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ABSTRACT 

This paper examines the stochastic properties of aggregate 
macroeconomic time series from the standpoint of fractionally integrated 
models, focusing on the persistence of economic shocks. We develop a simple 
macroeconomic model that exhibits long-range dependence, a consequence of 
aggregation in the presence of real business cycles. We then derive the 
relation between properties of fractionally integrated macroeconomic time 
series and those of microeconomic data and discuss how fiscal policy may alter 
the stochastic behavior of the former. To implement these results 
empirically, we employ a test for fractionally integrated time series based on 
the Hurst-Mandelbrot rescaled range. This test, which is robust to short-term 
dependence, is applied to quarterly and annual real GNP to determine the 
sources and nature of long-term dependence in the business cycle. 
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1. Introduction 

Questions about the persistence of economic shocks currently occupy an 

important place in macroeconomics. Most of the controversy has centered on 

whether aggregate time series are better approximated by fluctuations around a 

deterministic trend or by a random walk plus a stationary or temporary 

component. The empirical results from these studies are mixed, perhaps 

because measuring low-frequency components is difficult. Looking at the class 

of fractionally integrated processes, which exhibits an interesting type of 

long-range dependence in an elegant and parsimonious way, can help to resolve 

the problem. This new approach also accords well with the classic NBER 

business cycle program developed by Wesley Claire Mitchell, who urged 

examination of trends and cycles at all frequencies. 

Economic life does not proceed smoothly: There are good times and bad 

times, a rhythmical pattern of prosperity and depression. Recurrent downturns 

and crises take place roughly every three to five years and thus seem part of 

a nonperiodic cycle. Studying such cycles in detail has been the main 

activity of twentieth century macroeconomics. Even so, isolating cycles of 

these frequencies has been difficult because the data evince many other cycles 

of longer and shorter duration. Mitchell (1927, p. 463) remarks, "Time series 

also show that the cyclical fluctuations of most (not all) economic processes 

occur in combination with fluctuations of several other sorts: secular 

trends, primary and secondary, seasonal variations, and irregular 

fluctuations." Properly eliminating these other influences has always been 

controversial. No less an authority than Irving Fisher (1925) considered the 
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business cycle to be a myth, akin to a run of luck at Monte Carlo. In a 

similar vein, Slutzk. (1937) suggested that cycles arise from smoothing 

procedures used to create the data. 

A similar debate is now taking place. The standard methods of removing a 

linear or exponential trend assume implicitly that business cycles are 

fluctuations around a trend. Other work (e.g., Nelson and Plosser [1982]) 

challenges this assumption and posits stochastic trends similar to random 

walks, highlighting the distinction between temporary and permanent changes. 

Since the cyclical, or temporary, component is small relative to the 

fluctuation in the trend component (the random walk part) when viewed 

empirically, business cycles look more like Fisher's myth. This is important 

for forecasting purposes, because permanent changes (as in the case of a 

random walk) have a large effect many periods later, whereas temporary changes 

(as in stationary fluctuations around a trend) have small future effects. The 

large random walk component also provides evidence against some theoretical 

models of aggregate output. Models that focus on monetary or aggregate demand 

disturbances as a source of transitory fluctuations cannot explain much output 

variation; supply-side or other models must be invoked (see Nelson and Plosser 

[I9821 and Campbell and Mankiw [1987]). 

The recent studies posit a misleading dichotomy, however. In stressing 

trends versus random walks, they overlook earlier work by Mitchell (1927), 

Adelman (1965), and Kuznets (1965), who focused on correlations in the data 

that fall between secular trends and transitory fluctuations. In the language 

of the early NBER, most recent studies miss Kondratiev, Kuznets, and Juglar 
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cycles. The longer-run (lower-frequency) properties can be difficult to 

handle with conventional ARMA or ARIMA models because such properties involve 

what seem to be an excessive number of free parameters. Of course, an MA(120) 

fits the post-Civil War annual data quite well, but most of the relations 

would be spurious, and it is doubtful how well such an overfitted 

specification could predict. Fractionally differenced processes exhibit 

long-run dependence by adding only one free parameter, the degree of 

differencing, and show promise in explaining the lower-frequency effects 

(i.e., Kuznets' (1965) and Adelman's (1965) "long swings," or the effects that 

persist from one business cycle to the next). Standard methods of fitting 

Box-Jenkins models have trouble with the number of free parameters needed for 

long-term dependence, especially the sort captured by a fractional process. 

We think a better approach is a more direct investigation of this alternative 

class of stochastic processes. 

This paper examines the stochastic properties of aggregate output from the 

standpoint of fractionally integrated models. We introduce this type of 

process in section 2 and review its main properties, its advantages, and its 

weaknesses. Section 3 develops a simple macroeconomic model that exhibits 

long-term dependence. Section 4 employs a new test for fractional integration 

in time series to search for long-term dependence in the data. Though related 

to a test developed by Hurst and Mandelbrot, our model is robust to short-term 

dependence. Section 5 summarizes and concludes. 

www.clevelandfed.org/research/workpaper/index.cfm



2. Review of Fractional Techniques in Statistics 

A random walk can model time series that look cyclic but nonperiodic. The 

first differences of that series (or in continuous time, the derivative) 

should then be white noise. This is an example of the common intuition that 

differencing (differentiating) a time series makes it "rougher," whereas 

summing (integrating) makes it "smoother." Many macroeconomic time series 

resemble neither a random walk nor white noise, suggesting that some 

compromise or hybrid between the random walk and its integral may be useful. 

Such a concept has been given content through the development of the 

fractional calculus, i.e., differentiation and integration to non-integer 

0rders.l The fractional integral of order between zero and one may be 

viewed as a filter that smooths white noise to a lesser degree than the 

ordinary integral; it yields a series that is rougher than a random walk but 

smoother than white noise. Granger and Joyeux (1980) and Hosking (1981) 

develop the time-series implications of fractional differencing in discrete 

time. For expositional purposes, we review the more relevant properties in 

sections 2.1 and 2.2. 

2.1. Fractional Differencing 

Perhaps the most intuitive exposition of fractionally differenced time 

series is via their infinite-order autoregressive (AR) and moving-average (MA) 

representations. Let $ satisfy 

(l-Lld$ = Et, 
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where e, is white noise, d is the degree of differencing, and L denotes the 

lag operator. If d = 0, then X, is white noise, whereas if d = 1, X, is a 

random walk. However, as Granger and Joyeux (1980) and Hosking (1981) have 

shown, d need not be an integer. From the binomial theorem, we have the 

relation 

where the binomial coefficient (f) is defined as 

= 
d(d-1) (d-2)- (d-k+l) 

k! 

for any real number d and non-negative integer k.2 From (2.2), the AR 

representation of X, is apparent: 

where 4 = (-ilk (i) . The AR coefficients are often reexpressed more 

directly in terms of the gamma function: 

k d r k-d 
4 = (-I) (k) = r(-i)r(i+l) 

By manipulating (2.1) mechanically, X, may also be viewed as an 

infinite-order MA process, since 
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The particular time-series properties of X, depend intimately on the value 

of the differencing parameter d. For example, Granger and Joyeux (1980) and 

Hosking (1981) show that X, is stationary when d is less than one-half, 

and invertible when d is greater than minus one-half. Although the 

specification in (2.1) is a fractional integral of pure white noise, the 

extension to fractional ARIMA models is clear. 

