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Abstract

This paper provides a general equilibrium framework in which the number of working

hours and the employment levels of heterogeneous workers is endogenously

determined. This is done in an environment where production requires coordinating

the work schedules of different worker types, a characteristic I refer to as team

production. In particular, I assume that all workers on a production team must work

the same hours. Output is produced by a large number of teams, where different

teams may operate different numbers of hours. The model economy has two types of

people, who differ in their preferences over leisure and in the labor services they

provide. Firms offer tied wage-hours packages to workers, who choose among these

packages. An interesting aspect of this economy is that wages are not linear in the

number of working hours, although prices are linear over the traded commodities. I

show that an employment tax on high-wage workers has substantially different effects

on the employment and wages of low-wage and high-wage workers when team

production is explicitly modeled compared to a case when it is not.
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1.  Introduction

In evaluating the consequences of many labor market policies and regulations, it

is crucial to understand the effect of these policies on firms' decisions about  working

hours and employment. In particular, policymakers would like to know whether and by

how much firms respond to various policies by adjusting employment levels and/or by

changing hours per worker, how these adjustments vary across workers with different

skills, and how these policies influence wage levels and wage disparities among workers.

 Examples of policies that may affect the hours and employment decisions of firms

include employment subsidies and taxes.

Existing general equilibrium models are poorly suited to evaluate such

consequences of labor market policies.  Virtually all of these models use a neoclassical

production function in which the labor input is simply total hours of each type of labor,

and thus makes no distinction between employment and hours per worker in production.

In this paper, I develop a general equilibrium framework for evaluating labor

market policies which affect firms' decisions about work schedules and employment.  A

key feature of this framework is that the labor services of workers are coordinated in a

specific manner, a characteristic I call team production.  Since labor market policies

typically affect groups of workers differently, modeling the interaction of heterogeneous

workers in production may be important in analyzing the consequences of these policies.

In fact, labor economists have long recognized that team production plays a key

role in firms' decisions about work schedules and employment.  In the Handbook of

Labor Economics (Ashenfelter and Layard, 1986), Sherwin Rosen notes the potential

importance of team production, and characterizes it as follows:

Team production necessarily requires that hours decisions are closely

coordinated among all members, and this cannot be done if each member
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makes a unilateral decision of how many hours to work and how to

distribute them across the working day.8

The goal of this paper is to develop a tractable general equilibrium framework

with team production in which the work schedules, employment, and wages of

heterogeneous workers are endogenously determined.  After presenting the framework, I

illustrate the potential importance of explicitly modeling team production in examining

the consequences of labor market policies using a simple example.

Team production is modeled in the following manner.  Output is produced by a

large number of production teams, each consisting of a group of heterogeneous

workers working with a given amount of capital for a fixed number of hours.  For

simplicity, I assume that hours worked by team members are "perfectly coordinated" in

the sense that all members of that team must work the same hours.  Different teams can

operate different numbers of hours.  The team production function distinguishes

between the stock of workers and machines and the number of hours each stock is

used.  The model economy focuses on firm-level decisions as to how long to operate its

teams, and how many workers of each type to employ.

A crucial aspect of this framework is that working hours are indivisible goods. 

Labor market commodities are differentiated by the type of labor and the number of

working hours.  Firms offer tied wage-hours packages to workers.  Workers decide 

which production team to work on by choosing among the packages offered, and then

must work the hours which that team operates.  People can work on one team at most,

and can randomize over different packages.  An interesting feature of this framework is

that wages are generally not linear in the number of working hours, but prices are

linear over the commodities traded.  This is a result of the commodity space used.

This framework is consistent with a striking feature of work schedules in the

                                      
     8 This use of "team" differs from the meaning developed in Marshak (1954) and
Marshak and Radner (1972).
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U.S. economy that is ignored in standard labor supply theory and in most of the

applied general equilibrium literature:  Most workers are not free to unilaterally

determine their working hours at a given wage rate, but rather they must work the

hours set by their factory or office.9  I conjecture that capturing this feature of reality is

important for understanding the determination of work schedules and employment. 

As a preliminary step in exploring the potential importance of modeling team

production explicitly when analyzing labor market policies, I present an illustrative

policy experiment.  In this example, I examine the consequences of an employment tax

on high-wage workers in two model economies that are identical except for the

specification of the technologies.  The first economy uses individual production, or

teams with one worker, and workers produce independently.  The second economy

uses team production in which high- and low-wage workers must work together.  I find

that modeling team production leads to significantly different predictions for the

consequences of this simple policy.

The model constructed here builds on the work of Hornstein and Prescott

(1993), who developed a general equilibrium construct in which work schedules are

endogenously determined.  In their construct, production is done by homogeneous

workers.  An extension of the Hornstein and Prescott setup that includes heterogeneous

workers is used as a reference point in illustrating the potential importance of team

production in analyzing labor market policies.

In focusing on the role of technology in determining work schedules and

defining the labor market commodities to be tied wage-hours packages, I am building

on the seminal work of Lewis (1969).  Several prominent papers by Rosen (1974,

1977, 1986) further develop these ideas and provide a framework for analyzing market

                                      
     9 This observation has received considerable attention in recent years in the labor
supply literature.  See, for example, Altonji and Paxson (1988,1990), Kahn and Lang
(1991), and Dickens and Lundberg (1993).  In the applied general equilibrium
literature, Rogerson (1988) introduced indivisible labor in which people can only
choose to work an exogenously given number of hours. 
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equilibria where tied wage-hours packages are traded.  Kinoshita (1987) uses the

hedonic framework developed in Rosen (1974) to study the structure of working hours

and wages in a framework where working hours are indivisible goods.  However, none

of these papers provides a general equilibrium framework. 

