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Abstract 

The linkages between term structures separated by finite time periods can be 
complex. Indeed, in general, the dynamics of the term structure could depend 
on the entire set of information revealed since the earlier date. This path 
dependence, which causes difficulties in pricing interest rate claims, is 
usually eliminated by making specific assumptions on investment behavior or on 
the evolution of interest rates. In contrast, this article identifies the 
class of volatility structures that permits the path dependence to be captured 
by a single sufficient statistic. An equilibrium framework is provided where 
beliefs and technologies are restricted so that the resulting term structures 
have volatilities that belong to the restricted class. The models themselves 
can be characterized by a parsimonious set of parameters and can be 
initialized to an observed term structure without the introduction of ad-hoc 
time-varying parameters. Furthermore, since the dynamics of the resulting 
term structures are two-state Markovian, simple pricing mechanisms can be 
developed for interest rate claims. 
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I. Introduction 

In an economy with continuous trading, the linkages between term structures of interest rates 

separated by a finite time period can be quite complex, even when uncertainty is generated by a 

single source. In particular, even though all bonds are instantaneously perfectly correlated, over 

finite time periods this perfect relationship may break down. Indeed, to characterize the term 

structure at any date relative to the term structure at an earlier date, all the information revealed 

in the interim period may be required. This feature appears, for example, in the general Heath, 

Jarrow and Morton (hereafter HJM) [I9921 paradigm of the term structure. In their approach, the 

evolution of the term structure is influenced by the entire history of the process, and this history 

generally cannot be summarized by a finite number of state variables. This path dependence is 

endemic to all models of the term structure and can only be eliminated if specific structure is 

imposed, either directly or indirectly, on forward rate volatilities. 

One way to eliminate path dependence is to impose sufficient structure on the economy to 

ensure that, at every date, the level and shape of the term structure can be described by a few 

state variables. For example, in the single-factor equilibrium model of Cox, Ingersoll and Ross 

(hereafter CIR) [1985], the entire term structure at each date can be described by the spot interest 

rate.l Such models have the property that whenever the interest rate returns to a previous level, 

so do all other forward rates. Hence, unless time-varying parameters are used, these models impose 

restrictions on the shapes that term structures can take. 

A second approach that eliminates path dependence involves restricting volatilities of all spot 

and forward rates to being deterministic. Under this structure, the path dependence issues disap- 

pear, and all forward interest rates are perfectly correlated over finite time horizons. Consequently, 

knowing any one rate is sufficient to characterize the rest of the term structure. Examples of such 

approaches are provided by HJM [I9921 and Jamshidian [1989], who assume dynamically complete 

markets, and by Turnbull and Milne [1991], who establish general equilibrium pricing models for 

interest rate claims. In both approaches, the initial term structure is supplied exogenously. The fact 

that the term structure can be initialized, coupled with the simplicity of the resulting expressions, 

has led to the popularity of these models, especially for valuing claims that have prices quoted rel- 

ative to an observed term s t r ~ c t u r e . ~ ? ~  Unfortunately, recent empirical evidence does not support 

the deterministic volatility structure for interest rates. For example, Chan, Karolyi, Longstaff and 

Additional examples of such models include Brennan and Schwartz [1977], CIR [1980], Cox and Ross [1976], 
Dothan [I9781 and Vasicek [1977]. 

Such pricing problems have become increasingly more important, primarily due to the rapid growth of the over- 
the-counter market, where the majority of prices are quoted relative to the term structure. Indeed, in 1991, 
over-the-counter trading comprised a larger than $4 trillion market of notional principal. This exceeded the $2.2 
trillion interest rate futures market and the $77 billion stock index futures market. 

Examples of such approaches include Amin and Jarrow [1991], Musiela, Turnbull and Wakeman [I9921 and 
Ritchken and Sankarasubramanian [1992]. 
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Sanders [I9921 find that spot rate volatility appears to be highly sensitive to the level of the spot 

rate itself, and they conclude that models with deterministic volatilities are misspecified. 

This article considers an alternative approach to dealing with path dependence. In particular, 

rather than structure the economy so that the path dependence is completely eliminated, we identify 

situations where it can be captured by a single sufficient statistic, common across all bonds. To do 

this, we first derive the conditions that must prevail if path dependence is to be captured by a single 

statistic. We then demonstrate that in all these cases, the intertemporal linkages between term 

structures can be completely characterized in terms of two state variables. That is, given any initial 

term structure, all future term structures are determined by the values of two state variables. The 

first of these is shown to be the spot rate; the second is a path dependent statistic that accumulates 

information along the path in such a way that no information is lost.4 This simplification of the 

intertemporal relationships between term structures is attained not by constraining the volatility 

structure for the spot interest rate, but rather by restricting the linkage between forward rate 

volatilities and spot rate volatilities. 

