5 = 45 option prices, to infer out the set of estimates that minimize, the sum of squared error.' 

We repeat this analysis, separately for each of the 10 successive weeks. Table 3 reports the estimates 

of the parameters for each of the 10 optimizations for the GV and the GGV models. 

[Table 3 Here] 

For the GV model, the volatility and mean reversion estimates are fairly stable over the 10 weeks. 

For the GGV model, in addition to the estimates of the volatility parameters, we also report the 

forward rate maturity with the maximum volatility. This maturity is consistently close to 1.3 years, 

and the magnitude of the volatility there is surprisingly stable a t  a value near 0.015. In all 10 runs 

of the GGV model, the null hypothesis that the parameter values a1 = bo = 0 is rejected a t  the 5% 

level of significance. That is, the inclusion of the volatility hump, beyond the usual GV exponentially 

dampened structure, adds significantly to the model. 

Table 4 summarizes the in-sample residuals for the GV and GGV models. In each of the 10 

weekly estimations for both models, 5 residuals are available.for each maturity. This gives a tota! 

of 50 residuals. For each maturity, the number of positive and negative residuals are indicated, as 
. . . . 

well as their average and standard deviation. 

[Table 4 Here] 

The table immediately reveal's the large biases in the'GV model. All the residuals in the first 

year are negative, while all the residuals in years 2 - 4 are positive. The large bias continues over all 

maturities. Figure 4a illustrates the biases for a typical week. Here, the 9 residuals for each of the 

5 days in the week are plotted. As can be seen, the simple exponentially dampened structure for 

volatilities is not flexible enough to permit pricing to proceed without introducing a large maturity 

bias. 

5We minimized the sum of squared error of the pricing w i d d ,  in dollars, and in implied volatility units. In both 

cases, the Set of iesults were h a s t  identical. As a result. we use the first objective, but report all our residuals in 

Black volatility form. 



[Figure 4 Here] 

Table 4 also reports the results for the GGV model. Relative to the G V  model, a significant 

amount of the bias is removed. Figure 46 illustrates the pattern oE residuals for all 5 days of a typical 

week. 

The in sample analysis does indicate that a GV model is not capable of fitting a volatility 

structure that has a hump. Table 4 presents a similar analysis of residuals, this time conducted O H  

out-of-sample data. The estimates of the volatility parameters, derived using the data in a given 

week, are then used to estimate the option prices for each day of the next week. That is, the volatility 

parameters are only updated at the end of a week, using full information on the entire week. The 

model is then not recalibrated until the end of the next week. As a result, for the week, we obtain 

9 x 5 = 45 out of sample residuals for each maturity. Table 5 reports the number of positive and 

negative residuals as well as their means and variances for each maturity caplet. 

[Table 5 Here] 

The results are consistent with the results from the in-sample-residuals. In particular, much 

of the bias in the GV model is eliminated by the GGV model. The last row of this table reports 

the number of times (out of 45) that the absolute value of each GGV residual is smaller than the 

ahsolute value of the GV residual. The superior performance of the GGV model, especialiy over the 

the first 5 maturities is evident. Figure 6 provides a plot of the difference in the absolute values of 

the residuals. The figure confirms the fact that the GGV dominates the GV model, in that the out 

of sample residuals produced by GGV are generally much smaller than GV. 

[Figure 6 Here] 

The above results provide significant evidence that the GGV can explain prices of caplets beyond 

what is possible with a GV model. The final table attempts to establish whether the forecasted GGV 

prices of caplets are within typical bid ask spreads and whether the forecasts deteriorate over time. 

For each out-of-sample day, we report the distribution of the 9 x 9 = 81 out of sample residuals. For 

example, consider the one year maturity caplet. Of the 81 forcasts made for the Monday prices, 68 

were within 0.25 vols of  the actual price, 11 was within 0.5 vols and 2 were larger. The performance of 

the forecasts did deteriorate somewhat over the next 4 days. However, even if  one did not recalibrate 

the model for 1 week, 71 out of the 81 residuals were within 0.5 vols of the actual prices. Sir i~e a 

typical bid ask spread of a caplet is often between 0.25 and 0.5 vols, residuals of this magnitude are 

respectable. The results hold true when broken down by caplet maturity. 



