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Abstract 

For long periods since 1982, core inflation has behaved as if it were generated by 
a process with a fixed mean and serially independent error term. Nonparametric 
changepoint tests proposed by Pettitt (1979) and Lombard (1987) suggest that 
since 1982, changes in core inflation have been infrequent and rather abrupt. 
However, little is known about the small-sample properties, the power of the 
tests, or the robustness of changepoint tests when a series is not i.i.d. This paper 
uses Monte Carlo analysis to investigate the probabilities of false positive tests 
under alternative assumptions about the time-series properties of the underlying 
process. 
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1. Introduction 

In many situations with economic time series, researchers are faced with the 

question of whether an underlying probability distribution has changed in some distinct 

way. To illustrate, consider a continuous distribution F(x,8,) on a sequence of 

independent random variables xl, . . . , XT. If el =. . .= 8, = 8, while Or+ 1 ,  ... , eT differ in 

some unknown way, the sequence is said to have a changepoint at z. Often, the 

changepoint problem is examined under specific assumptions regarding the form of the 

underlying distribution. The distributional assumptions, however, may be controversial. 

Moreover, evidence suggests that some established procedures may be quite sensitive to 

deviations from assumed distributional forms. 

In light of these issues, Lombard (1987) argues that initial analysis requires 

procedures that are robust against deviations from distributional assumptions. He 

proposes a nonparametric procedure for identifying changepoints. By replacing data with 

functions of rank statistics, nonparametric techniques provide a distribution-free test of 

the null hypothesis of no change. Such methods also offer some protection against 

potential effects of spurious outliers. 

The gains from generality, however, have potential costs, particularly in terms of 

the power of the test. Without a specific distribution, we have no analytic means for 

assessing the power lost. For example, how quickly does the Lombard procedure identify 

a changepoint when it does occur? Moreover, most economic time series exhibit some 

degree of autocorrelation. It is thus useful to assess how sensitive Lombard's tests are to 

deviations from the serial independence assumption. To address these issues, we present 

some results from Monte Carlo experiments designed to estimate significance levels in 
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small samples, the likelihood that a changepoint will be detected by a given time period, 

and the probability of a false positive in the presence of serial correlation. Although our 

analysis is limited to univariate estimators, we offer an application that illustrates their 

potential usefulness. 

The rest of the article is organized as follows. Section 2 describes alternative 

nonparametric estimators of changepoints. The design of the Monte Carlo analysis is 

presented in section 3, while the results are discussed in section 4. To illustrate how our 

results may aid an initial analysis of the changepoint problem, we provide an application 

of the nonparametric procedures to a measure of core inflation -- the 15 percent trimmed 

mean. These results are given in section 5. Section 6 presents a discussion of our findings 

in a more general context. We offer some concluding thoughts in the final section. 

2. Nonparametric Changepoint Tests 

In his widely cited paper, Pettitt (1979) offers an appealing nonparametric test to 

detect changepoints based on the Mann-Whitney two-sample test. Using his notation, let 

Ut,  = 2Wt - t(T -I), 

where 

Ut,T is equivalent to the Mann-Whitney statistic for testing whether two samples are 

from the same population. 
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For the hypothesis Ho: no change versus HA: change, Pettitt proposes the statistic 

K, = max lut,, 1 . 
K t < ,  

Pettitt shows that the significance value k of KT is approximated by 

POA = e ~ ~ { - 6 k ~ / ( ~ ~  + T ~ ) } ,  

which is accurate to two decimal places for p o ~  I 0.5. 

Although some situations may dictate that a changepoint occurred rather abruptly, 

it is often more realistic to assume that a change occurs smoothly over a period of time. 

For this purpose, Lombard introduces a smooth-change specification: 

where {, , t2 , z,, and z2 are unknown. Note that the abnipt-change model is a special case 

where z2 = z, + 1. Moreover, an onset of a trend is a special case characterized by z2 = T 

and z, < z2 - 1 . Using standard rank statistic notation, the rank of xi is denoted as ri. 