The AR and MA representations of fractionally differenced time series have 

many applications and illustrate the central properties of fractional 

processes, particularly long-term dependence. The MA coefficients 8, give 

the effect of a shock k periods ahead and indicate the extent to which current 

levels of the process depend on past values. How fast this dependence decays 

furnishes valuable information about the process. Using Stirling's 

approximation, we have 

for large k. Comparing this with the decay of an AR(1) process highlights a 

central feature of fractional processes: They decay hyperbolically, at rate 

kd- 1 , rather than at the exponential rate of pk for an AR(1). For example, 
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compare in figure 1 the autocorrelation function of the fractionally 

differenced series (~-L)'.~'~x, = et with that of the AR(1) X, 0.9% + 6,. 

Although they both have first-order autocorrelations of 0.90, the AR(1)'s 

autocorrelation function decays much more rapidly. 

Figure 2 plots the impulse-response functions of these two processes. At 

lag 1, the MA coefficients of the fractionally differenced series and the 

AR(1) are 0.475 and 0.900, respectively. At lag 10, these coefficients 

are 0.158 and 0.349, while at lag 100, they fall to 0.048 and 0.000027. The 

persistence of the fractionally differenced series is apparent at the longer 

lags. Alternatively, we may ask what value of an AR(1)'s autoregressive 

parameter will yield, for a given lag, the same impulse response as the 

fractionally differenced series (2.1). This value, simply the k-th root of 

Bk, is plotted in figure 3 for various lags when d - 0.475. For large k, 

this autoregressive parameter must be very close to unity. 

These representations also show how standard econometric methods can fail 

to detect fractional processes, necessitating the methods described in section 

4. Although a high-order ARMA process can mimic the hyperbolic decay of a 

fractionally differenced series in finite samples, the large number of 

parameters required would give the estimation a poor rating from the usual 

Akaike or Schwartz criteria. An explicitly fractional process, however, 

captures that pattern with a single parameter, d. Granger and Joyeux (1980) 

and Geweke and Porter-Hudak (1983) provide empirical support for this by 

showing that fractional models often outpredict fitted ARMA models. 
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The lag polynomials A(L) and B(L) provide a metric for the persistence of 

5. Suppose 5 represents GNP, which falls unexpectedly this year. How 

much should this alter a forecast of GNP? To address this issue, define % 

as the coefficients of the lag polynomial C(L) that satisfy the relation 

(1-L)% = C(L)E,, where the process 5 is given by (2.1). One measure 

used by Campbell and Mankiw (1987) is 

m 

lim a, =I % = C(1). 
k+m k=O 

For large k, the value of 8, measures the response of 5+k to an 

innovation at time t, a natural metric for persistence. From (2.7), it is 

immediate that for 0 < d < 1, C(l) = 0, and that asymptotically, there is no 

persistence in a fractionally differenced series, even though the 

autocorrelations die out very ~lowly.~ This holds not only for d < 1/2 (the 

stationary case), but also for 1/2 < d < 1 (the nonstationary case). 

From these calculations, it is apparent that the long-run dependence of 

fractional processes relates to the slow decay of the autocorrelations, not to 

any permanent effect. This distinction is important; an IMA(1,l) can have 

small yet positive persistence, but the coefficients will never mimic the slow 

decay of a fractional process. 

The long-term dependence of fractionally differenced time series forces us 

to modify some conclusions about decomposing time series into "permanent" and 

"temporary" components. Although Beveridge and Nelson (1981) show that 
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nonstationary time series can always be expressed as the sum of a random walk 

and a stationary process, the stationary component may exhibit long-range 

dependence. This suggests that the temporary component of the business cycle 

may be transitory only in the mathematical sense and that it is, for all 

practical purposes, closer to what we think of as a long, nonperiodic cycle. 

2.2. Spectral Representation 

The spectrum, or spectral density (denoted f(o)), of a time series 

specifies the contribution each frequency makes to the total variance. 

Granger (1966) and Adelman (1965) have pointed out that most aggregate 

economic time series have a typical spectral shape, where the spectrum 

increases dramatically as the frequency approaches zero (f(w) -r as w -+ 

0). Most of the power (variance) seems to be concentrated at low frequencies. 

However, prewhitening or differencing the data often leads to 

overdifferencing , or "zapping out" the low- frequency component, and frequently 

replaces the peak by a dip at zero. Fractional differencing yields an 

intermediate result. The spectra of fractional processes exhibit peaks at 

zero (unlike the flat spectrum of an ARMA process), but ones not so sharp as 

those of a random walk. A fractional series has a spectrum that is richer in 

low-frequency terms and that shows more persistence. We illustrate this by 

calculating the spectrum of fractionally integrated white noise, and present 

several formulas needed in sections 3 and 4. Given % = (l-~)-~r,, 

the series is clearly the output of a linear system with a white noise input, 

so that the spectrum of % is6 
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where z = eiw , and u2 = E [ E ~ ]  . 

The identity 1 1-2 1 = 2(1-cos(w)) implies that for small w, 

2 
f ( w )  = C W - ~ ~ ,  C = 2'K ' 

This approximation encompasses the two extremes of white noise (or a finite 

ARMA process) and a random walk. For white noise, d = 0 and f(w) = c, while 

for a random walk, d = 1 and the spectrum is inversely proportional to &. 

A class of processes of current interest in the statistical physics 

literature, called l/f noise, matches fractionally integrated noise with d = 

1/2. 

3 .  A Simple Macroeconomic Model with Long-Term Dependence 

Over half a century ago, Wesley Claire Mitchell (1927, p. 230) wrote that 

"We stand to learn more about economic oscillations at large and about 

business cycles in particular, if we approach the problem of trends as 

theorists, than if we confine ourselves to strictly empirical work." Indeed, 

gaining insights beyond stylized facts requires guidance from theory. 

Theories of long-range dependence may provide organization and discipline in 

constructing models of growth and business cycles. They can also guide future 

research by predicting policy effects, postulating underlying causes, and 

suggesting new ways to analyze and combine data. Ultimately, examining the 
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facts serves only as a prelude. Economic understanding requires more than a 

consensus on the Wold representation of GNP; it demands a falsifiable model 

based on the tastes and technology of ifhe actual economy. 

Thus, before testing for long-run dependence, we develop a simple model 

in which aggregate output exhibits long-run dependence. The model presents 

one reason that macroeconomic data might show the particular stochastic 

structure for which we test. It also shows that models can restrict the 

fractional differencing properties of time series, thus holding promise for 

distinguishing between competing theories. Furthermore, the maximizing model 

presented below connects long-term dependence to the central economic concepts 

of productivity, aggregation, and the limits of the representative- agent 

paradigm. 

3.1. A Simple Real Model 

One plausible mechanism for generating long-run dependence in output, 

which we will mention briefly and not pursue, is that production shocks 

themselves follow a fractionally integrated process. This explanation for 

persistence follows that used by Kydland and Prescott (1982). In general, 

such an approach begs the question, but in the present case, evidence from 

geophysical and meteorological records suggests that many economically 

important shocks have long-run correlation properties. Mandelbrot and Wallis 

(1969b), for instance, find long-run dependence in rainfall, river flows, 

earthquakes, and weather patterns (as measured by tree rings and sediment 

deposits) . 
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A more satisfactory model explains the time-series properties of data by 

producing them despite white noise shocks. This section develops such a model 

with long-run dependence, using a linear quadratic version of the real 

business cycle model of Long and Plosser (1983) and the aggregation results 

of Granger (1980). In our multisector model, the output of each industry (or 

island) follows an AR(1) process, but aggregate output with N sections follows 

an ARMA (N,N-1) process, making dynamics with even a moderate number of 

sectors unmanageable. Under fairly general conditions, however, a simple 

fractional process can closely approximate the true ARMA specification. 