[Table 6 Here] 

Our preli!nir~ary empirical results indicate that a significant portion of the bias ill the G V  model 

can be explained by a more flexible handlilig of the volatility structure. Certainly, the prelinli- 

lla? results do indicate that the naturity structure of at-the-molley caplets cau be reasorlably well 

approximated by the GGV nlodel. 

7 Conclusion 

This paper develops a simple model for pricing interest rate options. Analytical solutioris are avail- 

able for European claims and extremely efficient algorithms exist for the pricing of American options. 

The  interest rate claims are priced in the Heath-.Jarrow-Morton paradigm, and hence incorporate 

full information on the term structure. The volatility structure for forward rates is hurnped, aud 

includes as a special case the Generalized Vasicek model. The structure of volatilities is captured 

without using time varying parameters. As a result, the volatility structure is stationary. It is 

not possible to have a volatility structure with the above properties and a t  the same'time capture 

the term structure dynamics by a single state variable. It is shown that the full dynamics of the 

term structure can, however, be captured by a three state Markovian system. As a result, simple 

path reconecting lattices cannot be constructed to price American claims. Nonetheless, we provide 

extremely efficient lattice based algorithms for pricing claims, which rely on carrying small matrices 

of information at each node. 

Our preliminary empirical analysis provided strong support for the single factor GGV model in 

favor over the GV model. Moreover, the GGV model produces somewhat stable parameter estimates, 

and was capable of producing out of sample prices that were consistently within reasonable bid s k  

spreads. The results indicate that a more thorough empirical study is waranted, where a larger dat? 

set is used covering a wider family of contracts. 

It also remains for future work to extend these models to handle a larger class of iorward rate 

volatility structures. As long as the volatility structure is a sum of weighted exponential functions 

multiplied by maturity dependent polynomials, then a finite state variable representation is possible. 

When the volatility structure of forward rates belongs to the Ritchken-Sankarasubramanian class, 

then the analysis becones more difficult. Extensions of our lattice procedure to handle humped 

volatility structures within the extended Ritchken Sankarasubramanian class will be of substaitial 

interest. 



Appendix 

Proof of Proposition I 

By definition of P ( t ,  T )  and equation ( l l ) ,  we can write: 

= A ( t ,  ~ ) e ' ~ ( " ~ )  

where 

and 

H~ ( t ,  T) = L~ hl ( t ,  r ) d r  computing this integral yields 



Proof of Proposition 2 

By definition of call option which expires at date t: 

The expected payoff under the FRA measure at  date t is given by: 

where 

and 7 2 ( t ,  T )  = V a r ( R ( t , T ) ) .  From equation ( 4 ) ,  we can write: 

Note that H 1 ( : , T )  = - / ' ( t ,T) /2 .  
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Figure 1 
Illustration of Volatility  urn^* 

Maturity 

*Fi-me 1 shows a typical volatility structure that can be esrablished using equation (9). In this figure b, = 0 
so the volatility for long term forward rates eventually decays to zero. 



Figure 2 
Convergence of Option Prices on The ~ a t t i c e *  

*The volatility structure for this figure is detailed in Table 1. There are two state variables for this 
volatility structure, so at each node in the lattice, there is a vector of prices. The size of the vector is k. 
Thefigure shows the conversence rate of prices for three different k values. The top dashed iine 
corresponds to the case where k = 2. The middle dashed line corresponds to the case where k = 4, and the 
almost flat solid line corresponds to the case where k = 20. The example illustrates that accurate prices 
can be obtained when k is reasonably small. The option is a six month. European call option on a two year 
bond. The exact specifications of the contract are discussed in Table 1. 
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Figure 3 
Convergence of Option Prices on T h e  ~ a t t i c e *  

Number of Time Steps 

'The volatility structure for this figure is detailed in Table 2. There are three state variables for this 
volatility structure, so at each node in the lattice, there is a matrix of prices, The size of the manix is 
k x k. The figure shows the convergence rate of prices for three different k values. The top dashed line 
corresponds to the case where k = 2. The middle dashed line corresponds to the case where k = 4, and the 
almost flat solid line corresponds to the case where k = 20. The example illustrates that accurare prices 
can be obtained when k is reasonably small. The option is a six month European call option on a two year 
bond. The exact specifications of the contract are discussed in Table 2. 