The rank score of xi is given by 

s(ri)= [@{ri/T+l} - $]/A ( 1 I i I  T), 

where i#~ is an arbitrary score function, $ is the average value, and A is the standard 

deviation of that function. When changepoints zl and z2 are known (e.g., z,=tl and z2=t2), 
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Lombard suggests 

as a rank test statistic to test Ho: 5, = 5, of the smooth-change model (I .  I). When 71 and 

72 are unknown, he suggests rejecting Ho for large values of the statistic 

An interesting special case of the smooth-change model is when z, = z and z, = T .  

Lombard calls this the onset-of-trend model because the parameter 8, is initially stable, 

but slowly increases or decreases after time z. Under this constraint, (1.3) reduces to 

as a rank test statistic to test the null hypothesis of no change. 

For each of these test statistics, Lombard derives the asymptotic distributions 

based on null hypotheses and provides a table of significance points. Asymptotic 

significance points are shown to be applicable when sample sizes are at least 30. A 

method for estimating both z, and z, is also provide$ 

A single abrupt-change test emerges as a special case where z, = z and z, = z + 1. 

Lombard denotes this statistic as m l , ~ ,  where 
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He shows.that under the null hypothesis, T m l , ~  converges in distribution to the 

limiting form of the Cramer-von Mises goodness-of-fit criterion, for which significance 

points are available in Anderson and Darling (1952, p. 203). 

In the case of multiple abrupt changes, Lombard suggests 

where denotes summation over indices 1 I 71 < . . . < ~ k <  T, as a test statistic for 

the null hypothesis that 5 ,  = . . . = 5,. This statistic converges in distribution. Lombard 

(1987) provides asymptotic significance points for cases k = 2 and k = 3 (table 2, p. 609). 

3. Experimental Design 

Monte Carlo methods are used here to estimate significance levels in small 

samples, the power of each test, and the sensitivity of the tests to deviations from the 

assumption of serial independence. To estimate small-sample significance levels for a 

given asymptotic critical value of 5 percent, we generate at least 5,000 samples of varying 

length. The various tests are applied to each of the generated series, and the percentage of 

trials that reject the null hypothesis is the estimated significance level. 

To assess the power of each test, we generate series of varying initial lengths, each 

normally distributed with zero mean and unitary standard deviation. To each of these 

series, we append additional terms generated by the same distribution, but with a different 

mean. A battery of tests is applied sequentially. The first time a test rejects the null 

hypothesis, its position in the series is tabulated and no further tests are performed. From 

these data, we obtain the percentage of trials for which the null is rejected for each 
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additional term. The cumulative sum of the percentages is our estimate of the percentage 

of tests that detect a change in mean by a given period, i.e., the power of the test. 

Finally, to assess the sensitivity of each test to the assumption of serial 

independence, we generate a set of autocorrelated series (first order) for each of varying 

lengths and for alternative values of p. The mean of each series is unchanged. The 

percentage of times the null is rejected is hence a measure of the percentage of false 

positives when the assumption of serial independence is violated. 

4. Results 

Table 1 reports the estimated significance levels for simulated series of a 

standardized normal random variable and for which the asymptotic critical value of the 

test is 5 percent. Generally, all tests perform better as the sample size increases, i.e., 

estimated significance levels tend to approach 5 percent. The smooth-change test seems 

best for the smallest sample size, while the Pettitt test consistently performs less 

favorably than other tests, but especially in small samples. 

Figure la  compares the powers of the Lombard and the Pettitt tests when there is 

a one-standard-deviation increase in the mean. It is clear that the Lombard test dominates. 

The Pettitt test statistic is evaluated at its estimated changepoint. If we were to restrict the 

test to accept the null hypothesis only if the changepoint estimate were exactly correct, 

the power difference would be even greater.1 The Lombard test statistic does not depend 

on an estimate of the changepoint. 

