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Abstract 

This paper investigates the use of trimmed means as high-frequency estimators 

of inflation. The known characteristics of price change distributions, specifically the 
. observation that they generally exhibit high levels of kurtosis, imply that simple averages 

of price data are unlikely to produce efficient estimates of inflation. Trimmed means 

produce superior estimates of 'core inflation,' which we define as a long-run centered 

moving average of CPI and PPI inflation. We find that trimming 9% from each tail 

of the CPI price-change distribution, or 45% from the tails of the PPI price-change 

distribution, yields an efficient estimator of core inflation for these two series, although 

lesser trims also produce substantial efficiency gains. Historically, the optimal trimmed 

estimators are found to be nearly 23% more efficient (in terms of root-mean-square error) 

than the standard mean CPI, and 45% more efficient than the mean PPI. Moreover, the 

efficient estimators are robust to sample period and to the definition of the presumed 

underlying long-run trend in inflation. 



1 Introduction 

How should we interpret month-to-month changes in the measured Consumer Price 

Index? Over the years, this question has led to the construction of several measures of 

what has come to be called 'core' idation. Common measures of core inflation regularly 
k remove certain components from the construction of the CPI. In the U.S., 'volatile' food 

and energy price movements, are often ignored, and core inflation is synonymous with the 

CPI that excludes food and energy.' ~ u t  is it truly the case that food and energy price 

changes never contain information about trend inflation? Or, for that matter, is it only 

the volatile food and energy components that distort attempts to measure the underlying 

inflation trend? Surely not. This leads us to consider how we might develop a systematic, 

statistical methodology for reducing the transitory noise in measured inflation indices. 

This paper follows our recent work, largely beginning with Bryan and Cecchetti (1994)' 

where we investigate the estimation of aggregate consumer price inflation using trimmed 

means of the distribution of price changes. These are estimators that are robust to the 

distributional anomalies common to price statistics. They are order statistics that are 

computed by trimming a percentage from the tails of a histogram, and averaging what 

is left. For example, the sample mean trims zero percent, while the median trims fifty 

percent, from each tail of the distribution of price changes. 

Every student in introductory statistics learns that, when data are drawn from a 

normal distribution. the sample mean is the minimum variance estimator of the first 

moment. But price changes are not normally distributed. In fact. as we discuss in 

Bryan and Cecchetti (1996), the cross-sectional distribution of inflation has very fat tails, 

with a sample kurtosis that is often substantially above ten. Underlying leptokurtotic 

distributions create inferential difficulties, as they routinely produce skewed samples. In 

our earlier papers, we discuss how these problems lead to transitory movements in the 

sample mean, causing it to have a high small-sample variance. 

Given what we know about the distribution of price changes, what is the most efficient 

'Tlic 1097 Econo7nic Report of the President is a prirne example. Chart 2-6 on page 76, arid ac- 
companying text, use thc now comrnonplace designation of core i~iflation as the 'Consumer Price Index 
excludirig the volatile foot1 arid energy comporlerits.' 



estimator of the first moment of the price change distribution? How can we produce a 

reduced-noise estimate of aggregate inflation at high hequencies? Our answer is to trim 

the price change distribution, not by removing food and energy prices every time, but by 

ignoring soine percentage of the highest and lowest price changes each month. 

We study monthly changes in both consumer and producer prices in the U.S. Data -. 
availability dictate that we examine 36 components of the CPI from 1967 to 1996 and 29 

components of the PPI over the same period. Throughout, we take as our benchmark 

the thirty-six month centered moving average of actual inflation. We evaluate the ability 

of candidate estimators to track the movements in the benchmark. Our conclusions are 

that the most efficient estimate of inflation at  the consumer level comes from trimming 

9% from each tail, while efficient estimation of producer prices trims 45%. By trimming 

a cumulative 18% of the consumer price distribution we are able to reduce the root- 

mean-square-error (RhfSE) of aggregate inflation by nearly one-quarter. For the PPI, 

the improvement is even more. dramatic, as the RMSE declines by over 45 percent! 

The remainder of the paper is composed of five sections. Section 2 reports descriptive 

statistics for the distribution of CPI and PPI price changes. Section 3 discusses the 

statistical problems we attempt to overcome. Section 4 follows with by a discussion of 

the Monte Carlo results that guide our choice of the optimal trimmed estimator. We 

provide various robustness checks in Section 5 .  These include examining changes in 

sample period, changes in the degree of disaggregation of CPI data, and changes in the 

benchmark. Section 6 concludes. 

2 Characteristics of Price Change Distributions 

By how much would the monthly measure of the consumer price index have to deviate 

from its recent trend for us to be relatively certain that the trend has changed? This is 

the question that is in most people's minds when the Bureau of Labor Statistics releases 

the price statistics each month.* Figure 1 plots the monthly changes in consumer and 

producer prices, at an annual rate, together with a three-year centered moving average, 

2Cecchetti (forthco~rling) suggests a prclirninary answer to exactly this question. 