Figure 4a 
Plot  of Daily Residuals for a Given Week (GV rvlodel) 

(In Sample) * 

Matur i ty  o f  C a p l e t  

Figure 4b 
Plot of Daily Residuals for a Given Week (GGV Model) 

(In Sample) * 

Matur l ty  Of C a p l e t  

This figure shows the residual (in Black vol form) for each caplet maturity for each day in a typicaI week. 
Figure 4a Shows the residuals for the GV model while figure 4b Shows the residuals for the GGV 
model. 



Figure 5a  
Plot  of Daily Residuals for a Given Week  (GV Model) 

(Out of Sample) 

Figure 5b 
Plo t  of  Daily Residuals fo r  a Given W e e k  (GGV Model) 

(Out of Sample) * 

This figure shows the residual (in Black vol form) for each caplet maturity for each day in a typical week. 
Figure j a  Shows the residuals for the GV model while figure 5b Shows the residuals for the GGV 
model. 
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Figure 6 
Plot of Difference in Absolute ~ r r o r s *  

Maturity of Caplet 

Figure 6 shows the difference in the absolute values of the GV and GGV residuals. A positive number 
indicate that the GV model had a larger absolute residual. 



Table1 
Convergence Rate  of Options With 

Linear and  Quadra t ic  Interpolationst 

*Table 1 shows the convergence rate of a call option as  the number of time partitions, n, increases. The 
maturity of the option is 6 months. The underlying bond is a two year bond. The snike price is set equal 
to the current forward price, for delivery in 6 months. The table shows the convergence rate for various 
values of k , when linear interpolation procedures are used, and for a quadratic interpolation scheme. The 
initial term structure is given by: 

f (0, t) = 0.07 - 0.02e4-1 8r . 
The case parameters for the volatility structure are: 

K = 0.1, a 0  = 0.02, a1 = 0, 60 = 0.003. 
In this case there are two state variables in the model. 

N 
2 
3 
4 
5 
10 
25 
50 
100 
200 
500 
1000 

Exact 

Linear 
k=2 k=3 k=4 k=10 k=20 k=50 
7.256 7.256 7.256 7.256 7.256 7.256 
8.768 8.768 8.768 8.768 8.768 8.768 
7.6M 7.651 7.649 7.647 7.647 7.647 
8.470 8.470 8.470 8.470 8.470 8.470 
7.932 7.908 7.897 7.890 7.889 7.889 
8.118 8.1 18 8.1 18 8.1 18 8.1 18 8.1 18 
8.081 8.046 8.038 8.022 8.01 6 8.014 
8.101 8.063 8.057 8.038 8.032 8.028 
8.126 8.078 8.070 8.046 8.04 8.035 
8.272 8.153 8.1 13 8.061 8.047 8.039 
8.506 8.270 8.191 8.086 8.059 8.043 
8.033 8.033 8.033 8.033 8.033 8.033 

Quadratic 
k=3 
7.256 
8.768 
7.649 
8.470 
7.892 
8.1 18 
8.014 
8.026 
8.032 
8.034 
8.034 
8.033 



Tab le t  
convergence-ÿ ate of Options With 

Linear a n d  Quadra t ic  Interpolations* 

'Table 2 shows the convergence rate of a call option as the number of time partitions, n, increases. The 
maturity of the option is 6 months. The underlying bond is a nvo year bond. The strike price is set equal 
to the current forward price, for deIivery in 6 months. The table shows the convergence rate for various 
values of k , when linear interpolation procedures are used, and for a quadratic interpolation scheme. The 
initial term structure is given by: 

f(0, t )  = 0.07 - 0.02e-O.' *' . 
The case parameten for the volatility smcture are: 

K = 0.1, a 0  = 0.02, a1 = 0.0025, 60 = 0.003. 
Ln this case there are three state variables in the model. 