' For example, by the sixth period the Pettitt test found the correct changepoint only 2.52 percent of the 
time. 
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Figure l b  illustrates that the power of both tests improves significantly for two 

standard deviations and that the Lombard test still dominates the Pettitt test. It is 

interesting that the power of all tests is higher in periods immediately following a change 

when the initial sample size is small. It appears as though power is greatest when the 

change occurs in the middle of the sample. 

Figure 2 illustrates the estimated probabilities of detecting a smooth change with a 

smooth-change test. Each panel contrasts results for both one- and two-standard- 

deviation changes that occur smoothly over 12 periods. Because the change is spread out 

over a year, the smooth-change test takes around 15 months to detect a one-standard- - 
deviation change with a probability of 0.5. A two-standard-deviation change occurring 

within 12 periods, on the other hand, is detected within 10 months. The power of the 

smooth-change test also seems highest when a change occurs in the middle of a sample. 

Nevertheless, initial sample size does not appear to be especially important. 

Figure 3 illustrates the estimated probabilities for detecting an onset of trend with 

an onset-of-trend test. Each panel contrasts results for onsets of trend occurring at both 

one-half and one standard deviation per 12 periods. Again, initial sample size matters 

little. 

The powers of both the smooth-change and Lombard one-change tests for 

detecting an abrupt one-standard-deviation change are compared in figure 4. We find 

little difference between the two tests when a change occurs after an initial sample of 12. 

Although the one-change test is slightly better at detecting an abrupt change between 7 

clevelandfed.org/research/workpaper/index.cfm



and 12 periods, the smooth-change test performs better after 15 periods. We suspect, 

however, that these differences are due to limited trials. 

Similarly, the powers of both the smooth-change and onset-of-trend tests for 

detecting an onset of trend are compared in figure 5. The simulated trend change occurs at 

a rate of one standard deviation per year after an initial sample of 24. The onset-of-trend 

test is slightly better after the tenth period, while the smooth-change test appears to be 

better immediately after the break. 

Finally, table 2 presents estimated significance levels for each of the tests when 

first-order autocorrelation is present. These values indicate the percentage of false 

positives associated with each test for five values of p and for varying initial sample 

sizes. Not surprisingly, a high degree of positive serial correlation leads to a high 

proportion of false positives, especially as sample size increases. 

For a p of 0.2, the estimated significance levels hover around 10 percent for the 

Lombard one-change, smooth-change, and onset-of-trend tests for all sample sizes. The 

same value of p leads to considerably higher estimated significance levels for the 

Lombard three-change tests. In the latter, the significance level increases with sample 

size. 

For negative values of p, all estimates of significance levels are below 5 percent. 

Thus, negative autocorrelation tends to bias tests against the null. Although sample size 

appears to be irrelevant, significance levels tend to decline with sample size when p 

equals -0.3 and to increase with sample size when p equals -0.1. 
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To summarize, we find that sample size can matter for some nonparametric tests. 

The smooth-change test suggested by Lombard appears to be the most powerful under 

most circumstances. Nevertheless, less dominant tests such as the Pettitt can corroborate 

changepoint dates. Our Monte Carlo results indicate that serial dependence can matter. 

5. An Application 

Since 1982, core inflation - as measured by the 15 percent trimmed mean - has 

behaved much differently than it did over the previous 15 years (see figure 6). Indeed, 

relative to the earlier period, core inflation appears to have become a stationary process 

with little or no serial correlation. Figure 7 illustrates more clearly that around May 1988, 

inflation appears to have moved higher. In each of the five months following May, the 

trimmed mean registered persistently above its previous average. The measure varied 

around this higher level until February 1991, when its mean appears to have moved 

permanently lower. The abruptness of these changes suggests that the underlying process 

experienced at least two permanent changes in its mean over the sample period. Thus, as 

an initial analysis, it wollld seem suitable to use parametric changepoint methods to test 

this hypothesis. 