Our framework has several useful properties. First, models for pricing interest rate claims can 

be developed in which the volatility structures for spot and forward rates are not deterministic, 

yet the term structure can be initialized to any exogenous specification. In this respect, these 

models generalize the Markovian models presented in HJM [I9921 and in Turnbull and Milne [199:1.]. 

Second, unlike existing single-factor models in which interest rates have nondeterministic volatility, 

our models can be initialized to a term structure without requiring the ad-hoc introduction of time 

dependent parameters.5 Finally, since the structure for the spot rate volatility is unrestricted, our 

framework permits the term structure to be modelled by a large class of processes. Since a general 

equilibrium approach is used, the resulting models suffer no internal inconsistencies and admit no 

dynamic arbitrage opportunities. 

The paper proceeds as follows. In the next section we develop a simple economy with a 

single representative investor and a single production technology. Within this framework, we-then 

establish the intertemporal linkages between term structures and identify the path dependence 

issues that arise. Section I11 provides the main theorem, which identifies conditions that must be 

Since path dependence is not eliminated in our approach, bond prices are not perfectly related over finite time 
horizons, even though they are perfectly instantaneously correlated. 

To initialize almost all existing single-state models of the term structure to an arbitrary initial term structure 
usually requires the introduction of time-varying parameters in the evolution of the spot interest rate. These are 
then estimated by inverting the term structure. Unfortunately, these inversions are nontrivial, computationally 
difficult, and, if the term structure is observed with measurement error, the estimates may be unreliable. In- 
deed, using time-varying parameters has come under some criticism. Dybvig [I9891 discusses the ad-hoc nature 
of using time-varying parameters to initialize the term structure. For further details on inversion procedures, 
see CIR [1985], Hull and White [1990] and Jarrow [1988]. 

In contrast, our approach deals only with the intertemporal linkages between term structures, and not with 
their levels or shapes. As a result, the parameters of our model are specified independent of the term structure. 
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satisfied if the path dependence is to be captured by a single sufficient statistic, regardless of the 

volatility structure of the spot rate. The consequences of this result are then fully explored. In 

particular, we make explicit the intertemporal linkages of the term structure and its evolution. 

Section IV focuses on an economy in which technology innovations follow a square root process, 

similar to that considered by CIR [1985]. We demonstrate that in this economy, path dependence 

can be captured by a single statistic, provided restrictions are imposed on the manner by which 

investors revise their beliefs about future levels of technology, in response to  current technological 

innovations. Section V summarizes the paper. 

11. The Intertemporal Linkages of Bond Prices 

Assume all physical investment is performed by a single stochastic constant-returns-to-scale tech- 

nology that produces a good that is either consumed or invested in production. The return on 

physical investment is governed by 

Here, X(t ,  t )  is the level of technology at  date t, with dynamics given by 

where dzl(t) and dza(t) are standard Wiener increments with E[dzl(t) dz2(t)] = Bdt. We assume 

that the structure for ax(t ,  t)  is given. For example, ax( t , t )  could be proportional to  the square 

root of X(t , t ) ,  in which case its structure would be identical to that of CIR [1985]. 

The drift term, px(t , t) ,  is not directly specified. Rather, we assume that a t  date t, investor 

beliefs about the level of technology for each future date, T, are provided. In particular, let Z(t) 

denote the belief set at date t. Specifically, 

where 

Here, X( t ,  T) represents the date t assessment of the level of technology for date T . ~  

Note that if the drift term is specified as in the CIR model by 

then it can be shown that 

~ ( t ,  T) = p - [P - ~ ( t ,  t ) ~ e - ~ ( ~ - ~ )  (F6.1) 

Rather than specify the drift term directly, the CIR model could have been obtained by specifying this belief 
structure. The drift term would then be recovered using equation (6). 
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From equations (2) and (4), it follows that 

That is, if a structure for the belief set is given, then the drift term for the technology process could 

be recovered. The volatility term, ax(t ,  t), captures the sensitivity of technological innovations 

to the Brownian disturbances, dz2 (t). Changes in this technology level cause investors to alter 

their beliefs about its future level. Let ax(t ,  T) measure the sensitivity of beliefs for date T to the 

Brownian disturbance. In particular, we have 

dX(t, T) = ax(t,  T) dzz(t) for T > t (6) 

If the structure for X ( ~ , T )  were given (or equivalently, if the drift term in equation (2) were 

provided) then the exact relationship between ax(t, T) and ax(t, t )  could be re~overed.~ Let w(t, T) 

be defined as 

w ( t , ~ )  is referred to as the belief revision scheme, since it identifies the manner by which beliefs 

about future levels of technology, X ( ~ , T ) ,  are revised in response to a change in the current level, 

X(t,  t ) .  

