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Abstract 

The large shift of U.S. employment from goods producers to service producers has 

generated concern over future income distribution because of perceived large relative pay 

differences. This paper applies a density overlap statistic to compare the sectors' 

distribution of weekly wages at all wage levels. A simple refinement yields locational 

information by decile. To counter problematic features of Current Population Survey 

data--namely, sampling variation at infrequent wage rates and extensive rounding at 

common wage rates--we employ nonparametric density-estimation procedures to isolate 

the underlying shapes of the densities. The validity and accuracy of the estimation 

procedures are evaluated with simulations designed to fit the dataset. Bootstrapped 

standard errors and confidence intervals are calculated to indicate the statistical 

significance of the results. 

Throughout the period from 1969 to 1993, comparisons of the complete full-time, 

weekly wage densities in the goods- and service-producing sectors emphasize broad 

similarities that typical comparison statistics do not identify. The wage densities, which 

are close in the early 1970s, diverge until around 1980, after which they tend to converge. 

By the 1990s, the estimated densities are more than 95 percent identical. Furthermore, 

the wage densities are most comparable in the central deciles, a finding that disputes the 

bimodal characterization of service-sector wages. Two potential explanations for the 

time pattern of the overlapping coefficient are considered by forming hypothetical 

distributions, but neither of these explanations removes the pattern. 
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I. Introduction 

The dramatic expansion of the share of U.S. workers employed in service- 

producing industries has provoked much controversy.' Judgments regarding the 

desirability of this transformation often imply assumptions about the relative distribution 

of wages in the two sectors, and about changes in the nature of the distributions over 

time. The shift toward service-producing employment is often credited with changing 

certain features of the overall wage distribution. For example, the service-sector wage 

distribution has been characterized as somewhat bimodal, especially in comparison to the 

goods-producing distribution.= Consequently, the growing service sector is blamed for a 

perceived replacement of manufacturing and construction jobs at the middle of the overall 

wage distribution with low-wage and high-wage service positions.' Despite this 

widespread interest, remarkably little academic research characterizes differences in 

wages between the two major sectors of the U.S. economy; when economists do talk 

about sectoral wage differences, they focus on average wages, rarely alluding to 

distributional issues. 

Attempts to compare two unknown distributions usually rely either on strong 

distributional assumptions (for example, equivalence of parameters for a normal or 

lognormal distribution), or use tests of the hypothesis that both are drawn from the same 

' Barlett and Steele (1992) and Bernstein (1994) are two recent books which warn about wage consequences of the shift 
away from goods-producing employment. Newspapers and other popular publications are also a recurring source of similar opinions, 
for example, Johnson (New York Times, 1994) and Hoagland (Washington Post, 1993). The 1994 Federal Reserve Bank of Dallas 
annual report, titled "The Service Sector: Give It Some Respect" is fairly representative of the other side of the debate. 

See Kassab, 1992, p. 4. This view also crops up in newspapers: according to Johnson (New York Times, 1994). "As the 
Millers [a family supported until recently by manufacturing jobs] gaze into the future ... they see an employment landscape shaped 
like a barbell. At one end are bankers and lawyers ...; at the other end are countermen at fast-food franchises ...." 

' Barlett and Steele (1992) stress this thesis. 
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population (such as the Kolmogorov-Smirnov equality-of-distributions test), which do not 

provide estimates of the level of similarity between nonequivalent distributions. These 

tests also require exacting confidence levels to reject the hypothesis that the distributions 

are distinct when sample sizes reach the thousands of observations available in the 

Current Population Survey (CPS). In order to examine the relative shapes of the sectoral 

wage distributions, this paper uses a nonparametric measure of density overlap to 

examine wage differences between the two sectors over time. We also modify this 

statistic in order to identify the locations within the distribution that account for the non- 

overlap in each year. The statistical significance of all overlapping statistics in this 

analysis is evaluated using bootstrapping techniques. 

This statistic is applied both to empirical densities and to "smooth" densities 

estimated using a kernel density estimation procedure. The estimated densities have the 

advantage of reflecting the shape of the densities without the large amount of rounding 

evident in the raw data. Rounding lowers the apparent overlap of densities by allowing 

economically insignificant variations in pay levels to lead to substantial nonoverlap at 

clustered wage levels. Smoothing removes rounding and makes comparisons across 

varying sample sizes more accurate. The advantages of applying this smoothing 

procedure to the data prior to comparisons is documented in simulations based on 

controlled samples from the CPS data. 

Our results chronicle substantial sectoral wage convergence over the last decade, 

and also indicate that overlap has been consistently strongest over the middle quantiles of 

the distributions Finally, we demonstrate two extensions to our technique that shed light 
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on the causes of non-overlap. Unlike more conventional regression-based methods- 

which focus on average wage measures--our focus on the frequency of workers at each 

wage level affords a closer view of distributional dynamics over time. 

II. The Data 

The results in this paper are based on weekly wage data drawn from 25 years of 

the March CPS-- 1970 to 1994. Our weekly wages are constructed from weeks worked 

the previous year and total earnings from the previous year, resulting in wage data that 

span the period from 1969 to 1993. Annual earnings are corrected for Census Bureau 

topcoding procedures that cap reported annual wage and salary earnings at $50,000 to 

$199,998, depending on the year.4 While not necessary for most of the analysis in the 

paper, wages are inflated (using the GDP Personal Consumption Expenditures Deflator) 

into constant 1993 dollars to allow readers to compare figures across years. 

Our sample includes noninstitutional civilian adults who usually worked full time 

(at least 35 hours per week) for at least 39 weeks in the previous year. Part-time workers 

are not considered, partially because hourly wage data are not available prior to 1985, but 

also because we want to consider comparable workers and jobs in each sector. The 

differences between full-time and part-time wages, while potentially relevant due to the 

higher part-time employment rates in the service sector, reflect a wide variety of factors 

(many of them unrelated to employment opportunities) that are not the focus of this study. 