Table 3 presents test statistics for the various changepoint tests in selected 

samples. These results confirm that there were at least three changepoints: one abrupt 

changepoint in May 1988, another in January 199 1, and a smooth change between June 

1991 and July 1993 (see figure 8). When applied to the whole sample, all changepoint 

tests indicate significant location changes, with the most likely being an abrupt change of 

about one and a half standard deviations immediately after January 199 1. 
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We split the sample at this point and found the other two changepoints within 

each subsample. The Lombard estimates for the smooth-change range also indicated an 

abrupt change in May 1988, the same date that the Pettitt test estimates. Stratification 

around these changes failed to produce any evidence of additional changes. 

As our Monte Carlo results indicate, the presence of autocorrelation can bias the 

tests towad rejecting the null of no change. We therefore examine the autocorrelation 

functions for periods both between and across changepoints. Figure 9a, for example, 

illustrates the estimated autocorrelation functions for selected periods from January 1983 

to January 1991. In no case is there any evidence of autocorrelation. The Ljung-Box- 

Pierce statistic fails to reject the hypothesis that the error process is white noise. Thus, we 

conclude that the data support the use of our techniques, and we accept the alternative 

that a changepoint occurred in May 1988. 

Similarly, figure 9b illustrates the estimated autocorrelation functions beginning 

in February 1991. Although there is some indication of negative serial correlation, we 

suspect that this may reflect the preliminary nature of the seasonal used to adjust the data. 

Nevertheless, the Ljung-Box-Pierce statistic fails to reject the hypothesis of white noise 

for either sample. We conclude that the data support the hypothesis of a smooth decline in 

the mean between June 1991 and July 1993. Since July 1993, the trimmed mean has 

averaged less than 3 percent. 

6. Discussion 

We must emphasize that our application of the nonparametric methods is meant to 

be an initial analysis of the time-series properties of one measure of core inflation. 
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Nevertheless, we are surprised at how far these techniques can take us. Our results raise 

some important questions about the conventional wisdom concerning the inflation 

process. For example, many economists believe that inflation is either highly 

autocorrelated or nonstationary. The data examined above indicate that for periods as 

long as 65 quarters, the trimmed mean appears to have been generated by a process with a 

fixed mean and no serial correlation. 

Although we make no claims about what theoretical models may account for the 

regularities uncovered, we believe the results may provide some guidance in forming 

modeling strategies. For example, do the periods of stationarity reflect particular 

monetary regimes? If so, one would clearly want to consider the relevant restrictions on 

the policy-reaction function implied by the facts. Moreover, what accounts for the abrupt 

changes? Perhaps S-s type models could account for adjustment in inflation. Our purpose 

here is not to provide a basis for what we find, but to illustrate how useful some simple 

empirical techniques are in an initial investigation. 

7. Conclusions 

On the basis of our Monte Carlo simulations, we conclude that the smooth-change 

test suggested by Lombard is the preferred test in most situations, particularly when the 

researcher has no knowledge about the location of the change. The estimated significance 

levels in small samples were closest to asymptotic values for this test, while its power 

was at least as good in almost all cases. If one suspects an onset of trend in the series 

began more than 10 periods earlier? we recommend using the onset-of-trend test. 
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Although one might expect that nonparametric tests lack power, our experiment 

reveals that these techniques are not so bad. A one-standard-deviation change in mean is 

generally detectable half the time within 12 periods. The power improves if the initial 

sample is even smaller. Not surprisingly, the presence of positive serial correlations 

biases all tests toward accepting the null. 

While the application we propose seems well suited to the techniques applied, it 

illustrates a need to extend our analysis in several directions. First, we recognize a need to 

provide some common parametric changepoint test as a benchmark, particularly for 

assessing the power lost by choosing nonparametric tests. It would be useful to nest our 

tests into a richer framework that would enable us to discriminate between a changepoint 

and a series that is autoconelated. These issues will be addressed in a forthcoming 

extension of this study. 

clevelandfed.org/research/workpaper/index.cfm



References 

Anderson, T.W., and D.A. Darling. "Asymptotic Theory of Certain 'Goodness 
of Fit' Criteria Based on Stochastic Processes," Annals of Mathematical 
Statistics. vol. 63 (1952), pp. 193-212. 