We assume that the economy is composed of identical individuals, each of whom seeks to 

maximize an objective function of the form 

Here, C(x) represents time x consumption and p is the discount rate reflecting time preferences. 

Markets are assumed to be perfectly competitive and frictionless. Furthermore, traders can borrow 

or lend a t  the riskless rate, as well as trade in other types of contingent claims. 

An exact specification of the belief set, Z(t), is essential to characterize the term structure. However, our 
objective is not to characterize the term structure itself, but rather to develop the intertemporal relationships 
that  exist between term structures separated by finite time horizons. Hence, at this juncture we leave the exact 
structure for Z(t) unspecified. 

In our case, an exact structure for X ( ~ , T )  is not provided. In the CIR model, however, from footnote 6 we can 
apply Ito's lemma to equation (F6.1) to identify the volatility structure. In particular, we obtain 

Hence, in the CIR model, the Brownian disturbance affects future beliefs in an exponentially dampened fashion. 
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In this economy, the investor's problem is completely determined by the belief set, Z(t), and the 

investor's wealth, W(t). Following Merton (1973), the investor's derived utility of wealth function 

is partially separable in wealth and in the elements of the belief set. Setting up the Bellman 

optimization problem, establishing the first-order conditions, and imposing the market clearing 

condition that all wealth is invested in physical production then leads to  

where a = a - a: and r(t)  denotes the spot interest rate a t  date t. We also assume that a > a; 
to ensure that r(t)  and X(t,  t )  are positively related. From this it follows that the dynamics of the 

spot interest rate can be obtained as 

where 

and 

Further, from equation (5) we obtain 

Hence, the belief set, Z(t), permits unbiased expectations of the drift terms of future interest rates 

to  be computed. 

Let P ( ~ , T )  be the date t price of a default-free pure discount bond that matures at date T. 

In addition, denote by f ( t , ~ )  the forward rate a t  date t for the time increment [T, T + d ~ ] ,  with 

f ( t , t )  - r(t). By definition, bond prices are related to forward rates as 

Since forward rates and bond prices do not depend on the level of wealth in this economy, their 

dynamics can be represented by 

and 

df(t, T) = p (t, T) dt + af (t, T) dza(t) , for T > t , 
dP(t, T) 
P(t ,  T) 

= ~ p ( t , T ) d t  + a p ( t , ~ ) d q ( t )  , for T > t 

where pf (t, T), pp(t, T), af (t, T) and ap(t, T) are the instantaneous drift and volatility terms, which 

in general could depend on the level of all the state variables in the belief set, Z(t). 

Including bonds in the representative investor's portfolio choice problem leads to  the following 
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additional restriction : 

Using equations (13) and ( l l ) ,  it is then readily established that8 

and 
d 

of(t,T) = - -0 (t T) 
dT ' (14b) 

or equivalently, 

Substituting equation (14a) into (12b) and computing the dynamics of the spot rate using the 

relationship 

then leads to  

where 

Equations (15a-b) highlight the relationships that exist between the drift and volatility terms, the 

market price of risk, and the shape of the term structure. In the CIR model, the drift and volatility 

terms are given, as is the market price of risk. From equation (15b), this information uniquely 

These results were also obtained by HJM [I9921 using arbitrage arguments. To see these results, note from 
equation (11) that f ( t ,  T )  = - a ln[P(t, T ) ] / ~ T ,  and that using Ito's lemma yields 

a 1 a 
df ( 4  T )  = - z [ ~ p ( t ,  T )  - z u i ( t ,  T)]dt  - -[up(t, aT T ) ] d ~ ( t )  

Hence, a 
u f ( t , T )  = - z + ( t , ~ )  

or equivalently, 

and a 1 a 
P f ( t ,T )  = - z [ P p ( t , T )  - 2 ' 7 i ( t , ~ ) ~  = - - b p ( t , ~ ) l  aT - u f  ( t ,T )uP( t ,T )  

From equation (13) we then obtain 

a a 
z [ " p ( f , T ) I  = 4 t )  a T [ u ~ ( t , ~ ) l  = - 4 t )  of ( t , ~ )  

Equation (14a) then follows. 
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defines the shape of the term structure. In contrast, in what follows, the drift term is defined 

by the volatility structure, the market price of risk and the shape of the term structure through 

equation (15b). 