FIGURE 1 
C P i  M o n t h l y  w i t h  3 6  M o n t h  C e n t e r e d  M o v i n g  A v e r o g e  

PPI M o n t h l y  w i t h  36 M o n t h ,  C e n t e r e d  M o v i n g  A v e r o g e  

both for the period 1967:02 to 1997:04.~ 

As is evident horn the figure, the monthly changes in both of these price indices 

contain substantial high-frequency noise. By this we mean that deviations of the monthly 

changes from the trend are quite large and often reversed. In fact, the standard deviation 

3We use 36 co~nponents of the Consumer Price Index for Urbari Co~isumers, seasonally adjusted by the 
BLS. These data are all available co~itinuously, monthly, since 1967:Ol. The housing service comporlent 
is based on the rerital equivalence measure of owner occupied housing, and so prior to 1982, the series is 
essentially thc experimerltal CPI-XI. The producer price is bascd on the PPI for commodities, and uses a 
set of between 29 and 31 componerits. All data are seasonally adjusted using the AFUMA X-11 procedures 
available with SAS. A detailed Appendix containing dcscriptiona of the sources and coristructiori of the 
data sets used is available fro111 the authors up011 request. 



of the difference between the monthly and the moving average aggregate price change 

is 6.92 percentage points for the PPI and 2.50 percentage points for the CPI (both at 

annual rates). A look at the actual distributions shows that a 90% confidence interval for 

the CPI is from -3.92 to +3.76 percentage points, while for the PPI it is from -10.35 to 

+8.97 percentage points. In other words, since 1967, monthly changes in producer prices 
\ 

- have been either more than 10 percentage points below or 8 percentage points above the 

thirty-six month moving average one in every ten months! 

The common method of excluding food and energy simply does not help much. In 

fact, the standard deviation of the difference between the CPI ex food and energy and the 

thirty-six month average CPI is 2.31 percentage points, and the 90% confidence interval 

shrinks slightly to [-3.73,+3.76] percentage points. By contrast, for the PPI, excluding 

food and energy improves things, as the standard deviation of difference between the PPI 

excluding food and energy and the 36 month centered moving average of the actual PPI 

drops by about 40% to 4.14, and the 90% confidence interval shrinks by about the same 

amount to [-5.94,+4.76]. 

In an effort to better understand the nature of the transitory fluctuations in high- 

frequency inflation measurement, we begin by examining the characteristics of the price 

change distributions. It is useful to pause at  this stage to introduce some notation. We 

define the inflation in an individual component price over an horizon k as 

where pit is the index level for component i at time t. From this, we define the mean 

inflation in each time period, over horizon k, as 

where the rit's are relative importances that are allowed to change each month to reflect 

the fact that the actual index is an arithmetic a ~ e r a g e . ~  

- 

41t is straightforward to show that if thc price level index utilizes fixed weights, call these uji, then the 
percentage cha~igc in thc aggregate i~idcx call bc approximated by the weighted sum of the pcrcerltage 



The higher-order central moments are then 

Skewness and kurtosis are the scaled third and fourth moments, respectively: 

and 

Table 1 reports numerous descriptive statistics for the cross-sectional distribution of 

monthly price changes at  - overlapping horizons of one to  thirty-six .months. Among the .. 

noteworthy characteristics is that the distributions are often skewed. The mean absolute 

value of the skewaess, the mean of S,', in monthly CP' changes is 0.20 and in PPI changes 

it is 0.04, suggesting that the distributions are nearly symmetrical on average. there is 

little skewness in the distributions on average. But the standard deviation of S,' is 2.35 

for the CPI and 2.36 for the PPI, implying that distributions of one-month changes are 

often highly skewed. This standard deviation falls off as the. horizon increases, implying 

that the distribution of longer-run changes are much less likely t o  exhibit skewness5 

The price change distributions also have very fat tails. The average kurtosis of 

monthly changes, the average value of K:', is 11.24 for the CPI and 10.35.for the PPI. In 

fact, the xeighted kurtosis of monthly price changes is in excess of 20 about ten percent 

of the time. See Figure 2. - 
These facts allow us to identify a potentially important source of high frequency noise 

in the measurement of inflation. In a given month, there is a high probability of observing 

some subset of prices change by a substantial amount - generating the skewness and 

kurtosis that we see. But, over time, these extreme changes are balanced out,, reducing 

changes in the conlpoiients, where the weights change to reflect changes in relative prices. Defining the 
agg~egate price level Pi = wipi t ,  then Tit = ~ l i ( p i t / p t - ~ ) .  

'For exaniple the 5th and 95th percentiles of S: for the CPI are [-3.52,4.26]. But the same percentiles 
for S:6 arc [-2.39,1.93]. 



Table 1: Summary Statistics for Price Change Distributions 

Deviations from 36 Month Moving Average 
Consumer Prices, 1967.01 to 1996.04 

36e Components 
1 k = 1  ( k = 3  1 k = 1 2 1 k = 2 4 ) k = 3 6  

Standard Deviation 
6.64 4.06 3.36 3.14 

. 1 5 1 79.80 1 25.49 1 11.81 1 8.83 
Skewness 

Average 0.20 0.16 0.21 0.29 0.26 
Std. Dev. 2.35 2.15 1.51 . 1.38 1.41 

Kurtosis 
Average 11.24 9.56 5.72 4.52 4.23 
Median 8.60 7.37 4.65 3.89 3.75 
Std. Dev. 9.80 8.36 3.49 2.39 2.20 

Producer Prices, 1967.02 to 1997.04 
29-32 Com~onents 

Absolute Skewness 
Average 0.04 0.14 0.04 0.02 0.01 
Std.Dev.1 2.36 2 . 1 2  1 1 . 7 4  1 1 . 5 3  1 . 4 6  

All data are at annual rates. 