Box, George E.P., and Gwilym M. Jenkins. Time Series Analysis: Forecasting 
and Control. San Francisco: Holden-Day, 1976. 

Bryan, Michael F., and Stephen Cecchetti. "Measuring Core Inflation," Federal 
Reserve Bank of Cleveland, Working Paper No. 9304, June 1993. 

Lombard, F. "Rank Tests for Changepoint Problems," Biometrica, vol. 74, no. 3 
(1987), pp. 615-24. 

Pettitt, A.N. "A Nonparametric Approach to the Changepoint Problem," Applied 
Statistician, vol. 28 (1979), pp. 126-35. 

clevelandfed.org/research/workpaper/index.cfm



Figure la. Estimated Probability that a One-Standard-Deviation Change in Mean 
Will Be Detected by a Specified Period 
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Source: Authors' calculations. 
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Figure lb. Estimated Probability that a Two-Standard-Deviation Change in Mean 
Will Be Detected by a Specified Period 
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Source: Authors' calculations. 

clevelandfed.org/research/workpaper/index.cfm



Figure 2: Estimated Probability that a Smooth Change over 12 Periods Will Be 
Detected by a Specified Period with a Smooth-Change Test 

Source: Authors' calculations. 
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Figure 3: Estimated Probability that an Onset-of-Trend Change Will Be Detected by 
a Specified Period with an Onset-of-Trend Test 

Source: Authors' calculations. 
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Figure 4: Estimated Probability that a One-Standard-Deviation Abrupt Change Will Be Detected 
by a Smooth-Change Test Versus a Lombard One-Change Test 
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Found Change by Period: 

Source: Authors' calculations. 
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Figure 5: Estimated Probability that an Onset of Trend of One Standard Deviation per 12 Periods 
Will Be Detected by a Smooth-Change Test Versus an Onset-of-Trend Test 
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Found Change by Period: 

Source: Authors' calculations. 
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Figure 6: Core Inflation as Measured by the 15 Percent Trimmed Mean 

Percent 

l6 1 

Source: Federal Reserve Bank of Cleveland. 
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Figure 9a: Autocorrelation Functions of Selected Samples 
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Source: Authors' calculations. 
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Figure 9b: Autocorrelation Functions of Selected Samples 
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Source: Authors' calculations. 
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Sample Size 

12 

Table 1: Estimated Significance Levels for N(0,l) 
(Percent) 

Pettitt Statistic Lombard Test Statistics 

Number of Chan~epoints 

One - - Two Three Smooth Trend 
0.72 3.73 3.36 1.40 4.42 1.95 

1.92 4.88 4.29 3.36 4.74 3.59 

2.47 4.40 4.30 3.30 4.51 4.03 

2.92 4.81 4.55 4.42 4.80 4.26 

3.02 5 .OO 4.44 4.54 5 .OO 4.50 

3.30 4.52 4.49 4.96 5.08 4.21 

120 3.85 5.07 4.90 4.42 4.70 4.92 

Source: Authors' calculations. 
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Table 2: Estimated Significance Levels in Presence of First-Order 
Autocorrelation 

Test 
Pettitt 

Lombard 1 24 
36 
60 
120 

P 

Lombard 3 24 
36 
60 
120 

Sample size 
24 
36 
60 
120 

Source: Authors' calculations. 

-0.3 -0.1 0.2 0.5 0.9 
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Table 3 
Changepoint Test Results 

Pettitt Statistics Lombard Test Statistiq 
m i n t s  

fiam.& Max U && One b!Q Three Trend Smooth - tl - tz 

* Significant at the 5 percent confidence level. 

Source: Authors' calculations. 
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