The majority of part-time workers choose their hours for noneconomic reasons (see 

The topcoding correction assigns all topcoded wage observations the mean of a Pareto distribution truncated at the 
topcode, according to the formula reported in Shryock, et al. (1971). The steepness of the distribution prior to the topcode is 
measured from the 90th percentile to the topcode. 
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Dupuy and Schweitzer [1995]). Furthermore, Blank (1990) finds that the lower pay 

accorded to part-time positions primarily reflects the workers' lower observed and 

unobserved skills. We exclude workers listed as reporting less than half of the real 1993 

minimum wage to avoid a small number of problematically low wage  observation^.^ 

For the sake of comparison with published figures, the difference between sectoral 

median weekly wages for our full-time sample are presented in Figure 1. The most 

striking feature is the convergence of median wages between 1979 and the early 1990s. 

In 1993, the median service job paid $19 per week less than the median goods-producing 

job -- down from a 1979 difference of $83. The relatively small differences between 

sectors throughout the period are due to focusing on full-time workers. 

However, even for 1993, the wage distributions for the two sectors are statistically 

distinguishable from each other. Kolmogorov-Smirnov tests indicate that the null 

hypothesis of equal sectoral wage distributions can be rejected with great confidence 

(higher than 99.9 percent) for each year in the sample. Furthermore, for both sectors in 

each year, Kolmogorov-Srnirnov tests reject the hypothesis that wages are distributed 

lognormally (again with greater than 99.9 percent confidence). 

Ill. Measuring the Closeness of Distributions 

While any number of summary statistics can be used to compare distributions, our 

approach focuses on comparisons of probability density functions. The overlapping 

coefficient (OVL) compares the frequencies throughout the range of a variable between 

two samples. Direct application of the OVL provides an easily interpreted, substantive 

The minimum full-time workweek of 35 hours is used to calculate the weekly earnings implied by this cutoff. 
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measure of the closeness of two samples, drawn from a population of an arbitrary 

functional form, when a suitably defined histogram is an adequate representation of the 

populations. 

The OVL is a straightforward, but seldom used, measure. Bradley (1985) and 

Inman and Bradley (1989) promote the use of OVL as an intuitive measure of the 

substantive similarity between two probability distributions. Graphically, OVL is the area 

where the densities of the two distributions overlap when plotted on the same axes (see 

Figure 2). This representation allows a simple hypothesis--that workers in one group are 

more likely to earn a particular wage than workers in another--to be expanded across all 

possible wage levels. 

In the discrete case, appropriate for empirical distributions, OVL is formally 

defined as 

wherefi(X) andf2(X) are the empirical probability density functions or simply proportions 

of the sample. With continuous distributions, OVL is defined analogously with 

integration replacing the s~mmation.~ While Inman and Bradley's (1989) development of 

OVL focuses on the coefficient's estimation and properties assuming normal 

distributions, the value of the OVL in this application is due to the fact that OVL is 

defined without regard to any distributional assumptions. Furthermore, OVL is invariant 

to transformations that are one-for-one and order-preserving (like a price deflator), when 

applied to both distributions. 

Inman and Bradley (1989). 
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One limitation of OVL was noted by Gastwirth (1975) in the case of income 

comparisons: Potentially meaningful changes in income for individuals do not 

necessarily alter OVL. In particular, referring again to Figure 2, if one of the observations 

beyond the intersection of the densities (v) is given more X (which could be wages), OVL 

is unchanged. More generally, for xi the value of X for observation i adding or subtracting 

A to i7s holdings of X such that sign[f,(xi) - f2(xi)] = sign [&(xi + A) - f2(xi + A)] leaves 

OVL unchanged. While Gastwirth considers this a serious problem for evaluating the 

effects of affirmative-action programs on the wages of whites and minorities, in 

comparing the wage distributions of industries there is no sense in which it is preferable 

for particular workers in one industry to get larger salary increases than in another. 

On the other hand, we may wish to know what wage ranges cause the distributions 

to differ substantially. An example of a hypothesis easily framed in this context is the 

following: "While wages are quite similar for top earners in both sectors, the service 

sector is dominated by good jobs and bad jobs, lacking the midlevel wage opportunities 

available in goods production." To address these issues using OVL, we can split OVL 

into the overlap associated with a range of wages. Defining q, as the wage rate at the ath 

percentile of the full sample (both sectors) and y as a constant percentage, OVL can be 

split into quantile ranges: 

OVLQ, = X ~ ( 9 a  .9a+, I 
E [O,:l.]. 

Y 
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For the same reason that OVL is generally unaffected by changes in wages for 

specific observations (location doesn't matter), the choice of a does not alter the possible 

values that OVLQ, may take. In the case where at each wage level between q, and q, 

the observed frequencies fi(x) and&(x) are always equal, OVLQ, equals the sum of the 

frequencies of f(x) (the density of the full sample) between q, and q,, which by definition 

of the percentiles equals y divided by y, or one. The other extreme is defined by the case 

where wages in the two sectors are completely disjoint in the range defined by q, and q,,; 

thus the minimum of the two densities is always zero in this range. This could occur in a 

variety of ways; for example, when no workers in a sector are paid wages in the range, or 

when workers in one sector are paid in even dollar amounts while the other sector pays in 

odd dollar amounts. 

OVL allows intuitive comparisons of the degree of similarity between empirical 

distributions across years. OVLQ allows the similarity or dissimilarity to be located 

within the distribution of wages. 

IV. Nonparametric Density Estimation 

In cases where the discrete jumps of frequency (a feature of histograms) are not an 

acceptable description of the underlying density, a nonparametric estimate of the 

empirical density may be favored. Nonparametric density estimation has been 

recommended for exploratory data analysis in the statistics literature because features of 

the distribution are often readily visible in the density (Fox [I9901 and RCvCsz [1984]). 

Nonparametric density estimation can easily be thought of as sophisticated histograms. 
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The appearance and implicit interpretation of histograms are strongly dependent on the 

number of bins. As their binwidth increases (the number of bins is reduced), potentially 

interesting details of distribution are lost. However as the binwidth is decreased, 

discontinuities due to sampling may arise. Nonparametric density estimation attempts to 

strike a balance between these effects when the underlying density is assumed to be 

"smooth." 