Quadratic 
k=3 

7.925 
9.61 1 
8.395 
9.314 
8.698 
8.962 
8.852 
8.868 
8.874 
8.877 
8.877 
8.876 

N 
2 
3 
4 
5 

10 
25 
50 

100 
200 
500 

1000 
Exact 

Linear 
k=2 k=3 k=4 k=10 k=20 k=50 

7.925 7.925 7.925 7.925 7.925 7.925 
9.611 9.61 1 9.61 1 9.61 1 9.61 1 9.61 1 
8.432 8.4 8.396 8.396 8.396 8.396 
9.314 9.314 9.314 9.314 9.314 9.314 
8.761 8.73 8.71 3 8.695 8.695 8.695 
8.963 8.962 8.962 8.962 8.962 8.962 
8.941 8.91 1 8.897 8.867 8.855 8.85 
8.987 8.94 8.921 8.89 8.878 8.868 
9.115 8.993 8.957 8.905 8.89 8.88 
9.466 9.171 9.073 8.942 8.907 8.888 
10.031 9.459 9.266 9.007 8.938 8.9 
8.876 8.876 8.876 8.876 8.876 8.876 



Table 3 
Weekly Estimates of  Parameters* 

* Table 2 shows the implied estimates of the foward rate volatility parameters in each of 10 successive 
weeks. Each estimate is based on 45 caplet prices spanning the maturity spectrum. 

GGV Estimates 
a0 a 1 b0 k Hump Max. Vol. 

-0.0221 0.0410 0.0100 1.3087 1.3034 0.0157 
-0.0203 0.0363 0.0101 1.2647 1.3497 0.0153 
-0.0230 0.0401 0.0104 1.3394 1.3193 

0.0155 ~ -0.0230 0.0400' 0.0107 1.3679 1.3054 0.0156 
-0.0328 0.0535 0.0109 1.5416 1.2627 0.0158 
-0.0308 0.0506 0.0111 1.5326 1.2612 0.0158 
-0.0273 0.0470 0.0107 1.4548 1.2683 0.0158 
-0.0271 0.0468 0.0105 1.4697 1.2579 0.0156 
-0.0232 0.0387 0.0105 1.3007 1.3695 0.0155 
-0.0216 0.0373 0.0106 1.3095 1.3439 0.0155 

week 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

GV Estimates 

a, k 
0.0133 0.0346 
0.0129 0.0282 
0.0130 0.0263 
0.0131 0.0239 
0.0131 0.0226 
0.0131 0.0201 
0.0132 0.0259 
0.0130 0.0265 
0.0130 0.0226 
0.0131 0.0231 



Table 4 
In-Sample Residual Analysis + 

+ Table 4 shows the h-sample residuals by caplet rnaturityi~or example, the GV model produce 48 
positive residuals and two negative residualsfor the 5 year maturity caplet. The starred values indicate ' .  

the proportions (means) that were significantly different from one half (zero). All test were done at 0.5% 
level of significance. 



Table 5 
Out-of-Sample Residual Analysis + 

* Table 5 shows the out-of-sample residuals by caplet maturity. For example, the GVmodel produces 38 
positive residuals and 7 negative residuals for the 5 year caplet. The starred values indicate the 
proportions (means) that were significantly different fiorn one half (zero). All test were done at 0.5% 
level of significance. 

* GV wins if the absolute value of the residual is smaller than the absolute value of the corresponding 
GGV model. Otherwise GGV wins. 



Table 6 
Analysis of GGV Residuals Over Out-of-Sample periods* 

* This table provides the distribution of the residuals for each day in the out-of-sample periods. For 
example, of the 8 1 residuals in the last day of the out-of-sample period, 43 were within 0.25 vols of the 
actuai price. 