In focusing on team production, I am following the work of Deardorff and

Stafford (1976), who explore the consequences of a coordination requirement on the

work schedules and wages of heterogeneous workers in a partial equilibrium

framework.  More recently, Weiss (1996) presents a model in which the work

schedules of workers with disparate preferences for leisure may be synchronized when

there are gains to working together.

The present paper is intended as a first step in developing general equilibrium

models useful for addressing the issues outlined above.  I have therefore tried to

develop a tractable framework that captures team production in a simple manner.  In

addressing a specific question one would generally want to modify this structure along

dimensions important for that question.

The remainder of this paper is organized as follows:  Section 2 describes the

team production economy.  Section 3 provides the definition of a competitive

equilibrium and two properties of an equilibrium. Section 4 examines how preferences

and technology interact in this framework to determine work schedules and wages. 

Section 5 presents an illustrative policy experiment demonstrating the potential

importance of team production in policy analysis.  Section 6 contains some concluding

remarks.

2.  The Team Production Economy

The team production economy has one period and is populated by a continuum

of people with measure 1.  There are two types of people with measure λ1 and λ2

respectively, where λ1 + λ2 = 1.  Each person has a time endowment of 1 each period
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that can be allocated to either work, h, or leisure, l=1-h.  Type 1 and type 2 people

are endowed with k1 and k2 units of capital respectively.  People types are distinguished

by the following properties.  First, type 1 and type 2 labor services are different

factors of production.  Second, types may have different preferences over leisure.

A useful starting point when laying out the model economy is to describe the

team production technology and show that this technology gives rise to an aggregate

production possibility set which is a convex cone, a standard feature of general

equilibrium analysis.  In deriving the production possibility set, it is first necessary to

define an aggregate team production function and describe the commodity space used.

A.  Team Production Function 

 There are two types of workers in the economy, type 1 and type 2.  A

production team is a group of d1 type 1 workers and d2 type 2 workers, working h

hours with k units of capital.  Thus, a production team type can be characterized by a

four-tuple (h,k,d1,d2).  The output of a type (h,k,d1,d2) production team is given by the

team production function

(1) f(h,k,d1,d2) = h  kθk d1
θ1 d2

θ2 if d1  ∈ [0,N]

h  kθk  Nθ1 d2
θ2 if d1  >  N,

where θk+θ1+θ2 > 1, θk+θ2 < 1, and θk,θ1,θ2 > 0.  Restricting the number of type

1 workers that are productive on a team is a convenient way of assuring that there will

be an optimal team type or types in equilibrium.
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The output of a team is proportional to how long the team operates.10  Given the

assumption on the productivity of type 1 workers, there are decreasing returns to

additional workers and machines above some level, which is assumed to be small

relative to the size of the economy.   I refer to teams operating h hours as having a

workweek of length h.  Notice that the utilization of the capital stock varies with how

long a team operates.  I assume that each unit of capital can be used by only one team

of workers.

Each worker on a team must work the hours that the team operates.  Different

teams may operate different number of hours.  The formation of teams is costless to

firms. Parameters are chosen so that teams are small relative to the size of the

economy.  Although the team technology may appear to introduce a nonconvexity in

the aggregate production possibility set, we will see that, as in standard neoclassical

models, this set is a convex cone.   However, unlike typical neoclassical models, it

cannot be characterized by a neoclassical aggregate production function with capital

and aggregate hours of each of the labor types as inputs.

B.  Aggregate Team Production Function 

Next, I derive an aggregate team production function for teams operating h

hours.  This function gives the maximum output given K units of capital, D1 type 1

workers, and D2 type 2 workers if all teams must operate h hours.  The specification of

the team production function implies that, for a given h, output will be maximized by

having only one team type operating, with that team type having d1 equal to N.   Thus,

output is maximized by having a measure M equal to D1/N of team production types

(h,K/M,N,D2/M) operating.   A little algebra produces the aggregate team production

                                      
     10 The technology could be written more generally to include features such as a
fixed set-up time for operating and the possibility of decreasing returns in the number
of hours a team is operated.  One example drawn from the labor demand literature has
y =  (h-s)ε f(k,d1,d2)  for h≥s≥0, where s is the set-up time per worker and 0<ε≤1.
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function for teams operating h hours:

(2) F(h,K,D1,D2) = A h Kθ
k D-θk-θ2 D2,

where A = N-(1-θk-θ1-θ2).

It will be convenient to define an aggregate production team as a group of D1

type 1 workers and D2 type 2 workers, each working h hours, and K total units of

capital, with workers and capital assigned to production teams so that total output is

maximized, as given by (2).  As with a production team, an aggregate production team

type can be characterized by a four-tuple (h,K,D1,D2).

C.  Traded Commodities 

Before defining the aggregate production possibility set, we must specify the

commodities that are traded and priced in this economy.  The key feature of the

commodity space is that workweeks of different lengths and types are different

commodities.  Thus, there is a continuum of different labor inputs of each type.11 

Introducing workweeks of different lengths as different commodities creates an

indivisibility.  People cannot work 2/3 of a 40-hour workweek and 1/3 of a 30-hour

workweek.  An analytically useful strategy for working with economies that have

indivisibilities is to allow people to randomize over workweeks of different lengths

using lotteries (following Prescott and Townsend [1984] and Rogerson [1988]).  With

the introduction of lotteries, people can work a 40-hour workweek with probability 2/3

and a 30-hour workweek with probability 1/3.