In the case of U.S. wage data there are two clear reasons to believe that some 

smoothing may be needed: sampling and rounding. The CPS, while an unusually large 

survey, is still subject to noticeable sampling errors at the level of detail needed for 

empirical density functions. For example, at the fairly common wage of $400 ($ lohour 

for 40 hours) only 294 goods-producing workers were surveyed in 1993. Year-to-year 

variation in the sample could lead to surprising differences between sectors at a given 

wage level. If the underlying densities of wages are smooth, then the surrounding wage 

rates may yield information that ameliorates this phenomenon. 

A very prominent feature of CPS wage data is the high frequency of wage 

observations at round numbers. This could be due to recall bias favoring round numbers 

on the part of survey respondents or a tendency for employers to round pay to round 
* 

numbers. Regardless, the spikes evident in the raw data may not be relevant features for 

the purposes of the comparison. For example, a smaller tendency to round in one 

industry would alter the measured OVL without implying large or relevant differences in 

the underlying wage densities.' 

' Actually, tendencies to round that vary differently over the wage distributions could be equally damaging. 
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A kernel density estimator smoothes out the discrete jumps in the histogram by 

applying a kernel function in place of the frequency of observations at each wage level. 

Kernel functions, K(z), are simply probability density functions integrating to one, so a 

variety of options exist. Given a selected kernel, the estimated density function is: 

where n is the number of observations in the sample and h is the bandwidth, which 

corresponds to half of the range observations assumed relevant for frequency at x. The 

choice of a bandwidth can greatly alter the apparent features of the estimated density, 

much as the number of bins alters the characteristics of the histogram. 

A variety of bandwidth selection rules exist in the kernel-density estimation 

literature (Jones, Marron, and Sheather, 1994). These rules are typically implementations 

of minimizing the Mean Integrated Squared Error, 

where f is the actual density estimated by jh , which is dependent on the bandwidth h. 

While this approach has yielded some interesting new bandwidth rules, it does not 
C 

address directly the critical need of this analysis--removal of the spikes caused by 

rounded wage rates. Further, a single bandwidth is needed for each sector in all years 

because a given bandwidth implies a degree of smoothness for the estimated density. 

OVL estimates can depend on the degree to which spikes are smoothed, as noted in 

section 11. 
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In this light, we applied three rules of thumb to provide guidance on what ranges 

of bandwidths might be reasonable, but based our final choice on visual inspection. A 

critical variable in all bandwidth rules is the number of observations: As observations 

rise, the bandwidth goes to zero. Table 1 shows the results of our three rules of thumb for 

both sectors in three years: an early year with a small sample with nearly equal sectoral 

employment levels (1969); a middle year with a larger sample size, but a smaller goods 

sector (1980); and the last year (1993). These rules vary substantially, with Scott's 

(1992) oversmoothing rule, designed to be conservative in finding potential modes, 

always the largest. 

The visually selected bandwidth turns out to be in the middle of the bandwidth 

rules of thumb across all of these classes. Specifically, we found that the Gaussian kernel 

with a bandwidth of $50 yielded the most complete reduction in rounding without 

smoothing out local frequency differences in the wage  distribution^.^ Other bandwidths 

were explored with little change in the qualitative results. 

Figure 3 shows the remarkable degree to which the CPS data are clustered. The 

smooth plot is the Gaussian kernel estimate, which on this scale shows little of the shape 

of the kernel (see Figure 7 for a clearer view of this estimate). In this particular case (the 

goods sector in 1993), over 77 percent of the weight of the histogram is in spikes above 

the smooth density, which represent about 22 percent of the possible wage rates. 

Other popular kernels tended to reproduce discrete jumps associated with larger wage clusters at all but the largest 
bandwidths. OVL estimates based on these estimated densities would continue to reflect differences in the rates of clustering between 
the comparison groups. A similar problem with non-Gaussian kernels was noted by Minotte and Scott (1993) in a similar context. 
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Once the densities have been estimated using these techniques, the estimates may 

be used to calculate OVL. In this case, OVL is a function of the estimation procedure and 

reflects the degree of similarity of the two densities, given underlying densities that are 

believed to be smooth. Even without assuming that the population densities are smooth, 

the OVL applied to the smooth density indicates the degree of similarity evident in basic 

shape of density. This number will typically be hlgher than the OVL calculated from the 

raw sample, due to reduced sampling variation and rounding differences which can 

increase the estimated OVL. OVLQ can also be calculated, although the quantile 

estimates for the full sample should reflect the same procedure applied to sector 

distributions. 

V. Diagnostics of the OVL Measures 

OVL is a straightforward, visually oriented statistic that we augment with a well- 

established technique for estimating densities; however, the statistical characteristics of 

this combined measure as applied to earnings data are not known. We approach this issue 

by simulating direct analogues of characteristics of interest using samples based on the 

dataset used in this analysis. 

Bias of the Overlapping Coefficient 

As a statistical measure, OVL is fundamentally biased. This is because any 

sampling variation in the two density estimates results in the statistic being strictly less 

than one, even when the samples are actually drawn from the same population. Thus, 

OVL estimates near 1.0 may indicate that the densities actually are drawn from the same 
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population. The most obvious solution is to apply an unbiased test like Kolmogorov- 

Smirnoff, to determine whether the samples are potentially drawn from the same 

population. However, this test does not inform us on the closeness. 

To address the issue of bias in OVL, we estimate that bias in the context of CPS 

earnings data by fabricating samples that are drawn from the same population. Two basic 

tests are applied: 1) The actual wage density for one industry is sampled with 

replacement to simulate a population with substantial rounding of earnings levels, and 2) 

Samples are drawn from a lognormal distribution with the empirical mean and variance 

of the wages used in the first test, which eliminates the rounding in the CPS data. These 

tests are applied at both large (~25,000 per sector) and small (=10,000-13,000 per sector) 

sample sizes. These simulations are repeated a thousand times to estimate the 

distribution of bias for each case. 