Consider a model economy with many goods and a representative agent who 

chooses a production and consumption plan. The infinitely lived agent 

inhabits a linear quadratic version of the real business cycle model and has a 

lifetime utility function of U = Cptu(C,), where C, is an Nxl vector 

denoting period t consumption of each of the N goods in our economy. Each 

period's utility function u(C,) is given by 

l J  u(C,) = C,L - -C BC,, 2 t 

where L is an Nxl vector of ones. In anticipation of the aggregation 

considered later, we assume B to be diagonal so that CLBC, = ZbiiCZt. 

The agent faces a resource constraint: Total output Y, may be either 

consumed or saved. Thus, 
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where the i ,  j - t h  entry Sijt of the NxN matrix St denotes the quantity 

of good j invested i n  process i a t  time t ,  and where it i s  assumed tha t  any 

good Yjt may be consumed or invested. Output i s  determined by the 

random l inear  technology 

Yt =ASt + E,, (3.3) 

where et  i s  a (vector) random production shock whose value i s  realized a t  

the beginning of period t + l .  The matrix A consists of the input-output 

parameters ai j .  To focus on long-term dependence, we r e s t r i c t  A's form. 

Thus, each sector uses only i t s  own output as  input, yielding a diagonal A 

matrix and allowing us to simplify the notation by defining ai = aii. 

This diagonal case might occur, for example, when a number of d i s t inc t  islands 

are producing dif ferent  goods. To further simplify the problem, we assume 

tha t  a l l  commodities are perishable and that  capi ta l  depreciates a t  a ra te  of 

100 percent. Since the s t a t e  of the economy in  each period i s  fu l ly  specified 

by tha t  period's output and productivity shock, it i s  useful to  denote that  

vector Z, = [Y; E L ]  ' . 

Subject to  the production function (3.3) and the resource constraint 

(3 .2 ) ,  the agent maximizes expected lifetime u t i l i t y  as  follows: 

Max E[UI Zt]  = MaxE [ f /37-tu(~t - St') I Zt ] , 
{St} {St) 7=t 
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where we have substituted for consumption in (3.4) using the budget equation 

(3.2). This maps naturally into a dynamic programming formulation, with a 

value function V(Zt) and optimality equation 

With quadratic utility and linear production, it is straightforward to 

discover and verify the form of V(Zt): 

V(Y,E) - q'Y + Y'PY + R + E[E'TE], (3.6) 

where q and R &note Nxl vectors and P and T are NxN matrices, with entries 

being fixed constants given by the matrix Riccati equation resulting from the 

value function's recursive definition.' Given the value function, the 

first-order conditions of the optimality equation (3.5) yield the chosen 

quantities of consumption and investment/savings and, for the example 

presented here, have the following closed-form solutions: 

and 

where 
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The simple form of the optimal consumption and investment decision rules comes 

from the quadratic preferences and the linear production function. Two 

qualitative features bear emphasizing. First, higher output today will 

increase both current consumption and current investment, thus increasing 

future output. Even with 100 percent depreciation, no durable commodities, 

and i.i.d. production shocks, the time-to-build feature of investment induces 

serial correlation. Second, the optimal choices do not depend on the 

uncertainty that is present. This certainty equivalence feature is clearly an 

artifact of the linear-quadratic combination. 

The time series of output can now be calculated from the production 

function (3.1) and the decision rule (3.7). Quantity dynamics then come from 

the difference equation 

where Ki is some fixed constant. The key qualitative property of quantity 

dynamics summarized by (3.11) is that output Yi, follows an AR(1) process. 

www.clevelandfed.org/research/workpaper/index.cfm



16 

Higher output today implies higher output in the future. That effect dies off 

at a rate that depends on the parameter ai, which in turn depends on the 

underlying preferences and technology. 

The simple output dynamics for a single industry or island neither mimics 

business cycles nor exhibits long-run dependence. However, aggregate output, 

the sum across all sectors, does show such dependence, which we demonstrate 

here by applying the aggregation results of Granger (1980, 1988). 

It is well known that the sum of two series Xt and Y,, each AR(1) with 

independent error, is an ARMA(2,l) process. Simple induction then implies 

that the sum of N independent AR(1) processes with distinct parameters has an 

ARMA(N,N-1) representation. With more than six million registered businesses 

in America (Council of Economic Advisors, 1988), the dynamics can be 

incredibly rich - -  and the number of parameters unmanageably huge. The common 

response to this problem is to pretend that many different firms (islands) 

have the same AR(1) representation for output, which reduces the dimensions of 

the aggregate ARMA process. This "canceling of roots" requires identical 

autoregressive parameters. An alternative approach reduces the scope of the 

problem by showing that the ARMA process approximates a fractionally 

integrated process and thus summarizes the many ARMA parameters in a 

parsimonious manner. Though we consider only the case of independent sectors, 

dependence is easily handled. 

Consider the case of N sectors, with the productivity shock for each 

serially uncorrelated and independent across islands. Furthermore, let the 

sectors differ according to the productivity coefficient ai. This implies 
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differences in ai, the autoregressive parameter for sector i's output 

Yi,. One of our key results is that under some distributional assumptions 

about ails aggregate output, 3 follows a fractionally integrated 

process, where 

To show this, we approach the problem from the frequency domain and apply 

spectral methods, which often simplify problems of aggregation. Let f (w) 

denote the spectrum (spectral density function) of a random variable, and let 

z = e-iw. From the definition of the spectrum as the Fourier transform 

of the autocovariance function, the spectrum of Yit is 

Similarly, independence implies that the spectrum of 3 is 

The ails measure an industry's average output for given input. This 

attribute of the production function can be thought of as a drawing from 

nature, as can the variance of the productivity shocks tit for each 

sector. Thus, it makes sense to think of the airs as independently drawn 
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from a distribution G(a) and the ai's as drawn from F(a). Provided that 

the E , ,  shocks are independent of the distribution of a,'~, the 

spectral density of the sum can be written as 

If the distribution F(a) is discrete, so that it takes on m (< N) values, 

Y: will be an ARMA (m, m-1) process. A more general distribution leads 

to a process that no finite ARMA model can represent. To further specify the 

process, take a particular distribution for F, in this case a variant of the 

beta distrib~tion.~ In particular, let a2 be distributed as beta (p,q), 

which yields the following density function for a: 

( 0  otherwise, 

with (p, q) > 0. lo 

Obtaining the Wold representation of the resulting process requires a 

little more work. First, note that 
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where 2 denotes the complex conjugate of z, and the terms in brackets can 

be further expanded by long division. Substituting this expansion and the 

beta distribution (3.16) into the expression for the spectrwn and simplifying 

(using the relation z + 2 = 2 cos(w)) yields 

Then, the coefficient of cos(h) is 

Since the spectral density is the Fourier transform of the autocovariance 

function, (3.19) is the k-th autocovariance of 3. Furthermore, 

because the integral defines a beta function, (3.19) simplifies to /3(p+k/2, 

q - 1)/ /3(p,q). Dividing by the variance gives the autocorrelation 

coefficients, which reduce to 

Using the result from S tirling ' s approximation r(a+k)/r(b+k) = ka-b, 

(3.20) is proportional (for large lags) to kl-q. Thus, aggregate output 

Y: follows a fractionally integrated process of the order d = 1 - Q 2 ' 
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Furthermore, as an approximation for long lags, this does not necessarily rule 

out interesting correlations at higher, e.g., business cycle, frequencies. 