Kurtosis 
Average 
Median 
Std. Dev. 

7.26 
4.89 
6.50 

10.35 
6.38 
11.51 

8.80 
6.23 
8.47 

5.47 
3.51 
6.11 

4.03 
2.78 
3.43 



FIGURE 2 
W e i g h t e d  K u r t o s i s  o f  Con : ;umer  P r i c e s  

M o n t n l y  C h c n g e s ,  1 9 6 7  t o  1 9 9 5  

0' 



the observed skewness. 

One economic interpretation of these distributional. characteristics is that if price 

change is costly, we will not observe the distribution of desired price changes each month. 

If the size and timing of price changes are based on two-sided state-dependent rules, as 

in Caballero and Engel (1991), or Caplin and Leahy (1991), what we observe will depend 

on the rule used by the price-setter and the history of the shocks to desired prices. As 

a result, we will rarely see prices that exactly equal the price that would be set in the 

absence of any price-adjustment costs. The amount of noise decreases over longer periods, 

when each price has changed numerous times. But for high frequencies of one quarter or 

one month, the problem can be a'serious one.6 

However, one need not necessarily attach oneself to a particular model of price-setting. 

behavior in order to accept our conclusions. It is well known that a mixture of random 

draws from normal distributions with differing variances will produce a leptokurtic sam- 

ple. As a statistical matter, then, we can show that the mean price-change statistic is 

unlikely to provide. the efficient estimate of inflation,. regardless of the price setting model 

that is assumed. 

We can think of two possible approaches to handling the problem. One would be to 

actually model price-setting explicitly using the theory as it has been worked out. But 

this has substantial drawbacks, as it requires that we actually estimate the time-varying 

price change rules themselves.  alternative!^, we can treat the complication presented 

by state-dependent price change rules as a statistical sampling problem. We view the 

monthly, skewed distributions as small-sample draws from the longer-horizon (roughly) 

symmetrical population distribution. The fact that the population has such high kurtosis 

leads us to consider a family of estimators that are robust to the presence of fat tails, a 

topic to  which we now turn. 

6 ~ ~ i  alternative iriterpretatiorl is implied by Balke and Wyrine (1996), who show that a multi-sector, 
dyriamic general equilibrium niodel with rnoriey and flexible prices can produce similar characteristics in 
ari environment of asymmetric supply shocks. A distinguishing feature of this rnodel is that the '~ioise' 
in the estimator riccd not significantly diminish at lower frequencies. 



3 Robust Estimation 

We begin by assuming that we have available a sequence of samples from a symmetric 

distribution with an unknown, and possibly changing, mean. At issue is the efficient 

estimation of the mean. We consider a set of estimators called trimmed means, that 
.. average centered portions of the sample. The method of averaging is to order the sample, 

trim the tails of the sample distribution, and average what remains. 

To calculate the (weighted) a-trimmed mean, we begin by ordering the sample, 

{xl, ..., z,), and the associated weights, {wl, ..., w,). Next, we define VVi as the cu- 

mulative weight from 1 to i; that is, Wi G wj. From this we can determine the set 

of observations to be averaged for the calculation: the its such that & < Wi i (1 - &). 

We call this I,. This allows &i to compute the weighted a-trimmed mean as 

There are two obvious special cases. The first is the sample mean, Zo, and the second is 

the sample median, .;i.50.7 

The efficient estimator of the mean, in the class of trimmed sample means, will depend 

on the characteristics of the datz-generating process.8 If! for example, the data are drawn 

from a normal distribution, then we know that the sample mean is the most efficient 

estimator. That is, the sample inean is the estimator that has the smallest small-sample 

variance. 

But when the data are drawn from leptokurtic distributions - distributions with 

much fatter tails than the normal - the sample mean will no longer be the most efficient 

estimator of the population mean, even in the class of trimmed sample means. It is 

relatively easy to see why this is so. With a fat-tailed distribution, one is more likely 

to obtain a draw from one of the tails of the distribution that is not balanced by an 

'See Stuart and Ord (1987) pg. 50-51 arid particularly Huber (1981) for general definitions of limited- 
influerice estimators and their propcrtics. 

 or cxamplc, Yulc aiid Keiidall(19G8) discuss the impact of changing kurtosis on the relative effi- 
ciencv of the sample mean ant1 the saniple mcdiari. But wc know of 110 general results concerrlirig the 
relativc efficiency of trirnrncd-mean cstirnators. 



equally extreme observation in the opposite tail. That is to say, as the kurtosis of the 

data-generating process increases, samples have a higher probability of being ~ k e w e d . ~  

The impact of kurtosis on the efficiency of trimmed-mean estimators is straightforward 

to demonstrate. To do so we construct a simple experiment in which we draw a series of 

samples from distributions with varying kurtosis and compute the efficiency of the entire . 
class of trimmed-mean estimators, including the mean and the median. 

In all of our experiments, the data-generating process is characterized by a two pa- 

rameter distribution that is a mixture of two normals, one with unit variance, and one 

with changing variance. We consider a random variable z, such that 

where 

Pr(s = 1) = p , 

YI - N ( 0 , l )  , and 

Y2 - N(0,A) . 

With probability p draws come from a standard normal and with probability (1 - p) 

they come from a N(0, A). The population mean, E(z),  is zero. The kurtosis of this 

distribution, %$, varies with p and A: 

We examine five cases, all with p = 0.90, and A set such that K = (3,10,15,20,30). 