Table 2 presents the results of the simulations for both the OVL as applied to the 

empirical density and the estimated OVL along with its quantiles for each scenario. The 

starkest conclusion of this analysis is the large degree to which OVL as applied to 

empirical density (OVL [raw]) is biased away from 1 .O. The OVL of the kernel density 

estimates (OVL [sm]) is biased much less (1.0 to 1.6 percent on average), but still 

noticeably. The simulations underlying Table 2 also indicate that the bias does not vary 

substantially relative to its average level in any given sample: For either OVL, the 

standard deviation of the bias simulations is always under 0.5 percent. In all cases, 

reducing the sample size increases the bias; however, the bias estimates for OVL (sm) are 
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increased only by about half a percentage point for a sample reduction of approximately 

50 percent. 

The quantile bias measures indicate that the bias in the estimated density OVL are 

concentrated in the tails of the density. These differential biases must be accounted for 

when the OVL is broken into OVLQ. These biases blunt one conclusion of our analysis, 

but having been recognized, they can be easily accounted for without losing the ability to 

address the location of the differences in the densities. 

The Role of Sample Size 

OVL being calculated at all wage rates implies that reducing even the large CPS 

sample can increase the measured overlap. To estimate the role of sample size across a 

broad range of samples, simulations on the 1993 data are run for both OVL measures 

with sample sizes from 4,907 to 196,270. In the smaller samples, 90 to 10 percent 

samples were drawn from both sectors' wage distributions, prior to estimating the full set 

of overlapping coefficients. A new sample is drawn for each sample size. Larger sample 

sizes are created by adding samples drawn with replacement of the size of the original 

dataset to yield datasets from double to quadruple the size (49,069) of the original 1993 

sample. In order to estimate the sampling distributions of the simulations, these 

procedures are repeated 100 times. 

The results of the sample-size simulations are shown in Figure 4. OVL (sm) is the 

mean of the simulations on the OVL of the estimated density, and OVL (raw) is the mean 

of the simulations for the empirical density. The dotted lines indicate one-standard- 

deviation bounds around the simulation means. The key conclusion is that OVL (sm) are 
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roughly constant at any sample size. On the other hand, OVL applied to the raw data 

deteriorates rapidly. A 90 percent reduction in the sample lowers the OVL estimate from 

the raw data from almost 0.85 to 0.69, while the OVL of the estimated densities declines 

only a third as much, from 0.95 to 0.93. This characteristic is very important, because the 

CPS sample size has nearly doubled over the period, and some of the comparisons that 

will be made in the extensions section involve even smaller samples. Both statistics are 

only slightly affected by expanding their sample size through sampling with replacement. 

VI. The Evidence for Convergence since the Early 1980s 

The substantial amount of wage variation in any year is evident from the 

estimated densities, shown in Figures 5 to 7. Further, while the distributions of earnings 

have changed over time, the two sectors' earnings distributions have generally been 

reasonably similar. The most notable distinction between the wage distributions is the 

higher frequencies of goods workers in the range from $700 to $1,100 in 1980. The 

sectoral densities are visually more similar in 1969 and 1993 than in 1980. These 

qualitative dimensions of relative earnings, while potentially derivable in a more 

traditional approach, are obvious from the estimated density. 

Quantifying these comparisons with OVL allows fine distinctions to be identified 

and the statistical reliability of these observations to be tested. As section I11 showed, 

both OVL and OVLQ estimates are bounded by zero and one. The perfect overlap bound 

of one is approached in certain ranges of Figure 7, but can only be obtained if the 

employment frequencies in the two sectors are identical at every wage rate. Because both 

the calculated statistics and the bootstrapped confidence intervals reflect these bounds 
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(they never equal one), it is useful to keep a level of effective equivalence in mind. Given 

estimated distributions that reflect only variation in the location and the general shape of 

the distributions, this level should be high: we will use 0.95 (nearly equivalent) and 0.98 

(effectively equivalent). These numbers imply that, for wages in the relevant range, 100 

workers in the more prevalent sector would typically be matched with at least 95 or 98 

workers in the other. It is helpful to keep cutoffs (though not necessarily ours) in mind, 

but the actual estimates are, of course, reported. 

While the nonpararnetric density estimates do not alter the basic character of the 

wage distributions, they do significantly alter the implied OVL. Figure 8 shows that the 

gap between OVL (sm) and OVL (raw) is substantial, sometimes exceeding 0.1. As 

noted above, sampling variation and differences in rounding would tend to increase the 

OVL measured in raw data. The other factor in the gap between the two measures is the 

summarization of wages implied by the smooth density. To counter the potential problem 

of variation in smoothness driving our results, we have also varied the parameters which 

affect the smoothness and found similar qualitative results. It should be noted that the 

estimated densities do show notable features after smoothing, and that the estimated 

densities are easily rejected as normal or l~gnormal.~ 

The upward trend in OVL since around 1980 is visible in either OVL (sm) or 

OVL (raw), although the estimated densities show more convergence. That these trends . 

are statistically significant can easily be verified in the first two columns of Table 3. The 

standard errors derived from a thousand repetitions of the bootstrapping algorithm 

While visual features of these estimates appear to violate the parametric densities, we applied both Kolmogorov- 
Smimoff tests and a test based on skewness and kurtosis to verify this statement. 
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described in the appendix are reported in the parentheses for each of the statistics. The 

standard errors for both of the OVLs of both the empirical and estimated densities are 

quite small--generally less than 0.005; thus, the larger changes of both OVLs are typically 

statistically significant. Unfortunately, the bootstrapped standard errors cannot be taken 

to imply exact hypothesis tests in this case. One bias already discussed and estimated is 

the degree to which the OVL estimates differ from 1.0 when the populations are, in fact, 

identical. This bias is not picked up in the bootstrap because each bootstrap sample 

yields estimates which also have the same problem. The other bias to be concerned with 

is the tradeoff between estimator variability and bias in kernel-density estimates. While 

this bias is also picked up by all bootstrap samples, the OVL (raw) estimates give us 

reason to suspect that this bias is small, because their standard-error estimates should 

overstate the ideal smoothed density errors by virtue of being undersmoothed. Given the 

known bias, estimated in Table 2, we expect that the confidence intervals reported here 

are conservative reflecting the unconstrained side, with no bias adjustment applied to the 

mean, and that the standard errors may be somewhat underestimated. 