The set of feasible workweek lengths is denoted by H, where H⊂[0,1].  The

exposition of the model economy is simplified by assuming that there is a large but

                                      
     11 Rosen (1974) works with an economy that has a continuum of differentiated
products.  Mas-Colell (1975) introduced this feature into general equilibrium theory.
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finite number of possible workweek lengths.  For this case, H ≡ {h1,h2,..., hNh}, with 

h1=0, and hNh=1.  Type 1 people have access to lotteries over type 1 labor workweeks

of lengths h∈H, and type 2 people have access to lotteries over type 2 labor

workweeks.  People can only supply workweeks of their own type, and may work on

only one team.  A person cannot work a 20-hour workweek with one team and a 30-

hour workweek with a second team, but can choose to work on a team working 50

hours.

The commodity space, denoted by L, is R2 x M(H) x M(H), where M(H)

denotes the set of signed measures on the Borel sigma algebra of H.  An element of L

is given by (c,k,n1,n2), where c is the consumption good, k is the services of the capital

stock, n1 is a measure over type 1 labor workweeks, and n2 is a measure over type 2

labor workweeks.  One unit of capital produces one unit of capital services.  When H

is a finite set, n1 is a vector and n1(h) is the measure of type 1 workweeks of length h. 

Similarly, n2 is a vector and n2(h) is the measure of type 2 workweeks of length h.

D.  Aggregate Production Possibility Set 

Before defining the aggregate production possibility set, I first define an

aggregate production plan.  Let J denote the set of feasible aggregate production team

types, so that J⊂R.  Again for expositional clarity assume that J is a finite set, so that

we can index possible aggregate team types by j = {1,2,...,NJ}, where NJ is the

number of possible aggregate team types.  Next, let mj denote the measure of aggregate

teams of type j operated, where mj≥0.  An aggregate production plan is a vector of NJ

numbers, {m1,m2,...,mNJ}, that describes how the aggregate inputs are distributed

across teams of different types.  The aggregate production possibility set, Y, is defined

as follows.

Y ≡ { {C,K,N1,N2} :  there exists a production plan m∈RJ  such that
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C ≤  Σj mj A hj Kj
θ

k D1j
1-θk-θ2 D2j

θ
2

Σj mj Kj ≤  K

Σ{j: hj=h} mj D1j ≤ N1(h)        all h ∈ H

Σ{j: hj=h} mj D2j ≤ N2(h)        all h ∈ H. }.

The first constraint says that the total amount of the consumption good is less than or

equal to the total output produced by all team types.  The second constraint states that

the capital allocated across all team types is less than or equal to the total capital

available.  The third and fourth constraints state that the amount of type 1 (type 2)

workweeks of length h allocated across all team types is less than or equal to the total

amount of type 1 (type 2) workweeks of length h available.  It is immediate that Y is a

convex cone.  As with models with neoclassical aggregate production functions, the

number of firms is indeterminate.  Thus, for convenience, we may act as if there is one

firm.

E.  Preferences

The specification of this economy is completed by presenting people's

preference ordering and their feasible consumption bundles.  The utility of a type i

person, i ∈ {1,2}, choosing the commodity point x=(c,k,n1,n2) is given by 

(3) Ui(x)  ≡  u(c) - Σh ni(h) vi(h) ,

where vi: R+ → R+  and u: R+ → R, vi(0) = 0, and lim c→0 u′(c) = ∞.  Notice that Σh

ni(h) vi(h) is the expected disutility of working for type i.

The consumption possibility set of a type i person is given by

(4) Xi(ki) ≡ { (c,k,n1,n2) : k≤ki, Σh∈H ni(h)=1, ni(h)≥0 and nj(h)=0 all h∈H, j≠i   
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c≥0, k≥0 },

where ki is type i's capital stock endowment.  The consumption possibility set of a type

i person, Xi(ki), contains the following conditions: capital services are restricted by the

capital stock endowment; ni is a probability measure; type i people cannot work a type

j workweek for j≠i; and the standard nonnegativity constraints apply.

3.  Competitive Equilibrium

Next, I describe the decision problems faced by the firm and by individuals in

this economy, provide the definition of a competitive equilibrium, and establish some

equilibrium properties.  The commodities traded are given by x = (c,k,n1,n2).  Prices

are in terms of the consumption good.  The rental price of capital is given by r.  Next,

w1 and w2 are pricing functions mapping signed measures into R+.  With a finite set of

possible workweeks, w1 is a vector of prices, where w1(h) is the price of a type 1

workweek of length h.  That is, if a type 1 person works a type 1 workweek of length

h with probability one, then that worker receives w1(h) units of the consumption good.

 Similarly, w2 is a vector of prices for type 2 workweeks.  

A.  The Firm's Decision Problem

The firm in this economy rents capital, employs type 1 and type 2 workers to

work weeks of various lengths, and decides how to allocate these resources across

teams of different types.  In hiring type 1 workers, the firm buys lottery contracts from

type 1 people.  These lottery contracts specify the probability of working type 1

workweeks of different lengths, possibly including a workweek of length 0. The firm

then uses a randomizing technology to determine which workweek each type 1 person

will work.  However, the firm, which sells a large number of contracts, faces no
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uncertainty as to the number of type 1 workers who will work different workweek

lengths.  The hiring of type 2 workers occurs in the same fashion.  One interpretation

of this contract is that the firm is providing full insurance to workers against the

uncertainty of the length of their weekly hours.

Given prices (r,w1,w2), the firm solves the following optimization problem:

(5) max  C  -  r K  -  Σh w1(h) N1(h)  -  Σh w2(h) N2(h)

subject to

(6) (C,K,N1,N2) ∈ Y,

where N1(h) and N2(h) are the total number (or, more precisely, measure) of type 1

and type 2 workweeks of length h.