In each of our experiments, we construct 10,000 replications of 250 draws each. We 

then compute the 2, for a = {0,1, ..., 49,50). This yields 10,000 estimates of all of the 

trimmed-mean estimators, which we label Z3, . From these we compute the root-mean- 

'~r-yan and Cecchetti (1096) demonstrate this point in another context. We can show that the 
standard deviation of the saniplc skcwrless illcreases with the kurtosis of the-data-generating process. 



square error (RMSE) and the mean absolute deviation (MAD). These are 

RMSE, = 4 T(2)' 
and 

1 
MAD, = - C I(.?;) 1 . 

j 

Figure 3 plots the RMSE, and the MAD, for experiments based on distributions with 

varying kurtosis, K(A, p) . To adjust for the fact that the variance of the distribution also 

changes with A and p, we have normalized RMSEo and MADo to one for each case. The 

results clearly show that the efficient trim - the trim that minimizes either the RMSE OF 

the MAD - increases with the kurtosis of the data generating process. As the kurtosis 

increases from 3 to 30, the efficient trim goes from 0 to 16%. 

We caution that the results from these experiments are illustrative and apply only 

to the specific distributions we examine. We know of no general analytic result deriving 

the optimal trimmed mean estimator as a function of the moments of the underlying 

distribution and the size of the sample. 

Efficient Estimation of Inflation: Preliminaries 

We have now established one property of price data and a related statistical fact. 

First, the cross-sectional distribution of price changes, both in the CPI and the PPI, is 

fat-tailed. Second, trimmed-means are the efficient estimator of the mean of a leptokurtic 

distribution. We now combine these two insights and ask what is the most efficient 

estimator of inflation? 

We begin with a preliminary examination of the data using a simple Monte Carlo 

experiment based on actual price data. In order to judge efficiency, we need to have a 

measure of the population mean we are trying to estimate. Following Cecchetti (forth- 

coming), we choose the thirty-six month centered moving average of actual inflation. 

This is an approximation of the long-term trend in inflation that is likely to be what 



FIGURE 3 
RMSE of Trimmed Estimators as Kurtosis Changes 
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FIGURE. 4: Consumer Prices 
Efficiency of ~ r i & n e d  Estimators, Monte Carlo ~ e s u l t s  

Z o o :  h n ~ 3 r .  S O U O T ~  E r r o r  Meo-  Abso1u:e D e v ; c t ; o -  

people have in mind when they attempt to construct measures they label core inflation. 

To proceed, we take the deviation of monthly component price changes from this 

thirty-six month centered moving average of inflation. For the CPI, we use 36 components 

of the CPI-U over the period 1967.02 to 1997.04, with its 1985 weights. To simplify the 

experiments, we set the relative importances (Tit) equal to the 1985 weights (wi). and 

leave them fixed throughout. For the PPI, we use a reduced set of 27 components 

also available over the 1967.02 to 1997.04 sample and their fixed 1982 weights. After 

subtracting each price change from the thirty-six month moving average change in the 

appropriate index, we have two matrices of relative price changes. 

In each experiment, we randomly draw a series of samples by taking one observation 

for each of the component time-series - one draw from each column in the relative-price- 

change matrix. This is a bootstrap procedure from which we generate 10,000 samples, 

each with 36 relative price changes-for CPI data, or 29 relative price changes for PPI  

data. We then compute the two measures of efficiency - the root-mean-squared error 

(RMSE) and the mean absolute deviation (MAD). 

The results are reported in Figures 4 and 5. The weighted means are found to be the 

least efficient of all of the estimators. The efficiency of the inflation estimates greatly 



FIGURE 5: Producer Prices 
~ff ic ' ienc~ of Tkiinmed Estimators, Monte Carlo Results 

R o o :  Met?. S o ~ i o - e  E r r o r  Meo r ,  A b s o l u t e  D e v i c z i a m  

improves with even very small trims from the sample. For example, in the case of the 

CPI, trimming as little as 3% from each tail of cross-sectional distribution improves the 

efficiency o f t h e  estimator by over 15%. The most efficient estimator for monthly CPI 

data was the 7% trimmed mean where the efficiency gain is approximately 20%, although 

trims in the neighborhood of this estimator perform nearly as well.lo 

For the PPI, however, much larger trims of the sample distribution are necessary to 

achieve the efficient estimator. The optimal trim, which occurs in the range of 40%, has 

an RMSE that is only one-third that of the sample mean! 

'"The technique we suggest here is appropriate for cases in which the price-change distributioris are 
symnietrical on average. We know of instances where this is not the case. For example, Roger's (1997) 
examination of New Zealand price data reveals a persistent, positive skewness in the price chaxlge distri- 
bution that produces a bias in the trinimed estimators of the mean. Roger constructs trimmed estimators 
centered on the meal1 perccntile, or the percentile of the distribution corresponding to the Inearl of the 
distribution. That is, for New Zealarid price data, Roger trims the tai!s of the distribution asymmetri- 
cally, centering on the 57th percentile. In this way, the trimmed estimator is ax1 mlbiased estimate of 
the CPI trend in New Zealand. Roger's insight implies a procetlure in which the trim arid centering 
parameter are chosen jointly to minimize either the RiiISE or MAD criterion, subject to the esti~nator 
being unbiased in the sample. 