Similarly, comovements can arise as the fractionally integrated income process 

induces fractional integration in other observed time series. This phenomenon 

has been generated by a maximizing model based on tastes and 

technologies. l1 

In principle, all of the model's parameters may be estimated, from the 

distribution of production functions to the variance of output shocks. 

Although to our knowledge no one has explicitly estimated the distribution of 

production function parameters, many people have estimated production 

functions across industries.12 (One of the better recent studies 

disaggregates to 45 industries.13) For our purposes, the quantity 

closest to a, is the value-weighted intermediate-product factor share. 

Using a translog production function, this gives the factor share of inputs 

coming from industries, excluding labor and capital. These inputs range from 

a low of 0.07 for radio and television advertising to a high of 0.81 for 

petroleum and coal products. Thus, even a small amount of disaggregation 

reveals a large dispersion, suggesting the plausibility and significance of 

the simple model presented in this section. 

Although the original motivation for our real business cycle model was to 

illustrate how long-range dependence could arise naturally in an economic 

system, our results have broader implications for general macroeconomic 

modeling. They show that moving to a multiple-sector real business cycle 

model introduces not unmanageable complexity, but qualitatively new behavior 
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that in some cases can be quite manageable. Our findings also show that 

calibrations aimed at matching only a few first and second moments can 

similarly hide major differences between models and the data, missing long-run 

dependence properties. While widening the theoretical horizons of the 

paradigm, fractional techniques also widen the potential testing of such 

theories. 

3.2. Fiscal Policy and Welfare Implications 

Taking a policy perspective raises two natural questions about the 

fractional properties of national income. First, will fiscal or monetary 

policy change the degree of long-term dependence? Friedman and Schwartz 

(1982), for example, point out that long-run income cycles correlate with 

long-run monetary cycles. Second, does long-term dependence have welfare 

implications? Do agents care that they live in such a world? 

In the basic Ramsey-Solow growth model, as in its stochastic extensions, 

taxes affect output and capital levels but not growth rates; thus, tax policy 

does not affect fractional properties. l4 However, two alternative 

approaches suggest richer possibilities. First, recall that fractional noise 

arises through the aggregation of many autoregressive processes. Fiscal 

policy may not change the coefficients of each process, but a tax policy can 

alter the distribution of total output across individuals, effectively 

changing the fractional properties of the aggregate. Second, endogenous 

growth models often allow tax policy to affect growth rates by reducing 

investment in research, thus depressing future growth. l5 Hence, the 
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autoregressive parameters of an individual firm's output could change with 

policy, in turn affecting aggregate income. 

Unfortunately, implementing either approach with even a modicum of realism 

would be quite complicated. In the dynamic stochastic growth model, taxation 

drives a wedge between private and social returns, resulting in a suboptimal 

equilibrium. This eliminates methods that exploit the pareto-optimality of 

competitive equilibrium, such as dynamic programming. Characterizing 

solutions requires simulation methods, because no closed forms have been 

found.16 Thus, it seems clear that fiscal policy can affect fractional 

properties. Explicitly calculating the impact would take this paper too far 

afield and is best left for future research. 

Those who forecast output or sales will care about the fractional nature 

of output, but fractional processes can have normative implications as well. 

Following Lucas (1987), this section estimates the welfare costs of economic 

instability under different regimes. We can decide if people care whether 

their world is fractional. For concreteness, let the typical household 

consume C,, evaluating this via a utility function: 

Also assume that 

m 

www.clevelandfed.org/research/workpaper/index.cfm



2 3 

where 9, = In r , .  The X term measures compensation for variations 

in the process 4(L). With 9, normally distributed with mean zero and 

variance one, the compensating fraction X between two processes 4 and 1/, is 

m 
1 + X = exp [ $  (1 - 0) 1 (1/,: - 43 ] - (3.23) 

k=O 

Evaluating (3.23) using a realistic a = 5, again comparing an AR(1) with p = 

0.9 against a fractional process of order one-fourth, we find that X = 

-0.99996.(This number looks larger than those in Lucas [1987] because the 

process is in logs rather than in levels.17) For comparison, this is 

the difference between an AR(1) with p of 0.90 and one with p of 0.95. This 

calculation provides only a rough comparison. When feasible, welfare 

calculations should use the model generating the processes, as only it will 

correctly account for important specifics such as labor supply or 

distortionary taxation. 

4. Rescaled Range Analysis of Real Output 

The results in section 3 show that simple aggregation may be one source of 

long-term dependence in the business cycle. In this section, we employ a 

method for detecting long memory and apply it to real GNP. The technique is 

based on a simple generalization of a statistic first proposed by the English 

hydrologist Harold Edwin Hurst (1951) and subsequently refined by Mandelbrot 

(1972, 1975) and others.18 Our generalization of Mandelbrot's 

statistic, called the rescaled range, the range over standard deviation, or 
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the R/S statistic, enables us to distinguish between short- and long-run 

dependence, in a sense that will be made precise below. We define our notions 

of short and long memory and present the test statistic in section 4.1. 

Section 4.2 gives the empirical results for real GNP. We find long-term 

dependence in log-linearly detrended output, but considerably less dependence 

in the growth rates. To interpret these findings, we perform several Monte 

Carlo experiments under two null and two alternative hypotheses. Results are 

reported in section 4.3. 

4.1. The R/S Statistic 

To develop a method of detecting long memory, we must be precise about the 

distinction between long- term and short- term statistical dependence. One of 

the most widely used concepts of short-term dependence is the notion of 

"strong-mixing" (based on Rosenblatt [1956]), a measure of the decline in 

statistical dependence of two events separated by successively longer time 

spans. Heuristically, a time series is strong-mixing if the maximal 

dependence between any two events becomes trivial as more time elapses between 

them. By controlling the rate at which the dependence between future events 

and those of the distant past declines, it is possible to extend the usual 

laws of large numbers and central-limit theorems to dependent sequences of 

random variables. Such mixing conditions have been used extensively by White 

(1980), White and Domowitz (1984), and Phillips (1987), for example, to relax 

the assumptions that ensure consistency and asymptotic normality of various 

econometric estimators. We adopt this notion of short-term dependence as part 
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of our null hypothesis. As Phillips (1987) observes, these conditions are 

satisfied by a great many stochastic processes, including all Gaussian 

finite-order stationary ARMA models. Moreover, the inclusion of a moment 

condition allows for heterogeneously distributed sequences (such as those 

exhibiting heteroscedasticity) , an especially important extension in view of 

the nonstationarities of real GNP. 

In contrast to the "short memory" of weakly dependent (i.e., 

strong-mixing) processes, natural phenomena often display long-term memory in 

the form of nonperiodic cycles. This has led several authors, most notably 

Mandelbrot, to develop stochastic models that exhibit dependence even over 

very long time spans. The fractionally integrated time-series models of 

Mandelbrot and Van Ness (1968), Granger and Joyeux (1980), and Hosking (1981) 

are examples of these. Operationally, such models possess autocorrelation 

functions that decay at much slower rates than those of weakly dependent 

processes, violating the conditions of strong-mixing. To detect long-term 

dependence (also called strong dependence), Mandelbrot suggests using the R/S 

statistic, which is the range of partial sums of deviations of a time series 

from its mean, rescaled by its standard deviation. In several seminal papers, 

Mandelbrot demonstrates the superiority of the R/S statistic over more 

conventional methods of determining long- run dependence, such as 

autocorrelation analysis and spectral analysis. l9 

In testing for long memory in output, we employ a modification of the R/S 

statistic that is robust to weak dependence. In Lo (1991), a formal sampling 

theory for the statistic is obtained by deriving its limiting distribution 
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analytically using a functional central-limit theorem. 20 We use this 

statistic and its asymptotic distribution for inference below. Let Xt 

denote the first difference of log-GNP; we assume that 

where p is an arbitrary but fixed parameter. Whether or not X, exhibits 

long-term memory depends on the properties of E,. For the null hypothesis 

H, the sequence of disturbances E, satisfies the following conditions: 

(Al) E[et] = 0 for all t. 