B.  Individuals' Decision Problems

Individuals in this economy purchase the consumption good and sell capital and

labor services to firms.  In selling labor services, an individual sells a lottery contract

that specifies the probability of working different workweek lengths.  The amount an

individual receives for a given lottery contract does not depend on the lottery's

outcome, that is, on the length of the workweek the individual works ex post.12

A type i person, i ∈ {1,2}, solves the problem

                                      
          12 Several decentralizations have been put forth.  Hansen (1985) shows that
equilibria with lotteries are equivalent to equilibria in which people are paid according
to the workweek actually worked as determined by the lottery, but where people have
access to actuarially fair insurance.  Shell and Wright (1993) reinterpret equilibria with
lotteries as Arrow-Debreu equilibria without lotteries when sunspots are introduced. 
Cole and Prescott (1994) employ an economy with gambles and deterministic
exchanges as a decentralization.  
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(7) max {  u(c)  -  Σh ni(h) vi(h)  }

subject to

(8) (c,k,n1,n2) ∈ Xi(ki) 

(9) c  ≤  r k + Σh wi(h) ni(h).

C.  Definition of Equilibrium

A competitive equilibrium for the model economy is an allocation (x1
*, x2

*, y*)

and a price system (r, w1, w2) such that

i) xi
* maximizes Ui(x) subject to x ∈ Xi(ki), and the budget constraint (9),

i∈{1,2}

ii) y* maximizes (3) subject to y ∈ Y, and

iii) λ1x1
* + λ2x2

* = y*.

 I restrict my attention to anonymous equilibrium allocations having the property that

all people of the same type choose the same commodity point.13  This does not imply

that all people of the same type work the same workweek length, since the allocation

will generally involve randomizing over different workweek lengths.

When the set of feasible workweeks H is finite, the commodity space is finite

dimensional and it is straightforward to show that the first and second welfare theorems

hold, and that there exists an equilibrium.14  Therefore, we can study the properties of

the anonymous Pareto optima of this economy to establish properties of competitive

equilibrium allocations.

                                      
          13 See Hornstein and Prescott (1993) or Cole and Prescott (1994) for a discussion
of this restriction.

          14 See Stokey and Lucas (1989).
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The set of anonymous Pareto optima is the closure of the set of solutions to the

weighted social planner's problems with positive weights.  The Ψ-weighted social

planner's problem, where 0 < Ψ < 1, is to maximize

(10) Ψ λ1 U1(x1)  +  (1-Ψ) λ2 U2(x2)

subject to x1 ∈ X1(K),  x2 ∈ X2(K), y ∈ Y, and λ1x1 + λ2x2 = y.  A solution to this

problem exists, given that the Ui functions are continuous and the constraint set is

compact.15

The characteristics of Pareto optimal allocations can be derived by analyzing a

much simpler equivalent problem.  For this problem, we no longer distinguish between

the organization of production (m) and the supply of work schedules (ni).  Let the event

j now be characterized by a triplet (h,k,d), where an event is interpreted as an

aggregate team working h hours with k units of capital per type 1 worker and d type 2

workers per type 1 worker.  Assume there is a finite number of possible (h,k,d) triplets

indexed by j.  The set of Pareto optimal allocations comprises the solutions to the

following  problem:

(11) maxc1,c2,m≥0   Ψ λ1  {u(c1)  - Σj mj v1(hj)}   +   (1-Ψ) λ2 {u(c2)  - Σj mj dj v2(hj)}

(12)  λ1c1 + λ2c2 ≤  Σj mj A hj kj
θ

k dj
θ

2

(13) Σj mj kj ≤  K

(14) Σj mj = λ1

(15) Σj mj dj = λ2.

                                      
          15 The consumption possibility set can be made compact by specifying an upper
bound on consumption that is greater than the maximum possible output.
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The solution to this problem has the same measure of each person type working h

hours on teams with k units of capital per type 1 worker and d type 2 workers per type

1 worker, and the same c1 and c2 as the solution to the original problem has.

The following proposition states that any Pareto optimal allocation, and hence

any equilibrium allocation, will have people working at most four different workweek

lengths.  The remaining workweek lengths will not be traded.

PROPOSITION 1.  For any Ψ ∈ (0, 1), the solution to maximizing (11) subject to

(12) - (15) is unique and the number of triplets (h,k,d) receiving strictly positive mass is

less than or equal to 4.16

Proof.   First, define W(c1,c2) as the solution to maximizing (11) with respect to m,

given c1 and c2.  Results from linear programming guarantee that the solution is unique

and places strictly positive mass on 4 points at most.  Furthermore, W(c1,c2) is a

concave function.  Next, solve maxc1,c2≥0 Ψ λ1 u(c1) + (1-Ψ) λ2 u(c2) + W(c1,c2),

which is a strictly concave function and, given that there is an upper bound on total

consumption given by feasibility, has a unique solution.  o

For each initial distribution of capital, the next proposition guarantees that the

equilibrium allocation will be unique.

PROPOSITION 2.  Given an initial capital distribution (k1,k2), there is a unique

competitive equilibrium allocation.

Proof.  Since the First Welfare Theorem holds for this economy, a competitive

                                      
          16 This proposition holds so long as the matrix defined by the coefficients in
equations (12) - (15) satisfies a rank condition.
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equilibrium allocation solves the Pareto problem for some weight Ψ.  For each Ψ there

is a unique allocation x1(Ψ), x2(Ψ) that solves the Pareto problem and a unique initial

capital allocation k1(Ψ), k2(Ψ) that corresponds to a competitive equilibrium without

transfers.  Given total capital K ≡  λ1k1 + λ2k2, it can be shown that k1(Ψ) is a strictly

increasing function of Ψ.  This implies that there is at most one weight Ψ for which (k1

,k2) is a competitive equilibrium without transfers, and the unique solution to this

Pareto problem is the unique equilibrium allocation. o

When the set of feasible workweeks H is no longer a finite set but instead is the

interval from 0 to 1, and the set of feasible aggregate plant types J is a rectangular

subset of R, then the summations in the various optimization problems are replaced by

integrals over measures.  In this case, the commodity space is infinite dimensional and

the Second Welfare Theorem is much more difficult to prove.  However, this theorem

has been proved for economies with similar constructs to that of the economy presented

here, and I conjecture that propositions 1 and 2 continue to hold for this limiting

economy.17  For the remainder of this paper, I assume that there is a continuum of

feasible workweek lengths, H≡[0,1], and the set of feasible aggregate production team

types, J, is a rectangle in R4.