In the most recent years, OVL (sm) is appmaching levels where we could easily 

question the importance of the distinction; however, the choice of cutoffs between 

substantial and trivial differences depends on personal interpretations. While the 

bootstrapped standard errors are useful for characterizing the variability of our estimators, 

we apply bootstrapped confidence intervals to test whether these estimates pass our 

hypothetical cutoffs.I0 The confidence interval approach is favored, because bounded 

'I' We follow the approach and guidance of Efron and Tibshirani (1993) on applying bootstrap techniques to confidence- 
interval estimation. 
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statistics tend to result in asymmetric estimation errors as the bound is approached. 

Again in Table 3, estimated OVLs that exceed, with 90 percent certainty, the 0.95 cutoff 

are indicated by one asterisk, 0.98 by two asterisks, and 0.99 by three asterisks. No full- 

density OVLs exceed the cutoffs with this degree of confidence, but they certainly are 

getting close. As measured by our bootstrap analysis, the OVL (sm) estimates in 1993 

exceed 0.95 with a probability of almost 0.5. 

One of the advantages we noted for OVL is that it can be easily split into quantile 

components. Table 3 also shows the decile OVLQs for the estimated densities. While 

only in recent years has the convergence of wages for the full distributions reached the 

nearly identical cutoff, the middle deciles have frequently exceeded this and higher 

cutoffs. Even when the wage distributions were most distinct (1980), the sixth and 

seventh deciles qualify as at least 95 percent overlapped, with 90 percent confidence. 

These decile OLVQ statistics clearly demonstrate that the wage distributions in the goods 

and services sectors of the economy have always been closest in the middle ranges, 

belying the oft-made criticism that the services provide only high- and low-paid work 

relative to goods production. The reality is that the frequencies of middle salary deciles 

in the two sectors are highly similar in most years. 

The growing convergence in wage distribution in the 1980s and 1990s can also be 

allocated according to deciles by the same statistics, because the components average to 

the overall." Comparing 1980 with 1993, virtually every decile is more similar in 1993, 

but the largest changes have been in the second through the fourth deciles and in the top 

' I  The reported statistics do not average exactly, because the discrete approximation implies variability in the realized 
quantile sizes, which are adjusted for in the formula. 
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two deciles. These increases put the fourth through eighth quantiles beyond the 95 

percent level of comparability. Wage frequencies are substantially different only in the 

lowest two deciles, where service-sector jobs continue to be more frequent, and in the 

topmost decile. 

What wage ranges led to the peak disparity between distributions seen in 1980? 

Again, wages were much more similar in the second through the fourth deciles, along 

with the top two deciles, in the early 1970s relative to the early 1980s. In the second 

through fourth deciles, it is generally service-sector jobs that are more frequent, whereas 

the upper deciles have greater frequencies of goods-sector jobs. Thus, the late seventies 

and early eighties were a period when the relative frequencies of employment in the two 

sectors became more distinct by shifting towards the wages that are viewed as 

conventional for each sector. But the surrounding periods show that the more typical 

wage patterns in the two sectors might be more equal. 

VII. Further Comparisons 

The preceding analysis takes an extreme view of wage comparability that runs 

counter to regression analysis: Wages reflect a mixture of investments and compensating 

differentials that, while not controlled for, are largely offsetting. While this assumption 

has allowed the analysis to focus on the full distribution in ways that are not possible in a 

regression framework, this technique does not necessitate a complete lack of controls. In 

this section, we consider two simple hypotheses that can be analyzed in the same 

framework: 1) that the very broad sectors used in the analysis hide the real wage 
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differences; and 2) that wages are converging because service-sector workers have 

pursued more education, which is rising in value. 

Narrower Industries 

At the limit, it is self-evident that narrower industries should be more distinct: 

Wages in transportation equipment (which includes both automobile and airplane 

manufacturers) must be and are different from fast food restaurants. The workers 

employed by the industries are clearly different. Nonetheless, comparisons may be made 

at the intermediate categories; for example, manufacturing and narrow services." This 

particular comparison is relevant because much of the sectoral shift has occurred in these 

divisions. Manufacturing employment has been shrinking rapidly, while the narrow 

services have been among the most rapidly expanding industries. 

Figure 7 shows that these narrower industries have paralleled the development of 

the broader sectors." After starting at a relatively high overlap (and with more workers in 

manufacturing) wages become more dissimilar, until they reach a minimum in 1980. By 

the 1990s wages are nearly as similar in these narrower industries as they are in the 

broader sectors. The change is all the sharper in the narrow services, because OVL for 

the narrower industries started lower in the early years. For the sake of brevity we did 

not report the quantile estimates, but they also repeat the patterns seen in the broader 

l2 Manufacturing includes both durable and nondurable components. Narrow services includes: Hotels and Other 
Lodging; Personal Services; Business Services; Auto Services; Repair Services; Motion Pictures; Amusement and Recreation 
Services; Health Services; Legal Services; Educational Services; Social Services; Museums; Membership Organizations; .Engineering 
and Management Services; and Private Household Employment. 

l3 1969 is not shown because substantial changes in industry coding disrupt comparisons to 1970 and later at this level of 
disaggregation. 
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sectors: Wage frequencies have typically been comparable in the middle deciles, and the 

convergence has occurred in the surrounding deciles. 

Education 

Formal (that is, reported) education levels are higher in the service sector and 

have been rising. This fact, combined with the widely observed rising returns to 

education, suggests another interpretation of the convergence. Rising education levels 

have pushed up the wages of service-sector workers as workers have chosen more formal 

education in lieu of high-paying jobs in goods production. While the structural details of 

this description are not easily described in the framework, a modified shift-share analysis 

is possible. We can ask, "What might wages look like if the distributions in both sectors 

reflected the education levels of an earlier base year?"'" 