Efficient Inflation ~ s t i m a t  ion:' Historical Data 

We now move to a more complete examination of the actual data. Here we will 

compare the relative efficiency of trimmed estimators using the historical time series, 

taking account of the changes in the relative importances [the rit's in equation (2)] over 
. time. That is to say, we will compute the weighted distributions of inflation each month, 

where the weights vary based on changes in relative prices as well as the periodic rebasing - 

done by the Bureau of Labor Statistics roughly once per decade. 

In Section 5.1, we look for the optimal trimmed mean estimator using the entire 1967 

to 1997 sample currently available. Are the results of the previous section robust to  

several obvious changes in methods? We examine three cases. In the first, reported in 

Section 5.2, we study more disaggregated CPI data over a shorter sample period. In 

Section 5.3. we look at the implications of changing the measurement benchmark from 

the thirty-six month centered moving average of actual inflation to moving averages of 

from twenty-four to sixty months. Finally, in Section 5.4, we study estimator stability 

by looking at optimal trims over varying sample periods. W> conclude this section with 

a summary and comparison of the trimmed means with the inflation measures that 

arbitrarily exclude food and energy. 

5.1 The Baseline Case 

In this section we consider the time-series characteristics of the trimmed-mean estima- 

tors. We calculate the RMSE and the MAD for each trimmed estimator using monthly 

historical component price data. That is, we compute the trimmed-mean estimators 

of inflation month-by-month, and compare their deviations from the centered thirty-six 

month moving average. The results, reproduced in Figure 6 for the CPI, and Figure 7 

for the PPI, are virtually identical to those in the Monte Carlo experiments shown in 

Figures 4 and 5." 

It is easy to see how much inflation measures are stabilized by trimming. Figure 8 

"Throughout this scction, the PPI data set uses a set of c:ornpo~~ents that varies from 29 to 31 in 
number, dependir~g OII data availability 



FIGURE 6: Coniumer Prices 
Efficiency of Trimmed Estimators, Historical Data 

Roo: M e a n  S a d a r e  E r r o r  Meor, A 3 s o l u t e  3ev:c : ;o-  

FIGURE 7: Producer Prices 
Efficiency of Trimmed Estimators, Historical Data 



FIGURE 8 
Monthly CPI Estimators 

annualized percent change 
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- - - - - - - - - - - - - - - - - - - - - - - - -  

Monthly PPI Estimators 
annualized percent change 

30.00 
PPI (finished goods) I 

25-00 L - - - - - - - - - - - - - - - - - - - - - - - - - -  
! - - - -  1 - 40% trim 

20.00 - - - - - - - - - -  ,! - - - - -  - - - - - - - - - - - - - - - - - -  ] 
l i 

i; - 36 mo. centered i 



Table 2: Comparison of Ida t ion  Estimators 

n 
1967 to 1997 

RMSE MAD 
6.91 4.27 
4.14 2.55 
3.98 2.55 
3.80 2.52 
40% 45% 

Mean (zo) 
ex Food& Energy 
Median (zsoj 
Optimal Trim 
Trim at Opt. 

AU values are computed from monthly changes as annual rates. Deviations are from the 36month centered moving average. 

The optimal trim is the trim that minimizes either RMSE, or MAD,. 

CPI 
1967 to 1997 

RMSE MAD 
2.50 1.76 
2.31 1.62 
2.04 1.51 
1.93 1.31 
9% 9% 

plots the mean, the thirty-six month centered moving average, and the efficient trimmed 

estimator for monthly CPI and PPI data for the January 1990 to December 1996 period. 

Table 2 compares the properties of a number of commonly used estimators for con- 

PPI 

sumer and producer price inflation. Focusing first on the CPI, we note that excluding 

food and energy produces little improvement in efficiency. The CPI excluding food and 

energy is only slightly more efficient thm the CPI-U itself, reducing the RhlSE from 2.50 

to 2.31. But trimming clearly helps. Trimming 9% of the cross-sectional distribution of 

consumer prices reduces the RMSE by just under 23 percent.'* 

For producer prices, the improvements are even more dramatic. Using the long sample 

period, we find that trimming 40% of the distribution from each tail improves the RMSE 

by over 45 percent. Excluding food and energy from the PPI reduces the RMSE by less 

than 40 percent. l3 

1 2 ~ r y d e n  and Carlson (1994) also note that this trim produces'the minimum time-series variance of 
any trimmed-mean estimator ovcr the 1967 to 1994 period. 

13A common tec:ti~lique for rcdlicing the noise in the high frequency inflation estimates uses time- 
series averages. IVe have coildlicted experirnerits that combine trimming with timc-averaging. IVc note 
that averaging the conlponent price change data prior to  trimming, or pre-trim averaging, decreases 
the amount of t r i~n~n ing  necessary to produce a minimum RMSE estimator of the inflation trentl. For 
example, using thrce-month avcragc price changes of component CPI data, the minimum RMSE of the 
inflation trend is found by trimming 6% from the tails of thc pricc change distribution, compared to the 
9% trims required of monthly data. Similar results were found for post-trim averages, where we average 
the monthlv trimmed means. That is, if we calculate the trirnmed estimators, and conipute a $month 
average of that res~ilt, thc nlininlu~n RMSE estimate of the inflation trend is foiind by trimming 6% from 



5.2 More Disaggregated Data 

The price statistics are collected at  a much more disaggregated level than what we 

have used thus far. Does the optimal trim change with the level of aggregation? The 

experiments in Section 3 suggest that the answer to this question will depend on what 

happens to the kurtosis of the cross-section distribution of price changes as we vary the 

level of aggregation. 