4.  Determination of Work Schedules

In this section, I examine more closely how the team technology and

individuals' preferences interact to determine work schedules, wages, and employment

in this environment.  It is useful to begin by looking at the firm's problem in more

detail.  Necessary conditions for a solution to the firm's optimization problem are

                                      
          17 See Cole and Prescott (1994) and Rios-Rull and Prescott (1991) for a full
discussion of equilibrium existence and welfare theorems in similar economies.
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(16) A hj Kj
θ

k D1j
1-θk-θ2 D2j

θ
2 - rKj - w1(hj) D1j - w2(hj) D2j      ≤  0  

for all team types j∈J,

=  0    for all types j with mj > 0.

These conditions state that no aggregate team type earns strictly positive profits in

equilibrium, and the aggregate team types that are operated generate zero profit.  Since

the left-hand side of (16) is homogeneous of degree zero in (K,D1,D2), only the ratios

K/D1 and D2/D1 are determined for aggregate production team types with zero profit in

equilibrium.18

Next, define the profit function

(17) ππ(h,K,D2;p)  =  A h Kθ
k D2

θ
2  -  r K  -  w1(h)  -  w2(h) D2,

where p ≡ (r,w1,w2).  Any aggregate team type (h*,K*,D1
*,D2

*) that is operated in

equilibrium must satisfy

(18) {h*,K*/D1
*,D2

*/D1
*}  ∈  argmax ππ(h,K,D2;p)   s.t  h≤1 and nonnegativity.

A marginal condition for an equilibrium workweek length, assuming an interior

solution, is given by setting the derivative of the profit function ππ(h,K,D2;p) with

respect to h equal to zero, which is written

(19)   A Kθ
kD2

θ
2   =   w(h)  +  w(h) D2,

                                      
          18 Recall that for a given h and output level there is a unique production team
type that is operated in equilibrium.
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where w(h) and w(h) denote the derivatives of w1(h) and w2(h) with respect to h. 

Equation (19) states that, at an interior equilibrium workweek h, the additional output

from increasing h must equal the increase in wage payments.  It is clear that the shape

of the wage functions is critical in determining the workweek lengths operated in

equilibrium.

Notice that conditional on h, ππ(h,⋅,⋅ ;p) is a strictly concave function in K and

D2.  The solution to the problem of maximizing ππ(h,K,D2;p) by choice of K and D2 is

uniquely solved by

(20) K*(h;p)   =   Bk r-(1-θ2)/θ1 h1/θ1 w2(h)-θ2/θ1 ,

(21) D2
*(h;p)  =   Bd r-(θk)/θ1 h1/θ1 w2(h)(θk-1)/θ1 ,

where Bk and Bd are positive constants that depend on θ2 and θk, and θ1 = 1-θk-θ2. 

Substituting (20) and (21) into (17), we can define the implicit profit function by

(22) Π(h;p)  ≡  ππ[h,K*(h;p),D2
*(h;p);p]  =  B r-θk/θ1 h1/θ1 w2(h)-θ2/θ1  -  w1(h),

where B is a positive constant that depends on θ2 and θk.  This function returns the

profit the firm can earn at each workweek length if it chooses to employ one type 1

worker.  The problem of the firm then boils down to finding an h that maximizes

Π(h;p), given prices.

The next step is to characterize the shape of the equilibrium wage schedules. 

Not surprisingly, individuals' preferences over workweeks determine the shape of the

wage schedules.  Necessary conditions for a solution to individuals' maximization

problems are

(23) ωivi (h)  + υi ≥  wi (h) for all h ∈ H,
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  =   wi(h) if ni(h) > 0, and

(24) υi ni(0)  =  0,

where ωi is the inverse of the marginal utility of consumption, and υi is the multiplier

on the constraint that an individual cannot place more than one unit of probability

across workweek lengths.  The multiplier υi is nonnegative and equals zero if type i

people place positive weight on working a workweek of length 0.  That is, υi is zero if

type i people are not all working in equilibrium.  The conditions in (23) hold with

equality if a lottery contract is traded that has a strictly positive probability of working

a type i workweek of length h.

An interesting feature of this framework is that some workweek lengths are not

traded in equilibrium.  The equilibrium prices for these workweek lengths are typically

not uniquely determined.  However, since ωi and υi are determined in equilibrium, the

left-hand side of the equations in (23) provide an upper bound for these equilibrium

prices.  For a given workweek length, this upper bound gives the wage at which people

are just indifferent to supplying, or not supplying, that workweek length.  These upper

bounds can be interpreted as the supply reservation wages of workweeks of different

lengths, which are defined as

(25) w(h;ω1
*,υ1

*)  = ω1
*v1(h)  + υ1

*,

w(h;ω2
*,υ2

*)  = ω2
*v2(h)  + υ2

*, for all h ∈ H,

where ω1
*, ω2

*, υ1
*, and υ2

* are equilibrium values.19  A useful procedure for selecting

                                      
          19 These supply reservation wages correspond to what Lewis (1969) refers to as
"employee equalizing wage curves," and what Rosen (1986) terms "worker
indifference curves."  One can also define demand reservation wages that correspond
to "labor demand" curves, and then derive the equilibrium tangency conditions that are
central to the definitions of equilibrium used in these papers.  The advantage of the
current setup is that the prices are linear over the commodities traded and the tools of
general equilibrium theory can be applied.
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equilibrium prices for workweeks not traded in equilibrium is to set these prices using

the equations in (25).

Supply reservation wages are the wages the firm must pay to attract workers at

various workweek lengths.   These wage functions can be substituted into the profit

functions (17) and (22) to gain insight into the equilibrium work schedules and

employment rates that arise in this model under different assumptions for preferences

over leisure.  This is now done for a particular example.

A.  An Example  

In this subsection I present an example and determine the nature of the

equilibrium work schedules and employment for different parameter choices.  First, let

preferences over workweek lengths be given by

(26) v1(h)  =  γ1 hα
1,

v2(h)  =  γ2 hα
2, 

where  γ1>0, γ2.>0, α1≥1, and α2≥1.  The disutility of a workweek of length h for

each type is an increasing, convex function of h.  The parameters α1 and α2 can be

interpreted as risk aversion parameters that determine how averse people are to

randomizing over workweeks of different lengths.  Loosely speaking, the larger the

value of α the greater is the loss in utility from randomizing.

Next, I characterize the equilibrium workweek lengths and employment rates

for various assumptions on the preference parameters.  Since we are ultimately

interested in equilibria with less than full employment, for the sake of simplicity I

restrict my attention to the subset of the parameter space, call it Θ, for which there

exists an equilibrium in which there is a strictly positive measure of type 2 people not

employed (that is, n2(0)>0).  The propositions given in this subsection apply for the
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parameters in the set Θ.  Since this example is simply intended to provide insight into

the workings of the model, the size of this set is unimportant.

The functional forms of the supply reservation wages are

 (27) w(h;ω1,υ1)   =   ω1γ1hα
1 + υ1,

w(h;ω2,υ2)   =   ω2γ2hα
2 + υ2,

where υ2 is zero in equilibrium for parameters in the set Θ.

The following proposition and corollary guarantee that there is a unique

workweek length.

PROPOSITION 3.   Π′(h;p) equals zero for at most one h∈(0,1).

Proof.  This proposition is proved by substituting the supply reservation wages (27)

into the profit function (22) and differentiating with respect to h.  It is then easy to

show that, for any ω1, ω2, and υ1, there is at most one h that sets this derivative to

zero.  o

COROLLARY 1.  There is a unique, strictly positive workweek length h at which all

production teams operate.

This corollary follows immediately from proposition 3, the continuity of the profit

function Π(⋅ ;p), and the zero-profit equilibrium condition.

The next two propositions provide insight into how the equilibrium workweek

length and employment vary with the risk aversion parameters. 
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PROPOSITION 4.  If  α1 = 1 and α2 = 1, then only production team types with h = 1

operate in equilibrium.

Proof. This proposition is proved by substituting the supply reservation wages (27) into

the profit function (17).  The proof is by contradiction.  Suppose some aggregate team

type with 0<h<1 earned zero profits.  Then increasing h would result in strictly

positive profits, since output increases proportionally with h while wage payments go

up at most proportionally, and rental payments to capital are unchanged.   Since no

aggregate team type earns strictly positive profits in equilibrium, this is a contradiction.

 o

The intuition behind this result is straightforward.  First, note that a property of

the aggregate production team function (2) is that for a given amount of total type 1

hours and type 2 hours, output is greatest when h is set to 1.20  With linear preferences

over workweek lengths, people care only about their expected hours of work.  Since

output is increased by setting h higher and using fewer workers, and workers suffer no

loss in utility from randomization, the workweek is set to 1 in equilibrium.  The proof

of this proposition shows that wages cannot be proportional to workweek length if

there is to be an equilibrium workweek length less than 1.

PROPOSITION 5.  If αi≥1/θi, then ni(h) = 1 at the equilibrium h, i∈{1,2}.

Proof.   The strategy of this proof is again to substitute (27) into (22).  The proof is by

contradiction.  Suppose αi≥1/θi and ni(h)<1.  It is then easy to show that the derivative

                                      
          20 It is easy to show that the problem of choosing h, D1,and D2 to maximize
F(h,K,D1,D2) subject to h*D1=H1 and h*D2=H2 given K is solved by h=1, D1=H1,
and D2=H2.  This property need not hold if we assume that output increases less than
proportionally with hours, due to factors like worker fatigue or boredom.  See footnote
4 for one possible specification.



22

of the profit function with respect to h is strictly negative for all positive h.  This

implies strictly negative profits for all strictly positive workweek lengths, and hence no

production.  But there must be positive production in equilibrium, given the assumption

on the preferences over consumption.  o

This proposition says that if people are sufficiently averse to randomizing over

workweek lengths, then no randomization occurs for that type in equilibrium.

To illustrate the possible shapes of the equilibrium profit function Π(⋅ ;p), I

compute the equilibria of two model economies.  The first economy has both α1  and

α2 set to 1, so that proposition 4 applies.   The second economy is identical except that

α1 is set to 2, so that proposition 5 applies (in both economies 1/θ1=2).  The parameter

values of these economies are given in table 1, along with the equilibrium employment

rates and workweek length for each economy.  Figure 1 shows the equilibrium implicit

profit functions for the two economies when equilibrium wage rates are set to the

supply reservation wages defined in (30).  

The example in this subsection illustrates that the crucial elements determining

equilibrium workweek length(s) in this framework are the tensions between risk-averse

people who may have different preferences over work and a technology in which

heterogeneous workers must work in teams and in which the distinction between hours

per worker and number of workers is important for productivity.  While this

specification of preferences is useful as an example, the following proposition shows

why it is less useful for applied work.

PROPOSITION 6.  Either n1(0) = 0 or h = 1 in equilibrium.

Proof.  The proof is by contradiction.  Suppose that n1(0)>0 and h<1 in equilibrium.

 Proposition 3, the continuity of the profit function Π(⋅;p), and the zero profit

equilibrium condition imply that only at the equilibrium h does Π′(h;p) equal zero. 
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This implies that Π(0;p) is less than zero, which in turn implies that ν1 > 0, or

equivalently, that n1(0) = 0, a contradiction.  o

Recall that in this section I am only considering economies in which some type 2

people are not employed.  This proposition states that for such economies either all

type 1 workers are employed or the equilibrium workweek length is one.  Since

ultimately we are likely to be interested in economies with less than full employment of

both types and with workweek lengths less than one in equilibrium, I consider a

different specification of preferences in the next section.

5.  A Simple Policy Experiment

As a preliminary step in exploring the potential importance of team production

in analyzing labor market policies, I present an illustrative policy experiment that

addresses a basic question:  Can modeling team production explicitly have important

implications for analyzing labor market policies and regulations in which firm-level

decisions about the work schedules and employment of heterogeneous workers play a

crucial role?

To investigate this question I examine the consequences of an employment tax

on high-wage workers in two model economies that are identical except for the

specification of the technologies.  The first economy uses individual production (teams

with one worker).  Workers with different wages produce independently.  The second

economy uses team production in which workers with different wages must work

together.

The experiment is organized as follows:  I first select parameter values so that

the equilibrium of each economy reproduces a common set of observations that are

roughly drawn from U.S. data.  I then compare the implications of imposing a per

person tax on the employment of high-wage workers for the work schedules, wages,
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and employment of both high-wage and low-wage workers in the two economies.

  The functional forms for preferences used in both economies are

(28) u1(c) =  u2(c) = log(c), and

(29) vi(h) =  - γi [ (1-h)σ - 1 ] / σ for σi ≠ 0

=  - γi log(1-h) for σi = 0 i∈{1,2},

where γi ≥ 0  for i∈{1,2} and σ<1.  Preferences for type 1 and type 2 people differ

only in the parameters γ1 and γ2.  This specification of vi(h) guarantees interior

solutions for equilibrium workweek lengths, since v(h) → ∞ as h → 1.

In both economies the firm solves the following optimization problem:

(30) max  C  -  r K  -  Σh {w1(h)+χ1} N1(h)  -  Σh w2(h) N2(h)

subject to

(31) (C,K,N1,N2) ∈ Y,

where χ1 is the employment tax on type 1 workers, who are parameterized to be the

high-wage workers in equilibrium.  Tax revenues are thrown into the ocean.  The

difference between the two economies is the specification of the production set Y.  For

the team production economy this set was defined in section 2.  For the individual

production economy this set will be defined below.

A.  Team Production Economy 

The team production economy is the economy described in sections 2 and 3,

except that there is a continuum of workweek lengths between 0 and 1 and the set J of

feasible aggregate production team types is a rectangle in R4.  For the parameter values

used in this experiment, the equilibrium of the team production economy has all teams
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operating the same workweek length.  This is true even when employment tax rates are

different for the two types.

B.  Individual Production Economy 

The individual production economy is similar to the economy presented in

Hornstein and Prescott (1993), but extended to include heterogeneous workers. 

Production in this economy is done by individuals (teams with one worker), working

independently.  A type i person working h hours with k units of capital produces

(32) yi   =  Ai h kθ
k

units of output.21

  When there is a finite number of possible hours-capital pairs given by the set

J, where J⊂R, the aggregate production possibility set is derived in the manner

described in section 2.  Let m denote the measure of type i individuals, i∈{1,2},

working hj hours with kj units of capital, j∈J.  An aggregate production plan is a pair

of measures, m1 and m2.  The aggregate production possibility set for the individual

production economy is given by

Y  ≡ { {C,K,N1,N2} :  there exists a production plan m1, m2 such that

C ≤  Σj m A1 hj kj
θ

k  +  Σj m A2 hj kj
θ

k

Σj (m+m) kj ≤  K

Σ{j: hj=h} m ≤ N1(h) all h ∈ H

                                      
          21  This economy is equivalent to the team production economy where type 1 and
type 2 workers are assumed to be perfect substitutes, that is, where output is  y =  h
Kθ

k [ (A1D1)ρ +  (A2D2)ρ ](1-θk)/ρ, and ρ = 1.
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Σ{j: hj=h} m ≤ N2(h) all h ∈ H }.

For the individual production economy used in this section, there is a continuum of

feasible workweek lengths; the set of feasible hours-capital pairs J is a rectangular

subset of R.

All other aspects of the individual production economy are the same as in the

team production economy.  A key property of an equilibrium of the individual

production economy is given in the following proposition.  

PROPOSITION 7.  An equilibrium of the individual production economy has type 1

people placing mass only on workweek lengths 0 and h1, and type 2 people placing

mass only on workweek lengths 0 and h2.

Proof.  The proof of this proposition is a simple extension of the proof provided in

Hornstein and Prescott (1993).  o

The next step is to choose parameter values for both economies.

C.  Parameter Selection

The parameter values are selected so that the equilibria of the two model

economies without taxes are identical.  Each economy has nine parameters, chosen so

that type 1 people have higher wages and a higher employment rate than type 2 people.

 The percentage of the population that is type 1 is set to 20 percent.  The capital

endowments are chosen so that the ratio of the endowments is equal to the ratio of the

equilibrium labor incomes, and are normalized so that total capital is 1.  The

parameters γ1 and γ2 are chosen so that the employment-population ratio of type 1

people is .9, and the total employment-population ratio is .75.  The parameter σ is
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selected so that the hours per worker of both type 1 and type 2 workers is .40. 

Assuming there are 100 hours in a week that are not allocated to sleep and personal

care, this corresponds to a 40 hour workweek.  Finally, θk is chosen so that capital's

share of income is .36.

The remaining parameters are (A,θ1) for the team production economy and

(A1,A2) for the individual production economy.  These parameters are selected so that

the hourly wage rate of type 1 workers is 2 times the hourly wage rate of type 2

workers, and so that total output is 1.  The parameter values for both economies are

given in table 2.
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D.  Results

This section reports the consequences of introducing a tax on the employment of

high-wage workers in an economy with individual production and in an economy with

team production.  In each model economy, this tax is chosen to be 1 percent of the

equilibrium weekly wage rate of the type 1 workers in that economy without taxes. 

Table 3 reports how the equilibrium employment, hours, and wages are affected by the

employment tax in the two economies.

The first column in table 3 provides equilibrium prices and quantities in the two

economies without taxes.  Recall that the parameters were chosen so that these

equilibria are the same.  The second and third columns report the percent change in the

equilibrium prices and quantities in the individual and team production economies,

respectively, when the employment tax is imposed.

For the individual production economy the tax on type 1 workers has,

qualitatively, the expected effect on employment and hours of type 1 workers.  That is,

the firm hires fewer type 1 workers to work longer hours.  The 1 percent tax on type 1

workers results in a decline in their employment rate of 3 percent.  Perhaps

surprisingly, the hourly wage rate is unchanged.  The depressing effect of the tax on

type 1 wage rates is offset by the fact that type 1 workers are now relatively more

scarce and are working longer hours, both of which suggest higher hourly wage rates. 

The tax has very little effect on the  employment, hours, and wages of type 2 workers.

The consequences of the employment tax on type 1 workers in the team

production economy are quite different.  While the qualitative effect on employment

and hours of type 1 workers is the same, the employment rate of type 1 people falls by

only 1.4 percent, while the workweek increases by less than half the increase in the

individual production economy.  The hourly wage rate of type 1 workers now falls by

0.4 percent.  Type 2 people are no longer unaffected by the employment tax on type 1

workers when there is team production.  The firm hires 1.0 percent fewer type 2

workers to work the longer workweek.  However, the hourly wage rate of the type 2
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workers increases by 0.3 percent.

To summarize, the effect of a 1 percent employment tax on type 1 workers is

quite different in the model with team production, relative to the model where workers

produce independently.  In the individual production economy, the decline in

employment falls exclusively on type 1 workers, and hourly wage rates are essentially

unchanged.  In the model with team production, however, the decline in employment is

felt by both types, while the hourly wage rate disparity between the two types narrows

by 0.7 percent.  The hourly wage rate of type 2 workers actually increases in the

model with team production.

6.  Concluding Remarks

The objective of this paper has been to incorporate team production into a

tractable general equilibrium framework.  The structure of equilibrium work schedules,

wages, and employment was explored for a specific example, and an illustrative policy

experiment suggested that modeling team production can be important when analyzing

labor market policies that affect firm-level decisions about the work schedules and

employment of heterogeneous workers.

A potential advantage of this framework for the quantitative analysis of labor

market policies is that the technology is specified closer to the establishment level than

in models that use an aggregate production function.  Modeling the interaction between

hours and employment at the establishment level may be crucial when analyzing certain

policies.  Furthermore, an abundance of data collected at the establishment level and

microeconomic studies that use this data are available to guide the specification of the

functional forms and to assign parameter values.

As I noted in the introduction, the model presented here captures team

production in a simple and stark manner.  Furthermore, potentially important

considerations such as various fixed costs of employment, for example commuting time
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and set-up costs, have been abstracted from.  Addressing specific policy questions will

generally require extending this framework along such dimensions, which is a task for

future work.
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TABLE 1

PARAMETER VALUES FOR EXAMPLES

Economy 1:  α1 = 1
Economy 2:  α1 = 2

Both Economies
α2=   1.000
λ1=   0.500
k1=   1.000
k2=   1.000
γ1=   2.308
γ2=   1.852
θk=   0.350
θ2=   0.150
A=   1.000

EQUILIBRIUM WORKWEEKS  AND EMPLOYMENT

Economy 1: α1=1 Economy 2: α1=2

Workweek (h) 1.0 0.583
Employment Rates

Type 1 (n1) 0.4 1.000
Type 2 (n2) 0.2 0.343
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TABLE 2

PARAMETER VALUES FOR TWO ECONOMIES

PARAMETER TEAM PRODUCTION INDIVIDUAL PROD.
PRODUCTION       ECONOMY       ECONOMY

λ1  0.2000  0.2000

k1  1.9355  1.9355

k2  0.7661  0.7661

σ -0.7273 -0.7273

γ1  1.1495  1.1495

γ2  1.4519  1.4519

θk  0.3600  0.3600
---------------------------------------------------------------------------------------------------------
-- θ1  0.2477  n.a.22

A  4.7665  n.a.

A1  n.a.  4.0810

A2  n.a.  2.6189

                                      
     22 not applicable
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TABLE 3

EFFECT OF A 1 PERCENT EMPLOYMENT TAX ON TYPE 1 WORKERS

Effect of Employment Tax on Type 1 Workers

No Individual Prod.     Team Prod.
Tax23       Economy       Economy

TAXES
χ1 0.0 0.014 0.014
total tax revenue 0.0 0.003 0.003

% change % change
WORK SCHEDULES
workweek length

type 1 0.400  1.7%  0.7%
type 2 0.400  0.0  0.7

EMPLOYMENT
employment rates

type 1 0.900 -3.0 -1.4
type 2 0.713  0.1 -1.0
total 0.750 -0.7 -1.1

total hours per capita 0.300 -0.3 -0.5

WAGES per hour
type 1 3.441  0.0 -0.4
type 2 1.720  0.1  0.3

                                      
     23 Economies have same equilibrium without taxes.
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