Without the regression analysis to summarize education returns, the hypothesis 

must be built in by adjusting the observed frequencies to the base year frequencies. A 

simple approach is to modify the population weights already used in the CPS to reflect 

the education distribution of the base year: 

where wgti is the CPS supplement weight assigned to the individual, and the education 

frequency terms (edfri) refer to the population frequency of the individual's education 

level in the base and current years. This reweighting implies an assumption that lower 

l4 The groups are: Less than a high school diploma, high school diploma, some college but no four-year degree, four-year 
college degree, and some graduate school. We use these rough categories in order to compare education over the entire sample. 
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education levels for an individual result in pay comparable to that of current workers at 

that education level. Unlike a regression shift-share analysis, it does not assume that 

returns to education can be summarized by a single figure for each education level. 

While the hypothesis is limited by its assumptions, the results should indicate the 

direction of these effects. Even though the education shifts are large in wage 

distributions, altering the composition of the labor force to reflect lower education levels 

in both sectors affects wages in the sectors fairly evenly. Only in the latest years does any 

real distinction develop between the previously estimated OVL and the OVL constrained 

to early education levels (see Figure 10). This startling result negates what seemed to be 

a fairly credible hypothesis. 

VIII. Conclusion 

This paper proposes an alternative approach to comparing a variable in two sub- 

populations that focuses on the similarity of the frequencies over the full distribution. 

While we clearly want to support an approach that does not focus so heavily on the 

central tendencies of variables, as both means and regressions tend to do, this is not to 

suggest that regressions have little value in comparing variables like wages in 

subpopulations. Regressions allow the simultaneous summarization of varied controls 

which can become impractical in our approach. Nonetheless, we strongly recommend the 

use of our techniques to clarify the nature of differences or the location of diminished 

differences between wages in related sectors. 

Wages in the goods- and service-producing sectors are much more comparable 

than the existing policy literature suspects. The broad-based similarity of wage 
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frequencies in the two sectors has not previously been examined; rather, economists have 

focused on statistically significant average differences, typically in a regression setting 

with a variety of controls. For many policy applications these controls may not be 

relevant (for example, in estimates of the increase in the tax base implied by recruiting 

firms from a particular sector). Similarly, our results suggest that policies intended to 

shift employment back to goods production from services will not meaningfully alter the 

overall distribution of earnings. 
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Technical Appendix: Algorithms 

The Overlap Statistic by Quantiles 

This algorithm is exact, given a rounding factor and a smoothing algorithm. 
While exact, the choice of these components can alter the estimates. Larger bin sizes 
increase the measures overlap. Smoothing can reduce the impact of the rounding factor 
by limiting the discrete jumps that typically occur with greater regularity with narrow 
bins. 

1. Collect data into bins according to the rounding factor, R. 

2. Assure that .within the range of wages in the full sample, frequencies exist for 
each bin for both sectors, by assigning zeroes where necessary. 

3. Smooth frequency distributions for both sectors, if desired. 

4. Calculate and identify the quantiles associated with each wage bin, from the 
weighted sum of the sectoral densities. 

5. Calculate the overlap at each wage rate, then sum by quantile and over the full 
distribution, according to equation . 

6. Adjust quantile overlaps for size variation in the quantiles. 

Boots trapped Standard Errors and Confidence Intervals 

We apply simple bootstrapping wherever standard errors or hypothesis tests are 
reported for overlap coefficients. Most estimates are constructed from a thousand 
bootstrap replications to allow reasonably exact confidence intervals. 

1. Resample, with replacement from the original dataset, a bootstrap sample of 
equal size. 

2. Calculate the overlap statistics (smoothed or raw) from the beginning. Store 
the results. 

3. Repeat steps 1 and 2, until the replication dataset reaches the desired size. 

4. Calculate the standard errors from the standard deviations of this dataset, and 
confidence intervals from the percentiles of this replications dataset. 
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Figure 1: Difference Between Goods- and Service-Producing Median Weekly 

Wages 

Year 

SOURCE: Authors' calculations from Current Population Survey data. 

Figure 2: Graphic Representation of Overlapping Coefficient 

SOURCE: Authors' drawing. 
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Figure 3: Extreme Rounding Reduced by Kernel Density Estimation 

Raw Goods Frequency E s t .  Goods Sec to r  Dens i t y  
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SOURCE: Authors' calculations from Current Population Survey data. 
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Figure 4: The Effect of Sample Size on OVL Measures 

0.6 -1 I 
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Percent of 1993 Sample 

SOURCE: Authors' calculations from Current Population Survey data. 
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Figure 5: 1969 Estimated Wage Densities 
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SOURCE: Authors' calculations from Current Population Survey data. 
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Figure 6: 1980 Estimated Wage Densities 
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SOURCE: Authors' calculations from Current Population Survey data. 
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Figure 7: 1993 Estimated Wage Densities 
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SOURCE: Authors' calculations from Current Population Survey data. 
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Figure 8: Overlapping Coefficients 

Estimated Density 

Raw Data 

U 

1969 1972 1975 1978 1981 1984 1987 1990 1993 
Year 

SOURCE: Authors' calculations from Current Population Survey data 

Figure 9: OVL for Narrower Industries 

Broad Sectors _ _ _  Narrow Industries 

Year 

SOURCE: Authors' calculations from Current Population Survey data. 
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Figure 10: OVL When Workforce Education Composition Is Held Constant 

l -  Education Groups 
Vary 

--- 
Education Groups 
Constant 
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I 
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Year 

NOTE: Base year is 1972. 
SOURCE: Authors' calculations from Current Population Survey data. 
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Table 1: Bandwidth Selection Rules 

Number of I I I 

1969 
Goods Services 

1980 
Goods Services 

Observations 
Silverman's 

Table 2: Bias Simulation Results 

1993 
Goods Services 

Hardle's Better 
Scott's Oversmoothing 

Distributions 
Lognormal I 1994 Goods Sector 

13702 15191 
42.2 41.1 

SOURCE: Authors' calculations from Current Population Survey data. 