Finally, using equations (14a), (12a-b) and (11) leads to  

and 

Equations (16a-b) establish the intertemporal linkages between term structures. In particular, 

the term structure a t  date t depends on the setting at  date 0, together with all the Brownian 

disturbances over the period [O,t]. Note that knowledge of the term structure a t  date 0, together 

with a single point on the term structure a t  date t is not generally sufficient to uniquely characterize 

the term structure a t  date t. Indeed, to  establish the term structure a t  date t, all the path 

information over the period [0, t] may be required. This path dependent feature also appears in the 

general HJM [I9921 framework. In their approach, the evolution of the term structure is influenced 

by the entire history of the process, and this history cannot, in general, be summarized into a finite 

number of state variables. As a result, for quite general volatility structures, the lattice methods 

described by HJM [I9901 grow exponentially. Due to this computational complexity, empirical 

tests have been lacking for all but the simplest of the HJM option models. Equations (16a-b) also 

highlight the fact that path dependence is endemic to  all models of the term structure and can only 

be eliminated if additional assumptions are made on the volatilities of all forward rates. 

As mentioned earlier, path dependence in the term structure can be eliminated if sufficient 

structure is imposed to ensure that the evolution and setting of all bond prices can be described, 

at all dates, by a finite number of points on the term structure. For example, in the equilibrium 

single-factor model of CIR [1985], as well as in the arbitrage models of Vasicek [1977], Dothan [I9781 

and others, a single state variable is either explicitly or implicitly assumed to determine the level 

and shape of the term structure a t  all times. This variable is usually chosen, without any loss 

of generality, to be the spot interest rate. This assumption imposes a deterministic relationship 

between all bond returns overfinite intervals of time. Empirical research, however, has not provided 

strong support for any of them. 

The second approach commonly used to  eliminate path dependence involves restricting the 

volatilities of all spot and forward rate volatilities to  being deterministic. It can be readily verified 

from equation (16a) that under a deterministic volatility structure for spot and forward interest 

rates, the forward rate, f ( t , ~ ) ,  can be expressed as a simple linear function of the spot rate, ~ ( t ) ,  

with deterministic coefficients. This implies that changes in forward rates are perfectly correlated 

over finite time intervals. While this simplification allows the term structure to  be initialized to an 
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exogenous structure, without requiring time-varying parameters, the volatility structure required 

to  accomplish this has not been supported by recent empirical analyses. 

In the next section, we consider an alternative approach to deal with path dependence. The idea 

is not to eliminate it outright, but rather to  capture it by a single sufficient statistic, common xross  

bonds of all maturities. In the resulting framework, the term structure is fully determined by two 

state variables. Unlike other single-factor Markovian models, our models do not have deterministic 

relationships between the returns on any two bonds over finite time intervals. 

111. Path Dependent Models of the Term Structure 

In this section, we first identify the relationship that must prevail between the volatilities of 

spot and forward rates if path dependence in the intertemporal linkages between term structures is 

t o  be captured by a single statistic, without imposing restrictions on either the spot rate volatility 

or the shape of the term structure itself. We then demonstrate that whenever this relationship 

prevails, a two-state Markovian representation of the term structure will result. 

Theorem 1 

To capture the path dependence illustrated in equations (1  6a-b) by a single statistic, without imposing 
any additional assumptions on the volatility of spot interest mtes or on the shape of the term 

structure, it is necessary that the volatilities of all forward mtes be related to each other as 

- LT rc(x)dx 
u f ( t , ~ )  = u,( t )e  for all T 2 t 

where u,( t )  = u f ( t ,  t )  is the volatility of the spot interest mte, and ~ ( x )  is some deterministic 

function. 

Proof See Appendix 1. 

Theorem 1 implies that if the volatility structure of forward rates does not satisfy equation (17),  

then, without making more assumptions about either the spot rate volatility or the shape of the 

term structure, it is not possible for a single sufficient statistic to capture the path dependence.g The 

volatility of the spot rate, u,( t ) ,  is itself unrestricted and could depend on the entire term structure 

Of course, forward rate volatilities that do not satisfy equation (17)  may, in conjunction with specific structures 
for the volatility of the spot rate, lead to one- or two-state Markovian term structure models. However, the 
restriction imposed by equation (17)  is the only one that works with all spot rate volatility specifications. This 
result hence permits the development of models where the structure for the spot rate volatility is itself treated 
as a Ufree parameter." For example, the spot rate volatility could be described by ar(t) = at(t)\ where both a 
and q are empirically estimable parameters. 
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at date t. From equation (lOc), this implies that in order to eliminate the path dependence in 

bond prices, no assumptions are needed on the volatility of technological innovations, ax(t,t), in 

the economy. 