(A2) sup E[ JE,~'] < a for some p > 2. 
t 

exists, and u2 > 0 

(A4) ( E ~ )  is strong-mixing, with mixing coefficients % that 

satisfy21 

Condition (Al) is standard. Conditions (A2) through (A4) are restrictions 

on the maximal degree of dependence and heterogeneity allowable while still 

permitting some form of the law of large numbers and the (functional) 

central-limit theorem to obtain. Note that we have not assumed stationarity. 

Although condition (A2) rules out infinite-variance marginal distributions of 

E ~ ,  such as those in the stable family with characteristic exponent less 

than two, the disturbances may still exhibit leptokurtosis via time-varying 
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conditional moments (e.g., conditional heteroscedasticity). Moreover, since 

there is a trade-off between conditions (A2) and (A4), the uniform bound on 

the moments may be relaxed if the mixing coefficients decline faster than (A4) 

requires .22 For example, if we require 6 ,  to have finite absolute 

moments of all orders (corresponding to /3 + co), then % must decline 

faster than l/k. However, if we restrict 6 ,  to have finite moments only up 

to order four, then % must decline faster than l/k2. These conditions 

are discussed at greater length in Phillips (1987), to which we refer 

interested readers. 

Conditions (Al) through (A4) are satisfied by many of the recently 

proposed stochastic models of persistence, such as the stationary AR(1) with a 

near-unit root. Although the distinction between dependence in the short 

versus the long run may appear to be a matter of degree, strongly dependent 

processes behave so differently from weakly dependent ones that our dichotomy 

seems quite natural. For example, the spectral densities of strongly 

dependent processes are either unbounded or zero at frequency zero. Their 

partial sums do not converge in distribution at the same rate as weakly 

dependent series, and graphically, their behavior is marked by cyclic patterns 

of all kinds, some that are virtually indistinguishable from trends.23 

To construct the modified R/S statistic, consider a sample XI, 3,  

1 . . . , X,, and let En denote the sample mean lj X,. 
Then, the modified R/S statistic, which we shall call a, is given by 
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k k a=- [x, - gn) - Min 1 [xj - a,)], - j=l 
where 

2 and 6, and 7 are the usual sample variance and autocovariance estimators 
j 

of X. Q,, is the range of partial sums of deviations of Xj from its mean, 

k, normalized by an estimator of the partial sum's standard deviation 
divided by n. The estimator 3,(q) involves not only sums of squared 

deviations of Xj, but also its weighted autocovariances up to lag q; the 

weights wj(q) are those suggested by Newey and West (1987), and they always 

2 yield a positive estimator 6,(q) .24  Theorem 4 . 2  in Phillips 

(1987) demonstrates the consistency of 3,(q) under the following 

conditions : 

(A2') supt ~[lr,~~'] < for some B > 2 .  

(A5) As n increases without bound, q also rises without bound, such that 

- o(n1/4 . 
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The choice of the truncation lag q is a delicate matter. Although q must 

increase with the sample size (although at a slower rate), Monte Carlo 

evidence suggests that when q becomes large relative to the number of 

observations, asymptotic approximations may fail dramatically. If the 

chosen q is too small, however, the effects of higher-order autocorrelations 

may not be captured. Clearly, the choice of q is an empirical issue that muust 

take into account the data at hand. 

Under conditions (Al), (A2'), (A3) . . .  A(5), Lo (1991) shows that the 

statistic V,, = has a well-defined asymptotic distribution given by 

the random variable V, whose distribution function Fv (v) isz6 

Using F,, critical values may be readily calculated for tests of any 

significance level. The most commonly used values are reported in tables la 

and lb. Table la reports the fractiles of the distribution, while table lb 

reports the symmetric confidence intervals about the mean. The moments of V 

are also easily computed using the density function fv; it is 

2 7r2 straightforward to show that E[V] = $ and E[V ] = -. Thus, 6 
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the mean and standard deviation of V are approximately 1.25 and 0.27, 

respectively. The distribution and density functions are plotted in figure 4. 

Note that the distribution is positively skewed and that most of its mass 

falls between three-fourths and two. 

If the obsemations are independently and identically distributed with 

variance a:, our normalization by 3,(q) is asymptotically equivalent to 

1 normalizing by the usual standard deviation estimator sn = [ii lj(xj - En)2]1'2. 

The resulting statistic, which we call on, is precisely the one proposed 

by Hurst (1951) and Mandelbrot (1972): 

k k O n 2  [ Max 1 X j  - E n  - Min 1 (xj - En}] . 
'n j=l 1 9 5 1 1  j=l 

Under the more restrictive null hypothesis of i.i.d. observations, the 

statistic vn = Gn/fi can be shown to converge to V as well. However, in 

the presence of short-range dependence, vn does not converge to V, 
whereas Vn still does. Of course, if the particular form of short-range 

dependence is known, it can be accounted for in deriving the limiting 

distribution of vn. For example, if Xt is a stationary AR(1) with 

autoregressive parameter p, Lo (1991) shows that vn converges to (V, 

where ( = *j(l+p)/(l-p). But since we would like our limiting 
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distribution to be robust to general forms of short-range dependence, we 

use the modified R/S statistic Vn below. 

4.2. Empirical Results for Real Output 

We apply our test to two time series of real output: quarterly postwar 

real GNP from 1947:IQ to 1987:IVQ, and the annual Friedman and Schwartz (1982) 

series from 1869 to 1972. These results are reported in table 2. Entries in 

the first numerical row are estimates of the classical R/S statistic f,, 

which is not robust to short-term dependence. The next eight rows are 

estimates of the modified R/S statistic Vn(q) for values of q from one to 

eight. Recall that q is the truncation lag of the spectral density estimator 

at frequency zero. Reported in parentheses below the entries for Vn(q) are 

estimates of the percentage bias of the statistic qn, computed as 

100 [fn/vn(q> - 11. 

The first column of numerical entries in table 2 indicates that the null 

hypothesis of short-term dependence for the first difference of log-GNP cannot 

be rejected for any value of q. The classical R/S statistic also supports the 

null hypothesis, as do the results for the Friedman and Schwartz series. On 

the other hand, when we log-linearly detrend real GNP, the results are 

considerably different. The third column of numerical entries in table 2 

shows that short-term dependence may be rejected for log-linearly detrended 

quarterly output with values of q from one to four. That the rejections are 

weaker for larger q is not surprising, since additional noise arises from 

estimating higher-order autocorrelations. When values of q beyond four are 
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used, we no longer reject the null hypothesis at the 5 percent level of 

significance. Finally, using the Friedman and Schwartz time series, we only 

reject with the classical R/S statistic and with V,(l). 

The values reported in table 2 are qualitatively consistent with the 

results of other empirical studies of fractional processes in GNP, such as 

Diebold and Rudebusch (1989) and Sowell (1989). For first differences, the 

R/S statistic falls below the mean, suggesting a negative fractional exponent, 

or in level terms, an exponent between zero and one. Furthermore, though the 

earlier papers produce point estimates, the imprecision of these estimates 

means that they do not reject the hypothesis of short-term dependence. For 

example, the standard-deviation error bounds for Diebold and Rudebusch's 

two point estimates, d = 0.9 and d = 0.52, are (0.42, 1.38) and (0.06, 1.10), 

respectively. 