49.7 48.4 
76 75.2 

19116 36583 
42.7 31.5 

Avg. Observations 

13484 35644 
50 37 

50.3 37.1 
72.1 51.9 

- 
per sector 
OVL (raw) 

58.9 43.6 
82.4 6 1 

Large Sample Small Sample 

. . 

OVL (sm) 
OVLQ (sm) 

Large Sample Small Sample 

2491 5 9966 
0.862 0.788 

100 

25000 13484 
0.893 0.880 

0.990 0.984 0.987 0.985 

SOURCE: Authors' calculations from Current Population Survey data. 

0.973 0.955 0.967 0.961 
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Table 3: Estimated Overlapping Coefficients 

SOURCE: Authors' calculations from Current Population Survey data. 

Tenth 
Decile 
0.90991 
(0.01 51) 
0.93648 

(0.01 1 9) 
0.90904 

(0.01 26) 
0.89887 

(0.01 32) 
0.93241 

(0.0120) 
0.92545 
(0.01 15) 
0.91315 

(0.01 1 1) 
0.90168 

(0.01 13) 
0.91260 

(0.01 09) 
0.89539 

(0.0108) 
0.90410 
(0.01 09) 
0.85778 

(0.0097) 

Eighth 
Decile 
0.90620 

(0.01 20) 
0.93118 

(0.0087) 
0.92387 
(0.0089) 
0.92092 

(0.0086) 
0.92503 

(0.0090) 
0.92710 

(0.0088) 
0.92807 

(0.0085) 
0.93329 

(0.0083) 
0.93395 

(0.0083) 
0.92738 

(0.0078) 
0.91912 

(0.0081) 
0.93490 

(0.0074) 

Ninth 
Decile 
0.91575 

(0.01 3 7) 
0.93353 

(0.01 05) 
0.92132 

(0.01 05) 
0.93839 

(0.01 02) 
0.92857 

(0.01 05) 
0.91085 

(0.01 01) 
0.90569 

(0.0098) 
0.89577 

(0.01 00) 
0.90168 

(0.0096) 
0.87332 

(0,0094) 
0.84852 

(0.0092) 
0.87368 

(0.0093) 

YR 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

Seventh 
Decile 
0.92184 

(0.01 01) 
0.96230 

(0.0077) 
0.95129 

(0.0079) 1 

0.93365 
(0.0076) 
0.93158 

(0.0075) 
0.94071 

(0.0078) 
0.94975 
(0.0076) 
0.95690 

(0.0074) 
0.95695 

(0.0074) 
0.96228* 

(0.0079) 
0.95834 

(0.0070) 
0.96256* 

(0.0068) 

Estimated 
Overlap 
0.92242 

(0.0055) 
0.93989 

(0.0044) 
0.93113 

(0.004 7) 
0.92256 

(0.0049) 
0.92575 

(0.0049) 
0.92177 

(0.0049;) 
0.91748 

(0.0048) 
0.91464 

(0.0048) 
0.91376 

(0.0048) 
0.90666 

(0.0047) 
0.89732 

(0.0047) 
0.89642 

(0.0045) 

Fifth 
Decile 
0.98433* 

(0.0052) 
0.99153 ** 

(0.0055) 
0.99790 ** 

(0.0048) 
0.98389* 

(0.0083) 
0.97471* 

(0.0094) 
0.98482 

(0.0079) 
0.97444* 

(0.0094) 
0.96037 

(0.01 07) 
0.98297 * 

(0.0057) 
0.94708 

(0.01 07) 
0.94671 

(0.01 07) 
0.95746 

(0.01 03) 

Raw 
Overlap 
0.84189 

(0.0048) 
0.84833 

0.84983 

0.85061 

0.86147 

0.84496 

0.81478 

0.82309 

0.83285 

0.82796 

0.83214 

0.82422 
(0.0042) 

Sixth 
Decile 
0.95910 

(0.0098) 
0.98371 ** 

(0.0068) 
0.98570 

(0.0059) 
0.97005* 

(0.0068) 
0.97313* 

(0.0067) 
0.97244 

(0.0070) 
0.97356* 

(0.0066) 
0.98508** 
(0.0038) 
0.97404 

(0.0069) 
0.98896** 

(0.0037) 
0.98604 ** 

(0.0031) 
0.99021** 
(0.0040) 

First 
Decile 
0.83134 

(0.01 4 7) 
0.76956 

(0.0 140) 
0.75886 

(0.01 50) 
0.77289 

(0.01 4 8) 
0.80608 

(0.01 52) 
0.781 13 

(0.01 54) 
0.74071 

(0.01 45) 
0.76109 
(0.014 7) 
0.76308 
(0.01 4 7) 
0.77577 

(0.0138) 
0.77139 

(0.01 37) 
0.74909 

(0.01 3 7) 

Fourth 
Decile 
0.95562 

(0.0093) 
0.99587 *** 

(0.0043) 
0.99556 ** 

(0.0058) 
0.96244 

(0.01 03) 
0.94873 

(0.01 08) 
0.96738 * 

(0.01 02) 
0.95583 

(0.01 07) 
0.94440 
(0.01 05) 
0.93481 

(0.01 04) 
0.91944 

(0.01 03) 
0.91086 

(0.0098) 
0.91747 

(0.0097) 

Second 
Decile 
0.90418 

(0.01 10) 
0.91962 

(0.01 09) 
0.90440 

(0.01 14) 
0.90306 

(0.01 16) 
0.90018 
(0.01 18) 
0.87077 

(0.01 1 7) 
0.88423 

(0.01 1 7) 
0.87912 

(0.01 11) 
0.8671 1 

(0.01 13) 
0.86862 

(0.01 11) 
0.84616 

(0.07 04) 
0.83831 
(0.01 04) 

Third 
Decile 
0.93550 
(0.01 01) 
0.97382 
(0.0096) 
0.96332 * 
(0.01 00) 
0.94133 