The exponential term in equation (17) identifies the mechanism by which uncertainty at one 
end of the term structure is transmitted to the rest of the term structure. This transmission 

scheme is completely described by the deterministic function % ( a ) .  This function may be specified 

exogenously and need not be restricted to attain a Markovian representation of the term structure.1° 
As we demonstrate in the next section, K ( . )  is fully determined by the manner in which investors 

revise their beliefs about future levels of technology, X ( ~ , T ) ,  in response to information that alters 

the current level, X(t,  t). Specifically, K ( . )  is determined by the belief revision scheme, w(- ,  .). In 

contrast to the volatility of X(t, t), which is left unrestricted, bond prices will be path dependent 

unless the belief revision scheme is curtailed. 

The class of term structure models that result from equation (17) have the property that forward 
rates are linear in the state variables. The exact form of the bond prices, which is provided below, 
establishes that the restriction in equation (17) is also sufficient to obtain a two-state Markovian 

representation of the term structure. 

Theorem 2 

Under the mstriction imposed by equation (17), the price of a bond at any future date t can be 
represented in terms of its forward price at date 0, the short interest rate at date t, and the path of 

intemst rates as 

where P(t, T) is given by 

and 4(O, t), the state variable that captums path dependence, is given by 

Proof See Appendix 2. 

lo As we show later in this section, IF ( . )  measures the degree of mean reversion in spot interest rates. In many 
models of the term structure, this is assumed to be constant. Other models, however, achieve term structure 
matching by selecting the mean reversion function appropriately. This is in contrast to our approach, where the 
choice of K ( . )  does not alter the term structure at date 0. Hence, K ( . )  could be assumed constant. 

clevelandfed.org/research/workpaper/index.cfm



As the bond pricing equation above illustrates, the two state variables, ~ ( t )  and 4(0,t), capture 
all relevant information required to update the entire term structure relative to an earlier term 

structure. The first state variable, ~ ( t ) ,  is the stochastic spot interest rate that appears in most 

other single-factor models. The second state variable, 4(0, t), is a statistic that captures information 

revealed over the time interval [O,t]. Even though the latter is uncertain viewed from date 0, it 

is locally deterministic and its evolution does not contain a stochastic component. To see this, 

substitute from equation (17) into equation (18c) and use Ito's rule to obtain 

Hence, at date t ,  once the levels of the state variables, ~ ( t )  and 4(O,t), are observed, the value 

of +(O,t + dt) can be predicted with certainty. All the uncertainty in the term structure over 

the time increment [t,t + dt] is hence captured by the change in the spot rate, d ~ ( t ) .  To gain a 

better understanding of the uncertainty revealed by 4(O,t), consider the term structure at  date 

0. At that initial date, investors reflect their beliefs about the future spot interest rate, ~ ( t ) ,  and 

its volatility, in the term structure and, in particular, in the forward rate, f (0,t). The evolution 

of this forward rate ultimately culminates, at  date t, in the spot rate, ~ ( t ) .  Unless the volatility, 

uf(u, t), is deterministic, investors cannot predict with perfect certainty the accumulated volatility 

of this rate. It is exactly this uncertainty that is revealed by 4(O, t) and that is reflected in the 

term structure at date t. 

In practice, it is extremely difficult to compute the value of 4(O,t) directly. Fortunately, any 

two points on the term structure at date t can be used to reconstruct the entire yield curve. To see 

this, set T = s, take logarithms on both sides of equation (18a) and differentiate with respect to s 

to obtain 

Hence, the state variable, b(O,t), can be replaced in the bond pricing equation by any other 

forward rate, f (t, s)." Further, regardless of the volatility structure of spot interest rates, a linear 

relationship exists between all forward and spot interest rates. 

Since forward rates are two-state Markovian, we can recover the drift of the spot rate, p(r,t). 

Its form is summarized below. 

l1 If the second state variable, d(0, t), is constant, then bond prices collapse to a single-state Markov representation. 
From equation (18c), this occurs if the volatility of the spot rate, u ~ ( u ) ,  is deterministic for all u. 
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Theorem 3 

Under the restriction imposed by equation (l7), the evolution of the two state variables, ~ ( t )  and 

d(O, t), can be expressed as 

where ~ ( 0 )  is initialized to the observed spot rate. 

Proof See Appendix 3. 

The drift term in the evolution of the spot interest rate, ~ ( t ) ,  can be decomposed into four 

terms. The first, ~ ( t ) [ f  (0, t) - ~ ( t ) ] ,  captures the effect of the mean reversion that arises whenever 

spot rates deviate from their forward rates. The parameter ~ ( t ) ,  which represents the degree of 

mean reversion, could be assumed constant.12 The second term, d(O, t), incorporates information 

revealed since date 0. In a certain world, this adjustment would be zero, independent of the path 

of interest rates over the time period [O,t]. The third term, X(t)ar(t), is the market risk premium 

for interest rate risk. The final term is the time-varying slope of the initial forward rate curve, 

representing the anticipated "creep" in interest rates that appears implicitly in all models. For 

example, consider a certain economy in which future spot rates equal their forward rates. Here, 

~ ( t )  = f (0, t)  for all t, and the evolution of the spot rate is given by 

Hence, even with no uncertainty, this term must be present in one form or the other to preclude 

arbitrage among bonds of differing maturities. The introduction of uncertainty, by itself, does not 

eliminate this term. 

Observe from equation (18a) that bond prices a t  date t are expressed relative to some initial 

set of bond prices a t  date 0. Hence, the evolution of bond prices may be readily initialized to their 

observed values, irrespective of the parameters describing the volatility structure of forward rates. 

As such, these models do not require time dependent parameters to initialize the term structure to 

its observed value. This is advantageous, since it avoids the term structure inversions associated 

with many single-state models. Further, unlike the general HJM models, path dependence is no 

longer an issue. As a result, the enormous computational difficulties faced in implementing their 

models are overcome. In particular, since the forward rate volatility restriction allows the Markovian 

property to be recovered, efficient numerical procedures such as finite difference methods, lattice 

l2 In the next section, we explicitly describe an economy in which ~(z) is constant. 
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approximations, Gaussian quadrature, and Monte Carlo simulation methods can be invoked to 

price complex interest rate claims. 

Since the models developed here are consistent with the HJM [I9921 pricing paradigm, the val- 

uation of interest rate claims involves taking expectations under the equivalent martingale measure 

obtained by setting X = 0 in equations (19a-b). The joint distribution of the terminal spot rate, 

r(t), and the path statistic, d(O,t), is, however, nonstandard for arbitrary specifications of the spot 

rate volatility. For specific structures, such as the square root volatility considered by CIR [1985], 

however, it is possible to establish all joint moments of the terminal distribution, from which pricing 

relationships can be derived using Edgeworth expansions, as in Jarrow and Rudd [1982]. 

IV. Economies with Square Root Technology Innovations 

From equation (9b), we see that the evolution of the spot interest rate, r(t), is similar to  that of 

the level of technology, X(t ,  t). As demonstrated below, the restriction imposed by equation (17) 

in turn constrains the manner by which beliefs about future levels of technology are revised in 

response to the Brownian disturbance, dz2(t). In particular, equation (17) imposes restrictions 

on the volatilities of these beliefs, a X ( t , ~ ) .  To keep the analysis focused, this section restricts 

attention to economies in which the evolution of X(t , t )  is given by 

This implies that a,(t) = a m ,  where a = a2&. Further, we assume that forward rate volatil- 

ities are as specified by equation (17). In other words, 

From this, it follows that the volatilities of all discount bonds can be computed as 

where 

To establish the relationship between forward rates and the state variables, take T = t in equation 

(16a) and compute expectations. This leads to 

LJO J 

Substituting equations (13), (22) and (23) into the above expression and using equations (4) and 
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(9b) yields 

where - ,f: ~ ( x ) d x  r (u , t )  = [A*  + a2P(u,t)le 

and A* = (254 

More generally, over the period [t, T] we have 

Equation (25d) establishes the link between forward rates and the belief set Z(t) at date t. Using 

Ito's lemma then results in 

Substituting for a f ( t , ~ )  from equation (22), recognizing that a,(t) = aax(t , t ) ,  and rearranging 
leads to 

where w(t, T) = aX(t ,  ~ ) / a ~ ( t ,  t )  is the belief revision scheme for the level of technology that reflects 

the manner by which beliefs about future levels of technology, X(t,  T), are revised, in response to 

a change in the current level, X(t,  2). 

Equation (27) shows that given any belief revision scheme w(t, T), we can estimate the func- 

tional representation for K(T). However, for some representations of the belief revision scheme, 

w ( t , ~ ) ,  the resulting expression for the mean reversion function, K(T), will not be independent of 

time, t. In such cases, from Theorem 1, additional restrictions must be explicitly imposed on the 

belief set, Z(t), in order to eliminate the resulting path dependence. For example, assume that the 

volatility structure of forward rates is exactly that of CIR [1985]. Then using equation (22) leads 

to a functional form for K(T) that depends on time t. This implies that the volatility structure 

of forward rates, as postulated by CIR, is not by itself sufficient to allow path dependence to be 

characterized by a single statistic. Indeed, in order to establish the CIR model, an explicit structure 

is required for the drift term, px(t, t), that allows the belief set, Z(t), to be fully characterized (see 

footnote 6). As a result, the term structures are themselves described by a single statistic and a l l  

path dependence linking term structures over discrete time periods is eliminated. If, on the other 

hand, the belief revision scheme leads to an expression for K(T) that is independent of time t ,  then 

a two-state Markovian representation exists for the term structure. 

In contrast to the CIR model, our approach does not impose any functional relationship between 

the state variables in the belief set, Z(t). However, as evidenced by equation (27), requiring the 
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mean reversion function to be deterministic and independent of time also constrains the belief 

revision scheme. To make these constraints more explicit, differentiate equation (27)  with respect 

to T and eliminate the integral term in equation (27)  to obtain 

where 

subject to the boundary conditions 

and 
a 

zW(t,T)l T = t  = A*  - " ( t )  ( 2 8 f )  

where the last boundary condition is obtained by differentiating equation (27)  and setting T = t .  

Equation (28a) is a second-order linear homogeneous differential equation in w(t ,  T ) .  Hence, as long 

as K ( T )  is a twice differentiable function, a unique solution for w ( t , ~ )  exists. Further, since the 

coefficients b ( ~ )  and C ( T )  are deterministic, so is the solution for w(t ,  T ) .  This leads to the following 

result, which is stated without proof. 

Lemma 

If interest rates follow an Ito process with square root volatility, u,(t) = a m ,  and i f  the mean 

reversion function, " ( T ) ,  is twice differentiable, then a unique, deterministic, twice differentiable 

belief revision scheme w(t ,  T )  exists. 

A special case of the above occurs when the mean reversion parameter is constant. In particular, 

let K ( T )  = K.  In that case, 

and 

clevelandfed.org/research/workpaper/index.cfm



The above structure for forward rate volatility is similar to  that considered by Vasicek [1977], with 

the notable exception that, unlike in his model, spot rates do not have constant volatility. From the 

bond pricing equation (18a), we also note that our model is completely described by the observed 

term structure a t  date 0 and the unobservable parameters a and r;.13 Hence, it lends itself readily 

to  empirical investigation.14 

The belief revision scheme for this structure is readily obtained by solving equations (28a- f )  

as 

where 

and where we have assumed that r; + A *  > 20. If r; + A*  < 20, then 

where 

In particular, equation (31a) shows that the desired volatility structure for forward rates results 

from a belief scheme that is a weighted sum of exponentially dampened functions. 

Note that the belief scheme in equations (31a-b) differs from the one implicit in the CIR model 

(see footnotes 6 and 7). In our approach, if innovations are modelled by equation (21), and if the 

belief revision scheme is given as in equations (31a) or (31b), then the resulting volatility structure 

of forward rates satisfies Theorem 1. However, the volatility and belief schemes are themselves not 

sufficient to fully characterize the drift term. Indeed, in our approach a specification of the term 

structure is required to  uniquely determine the drift term. 

l3 The market price for the interest rate risk parameter, A*,  is not relevant for pricing interest rate claims, since 
the martingale measure relevant for pricing described by HJM [1991] can be obtained by setting A* = 0 in the 
drift terms of the evolution of the state variables, r ( t )  and 4(0, t ) .  Furthermore, unlike the CIR [I9851 model, 
this parameter does not appear explicitly in the volatility of all forward rates. Hence, unlike in their model, 
A* does not appear ezplicitly in any of our pricing relationships. However, A* does appear implicitly in all the 
model prices through the initial term structure, which we assume is observable. 

l4 For empirical purposes, a more general model in which u,(t)  = u[r(t)lq can also be cast without any additional 
complexities. 
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V. Conclusion 

In an economy with continuous trading, the linkages between term structures separated by a finite 

time period can be quite complex. Indeed, characterizing the term structure in accordance with 

its value at a previous date, together with a finite number of state variables, is not possible unless 

assumptions are placed, directly or indirectly, on the volatilities of spot and forward rates. In most 

cases, these assumptions completely eliminate the path dependence. In this article, we investigated 

alternative representations for the term structure in which the path dependence is not eliminated, 

but rather is captured by a single sufficient statistic. This statistic, together with the spot rate, 

was shown to fully characterize the term structure and its dynamics. The ability to capture the 

path dependence by a single statistic stemmed, in part from the manner in which investors revise 

their beliefs about future levels of technology. 

Since our analysis is concerned only with the intertemporal links between term structures at 

different points in time, an initial term structure must be provided. Any observed term structure 

is a viable candidate. Further, this initialization is achieved without restricting the volatility of 

spot rates or introducing ad-hoc time-varying parameters that may be difficult to estimate. Finally, 

unlike the general HJM models, these benefits are obtained without sacrificing the advantages of the 

finite state space methodology. In particular, even with extremely general structures for the spot 

rate volatility, efficient computational procedures can be developed to price interest rate claims. In 
addition, the parameters for the volatility structure can be readily estimated. 