Taken together, our results confirm the unit-root findings of Campbell and 

Mankiw (1987), Nelson and Plosser (1982), Perron and Phillips (1987), and 

Stock and Watson (1986). That there are more significant autocorrelations in 

log-linearly detrended GNP is precisely the spurious periodicity suggested by 

Nelson and Kang (1981). Moreover, the trend plus stationary noise model of 

GNP is not contained in our null hypothesis; hence, our failure to reject the 

null hypothesis is also consistent with the unit-root model .27 To see 

this, observe that if log-GNP y were trend stationary, i.e., if 
t 
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where r,~, is stationary white noise, then its first difference X, would 

simply be X, = /3 + r , ,  where r ,  = 'It - But this innovations 

process violates our assumption (A3) and is therefore not contained in our 

null hypothesis. 

Sowell (1989) has used estimates of d to argue that the trend-stationary 

model is correct. Following the lead of Nelson and Plosser (1982), he 

investigates whether the d parameter for the first-differenced series is close 

to zero, as the unit-root specification suggests, or close to minus one, as 

the trend-stationary specification suggests. His estimate of d is in the 

general range of -0.9 to -0.5, providing some evidence that the 

trend-stationary interpretation is correct. Even in this case, however, the 

standard errors tend to be large, on the order of 0.36. Although our 

procedure yields no point estimate of d, it does seem to rule out the 

trend-stationary case. 

To conclude that the data support the null hypothesis because our 

statistic fails to reject it is premature, of course, since the size and power 

of our test in finite samples is yet to be determined. 

4.3. Size and Power of the Test 

To evaluate the size and power of our test in finite samples, we perform 

several illustrative Monte Carlo experiments for a sample of 163 observations, 

which corresponds to the number of quarterly observations of real GNP growth 

from 1947: IQ to 1987: I V Q . ~ ~  We simulate two null hypotheses: 
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independently and identically distributed increments, and increments that 

follow an ARMA(2,2) process. Under the i.d.d. null hypothesis, we fix the 

mean and standard deviation of our random deviates to match the sample mean 

and standard deviation of our quarterly data set: 7.9775 x and 

1.0937 x respectively. To choose parameter values for the 

ARMA(2,2) simulation, we estimate the model 

using nonlinear least squares. The parameter estimates are as follows 

(standard errors are in parentheses): 

Table 3 reports the results of both null simulations. 

It is apparent from the i.i.d. null panel of table 3 that the 5 percent 

test based on the classical R/S statistic rejects too frequently. The 5 

percent test using the modified R/S statistic with q = 3 rejects 4 . 6  percent 

of the time, closer to the nominal size. As the number of lags increases to 

eight, the test becomes more conservative. Under the ARMA(2,2) null 

hypothesis, it is apparent that modifying the R/S statistic by the spectral 
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density estimator &,(q) is critical. The size of a 5 percent test based on the 

classical R/S statistic is 34 percent, whereas the corresponding size using 

the modified R/S statistic with q = 5 is 4.8 percent. As before, the test 

becomes more conservative when q is increased. 

Table 3 also reports the size of tests using the modified R/S statistic 

when the lag length q is optimally chosen using Andrews' (1987) procedure. 

This data-dependent procedure entails computing the first-order 

autocorrelation coefficient j(1) and then setting the lag length as the 

integer value of fin, wherez9 

Under the i.i.d. null hypothesis, Andrews' formula yields a 5 percent test 

with empirical size 6.9 percent; under the ARMA(2,2) alternative, the 

corresponding figure is 4.1 percent. Although significantly different from 

the nominal value, the empirical size of tests based on Andrews' formula may 

not be economically important. In addition to its optimality properties, the 

procedure has the advantage of eliminating a dimension of arbitrariness from 

the test. Table 4 reports power simulations under two fractionally differenced 

d alternatives: (1 - L) et = qt, where d = (1/3, -1/3). Hosking (1981) 

has shown that the autocovariance function yc(k) equals 
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Realizations of fractionally differenced time series of length 163 are 

simulated by pre-multiplying vectors of independent standard normal random 

variates by the Cholesky factorization of the 163 x 163 covariance matrix, 

whose entries are given by (3.11). To calibrate the simulations, a: 

is chosen to yield unit variance E,. We then multiply the e, series by 

the sample standard deviation of real GNP growth from 1947:IQ to 1987:IVQ and 

add the sample mean of real GNP growth over the same period. The resulting 

time series is used to compute the power of the R/S statistic (see table 4). 

For small values of q, tests based on the modified R/S statistic have 

reasonable power against both of the fractionally differenced alternatives. 

For example, using one lag, the 5 percent test has 58.7 percent power against 

the d = 1/3 alternative and 81.1 percent power against the d = -1/3 

alternative. As the lag is increased, the test's power declines. 

Note that tests based on the classical R/S statistic are significantly 

more powerful than those using the modified R/S statistic. This, however, is 

of little value when distinguishing between long-term and short-term 

dependence, since the test using the classical statistic also has power 

against some stationary finite-order ARMA processes. Finally, note that tests 

using Andrews' truncation lag formula have reasonable power against the d = 

-1/3 alternative, but are considerably weaker against the more relevant d = 

1/3 alternative. 
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The simulation evidence in tables 3 and 4 suggests that our empirical 

results do indeed support the short-term dependence of GNP with a unit root. 

Our failure to reject the null hypothesis does not seem to be explicable by a 

lack of power against long-memory alternatives. Of course, our simulations 

are illustrative and by no means exhaustive; additional Monte Carlo 

experiments will be required before a full assessment of the test's size and 

power is complete. Nevertheless, our modest simulations indicate that there 

is little empirical evidence of long-term memory in GNP growth rates. Perhaps 

a direct estimation of long-memory models would yield stronger results, an 

issue that has recently been investigated by several authors.30 

5 . Conclus ion 

This paper has suggested a new approach for investigating the stochastic 

structure of aggregate output. Traditional dissatisfaction with conventional 

methods - -  from observations about the typical spectral shape of economic time 

series to the discovery of cycles at all periods - -  calls for such a 

reformation. Indeed, recent controversy about deterministic versus stochastic 

trends and the persistence of shocks underscores the difficulties even modem 

methods have in identifying the long-run properties of the data. 

Fractionally integrated random processes provide one explicit approach to 

the problem of long-term dependence; naming and characterizing this aspect is 

the first step in studying the problem scientifically. Controlling for 

long-term dependence improves our ability to isolate business cycles from 

trends and to assess the propriety of that decomposition. To the extent that 
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long-term dependence explains output, it deserves study in its own right. 

Furthermore, Singleton (1988) has pointed out that dynamic macroeconomic 

models often inextricably link predictions about business cycles, trends, and 

seasonal effects. So, too, is long-term dependence linked: A fractionally 

integrated process arises quite naturally in a dynamic linear model via 

aggregation. Our model not only predicts the existence of fractional noise, 

but suggests the character of its parameters. This class of models leads to 

testable restrictions on the nature of long-term dependence in aggregate data, 

and also holds the promise of enhancing policy evaluation. 

Advocating a new class of stochastic processes would be a fruitless task 

if its members were intractable. But in fact, manipulating such processes 

causes few problems. We construct an optimizing linear dynamic model that 

exhibits fractionally integrated noise, and provide an explicit test for such 

long-term dependence. Modifying a statistic developed by Hurst and Mandelbrot 

gives us a statistic robust to short-term dependence. This modified R/S 

statistic possesses a well-defined limiting distribution, which we have 

tabulated. Illustrative computer simulations indicate that this test has 

power against at least two specific alternative hypotheses of long-term 

memory. 

Two main conclusions arise from our empirical work and from Monte Carlo 

experiments. First, the evidence does not support long-term dependence in 

GNP. Rejections of the short- term-dependence null hypothesis occur only with 

detrended data and are consistent with the well-known problem of spurious 

periodicities induced by log-linear detrending. Second, since a 
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trend-stationary model is not contained in our null hypothesis, our failure to 

reject may also be viewed as supporting the first-difference stationary model 

of GNP, with the additional result that the stationary process is at best 

weakly dependent. This supports and extends Adelman's conclusion that, at 

least within the confines of the available data, there is little evidence of 

long-term dependence in the business cycle. 
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Footnotes 

1. The idea of fractional differentiation is an old one (dating back to an 
oblique reference by Leibniz in 1695), but the subject lay dormant until 
the nineteenth century, when Abel, Liouville, and Riemann developed it 
more fully. Extensive applications have only arisen in this century; 
see, for example, Oldham and Spanier (1974). Kolmogorov (1940) was 
apparently the first to notice its applicability in probability and 
statistics. 

2. When d is an integer, (2.3) reduces to the better-known formula for the 

binomial coefficient, d! 
k! (d-k) ! ' We follow the convention that 

(8)  = 1 and (8) = 0. 

3. See Hosking (1981) for further details. 

4. See Cochrane (1988) andQuah (1987) for opposing views. 

5. There has been some confusion about this point in the literature. Geweke 
and Porter-Hudak (1983) argue that C(l) > 0. They correctly point out 
that Granger and Joyeux (1980) erred, but then incorrectly claim that 
(1) = 1 )  If our equation (2.7) is correct, then it is apparent 
that C(l) = 0 (which agrees with Granger [I9801 and Hosking [1981]). 
Therefore, the focus of the conflict lies in the approximation of the 
ratio r(k+d)/r(k+l) for large k. We have used Stirling's approximation. 
However, a more elegant derivation follows from the functional analytic 
definition of the gamma function as the solution to the following 
recursive relation (see, for example, Iyanaga and Kawada [1980, section 
179.A]) : 

r(x+i) = x~(x) 

and the conditions 

r(x+n) - 1. r(1) = 1 lim - - 
n - . ~  nxI'(n) 

6. See Chatfield (1984, chapters 6 and 9). 

7. See Sargent (1987, chapter 1) for an excellent exposition. 

8. See Theil (1954). 

9. Granger (1980) conjectures that this particular distribution is not 
essential. 

10. For a discussion of the variety of shapes the beta distribution can take 
as p and q vary, see Johnson and Kotz (1970). 
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Two additional points are worth emphasizing. First, the beta 

distribution need not be over (0,l) to obtain these results, only over 

( 1 )  Second, it is indeed possible to vary the aifs so that ai 

has a beta distribution. 

Leontief, in his classic (1976) study, reports own-industry output 
coefficients for 10 sectors, investigating how much an extra unit of food 
will increase food production. Results vary from 0.06 (fuel) to 1.24 
(other industries). 

See Jorgenson, Gollop, and Fraumeni (1987). 

See Atkinson and Stiglitz (1980). 

For example, see Romer (1986) and King, Plosser, and Rebelo (1987). 

See King, Plosser, and Rebelo (1987), Baxter (1988), and Greenwood and 
Huffman (1991). 

We calculate this using (2.7) and the Hardy-Littlewood approximation for 
the resulting Rieman Zeta Function, following Titchmarsh (1951, section 
4.11). 

See Mandelbrot and Taqqu (1979) and Mandelbrot and Wallis (1968, 
1969a-c) . 

See Mandelbrot (1972, 1975), Mandelbrot and Taqqu (1979), and Mandelbrot 
and Wallis (1968, 1969a-c). 

This statistic is asymptotically equivalent to Mandelbrot's under 
independently and identically distributed observations. However, Lo 
(1991) shows that the original R/S statistic may be significantly biased 
toward rejection when the time series is short-term dependent. Although 
aware of this bias, Mandelbrot (1972, 1975) did not correct for it, since 
his focus was on the relation of the R/S statistic's logarithm to the 
logarithm of the sample size, which involves no statistical inference; 
such a relation clearly is unaffected by short-term dependence. 

Let ( E ~ ( w ) )  be a stochastic process on the probability space (fl, 

F, P) and define 

a(A,B) = sup IP(AnB) - P(A)P(B)I AcF,BcF 

(A-l,Wl 
The quantity a(A,B) is a measure of the dependence between the two 

a fields A and B in F. Denote by B: the Bore1 a field generated 
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t by [E,(w), . . . ,  E~(w)], i.e., B, = u[E,(w), . . . ,  E~(w)] c F. Define 
the coefficients cr, as 

cr, = sup a (B'-~, B " ) . 
j +k 

j 

Then, (E,(w)) is said to be strong-mixing if lim cr, = 0. 
0.00 

For further details, see Rosenblatt (1956), White (1984), and the papers 
in Eberlein and Taqqu (1986). 

See Herndorf (1985). Note that one of Mandelbrot's (1972) arguments in 
favor of R/S analysis is that finite second moments are not required. 
This is indeed the case if we are interested only in the almost sure 
convergence of the statistic. However, since we wish to derive its 
limiting distribution for purposes of inference, a stronger moment 
condition is needed. 

See Mandelbrot (1972) for further details. 

ui(q) is also an estimator of the spectral density function of 

Xt at frequency zero, using a Bartlett window. 

See, for example, Lo and MacKinlay (1988). 

V may be shown to be the range of a Brownian bridge on the unit interval. 
See Lo (1991) for further details. 

Of course, this may be the result of low power against stationary but 
near-integrated processes, an issue that must be addressed by Monte Carlo 
experiments. 

All simulations were performed in double precision on a VAX 8700 using 
the IMSL 10.0 random number generator DRNNOA. Each experiment consisted 
of 10,000 replications. 

In addition, Andrews' procedure requires weighting the autocovariances by 

j (j = 1, . . . , [%I ) , in contrast to Newey and West's (1987) 

1 - 1 (j = 1, . . . , q), where q is an integer but (4) need not be. 
q+l 

See, for example, Diebold and Rudebusch (1989), Sowell (1987), and Yajima 
(1985, 1988). 
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Figure 1 

Autocorrelation functions of an AR(1) with coefficient 0.90 (dashed line) and 

a fractionally differenced series X, = (1 - L ) - ~ c ,  with differencing parameter 

d = 0.475 (solid line). Although both processes have a first-order 

autocorrelation of 0.90, the fractionally differenced process decays much more 

slowly. 
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Source: Authors 

Figure 2 

Impulse-response function (solid line) of the fractionally differenced time 

series X, - (1 - L ) - ~ E ~  for differencing parameter d - 0.475. For comparison, 

the impulse-response function of an AR(1) with autoregressive parameter 0.90 

is also plotted (dashed line). 
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Figure 3 

0 

0 

Values of an AR(1)'s autoregressive parameter required to generate the same 

k-th order autocorrelation as the fractionally differenced series X, = 

(1 - ~ ) - ~ e ,  for differencing parameter d = 0.475 (solid line). Formally, 

this is simply the k-th root of the fractionally differenced series' 

impulse-response function (dashed line). For large k, the autoregressive 

parameter must be very close to unity. 
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Figure 4 

Distribution and density function of the range V of a Brownian bridge. Dashed 

curves are the normal distribution and density functions with mean and 

variance equal to those of V. 
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Table la. Fractiles of the Distribution Fv(v) 

Table Ib. Symmetric Confidence Intervals about the Mean 

Source: Authors 
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Table 2 

R/S analysis of real GNP; . indicates log- linearly detrended 

quarterly real GNP from 1947 : IQ to 1987 : IVQ, and indicates the first 

differences of the logarithm of real GNP. g:. and AfS are defined 

similarly for the Friedman and Schwartz series. The classical R/S statistic 

9, and the modified R/S statistic Vn(q) are reported. l 

Under the null hypothesis H (conditions [All , [A2 ' ] , and [A31 - [AS] ) , 
the limiting distribution of V,(q) is the range of a Brownian bridge, which 

has a mean of m. Fractiles are given in table la; the 95 percent 
confidence interval with equal probabilities in both tails is (0.809, 1.862). 

Entries in the %-Bias rows are computed as ([~,/v,(~)]"~ - 1) 100 and are 

estimates of the bias of the classical R/S statistic in the presence of 
short-term dependence. Asterisks indicate significance at the 5 percent 
level. 

Source : Authors 
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Table 3 

Finite sample distribution of the modified R/S statistic under i.i.d. and 
ARMA(2,2) null hypotheses for the first difference of real log-GNP. The 
Monte Carlo experiments under the two null hypotheses are independent and 
consist of 10,000 replications each. Parameters of the i. i. d. simulations 
were chosen to match the sample mean and variance of quarterly real GNP growth 
rates from 1947:IQ to 1987:IVQ; parameters of the ARMA(2,2) were chosen to 
match point estimates of an ARMA(2,2) model fitted to the same data set. 
Entries in the column labeled "q" indicate the number of lags used to compute 
the R/S statistic. A lag of zero corresponds to Mandelbrot's classical R/S 
statistic, and a non-integer lag value corresponds to the average (across 
replications) lag value used according to Andrews' (1991) optimal lag formula. 
Standard errors for the empirical size may be computed using the usual normal 

approximation; they are 9.95 x 2.18 x and 3.00 x for the 1, 
5, and 10 percent tests, respectively. 

i.i.d. Null Hypothesis: 

ARMA(2,2) Null Hypothesis: 

n 

163 

163 

163 
163 
163 
163 
163 
163 
163 
163 

Source: Authors 

Size 10%-Test 

0.138 

0.121 

0.125 
0.111 
0.097 
0.082 
0.071 
0.061 
0.050 
0.040 

Q 

0 

1.5 

1 
2 
3 
4 
5 
6 
7 
8 

Max 

2.457 

2.457 

2.423 
2.326 
2.221 
2.136 
2.087 
2.039 
1.989 
1.960 

n 

163 

163 

163 
163 
163 
163 
163 
163 
163 
163 

Min 

0.522 

0.525 

0.533 
0.564 
0.602 
0.641 
0.645 
0.636 
0.648 
0.657 

Min 

0.746 

0.610 

0.626 
0.564 
0.550 
0.569 
0.609 
0.616 
0.629 
0.644 

q 

0 

6.8 

1 
2 
3 
4 
5 
6 
7 
8 

Mean 

1.167 

1.171 

1.170 
1.174 
1.179 
1 .  
1.189 
1.193 
1.198 
1.203 

Max 

3.649 

2.200 

3.027 
2.625 
2.412 
2.294 
2.241 
2.181 
2.109 
2.035 

S. D.  

0.264 

0.253 

0.254 
0.246 
0.239 
0.232 
0.225 
0.219 
0.213 
0.207 

Mean 

1.730 

1.177 

1.439 
1.273 
1.202 
1.180 
1.178 
1.180 
1.180 
1.179 

Size 1%-Test 

0.022 

0.015 

0.016 
0.011 
0.009 
0.006 
0.004 
0.002 
0.000 
0.000 

Siee 5%-Test 

0.081 

0.069 

0.069 
0.058 
0.046 
0.036 
0.030 
0.024 
0.018 
0.015 

S. D .  

0.396 

0.229 

0.321 
0.279 
0.257 
0.244 
0.236 
0.229 
0.222 
0.215 

Size 1%-Test 

0.175 

0.009 

0.034 
0.010 
0.012 
0.012 
0.010 
0.008 
0.006 
0.005 

Size 5%-Test 

0.340 

0.041 

0.110 
0.054 
0.055 
0.054 
0.048 
0.040 
0.034 
0.030 

Size 10%-Test 

0.442 

0.OM 

0.182 
0.111 
0.108 
0.102 
0.093 
0.082 
0.079 
0.066 

www.clevelandfed.org/research/workpaper/index.cfm



Table 4 

Power of the modified R/S statistic under a Gaussian fractionally differenced 
alternative with differencing parameters d = 1/3, -1/3. The Monte Carlo 
experiments under the two alternative hypotheses are independent and consist 
of 10,000 replications each. Parameters of the simulations were chosen to 

match the sample mean and variance of quarterly real GNP growth rates from 
1947: IQ to 1987: IVQ. Entries in the column labeled "q" indicate the number of 

lags used to compute the R/S statistic; a lag of zero corresponds to 
Mandelbrot's classical R/S statistic, and a non-integer lag value corresponds 

to the average (across replications) lag value used according to Andrews' 

(1991) optimal lag formula. 

Source: Authors 

n 

163 

163 

163 
163 
163 
163 
163 
163 
163 
163 

Min 

0.824 

0.702 

0.751 
0.721 
0.708 
0.696 
0.700 
0.700 
0.699 
0.694 

q 

0 

6.0 

1 
2 
3 
4 
5 
6 
7 
8 

n 

163 

163 

163 
163 
163 
163 
163 
163 
163 
163 

q 

0 

4.1 

1 
2 
3 
4 
5 
6 
7 
8 

Min 

0.352 

0.449 

0.416 
0.466 
0.512 
0.546 
0.564 
0.600 
0.658 
0.652 

Max 

4.659 

2.513 

3.657 
3.140 
2.820 
2.589 
2.417 
2.297 
2.195 
2.107 

Max 

1.080 

1.626 

1.251 
1.344 
1.467 
1.545 
1.667 
1.664 
1.731 
1.775 

Mean 

2.370 

1.524 

2.004 
1.811 
1.688 
1.600 
1.534 
1.482 
1.440 
1.405 

Mean 

0.614 

0.838 

0.708 
0.779 
0.837 
0.887 
0.931 
0.970 
1.007 
1.041 

S. D. 

0.612 

0.286 

0.478 
0.409 
0.363 
0.330 
0.304 
0.282 
0.264 
0.249 

S. D. 

0.103 

0.142 

0.116 
0.125 
0.132 
0.137 
0.141 
0.144 
0.147 
0.149 

Power 10%-Test 

0.839 

0.240 

0.680 
0.545 
0.440 
0.350 
O.27l 
0.201 
0.141 
0.097 

Power 1%-Test 

0.637 

0.017 

0.416 
0.254 
0.141 
0.068 
0.027 
0.008 
0.001 
0.000 

Power 1%-Teat 

0.849 

0.211 

0.587 
0.350 
0.194 
0.100 
0.046 
0.019 
0.008 
0.004 

Power 5%-Test 

0.778 

0.126 

0.587 
0.448 
0.331 
0.234 
0.158 
0.096 
0.056 
0.027 

Power 5%-Test 

0.956 

0.456 

0.811 
0.631 
0.458 
0.309 
0.200 
0.124 
0.074 
0.041 

Power 10%-Test 

0.981 

0.600 

0.895 
0.758 
0.612 
0.47l 
0.334 
0.236 
0.158 
0.10s 
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