To examine this issue, we assembled a data set composed of between 142 and 175 

components of the CPI-U from 1978 to 1996. The number of series (and the relative 

importance of each series) varies each month depending on availability. The weighted 

kurtosis of these data is much higher than that for the 36 component dataset examined 

in the previous section. For monthly changes, for example, Table 1 reports that inflation 

in the 36 components of the CPI-U.has median kurtosis of 9.68. By contrast, the kurtosis 

in the more disaggregated data set has a median cf 43.1! 

As in Section 5.1, we construct, using historical data, the RMSE and MAD for each 

of the trimmed estimators, from a = 0 to 50. These provide a gauge of the efficiency 

gains from trimming the outlying tails of the price-change distribution. The results in 

Figure 9 confirm that, in the case of consumer prices, the efficient estimation of inflation 

requires more trimming when more disaggregated data are used. In this experiment, the 

optimal trim is 16%, at which point the RMSE is cut nearly in half. But again, virtually 

any trimming helps. For example, trimming 9% from each tail - t-he optimal amount 

for the 36 component data set - reduces the RJIISE by about 40%. 

The practical implications of this exercise are fairly important. We have found that 

since the kurtosis of the price-change distributions depends on the level of disaggrega- 

tion, so does the optimal trim. As a result, implementation of these techniques for the 

production of a core inflation index will depend critically on the exact dataset used. 

each tail of thc pricc change distribution. Even a t  relativelv low frequencies, some amount of tri~n~riing 
of the price change distributiori sccnis warranted. For example, using a 6-month compo~ient pricc change 
and a Gmonth avcragc of thc trimmed cstirnators, the 1ni11imum RIvISE estimator of thc CPI treiid is 
obtained by trimming 5% fro111 cach tail of the price change distribution. These alternative srrioothing 
techniques address a soniewhat diffcrcnt questio~i from the o11o posed in this paper: How much new 
information does a monthly price report co~i ta i~ i?  We lcavc thc i~ivestigation of this important area for 
future research. 



FIGURE 9: Consumer Prices, 142 to 175 Components 
Efficiency of Trimmed Estimators; Historical Data 
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5.3 Changes in the Benchmark 

As we noted at the outset of the previous section, in order to assess efficiency, we must 

specify a goal: What is it we would ideally like to measure? Our second robustness check 

involves deviating from the thirty-siu month centered moving average as the benchmark. 

Table 3 reports optimal trims as a function of the length of the moving average 

specified for the benchmark, similar to those in Sections 4 and 5.1 for the optimal trim. 

Included are the optimal trims using the Ivlonte Carlo nlethods, as well as those for the 

historical data. The table also reports an informal confidence interval constructed as the 

set of trims with RMSE or MAD within five percent of the minimum. For example, using 

the historical data in the case of the 36 components CPI data and the thirty-six month 

centered moving average benchmark, the minimum RMSE of 1.93 occurs at  a trim'of 9% 

(see Table 2). The fourth line in the first bottom panel of Table 3 reports that all of the 

trims between 5% and 48% have an RMSE below 1.93*1.05=2.03.14 

Several patterns emerge from these results. First, the 'point estimate' of the optimal 

trim does not vary as we change the benchmark. But the approximate confidence intervals 

14Note that there is 110 reason for the approximate confiderlce intervals to be either syrnrnetrical or 
continuous. The  ones reported in Table 3 all happerl to be contirinous. 



Table 3: Optimal Trim for Changes in the Benchmark 

Monte Carlo Results 

Historical Data 

MA 
24 

36 

48 

60 

36 Components 
1967 to 1997 

RMSE MAD 
0.09 0.09 

(0.05,0.25) (0.05,0.17) 
0.09 0.09 

(0.05,0.48) (0.05,0.19) 
0.09 0.09 

(0.05,0.50) (0.05,0.21) 
0.09 0.09 

(0.05,0.50) (0.05,0.23) 

CPI - 
RMSE MAD 

0.07 0.07 
(0.03,0.35) (0.03,O. 17) 

0.07 0.07 
(0.03,0.44) (0.03,O. 17) 

0.06 0.07 
(0.03,0.42) (0.03,0.17) 

0.06 0.07 
(0.03,0.41) (0.03,0.17) 

n CPI PPI 
29 to 31 Components 

1967 to 1997 
RMSE MAD 

0.40 0.45 
(0.25,0.49) (0.30,0.50) 

0.40 0.45 
(0.25,0.50) (0.31,0.50) 

0.43 0.45 
(0.25,0.50) (0.29,0.50) 

0.43 0.49 
(0.25,0.50) (0.27,0.50) 

PPI 
RMSE MAD 

0.43 0.45 
(0.3 1,0.50) (0.33,0.50) 

0.41 0.43 
(0.31,0.50) (0.33,0.50) 

0.43 0.46 
(0.31,0.50) (0.34,0.50) 

0.42 0.45 
(0.30,0.50) (0.33,0.50) 

CPI 
142 to 175 Components 

1978 to 1996 
RMSE MAD 

0.14 0.16 
(0.08,0.23). (0.09,0.24) 

0.16 0.17 
(0.10,0.24) (0.11,0.26) 

0.17 0.17 
(0.1 1,0.25) (0.12,0.25) 

0.18 0.18 
(0.12,0.26) (0.12,0.28) 

Numbers in parentheses are trims with RMSE or MAD within 5% of the value at the minimum. Monte Carlo experiments 

use 10,M)O replications. 



