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1. Introduction 

Consumption depends on income, so testing theories of consumption involves 

testing theories of income. A prominent recent example is the work by 

Campbell and Deaton (1989), which uncovers a paradox. They model income as 

having a unit root instead of as a fluctuation around a trend, and so they 

find that consumption looks too smooth: the permanent-income hypothesis does 

not hold. Like some previous researchers, they find that a 

difference-stationary process fits the data better than a trend-stationary 

process. 

The choice between a difference-stationary process and a trend-stationary 

process, however, ignores the intermediate class of fractionally differenced 

processes. Since fractional processes exhibit long-term dependence, they are 

often classified as having a unit root rather than as trend stationary. This 

makes permanent income seem rougher than it really is, while consumption, 

which responds to the true, fractional income, looks too smooth. Specifying 

consumption correctly removes the paradox. 

This paper reviews the techniques of fractionally differenced stochastic 

processes, calculates the stochastic properties of consumption when income 

follows a fractional stochastic process, and shows how this may explain the 

excess-smoothness results. 

2. Fractional Methods 

Intuition suggests that differencing a time series roughens it, while summing 

a time series smooths it. A fractional difference between 0 and 1 can be 

www.clevelandfed.org/research/workpaper/index.cfm



described as a filter that roughens a series less than does a first 

difference: The series is rougher than a random walk but smoother than white 

noise. This is apparent from the infinite-order moving-average 

representation. Let X, follow 

(1 - LldX, = E,, 

where E, is white noise, d is the degree of differencing, and L is the lag 

operator. If d = 0, X, is white noise, and if d - 1, X, is a random walk. 

However, as Granger and Joyeux (1980) and Hosking (1981) show, d need not be 

an integer. The binomial theorem provides the relation 

with the binomial coefficient (;) defined as 

d d(d - l)(d - 2)...(d - k + 1) (,I = k! 

for real d and nonnegative integer k. Using this definition, the 

autoregressive (AR) form of X, follows 

with the AR coefficient expressed compactly in terms of the gamma function 
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Manipulating equation (5) yields the corresponding moving average (MA) 

representation of X,: 

The time-series properties of X, depend crucially on the difference 

parameter, d. For example, when d is less than one-half, X, is stationary; 

when d is greater than minus one-half, X, is invertible (Granger and Joyeux 

[1980], Hosking [1981]). Likewise, the autocorrelation properties of X, 

depend on the parameter d. The MA coefficients, E$,  indicate the effect of 

a shock K periods ahead and the extent to which current levels depend on past 

values. Using Stirling's approximation, we know that 

Comparing this with the decay of an AR(1) process highlights the central 

"long-memory" feature of fractional processes: They decay hyperbolically, at 

rate kl-d, rather than at the exponential rate, pk,  of an AR(1) . For 

example, compare in Figure 1 the autocorrelation function of the fractionally 

differenced series (~-L)~.~"X, = c, with the AR(l)X, = 0.9X,-, + c,. Although 

both have first-order autocorrelations of 0.90, the AR(1)'s autocorrelation 

function decays much more rapidly. Figure 2A plots the impulse-response 

functions of these two processes. At lag 1, the MA coefficients of the 

fractionally differenced series and the AR(1) are 0.475 and 0.900, 
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respectively; at lag 10, they are 0.158 and 0.349, and at lag 100, they are 

0.048 and 0.000027. The persistence of the fractionally differenced series is 

apparent at the longer lags. Alternatively, we may ask what value of an 

AR(1)'s autoregressive parameter will, for a given lag, yield the same impulse 

response as the fractionally differenced series (equation [I]). This value is 

simply the k-th root of %, and is plotted in Figure 2B for various lags 

when d - 0.475. For large values of k, this autoregressive parameter must be 

very close to unity. 

These representations also show how standard econometric methods can fail 

to detect fractional processes. Although a high-order ARMA process can mimic 

the hyperbolic decay of a fractionally differenced series in finite samples, 

the large number of parameters required would give the estimation a poor 

rating from the usual Akaike or Schwartz criteria. A n  explicitly fractional 

process, however, captures that pattern with a single parameter, d. Granger 

and Joyeux (1980) and Geweke and Porter-Hudak (1983) provide empirical support 

by showing that fractional models often out-predict fitted ARMA models. 

The lag polynomials A(L) and B(L) provide a metric for the persistence of 

. Suppose % represents GNP, which falls unexpectedly this year. How 

much should this decline change a forecast of future GNP? To address this 

issue, define % as the coefficients of the lag polynomial, C(L), that 

satisfies the relation (1 - L)% = C(L)e,, where the process % is 

given by equation (1). One measure used by Campbell and Mankiw (1987) is 
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For large values of k, the value of B, measures the response of Xt+k 

to an innovation at time t, a natural metric for persistence. From 

equation (7), it is immediate that for 0 < d < 1, C(l) = 0, and that, 

asymptotically, there is no persistence in a fractionally differenced series, 

even though the autocorrelations die out very slowly. This holds true not 

only for d - 1/2 (the stationary case), but also for 1/2 < d < 1, when the 

process is nonstationary. 

From these calculations, it is apparent that the long-run dependence of 

fractional processes relates to the slow decay of the autocorrelations, not to 

any permanent effect. This distinction is important; for example, an IMA(1,l) 

can have small but positive persistence, but the coefficients will never mimic 

the slow decay of a fractional process. 

3 .  Fractional Differencing and the Theory of Consumption 

The excess-smoothness paradox can be stated more precisely as follows. 

Assuming the standard certainty equivalence framework (for example, quadratic 

utility; see Hall [1978], Flavin [1981], and Zeldes [1989]), we can find how 

the variance of consumption depends on the income process: 

where 

C, - consumption, 
r - the real interest rate, 
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8, = the MA coefficients of income Yt, 

4 = the AR coefficients of Y,, t 

A - the difference operator A - (1 - L), and 

u: - the variance of income shocks. 

Hansen and Sargent (1981) show that this formula holds for both stationary 

and nonstationary processes. