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Abstract

Irreversible investment and the techniques associated with pricing real options have led to

significant advances many areas.  We broaden this range of applications, showing how

the techniques can apply to many policy problems in finance, macroeconomics, and trade

policy.  With small changes, standard techniques can handle a wide range of strategic

problems related to policy.  The decision to commit is like the decision to make an

irreversible investment.  Explicitly considering and correctly valuing the option to wait

makes discretion relatively more attractive, implies that greater uncertainty increases the

gain to discretion and results in policy that displays hysteresis.
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I. Introduction

Irreversible investment and the techniques associated with pricing real options

have led to significant advances in capital budgeting, environmental economics, and

industrial organization.  We wish to broaden this range of applications further, showing

how the techniques can apply to many game theoretic problems in finance,

macroeconomics, and trade policy.  We show how, with small changes, standard

techniques can handle a wide range of strategic problems related to policy.

More specifically, we consider problems of commitment.  The decision to commit

is like the decision to make an irreversible investment.  The previous literature on

commitment considers a once-and-for-all choice between rules and discretion, and does

not allow future agents to adopt rules.  If the option to wait indeed has positive value--as

such options often do--it adds to the desirability of discretion.  Furthermore, because no

policymaker can bind itself forever, we extend the analysis to consider entry and exit; not

from production, but from commitment to a policy rule.

Our paper proceeds as follows.  Section II discusses a variety of models that fit the

general framework we propose.  It looks at the static games that section III embeds in

continuous time.  We choose games where commitment is sometimes useful, that is ,

where the standard NCE (noncooperative equilibrium, or Nash-Cournot equilibrium)

leads to a Pareto inferior outcome.  Section III provides a very general way of thinking

about policy, allowing costly commitment with costly reversal.  Continuous time

highlights the analogy with irreversible investment problems, as well as simplifying the

model.  We illustrate how decisions to commit or renege depend on the cost of doing so

and on uncertainty in the environment.
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In section IV, we conclude by emphasizing three general results.  First, the option

to wait, which we have restored to the policymaker's decision problem,  makes

commitment less attractive and also implies that increased uncertainty makes

commitment even less so.  This is the "bad news principle" of irreversible investment

applied in a policy context.  Second, by allowing the commitment decision to take place

in "real time," we note that the policy choice process displays hysteresis; the policy in

force at a given time depends on history, not just the prevailing state.  Third, we show that

the ability to switch regimes means that small changes in the underlying state can induce

large changes in the relevant expectations; consequently, variables sensitive to

expectations (such as asset prices) can move quickly and asymmetrically, showing a

decided nonlinearity.

II.  Preliminary Examples

In this section, we present several concrete examples in which commitment

matters and regret is possible.  We begin with one from bank regulation.  The banking

focus also shows how to use irreversibility for policy rather than investment decisions

(see Pindyck [1991] or McDonald and Siegel [1986]).

Bank Regulation

Consider the following game between a regulator and a bank (or the banking

system).  The regulator may choose to be either tough (T) or weak (W).  Tough regulators

do not bail out insolvent banks; weak regulators do.  A bank chooses to be safe (S) or

risky (R).  If banks are truly safe, the regulator prefers to relax his vigilance, take it easy,
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and be weak.  If banks are risky, the regulator prefers to be tough.  If the regulator is

tough, banks have an incentive to stay safe, but if the regulator is  weak, they would

rather choose risky.  The strategic form of the game then looks like (G0).

(G0) Payoffs for Game between Regulator and Banks

Banks

Safe Risky

Regulator Tough 0, 0 -8, -4

Weak 4, -8 -8, -7

(See Mailath and Mester [1994] or Kane [1989] for more sophisticated approaches to

closure policy, which do not, however, address the dynamic commitment problem.)  The

NCE is (Weak, Risky) but both parties would prefer (Tough, Safe).  The regulator can

accomplish this by committing to play tough, binding itself to play T no matter what

happens.
1
  With a regulator dedicated to playing T, banks will choose S.  Hence the value

of commitment.
2

                                                
1 The notion behind this game is that tough regulators will not bail out an insolvent bank, leading the banks to

undertake safe investments that make bail-outs unnecessary.  A weak regulator will bail out the banks, and so

banks choose the more profitable risky investment; some fail, and the regulator must bail them out.
2Those familiar with game theory may notice that this is a game in which the Row player has �staying

power.�  In the standard classification of the 78 distinct bimatrix games, it is Brams Number 68.  A similar

game, Brams Number 63, would suit our purposes as well. See Brams (1983).
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 Now let�s complicate the example by bringing in the possibility of regret.  So far,

the regulator is always happy about committing to be tough.  Suppose, however, that in

some states of the world, the regulator regrets this.  In good states, we prefer a tough

regulator who eliminates the costly wealth transfers from taxpayers to bank investors, but

in bad states, we prefer the weak regulator.  Perhaps in the bad state (say a recession),

systemic risk means that being tough leads to a financial panic.

(G1) Payoff Functions for Game between Regulator and Banks

Banks

Safe Risky

Regulator Tough -u
2
, -u

2
-8-u

2
, -4-u

2

Weak +4- u
2
, -8-u

2
-8-0.5u

2
, -7-0.5u

2

For small values of u, this game has the same equilibrium as (G0), to which it

reduces when u is zero.  This game has a �Prisoner�s Dilemma� flavor about it for small

values of u, in that both parties would very much prefer the Tough, Safe payoff.  For large

shocks to the economy, however (that is, for large u), the Weak, Risky equilibrium

becomes preferable--perhaps reflecting that in a systemic crisis, we need to bail out the
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banks, even if that means they make riskier investments.
3
  In this case, the regulator

would regret  any commitment to a fixed rule of being tough.

In the next section, we derive the optimal policy when u follows a more general

process and when the regulator has a cost of committing and a cost of reneging on that

commitment, but some central insights arise if we consider a simple two-state example,

with u =0 or u=6.

Because the policy decision takes place in real time, we have two cases to

consider.  Either the economy starts out in the good state, or it starts out in the bad state.

Suppose it starts out in the good state.  If the regulator is weak, he gets a payoff of -8

today and chooses whether to be weak again or tough next period.  If the regulator is

tough, he gets a payoff of 0 today and remains tough forever, as the only way to be tough

is to commit forever.  This immediately shows where the option value enters:  By being

weak today, the regulator retains the option to commit tomorrow, and this option has

value.  The analogy with irreversible investment is direct.

The standard time-consistency literature, however, considers rules versus

discretion as a once-and-for-all choice.  Unless the regulator commits to rules at the

beginning of time, the suboptimal or "weak" choice is made in each period.  Making such

a decision forever seems simple-minded in this simple model, yet it is analogous to the

restriction implied by posing the rules-versus-discretion question in the standard way.

Drawing the analogy to investment under uncertainty highlights a flaw in the standard

approach.

                                                
3 Section III uses positive and negative shocks.  In this example, it doesn�t really make sense to consider

u < 0.   Section III could easily accommodate one-sided shocks by using geometric Brownian motion.
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A striking consequence of the option value--the bad news principle--also arises in

this example.  We suspect this principle lies behind a tendency that is conspicuous in the

arguments over rules versus discretion.  The rhetoric advocating discretion accentuates

the negative possibilities--the downside, the worst outcomes--of rules.

In this example, the bad news principle arises because the regulator sometimes

regrets the commitment to be tough.  The regulator never regrets an initial decision to be

weak, since it can later commit to be tough.  Increasing the payoff to toughness does not

affect the relative payoffs--and thus the choice--today.  This illustrates the principle that

only news about bad outcomes affects the choice between rules and discretion.

The above formulation differs from the standard approach in a more subtle way,

necessary, but not sufficient, for irreversibility.  The standard approach makes a timeless

comparison before the state of the economy is fully known.  By contrast, in this paper the

government operates in "real time" and knows the current state of the economy, just as in

the irreversible investment literature the investor knows today's rate of return.  Again, this

twist follows naturally from the investment analogy.

Continuing the example shows how the standard timeless comparison can lead to

the wrong conclusion by ignoring information the government can use.  The standard

approach gives the regulator two strategies:  Either commit to Tough or allow discretion,

which in our simple example amounts to playing Weak forever.

The regulator, though, has another possibility.  Operating in real time, the

regulator can observe the economy and chose rules or discretion.  If the good state turns

up, the regulator should be tough.  If the bad state occurs, the regulator chooses Weak

today and chooses again next period.
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Macroeconomic Policy

A game with a somewhat different flavor is presented in (G2).

(G2) Payoffs for Game between Fed and Treasury

Treasury

Tight Easy

Fed Tight 2-u
2
, 1-u

2
-3u

2
, -3u

2

Easy -3u
2
, -3u

2
0.5-0.5u

2
,1.5-0.5u

2

This is a version of the game known as �Chicken� or �Battle of the Sexes.�  Its

clearest macroeconomic interpretation was presented by Sargent (1986), who argued in

�Reaganomics and Credibility� (1986) that tight monetary policy is compatible with tight

fiscal policy but not with easy fiscal policy.  Who gives in and accommodates the other�s

policy, the Fed or the Treasury?  In (G2), such a conflict exists for small values of u, but

easy policy is better for large shocks, and indeed forms a Nash equilibrium.  This captures

the intuitive idea that, for a massive real shock, easy policy is better.  By committing to

Tight, the Fed can enforce its preferred equilibrium, but it regrets this choice in times of

large shocks.

Pindyck (1977) considered such a coordination problem in greater depth,

analyzing a dynamic game between the fiscal and monetary authority, each of which has

a different objective in controlling the economy.  He did not consider the irreversibility

aspect of policy choice.
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In Haubrich and Ritter (1996), we analyze commitment to monetary rules in the

traditional time inconsistency setup (Barro and Gordon, [1983]). A third monetary policy

application derives from observations about the fragility of fixed-exchange-rate regimes.

Obstfeld and Rogoff (1995) lay out the following case:  (1) Maintaining a fixed exchange

rate is technically feasible for almost any country; (2) under normal circumstances,

countries gain (or think they gain) from fixing their exchange rate; but (3) the collateral

damage caused by an attempt to defend the peg, when threatened by a terms-of-trade

shift or some other shock, means the government's commitment to its rate may not be

credible.  Thus, even the strongest legal commitments to fixed exchange rates--currency

boards, for example--will not always succeed (Zarazaga [1995]).  Nevertheless, despite

compelling arguments that they will ultimately fail, countries continue to adopt fixed-

exchange-rate policies.  We describe a framework that can provide a positive theory of

the switches between policy regimes.

Trade Policy

Some insight into the dynamics of trade agreements might be gained from (G3).  The

players are countries, say Argentina and Brazil.  Each chooses between high and low

tariffs.  The noncooperative equilibrium of the game is high tariffs in both countries.  Both

of them would ordinarily gain by coordinating on low tariffs, and this outcome can be

achieved by establishing a free trade area, that is, by committing.  But when Brazil

experiences a recession, measured by its unemployment rate u, its Argentine imports fall,

tempting Argentina to leave the free trade area and raise tariffs.  Brazil responds by

raising its own tariff rate.  Because Brazil sees reduced imports as an advantage, its
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payoffs for this game are increasing in u.  We assume that Argentina's economy is stable,

and that Brazil always stands open to the trade pact, so that Argentina effectively decides

the extent of free trade.  A fully satisfactory model here would clearly involve more

symmetry and give Brazil incentives for breaking the trade pact as well.  We include it to

illustrate the range of problems our approach can address.

(G3) Payoffs in Free Trade Game

Brazil

Low High

Argentina Low 8-u
2
, 8+u

2
-2, 9+3u

2

High 9-u
2
, -2 0,0

As mentioned before, the payoff structure of examples (G1) , (G2), and (G3) has

more general applications.  The tractability of the quadratic model makes it a natural

approximation for many commitment problems (and for many other economic problems.

Thus, we could illustrate our main point with such additional examples as adhering to the

Gold Standard (with regret in a war or depression), granting patents for the exclusive use

of new technology (with regret in cases like AZT), or allowing constitutions to bind future

legislatures.
4

                                                
4 In fact, the tractability constraint does not bind us exclusively to quadratic payoffs.  From our perspective,

the more binding constraint in the continuous time models was the need to posit an essentially static

underlying game.  We conjecture that, with sufficient mathematical expertise, this need not be a binding

constraint either.
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III. Entering and Exiting Commitment

Mechanisms to commit irrevocably are almost impossible to imagine.  It is not

difficult, however, to cite examples of mechanisms that make it costly for a firm or a

government to alter its policy.  A constitutional amendment, for example, is difficult to

pass and to remove.  Ordinary legislation has lower costs at both ends.  For a firm, the

corporate charter, financial agreements, and strategic plans play a similar role.

Institutions can effectively tie their hands loosely or tightly, being able to escape if they

are willing to bear the appropriate level of pain.  For any particular decision, these costs

can usually be considered as given: passing a law, amending the constitution, issuing a

regulation.  In future work, we hope to make the choice of commitment mechanism

endogenous.

We maintain the traditional semantics of commitment and discretion, but wish to

highlight a bias in tone that colors the discussion when commitment is not irrevocable.

We are forced to use words (like �renege� and �weasel�) having clear negative

connotations that we regard as unfortunate.  We interpret the results of this section as a

model of optimal behavior and tolerate the terminology only to fit our paper into the

literature on rules and discretion.

A world in which policymakers can, at a cost, enter and exit commitment (or,

more generally, any policy regime) closely resembles Dixit's (1989a) model of the entry

and exit problem faced by competitive firms.
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While a discrete time approach can sometimes handle particular versions of the

problems (as Lambson [1992] does for entry-exit decisions),
5
  the continuous time

approach set out in Dixit and Pindyck (1994) generally proves more convenient. A

generic quadratic payoff model captures the main points in a context that is simple yet

general.

A Quadratic Model

We implement these ideas in continuous time as follows:  The policy authority

(the Fed, for example) will be following either rules or discretion.  The payoff from

discretion, which depends on the state of the economy u, is

(1) P u d d u d uD
( ) .= + +0 1 2

2

The payoff from rules is

(2) P u r r u r u
R
( ) .= + +0 1 2

2

Following examples (G1) and (G2), and by analogy with the previous sections, we assume

that rules tend to be preferred when the shock is small, so that for small u,

P u P u
R D
( ) ( ).>   We assume that u follows a simple Ito process

du dt dz= +α σ ,

where a describes the drift of the process and s denotes its standard deviation, with dz

describing a white-noise Wiener process.

The optimal policy switches between the two quadratic payoff functions with cost

C of committing to rules, that is, of moving from discretion to rules, and cost W (for

                                                
5 For some specialized problems, the discrete time approach is more natural.  One workhorse of the dynamic

inconsistency literature in macroeconomics, the unanticipated money model, does not easily generalize to
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weaseling) of moving from rules to discretion.
6
  To solve this, we employ the general

methods of Dixit and Pindyck (1994).  Our problem maps most naturally into an entry

and exit problem.  Unlike the problem for firms, where uncertainty over prices is best

modeled by geometric Brownian motion, for many problems two-sided shocks are more

natural and therefore are best modeled with Brownian motion, which may turn negative.

Weather, oil price shocks, trade flows, and interest rate shifts may all take positive or

negative values.  Consequently, where Dixit and Pindyck�s problem has two boundaries,

one price at which the firm enters the market and another price at which the firm exits,

our problem has four boundaries: two above zero and two below zero.

In what follows, we derive the differential equations for the value functions, and

derive the smooth pasting and value matching conditions necessary for the optimum of

this stochastic control problem.  The conditions give us the necessary equations to solve

numerically for the boundaries between the rules region and the discretion region.  Full

details can be found in the appendix.

In the interior of the discretion region, the value function for the problem obeys

rV P u
dt

E dV
D D D= +( ) [ ]

1
.

We apply Ito�s Lemma to find the differential equation for the value function

1
2

2σ αV V rV Puu

D

u

D D D+ − = − .

A similar argument for the interior of the rules region yields the following, in which

subscripts denote partial derivatives:

                                                                                                                                                
continuous time.  We examine it in a companion paper (Haubrich and Ritter [1995]).
6 Allowing weaseling adds a component similar to the �escape clause� models of Flood and Isard (1988) and

Lohman (1992), who consider a cost to renege.  In one sense, we generalize those models by allowing a
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1
2

2σ αV V rV Puu

D

u

D D R+ − = − .

Each of these is a second-order linear differential equation, and standard solution

techniques are available.

In the solution, there are three regions: a rules regions centered about zero for

small shocks, and discretion regions for large positive and large negative shocks.  This

necessitates three solutions to the equations, depending on which region we are in.  Each

solution takes the form of a general solution plus S R
 or S

D
, a quadratic particular

solution to the differential equation.
7
  For the rules region the solution is

(3) V u B B S u
R u u R

e e( ) ( )= + +1 2
1 2β β

,

with β1 0>  and β 2 0< .

For the high (positive) discretion region, we have the corresponding solution

V u A A S u
D

h

u

h

u D

e e( ) ( )= + +1 2
1 2β β

.

The particular solution S u
D

( )  turns out to be the value of discretion forever, so that the

two exponential terms are the value of the option to commit. (See also Dixit and Pindyck

[1994, chapter 6, section 2].)  For very large shocks u approaching infinity, it becomes

exceedingly unlikely that the regulator will ever commit (recall that it prefers discretion

for large shocks), and so the value of that option approaches zero.  This means the term

with the positive exponent, β1 , must vanish for large u, implying that A h1  must be zero.

This leads to the simplified expression for the value function in the high (positive)

discretion region:

                                                                                                                                                
positive cost of recommitment and allowing delay in recommitment.  In another sense, those models are more

general, in that they allow more general state-contingent rules.  We prefer to focus on the dynamics.
7 The particular solution is all that would change if we used a form of costs other than quadratic.
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(4) V u A S uh

D

h

u D

e( ) ( )= +2
2β

.

After employing a similar argument for the lower (negative) discretion region, we have

(5) V u A S ul

D

l

u D

e( ) ( )= +1
1β

.

Four boundaries define the regions.  Two boundaries determine when the

regulator �weasels� out of rules and adopts discretion, one at the upper boundary uW  and

one at the lower boundary uW .  The other two boundaries determine when a discretionary

regulator commits to rules, entering the commitment region from above, uC , or from

below, uC .

With the general form of the value function in hand, we can find the boundary

values by imposing the value-matching and smooth-pasting conditions.  For example, at

the upper commitment boundary, the value of continuing in discretion just equals the

value of adopting rules and paying the cost to commit:

(6) V u V u Ch

D

c

R

c( ) ( )= − .

Likewise, the smooth pasting conditions impose equality on the derivatives of the value

functions:

(7) ′ = ′V u V uh

D

c

R

c( ) ( ) .

This is repeated for each boundary, producing eight equations (one value matching and

one smooth pasting condition for each boundary) in eight unknowns (four boundaries and

four undetermined coefficients).  The appendix sets out these equations and proves the

existence and uniqueness of the solution.

Numerical Solution and Comparative Statics
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As frequently happens in the stochastic control literature, closed-form solutions do

not seem to exist for this problem, and we resort to numerical methods.  Gauss NLSYS

was able to solve the eight simultaneous equations, though convergence of the algorithm

was sensitive to starting values.  The actual numerical solutions are less interesting than

the comparative static results.  Starting from a base case of C = W = 0.01, α = 0 ,

σ 2
0 01= . , and r =0.02, figures 1 through 4 depict the solutions under a variety of

parameter variations.

Figure 1 highlights the importance of history.  It shows a solution and one sample

path for the shocks, the commitment and weasel boundaries, and uses shading to indicate

the time spent committed to rules. Because the weasel and commit boundaries differ, in

some states of the economy (levels of u) current policy depends on past policy.  For

anything above the upper commit line and below the upper weasel line, a regulator

committed to rules sticks with rules and a regulator using discretion sticks with discretion.

Quite apparently, then, it is incorrect to judge policy simply on the current state of the

economy, and particularly inappropriate to naively contrast current policy with past

policies at a similar state of the economy or stage of the business cycle.  In a word, our

model predicts policy hysteresis. This shifting reemphasizes a point stressed by Flood and

Garber (1984) in their work on the gold standard: To evaluate a policy rule, one must

analyze the entire dynamic policy sequence, including periods where discretion reigns.

Implicit in the hysteresis is something so obvious that it might escape notice--that

the policymaker switches from rules to discretion, and from discretion to rules, over time.

Regimes shift. Discretion, commitment, and weaseling out of commitment will all occur.
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 Figure 2 plots the commitment and weasel boundaries as the commitment cost

changes, keeping the weasel cost fixed at 0.01.  Notice that for any particular

commitment cost, the regulator adopts rules for �small� shocks on either side of zero.  For

larger shocks, the Fed adopts discretion.  This is a natural consequence of the quadratic

payoff function.

Another prominent feature is that the weasel boundary is farther out than the

commit boundary.  Were there no cost of switching between regimes, the boundaries

would be the same, at V u V uh

D R
( ) ( )= , where the expected gain from continuing

discretion just matches the expected gain from using rules.
8
  Adding a commitment cost

drives a wedge between the two value functions and requires that the regulator gain even

more from rules.  This means moving the boundary farther into the area where rules are

preferred, that is, closer to zero.  Similarly, a cost to backing out of rules means shifting

the boundary even farther into the area where discretion is preferred, that is, away from

zero.  Hence the weasel boundary is farther out than the commit boundary.

Figure 2 shows that the greater the cost of commitment, the less likely the

regulator is to commit.  As the cost increases, the relative benefits of rules over discretion

must also increase, and so the commitment boundary shrinks towards zero.  For a high

enough cost, commitment never occurs.

One other more practical advantage of the continuous-time formulation lies in its

ability to allow easy exploration of a broad range of questions, like changes in entry and

exit costs and variability of shocks.

                                                
8 In the zero-cost case, first-order conditions (value matching and smooth pasting) have multiple solutions,

including the solution to the original problem.  For all positive costs, the solution is unique.
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Figure 3 illustrates what happens when the weasel cost varies.  As the cost of

switching out of rules rises, it takes an increasingly large benefit of discretion over rules to

make the switch worthwhile, and so the weasel boundary increases.  Notice that in figures

2 and 3, a rise in commitment cost primarily moves the commitment boundary, and a rise

in weaseling cost primarily moves the weasel boundary.  This reflects the relatively low

variance of u.  At the commitment boundary, it is improbable that the process will soon

wander as far as the weasel boundary, and so this has little weight in the optimization

problem, making the weasel boundary almost perfectly flat.  When the boundaries are

close, as for small values of C and W, both boundaries move more noticeably with an

increase in either cost.  A higher variance for u makes the effect more pronounced.

Figure 4 illustrates a different exercise, in which the variance of the Brownian

motion governing the shocks  is increased.  As the variance rises, the commitment

boundaries decrease and the weasel boundaries increase.  This is a consequence of the

options component of the decision.  As the variance rises, so too does the option value of

not switching.  For example, in the discretion region, a high variance means there is a

good chance of moving deeper into that region in the near future, but also a good chance

of moving into the rules region.  The bad news principle enters here.  Ending up deep in

the discretion region means regretting the commitment to rules.  Ending up deep in the

rules region means committing to rules when you get there, so committing today doesn�t

help.  Thus, the high variance makes commitment less likely, and  the commitment

boundary decreases correspondingly.  With a high enough variance, the regulator never

commits.

Expected Time in Regime
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Since we propose a model with discrete regime shifts, how long the current policy

regime is expected to last is critical in applications like asset pricing, where agents must

look into the future.  For example, monetary policy conducted under discretion may result

in a higher inflation rate than policy conducted under rules.  Most bond traders--and

academics studying the term structure of interest rates--concede the influence of

monetary policy.  Most would also concede frustration in understanding that influence.

At times modest increases in the federal funds rate lead to sharp increases in long rates; at

other times modest changes provoke modest changes.
9
  Thinking about policymakers as

entering and exiting commitment, with its associated nonlinearities and hysteresis, can

shed some light--and one day may even yield some quantitative evidence--on the matter.

To obtain an idea of how the expected time in a regime behaves, we set up the

following simulation.  We let the underlying shock follow Brownian motion with a

variance of 0.1.  We sampled this process 120 times at monthly intervals, assuming

commitment boundaries of +2 and -2 and weasel boundaries of +3 and -3.  This was

meant to capture the idea that the policymaker periodically, but not continually, reviews

policy based on the indicators of the underlying economy.  For a given starting point, we

generated 1,000 runs of the Brownian motion path, keeping track (by month) of when the

path was in the rules and the discretion region (which is obviously path dependent).

Averaging over the 1,000 runs gives an estimate of the expected fraction of time spent in

each region over the next 10 years.  Figure 5 reports the results.  The X-axis shows the

starting value for the simulation, and the Y-axis shows the fraction of time spent in

discretion.  For example, if the current value of the underlying shock is 1.5, the expected

                                                
9 See Goodfriend (1993) or Campbell (1995) for amplification of this point.
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fraction of time in discretion is only 0.04 ( or 4.8 months out of 10 years).  In other words,

the amount of time expected to be spent in discretion over the next 10 years is trivial,

given a starting point this far into the rules region.  The figure reports two numbers for

starting values between 2 and 3, depending on whether the starting value is assumed to be

in the rules or the discretion region.

If, as mentioned above, the discretion regime results in a higher inflation rate, the

data shown in figure 5 can easily be translated into a numerical inflation premium.  Say

that rules produce zero inflation and discretion produces constant inflation of 10 percent.

Then the average expected inflation over the next 10 years is 0.4 percent when the

underlying state is 1.5, but it rises rapidly thereafter.

Figure 5 emphasizes and quantifies the importance of  hysteresis for forward-

looking variables.  For a starting value of 2.5 in the rules region, the policymaker expects

to be in discretion only about one-third of the time over the next 10 years.  If that same

value of 2.5 is in the discretion region, the corresponding number is about two-thirds.

This implies that expectations are asymmetric during increases and decreases of the

shocks.  Equally important, expectations can change quickly once the shocks approach a

boundary.  The expected time in discretion changes from 0.001 to 0.009 in moving from 0

to 1, but changes from 0.16 to 0.86 in moving from 2 to 3.  The relation between the

underlying shock and the result is decidedly nonlinear.

These results imply that inflationary expectations--and thus long-term interest

rates--can change dramatically without a shift in policy, as people anticipate that a new

policy regime is more likely.  These shifts depend sensitively on the underlying state of

the economy and on the current policy regime.
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Conclusion

Viewing commitment as irreversible investment has two major advantages:  It

provides a new perspective on questions of commitment, rules, and discretion, clearing up

some troubling aspects of the literature.  Equally important, that perspective represents a

useful new direction for the irreversible investment literature.  It applies quite naturally to

strategic interactions--games--without the need for drastic revision.  Though we don�t

wish to downplay the difficulties arising in each specific case, such as dealing with

different stochastic processes or multiple boundaries, the basic concepts and techniques

of investment under uncertainty gain a wider applicability.

Thus, besides providing new answers to old questions, this approach also raises

new questions.  By making the commitment versus discretion problem more amenable to

attack by the techniques of financial economics, a new set of tools (and problems)

naturally arises.  For example, policy commitment should matter for asset prices; consider

a shift in monetary policy, a poison pill being activated, or a shift in bank closure policy.

Conversely, asset prices may allow us to estimate commitment probabilities and other

fundamentals of the model.  What this means that we have a powerful set of techniques

ready to address significant questions in banking, finance, and economics.
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Appendix :  Theoretical Solution

1.  Solving for the Value Functions

This part of the appendix solves the differential equations of section III to find the

value functions.  For reference, those two equations are

1

2

2σ αV V rV Puu

D

u

D D D+ − = −

for the interior of the discretion region and

1

2

2σ αV V rV Puu

R

u

R R R+ − = −

for the interior of the rules region.

Both are equations of the form

ay²(x) + by¢ (x) + cy(x) = q0 + q1x + q2x
2
 º  Q(x).

The solutions to the homogenous part are

y x A e A e
x x

( ) = +1 2
1 2β β

,

where bi  are solutions to the characteristic equation

al
2
 + bl + c = 0.

Since c < 0 in our application, we have one positive and one negative root.  Let

β β2 10< < .  The particular solution can be a quadratic:

y(x) = s0 + s1x + s2x
2

y¢ (x) = s1 + 2s2x

y²(x) = 2s2.

Substituting yields

q0 + q1x + q2x
2
 = a(2s2) + b(s1 + 2s2x) + c(s0 + s1x + s2x

2
)

= (2as2 + bs1 + cs0) + (2bs2 + cs1)x + (cs2)x
2
.

Matching coefficients yields

s
q

c
2

2=

s
q bs

c
1

1 22
=

−
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s
q bs as

c
0

2 1 22
=

− −
.

Since Q(x) is either -P
D
 or -P

R
, we have one particular solution for discretion and one for

rules (call them S 
D
 and S 

R
).

There are three regions:  high-u discretion, low-u discretion, and rules.  Take these

in order.  For high-u discretion the solution is

V u A e A e S u
D

h

u

h

u D
( ) ( )= + +1 2

1 2β β
.

Substituting s0, s1, and s2 into the quadratic particular solution makes it clear that S 
D
(u)

turns out to be the value of discretion forever, so the other terms are the value of the

option to commit. (See Dixit and Pindyck [1984, chapter 6, section 2]).  As u®  ¥ this

option becomes worthless, so we need to have A1h  = 0 (since b1 > 0).  So our solution is

equation (4) of the paper):

V u A e S uh

D

h

u D
( ) ( )= +2

2β
.

For low-u discretion we need A21 = 0.  Otherwise, the value option to commit explodes as

we get farther in the negative direction from the point at which we would want to commit.

So, in the low-u discretion region, we have equation (5) of the paper:

V u A e S ul

D

l

u D
( ) ( )= +1

1β
.

The rules region is bounded, so neither option term drops out, and the solution is equation

(3) of the paper:

V u B e B e S u
R u u R
( ) ( )= + +1 2

1 2β β
.

The value function must also satisfy the following value-matching and smooth-

pasting conditions:

V u V u Ch

D
c

R
c( ) ( )= −

V u V u Cl

D

c

R

c( ) ( )= −

V u V u W
R

w h

D
w( ) ( )= −

V u V u W
R

w l

D

w( ) ( )= −

V u V uh

D
c

R
c

′ = ′
( ) ( )

V u V ul

D

c

R

c

′ = ′
( ) ( )
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V u V u
R

w h

D
w

′ = ′
( ) ( )

V u V u
R

w l

D

w

′ = ′
( ) ( ) /

We have eight equations and eight unknowns: A1l, A2h, B1, B2, uc , uc , u w , and u w .

2.  Existence and Uniqueness of Solutions

To establish the existence and uniqueness of the solution, we use a variation on

the approach used by Dixit (1989b, unpublished appendix).

Preliminaries

First, we define two functions that measure the difference between the value

functions (analogues of Dixit�s G(P) function) for the upper and lower boundary pairs:

H u V u V u
R

h

D
( ) ( ) ( )= −

= + + − −B e B e S u A e S u
u u R

h

u D

1 2 2
1 2 2β β β

( ) ( )

= + +B e D e Q u
u u

1 2
1 2β β

( )  and

L u V u V u
R

l

D
( ) ( ) ( )= −

= + + − −B e B e S u A e S u
u u R

l

u D

1 2 1
1 2 1β β β

( ) ( )

= + +D e B e Q u
u u

1 2
1 2β β

( ) ,

where D1 = B1 - A1l, D2 = B2 - A2h, and Q(u) = S u S u
R D
( ) ( )− . S

R
 and S

D
 are the

particular solutions for the differential equations that lead to the value functions.

Next, we need to establish that Q(u) is convex.  Convexity follows from our

assumption that the rules loss function is more convex than the discretion loss function

and from the formulae for S
R
 and S

D
.

The introduction of Di separates the problem of finding the upper boundaries from

that of finding the lower boundaries.  Without loss of generality, we consider only the

upper boundaries, concentrating on the function H(u;B1,D2).  Where there is no chance of

confusion, we suppress the dependence of H on its parameters and write H(u).

Existence
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Consider the upper boundaries.  We define a sequence of functions Hi (and the

corresponding B
i

1  and D
i

2 ), which converge to a function H that which satisfies the

smooth-pasting and value-matching conditions.  Let

H0(u) = Q(u).

Keeping D2 = 0, set B1

1
 so that

H u B e H u
u

1 1

1

0
1( ) ( )= +β

is tangent to the horizontal line at +W.  This can be accomplished by some B1

1
 < 0,

because ′H u1 ( )  increases without bound as we increase B1

1
 and decreases without bound

as we decrease B1

1
.  This produces a local maximum, since B1

1
 < 0.  (Note that we cannot

start with D2, because Q may not intersect -C.)

Now let

H u D e H u
u

2 2

2

1
2( ) ( )= +β

.

H2 is increasing in D2

2
, and ′H2  is decreasing (since b2 < 0) without bound in D2

2
.

Increase D2

2
 to make H2 tangent to -C.  This will be a local minimum.  Notice that this

puts H2 above H1 at the point where H1 is tangent to +W.

Now let

H u B e H u
u

3 1

3

2
1( ) ( )= +β

.

Decrease B1

3
 to restore tangency with +W.  Continue this process, thus generating the

sequence.

Note that Hi goes off to +¥ to the left of the tangencies and off to -¥ to the right,

as illustrated in figure A1.  At each stage of this construction, there is an increasing

segment of Hi to the right of the local minimum and to the left of the local maximum.  Let

{B1i, D2i} be the accumulation of the B
i

1  and D
i

2  in Hi.  We have shown that this

sequence is always moving northwest in B1 - D2 space.  This sequence cannot, by

construction, go into a region where ′H ui ( )  < 0 for all u.

To show convergence, we need to bound the {B1i, D2i} sequence.  Notice that

both exponential terms are downward-sloping, so we can find bounds on B1i and D2i

separately.  The only interval on which H could possibly be increasing on the B1 steps
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(that is, Hi for odd i) is between the minimum of Q, denoted by u
Q

, and the largest

solution to ′ = + ′ =H u B e Q u
u

1 1 1

1 1 0( ) ( )β β
, denoted by u*.  (There are generally two

solutions, because Q¢(u) is linear while −β β
1 1

1 1B e
u
 is convex.  See figure A2.)  We know

that u u
Q < * , because β β

1 1

1 1 0B e
u >  and B1

1
 was chosen so that Hi�(u*)=0.  Hence,

β β
1 1

1 1B e
u
intersects Q�(u).  See figure A1.

A simple bounding argument will eliminate the possibility of an increasing H, even

on this interval.  For uÎ [u
Q
, u*], we have that ′H ui ( )  < 0 for u > u* and i > 1:

′ = + + ′H u B e D e Q ui i

u

i

u
( ) ( )β ββ β

1 1 2 2
1 2

[ ]< + ′ +β ββ β
1 1

1

2 2
1 2B e Q u D e
u

i
u

( )

< + ′β β
1 1

1 1B e Q u
u

( )

< + ′β β
1 1

1 1B e Q u
u*

( *)

= ′ =H u1 0( *) .

The first inequality comes from the fact that { }B i1  is a decreasing sequence of negative

numbers.  The second follows from the fact that D i2  > 0 with b2 < 0.  The third comes

from the fact that −β β
1 1

1 1B e
u
 cuts Q¢(u) from below at u*, so that both increase on [u

Q
,

u*].  Again, see figure A2.  On [u
Q
, u*], e

uβ1  and e
uβ2  are minimized and maximized,

respectively, at u
Q
, since both are monotonic.  Similarly, the slope of Q is maximized at

u*.

Hence, there can be no increasing portion of Hi(u) if

β β
1 1

1 0B e Q u
u + ′ <( *)

for all u Î [u
Q
, u*].  This condition holds if

B
Q u

e

Q u

e
u uQ1

1 1

1 1

< − ′ < − ′( *) ( *)

β ββ β
 = negative constant.

Similarly, for the D2 steps (Hi for even i) there can be no increasing portion of

Hi(u) on [u
Q
, u*] if

β β
2 2

2 0D e Q u
u + ′ <( *)

or
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D
Q u

e

Q u

e
u uQ2

2 2

2 2

< − ′ < − ′( *) ( *)

β ββ β
 = positive constant.

Therefore, the sequence (which is moving northwest) is bounded in the region

0 > B1 > negative constant, 0 < D2 < positive constant.

Uniqueness

Recall that the definition of  D2 above reduced the problem to separate sets of

four equations and four unknowns, two boundaries (two values of u) and two

undetermined constants.  The uniqueness proof first shows that, for any given value of the

constants, the boundaries are unique, and then shows that the constants are unique.

Define u B Dc ( , )1 2  and u B Dw ( , )1 2  as the respective values of u where the local

minimum and maximum of H(u;B1,D2) occur.  First, we show that there can be only one

minimum u B Dc ( , )1 2 , and one maximum u B Dw ( , )1 2  for H, given B1 and D2.

Lemma:  For given values of B and D H u B D1 2 1 20 0 0< > ′ =, ( ; , )  has at most

three solutions.

Proof:  Write H¢ = 0 as

− ′ = +Q u B e D e
u u

( ) β ββ β
1 1 2 2

1 2
.

Since Q is convex, the LHS is a decreasing line.  The RHS is downward-sloping, convex

to the left, and concave to the right -- like a cotangent function.  Obviously, there will be

no more than three solutions. Û

Given the shape of H--that is, lim ( ) , lim ( )u uH u H u→−∞ →+∞= +∞ = −∞  (again see

figure A1)--solutions to H¢(u)=0 come in pairs.  Thus, have more than one minimum and

one maximum, we would need at least four solutions to H¢ = 0. But the lemma shows that

we can have at most three, and since we have already proven existence, we know that

exactly two solutions exist, a unique maximum and a unique minimum.  This implies that

u B Dc ( , )1 2  and u B Dw ( , )1 2  are well defined, single-valued functions.

To complete the proof, we show that B1 and D2 are unique.  The proof proceeds

by contradiction:

Define
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Γc

u B D u B D
cB D B e D e Q u B Dc c( , ) ( ( , ))

( , ) ( )

1 2 1 2 1 2
1 1 2 2 1 2≡ + +β β

Γw

u B D u B D
wB D B e D e Q u B Dw w( , ) ( ( , ))

( ) ( )

1 2 1 2 1 2
1 1 2 2 1 2≡ + +β β

In this notation, the value-matching conditions are

Γc B D C( , )1 2 = −

Γw B D W( , )1 2 = .

Also,

∂
∂

∂
∂

Γc

u

c

B
B

H
u

B
H

1 1
1

= +

   = HB1

= e
u B Dcβ1 1 2( , )

.

Hu = 0 because u B Dc ( , )1 2  and u B Dw ( , )1 2 are chosen so that the smooth-pasting

conditions hold when H is evaluated at u B Dc ( , )1 2  or u B Dw ( , )1 2 .  Similarly,

∂
∂

βΓc u B D

D
e c

2

2 1 2= ( , )

∂
∂

βΓw u B D

B
e w

1

1 1 2= ( , )

∂
∂

βΓw u B D

D
e w

2

2 1 2= ( , )
.

Now we show that a second solution cannot exist.  Note that if ( , )′ ′B D1 2  is a

second solution to the value-matching and smooth-pasting conditions with ′ >B B1 1 , we

must have ′ <D D
2 2  to maintain the value-matching conditions:  Γc B D C( , )′ ′ = −1 2  and

Γw B D W( , )′ ′ =1 2 .

Let b B B= ′ − >1 1 0 and d D D= ′ − <2 2 0 .  The line segment joining the solutions

is ( , )B tb D td1 2+ + .  We have

d

dt
B tb D td b

B
d

D
c

c cΓ
Γ Γ

( , )1 2

1 2

+ + = +
∂
∂

∂
∂

= ++ + + +
be de

u B tb D td u B tb D tdc cβ β1 1 2 2 1 2( , ) ( , )
.

Given our hypothesis that Γ Γc cB D B D C( , ) ( , )1 2 1 2= ′ ′ = ,
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0 1 2 1 2= ′ ′ −Γ Γc cB D B D( , ) ( , ) .

( )= +∫ + + + +

0

1
1 1 2 2 1 2be de dt
u B tb D td u B tb D tdc cβ β( , ) ( , )

.

Similarly,

0 1 2 1 2= ′ ′ −Γ Γw wB D B D( , ) ( , )

= +∫ + + + +

0

1
1 1 2 2 1 2[ ]

( , ) ( , )
be de dt

u B tb D td u B tb D tdw wβ β
.

Again, because of the shape of H,

u B D u B D e ec w
u B D u B Dc w( , ) ( , )

( , ) ( , )

1 2 1 2
1 1 2 1 1 2< ⇒ <β β

 and e e
u B D u B Dc wβ β2 1 2 2 1 2( , ) ( , )> .

Recall that b > 0 and d < 0.  Subtracting the two integrals, we get

( ) ( )[ ]0
0

1
1 1 2 1 1 2 2 1 2 2 1 2= − + −∫ b e e d e e dt
u B D u B D u B D u B Dc w c wβ β β β( , ) ( , ) ( , ) ( , )

.

The integrand is always negative, so the integral cannot be 0.  That is, both solutions

satisfy the value-matching conditions only if they are identical.Û

Thus, B1 and D2 are unique, and so uniquely define u B Dc ( , )1 2  and u B Dw ( , )1 2 ,

making the entire solution unique.
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