FIGURE 10: Consumer Prices, 36 Components 
Efficiency of Trimmed Estimators, Changing Sample 
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have a tendency to grow as the degree of the moving average increases. Second, for the 

PPI, there is little difference between the 'optimal trim' and the median. In all cases but 

one, the R%ISE and MAD of the median are well within the 5% standard. Finally, for 

CPI at  both levels of aggregation there is a large benefit to trimming a small amount. 

5.4 Variations in the Sample Period 

Next, we examine the sensitivity of the results to the sample period.. This is analogous 

to asking whether the underlying distributional characteristics of the data are stable. To 

do this, we perform a series of Monte Carlo experiments comparable to those in Section 4, 

but instead of using the full sample from which to draw, we use rolling ten year samples. 

For example, in the case of the CPI we compute the optimal trim based on data from 

1967 to 1976, then from 1968 to 1977, moving forward twelve months at a time. 

Figures 10 and 11 report the results of these experiments. Each figure has a horizontal 

line at the optimal trim calculated using the full sample, together with a second line 

plotting the optimal trim based on each of the ten year samples. The horizontal axis 

shows the final date of the sample. To give some sense of precision, the X's in the figures 

represent the approximate confidence intervals constructed as all of the trims such that 



FIGURE 11: Producer Prices 
Efficiency of Trirnmeh Estimators, Changing Sarriple 

the criterion, RMSE or MAD, is within 5 percent of the minimum. 

The RMSE and MAD of the optimal full-sample trim are nearly always within 5 

percent of the minimum value for the 10 year sub-samples. In fact, for the CPI, using 

the mean absolute deviation (MAD) criteria, the optimal trim is never outside of this 

rough confidence bound. For the PPI, there are thirty-six 10 year sub-periods. Using the 

RMSE criteria, the optimal full sample trim of 40 percent is within the confidence band 

in 33 of the 36 cases. 

5.5 Summary and Comparisons 

Given that the "CPI excluding food and energy" is the measure of core inflation in 

common use, it is useful to compare this measure of core inflation to ours. We do this is 

two ways. First, we ask which components we are trimming. And second, we look at a 

closer comparison of various candidate measures based on the RMSE criteria used above. 

Table 4 examines which components we are trimming. For each month, we counted the 

frequency at which some portion of the weight of each component was trimmed using the 

optimal trim - 9% for the CPI and 40% for the PPI. We also note which components are 

systematically excluded by the 'ex food and energy' measures (highlighted in bold-faced 



Table 4: Frequency That a Component is Trimmed: CPI 9% trim 

1 1  1 Mean of Food & Energy 

CPI Component 
Fruits and vegetables 
Motor fuel 
Fuel oil and other household fuel commodities 
Used cars, etc. 
111fants and toddlers apparel 
Meats, poultry, fish and eggs 
LVomens and girls apparel 
Public transportation 
Other appareI commodities 
Other private transportation commodities 
Gas and electricity (energy services) 
Tobacco and smoking products 
Dairy products 
Other private transportation services 
h1ens and boys apparel 
Other utilities and public services 
Personal and educational services 
Toilet goods and personal care appliances 
Medical care services 
Other food at home 
Footwear 
Cereals and bakery products 
School books and supplies 
Kew vehicles 
Housekeeping supplies 
Housefurnishings 
Entertainment services 
Medical care commodities 
Shelter 
Housekeeping services 
Entcrtairiment commodities 
Persorial care services 
Alcoholic beverages 
Apparel services 
Allto maintenance and repair 
Food away from home 
h1can of All Iterns I 

39.93 

Average 
Relative 

Importance 
2.26 
3.82 
0.80 
2.27 
0.11 
4.61 
2.71 
1.41 
0.58 
0.67 
3.35 
1.63 
1.92 
3.35 
1.90 
2.30 
1.96 
0.93 
5.20 
3.01 
1.02 
1.86 
0.48 
3.64 
1.37 
4.00 
1.88 
1.01 

25.24 
1.80 
2.37 
0.94 
1.73 
0.92 
1.37 
5.58 

I 

Percent of Sample 
period that a 

portion of the good 
is trimmed 

69.61 
67.13 
59.94 
58.84 
54.97 
54.70 
43.09 
40.33 
37.85 
37.85 
34.81 
33.43 
28.73 
24.59 
23.48 
23.20 
22.65 
20.99 
20.72 
19.06 
19.06 
17.96 
17.96 
17.13 
16.5'7 
16.30 
15.47 
14.92 
12.98 
9.67 
7.46 
7.18 
6.91 
5.25 
3.87 
3.31 
26.89 



Table 5: Frequency That a Component is Trimmed: PPI  40% trim 

" 

PPI Component 
Farm p r o d u c t s  
Fats and oils 
Mea t s ,  poultry,  and fish 
Prepared animal feeds 
Fuels  and re la ted  p roduc t s  a n d  power  
hlletals and metal products 
Hides, skins, leather, and related products 
Lumber and wood products 
Sugar and confectionery 
Electronic computers and computer equipme 
Transportation equipment 
Chemicals and allied products 
Processed  frui ts  and vegetables  
Da i ry  p r o d u c t s  
Ce rea l  and bakery  p r o d u c t s  
Miscellaneous processed foods  
hIisccllaneous Instruments 
Beverages and beverage mater ia l s  
Motor vehicles and equipment 
Miscellaneous products I Electrical machinery and equipment 