(0.01 04) 
0.93624 

(0.01 08) 
0.93602 

(0.01 08) 
0.94822 
(0.01 07) 
0.92665 
(0.01 02) 
0.90888 

(0.01 07) 
0.90674 

(0.0102) 
0.88190 

(0.0098) 
0.88134 
(0.0092) 
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Table 3 (continued): Estimated Overlapping Coefficients 

SOURCE: Authors' calculations from Current Population Survey data 

Tenth 
Decile 
0.88825 

(0.01 04) 
0.89454 

(0.0106) 
0.90463 

(0.0089) 
0.93242 
(0,0097) 
0.91744 

(0.01 06) 
0.89662 

(0.01 18) 
0.92616 
(0.01 00) 
0.88192 

(0.0126) 
0.90172 

(0.01 15) 
0.93207 

(0.01 10) 
0.93415 

(0.0131) 
0.92845 

(0.01 20) 
0.93899 

(0.01 31) 

Ninth 
Decile 
0.89831 
(0.0096) 
0.88389 

(0.0093) 
0.90463 
(0.0089) 
0.90992 

(0.0090) 
0.91087 

(0.0089) 
0.90549 

(0.0089) 
0.92595 

(0.0090) 
0.92855 

(0.0094) 
0.92345 

(0.0086) 
0.94375 

(0.0085) 
0.95068 

(0.0082) 
0.95241 

(0.0082) 
0.95660 

(0.0083) 

Eighth 
Decile 
0.93265 
(0.0080) 
0.93895 
(0.0081) 
0.96363* 
(0.0077) 
0.95226 

(0.0075) 
0.95457 

(0.0076) 
0.94915 

(0.0080) 
0.96154 

(0.0073) 
0.95304 

(0.0078) 
0.97096 

(0.0074) 
0.97077 

(0.0074) 
0.98003 
(0.0069) 
0.97405 

(0.0074) 
0.97315 

(0.0074) 

Seventh 
Decile 
0.96670 

(0.0069) 
0.96985* 

(0.0069) 
0.98384* 
(0.0065) 
0.98924 ** 
(0.0042) 
0.98941** 

(0.0055) 
0.99441** 

(0.0050) 
0.98516 

(0.0062) 
0.99013** 

(0.0059) 
0.98335 

(0.0061) 
0.98633 

(0.0060) 
0.98148 * 

(0.0064) 
0.98676 * 

(0.0055) 
0.97186 * 

(0.0065) 

YR 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

Third 
Decile 
0.91322 

(0.0104) 
0.89329 

(0.0102) 
0.89926 
(0.01 1 1) 
0.94633 

(0.0107) 
0.93105 

(0.01 14) 
0.90842 

(0.01 14) 
0.92847 

(0.01 1 6) 
0.93325 

(0.0125) 
0.94566 

(0.0122) 
0.95985 

(0.0125) 
0.96489 

(0.0124) 
0.97210 

(0.0122) 
0.96772 

(0.01 24) 

Raw 
Overlap 
0.82744 

0.82059 

082813 

0.84207 

0.83519 

0.84146 

0.85491 

0.84514 

0.85023 

0.84752 

0.85320 

0.84708 

0.84848 
(0.0046) 

Fourth 
Decile 
0.93798 

(0.01 03) 
0.91778 

(0.0104) 
0.91747 

(0.01 10) 
0.95219 

(0.0108) 
0.96323 

(0.01 13) 
0.94615 

(0.0122) 
0.93723 

(0.01 19) 
0.96935* 

(0.0122) 
0.97787 

(0.01 12) 
0.98594 

(0.0094) 
0.97598 

(0.07 1 7) 
0.99570 ** 
(0.0068) 
0.98009 

(0.0124) 

Fifth 
Decile 
0.96208 

(0.01 10) 
0.94246 

(0.01 12) 
0.96332 

(0.01 06) 
0.97129 

(0.01 14) 
0.99197** 

(0.0042) 
0.97463' 

(0.01 17) 
0.97747 

(0.01 02) 
0.99513** 

(0.0082) 
0.99000 * 

(0.0089) 
0.99356 ** 

(0.004 1) 
0.99428 ** 

(0.0044) 
0.99606 ** 

(0.0044) 
0.99249 ** 
(0.0068) 

Second 
Decile 
0.86065 

(0.01 13) 
0.85896 

(0.0109) 
0.88049 

(0.01 21) 
0.92411 

(0.0122) 
0.86795 

(0.01 19) 
0.87455 

(0.0122) 
0.90135 

(0.01 3 1) 
0.90585 
(0.01 31) 
0.89311 

(0.0129) 
0.90458 

(0.01 3 1) 
0.90985 

(0.0128) 
0.91591 
(0.0135) 
0.92038 

(0.0139) 

Estimated 
Overlap 
0.91072 

(0.0048) 
0.90795 

(0.0048) 
0.92179 

(0.004 7) 
0.93812 

(0.0045) 
0.92795 

(0.0047) 
0.92657 

(0.0048) 
0.93622 

(0.0050) 
0.93603 
(0.0048) 
0.94056 
(0.0047) 
0.94935 

(0.0049) 
0.95108 

(0.0050) 
0.95525 

(0.0046) 
0.94949 

(0.0050) 

Sixth 
Decile 
0.98904 
(0.0035) 
0,98712' 

(0.0045) 
0.98481** 

(0.0054) 
0.98254 *** 

(0.0708) 
0.98937** 

(0.0055) 
0.99657** 

(0.0055) 
0.99193 
(0.0048) 
0.99061** 

(0.0099) 
0.99716 

(0.0049) 
0.98860 

(0.0055) 
0.98465 

(0.0058) 
0.99642 

(0.0047) 
0.98510 

(0.0054) 

First 
Decile 
0.75720 

(0.0146) 
0.79182 
(0.0149) 
0.81349 
(0.0156) 
0.82018 
(0.0755) 
0.76212 

(0.01 50) 
0.81874 

(0.0156) 
0.82613 

(0.01 62) 
0.81095 
(0.01 66) 
0.82125 

(0.01 64) 
0.82713 

(0.07 64) 
0.83366 

(0.01 70) 
0.83426 

(0.01 75) 
0.80731 

(0.01 76) 
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