This article restricted attention to economies in which the evolution of all bonds was driven by a 

single source of uncertainty. Many term structure models have been postulated where.uncertainty is 

driven by two or more sources of uncertainty. For example, in Brennan and Schwartz [1979], the evo- 

lution is described by the short and long interest rates. More recently, Longstaff and Schwartz [I9921 

developed a model in which the volatility of spot rates itself is stochastic. In these models, bonds 

are not instantaneously perfectly correlated, but the instantaneous canonical correlation between 

every pair of bonds is perfect. In other words, the evolution of the term structure can be derived 

from the evolution of any pair of bonds. Over finite intervals, however, the path dependence issues 

that we outlined in this paper may persist, so it may not be possible to reconstruct the entire term 

structure given just two points. For example, in a two-factor economy where the uncertainty in 

the term structure is linked to a short and a long rate, the path taken by both factors generating 

uncertainty may influence the intertemporal relationship between term structures. Once again, to 

obtain a Markovian path-independent representation requires restrictions on either the volatility 

of both sources of uncertainty or the shape of the term structure. Alternatively, necessary and 

sufficient conditions on volatility structures can be identified that permit path dependence to be 

captured by two sufficient statistics. These statistics, together with the short and long rate, would 

then be sufficient to describe the term structure at  any point in time, relative to an earlier term 

structure. This simplification leads to models in which the entire term structure can be described 
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by any four distinct points. The development of these multi-factor economies and the handling of 

the resulting complexities are the subjects of future research. 

Finally, this article provides exciting directions for future research. First, empirical tests of the 

two-state single-factor model need to be performed. Since more information on the term structure 

is incorporated into the dynamics of the spot interest rate than in the single-state models, the two- 

state models are likely to  perform better. Second, specific two-state, single-factor option pricing 

models need to be investigated, as does the impact of alternative volatility structures for the spot 

rate process. Since the two-state option models do not require time-varying parameters, they may 

have advantages over existing single-state option models. 
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Appendix 1 

Proof of Theorem 1 

Equation (16b) can be rewritten as 

A(0, t ,  T) reflects the path dependence as the "weighted sum" of all Brownian disturbances realized 

from time 0 to time t. This path dependence can be captured by a single statistic provided that a 

common "weighting scheme" exists for all forward rates. However, if a unique weighting scheme is 

to  exist for all forward rates, i t  must be the case that the weighting function is independent of T. 

This in turn implies that 

at(", T) - - a'(u' t, vu  E [0, t] so' °,(x, T) dx so' q ( x ,  t) dx 

Equivalently, 

a j (u ,  t )  is possibly stochastic, with values depending on the belief set a t  date u. Substituting t = u 

leads to 

Also, a j (u , t )  = a,(u)k(u, t). Hence, 

with 

Setting u = 0 in equation (A1.3) leads to 

This implies that the function k ( t , ~ )  is known at date 0 and is hence deterministic. Finally, note 
that the class of functions that satisfy equation (A1.3) can be written in the form 

Since k(u, T) is deterministic, so is ~ ( x ) .  Equations (A1.4) and (A1.2) together complete the proof. 
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Appendix 2 

Proof of  Theorem 2 

Note from equation (166) that 

t t 

R(O, f ;  T) - f (t, T) - f (0, T) = 1 T) [ ~ ( u )  - up(% T)] du + 1 sf (u, ~ ) d r z  (u) (A2.1) 
0 

Here, R ( 0 , t ; ~ )  is defined as the difference between the forward rate at date t and that at  the 

original date. Using the restriction imposed by equation (17) on equation (A2.1) we obtain 

Since the right-hand side of equation (A2.2) is independent of T, take T = t to obtain 

which simplifies to 

where 

Equivalently, 

Notice that the forward rate at  time t is completely determined by the spot rate, ~ ( t ) ,  and the 

path statistic, 4(O,t). Also, observe that the state variable, 4(O,t), which captures the information 

relating to the path of interest rates, is independent of the forward rate maturity. Further, since 
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the two state variables, ~ ( t )  and +(O,t), permit us to  compute all forward rates a t  time t, they also 

allow us to  price all discount bonds. Hence, the entire term structure a t  time t is fully determined 

by these two state variables,which means that all bond prices can be expressed in terms of them. 

To see this, note that equation (A2.3) can be written as 

Further, from equation (1) we have 

which upon simplification yields 

where 

This completes the proof. 
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Appendix 3 

Proof of Theorem 3 

The dynamics of the spot rate, r(t) , involve the simultaneous movement in both arguments of 

the forward rate. Hence, its evolution is given by 

Computing these terms using equations (14a), (A2.3) and (A2.4) and rearranging yields 

This completes the proof. 
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