I Construction machinery and equipment 
-4gricultural machinery and equipment 
Textile products arid apparel 
Rubber and plastic products 
Pulp, paper, and allied products 
Nonnietallic mineral products 
hliscellaneous machinery 
Special industry machinery and equipment 
Furniture arid household durables 
Gcrieral purpose machiriery and equipment 
Metalworking machiriery and equipment 
AIcan of All Items 
Xlcari of Foocl & Energy 

Average 
Relative 

Importance 
7.47 
0.42 
3.56 
1.22 

12.16 
11.86 
0.81 
2.40 
1.04 
0.65 
8.88 
6.86 
0.75 
1.72 
1.58 
1.15 
0.55 
1.90 
7.01 
3.47 
4.54 
0.74 
0.58 
5.33 
2.56 
6.82 
2.75 
1.73 
1.19 
2.98 
2.06 
1.24 

Percent of Sample 
period that a 

portion of the good 
is trimmed 

98.90 
97.52 
96.97 
96.14 
96.14 . 
92.84 
90.08 
88.98 
87.88 
86.75 
86.78 
86.23 
85.67 
85.40 
83.20 
82.64 
82.09 
81.54 
81.54 
80.72 
78.73 
78.51 
77.41 
77.13 
77.13 
76.03 
74.10 
72.45 
71.35 
70.80 
69.42 
66.39 
83.05 
90.08 I 



type). The results show that we often trim some of the food and energy prices. Indeed, 

for the CPI, food and energy components are trimmed from the efficient estimator nearly 

40% of the time - nearly one and one-half times as frequently as the average component. 

Still, some food and energy goods, notably food away from home, appear to provide an 

efficient signal of core inflation as we define it here. In fact, of the 36 CPI components 
.. 

considered, food away from home was the least likely to be trimmed. Moreover, many 

non-food, non-energy goods appear tq provide little information about the economy's 

inflation trend. Notable among these are used cars and infant and toddler apparel that 

are likely to be trimmed out of the efficient estimator nearly twice as frequently as the 

average good (the average component is trimmed out of the 9% trimmed mean in 27% 

of the months in the sample). 

The components most likely to be included in the calculation of the efficient CPI 

estimator include a wide variety of services and the shelter component which, despite its 

hugh average relative importance of 25.24, is likely to be on one of the trimmed tails of 

the price change distribution only about 13% of the time. 

Similarly for the PPI, food and ener,v goods tend to be trimmed from the efficient 

estimator a disproportionately large share of the time. But some food components, such 

as beverages and beverage materials and miscellaneous processed foods, are trimmed at 

the same frequency as the average component. The least frequently trimmed component, 

metalworking machinery and equipment, i s  still trimmed about two-thirds of the time. 

This is a relatively low proportion when one considers that, for any given month, 80% of 

the price change distribution is trimmed to produce an efficient estimator for PPI core 

inflation. 

Finally, in Figure 12 we plot the ratio of the RMSE of various measures to the RMSE 

of the CPI-U and PPI themselves over different sample periods. For example, for the 

ten-year period ending July 1995, the RMSE for the CPI 'ex food and energy' was 57.8% 

than of the CPI-U itself - about the same as that of the median. But the RMSE of the 

9% trim was 42.5% of the RMSE of the CPI-U. The main result is that, for the CPI, the 

9% trim is always more efficient that the CPI excluding food and energy. But for the 

optimally trimmed PPI and the PPI 'ex food and energy' are very close. 



FIGURE 12: Comparison, of Various Estimators 
Efficiency with Changing Sample 

In this paper we challenge the conventional wisdom that core inflation can be mea- 

sured by simply excluding food and energy horn monthly price data. We show that 

price change distributions are highly leptokurtic, or 'fat,-tailed,' and so commonly used 

measures, such as the sample-mean, are inefficient estimators of the population mean of 

interest. We demonstrate that trimmed-mean estimators significantly improve the effi- 

ciency of inflation estimates. Furthermore! we are able to show that as the kurtosis of 

the distribution increases, efficiency dictates trimming an increasing percentage of the 

sample. 

We proceed to apply these insights to inflation data. For consumer prices beginning 

in 1967, we find that trimming 9% from each tail of the cross-sectional price-change 

distribution produces the minimum root-mean-square error and minimum mean-absolute 

deviation estimate of monthly inflation. This estimator provides efficiency improvements 

on the order of 23 percent relative to the mean. By contrast, the CPI excluding food 

and energy provides virtually no efficiency improvement at all. 

More disaggregated data amplify the difficulties, as the kurtosis of the distributions 



increases. Moving from a dataset composed of 36 components of the CPI to one with 

185 components beginning in 1978, we show that the optimal trim nearly doubles to 

16%. Here we find an efficiency gain of nearly 50 percent (although the sample period 

is substantially shorter). For producer prices beginning in 1947, where price-change 

distributions are more leptokurtic, trimming 40% to 50% from each tail produces the . most efficient estimate of monthly aggregate price movements and improves efficiency by 

over 40 percent relative to the mean. 
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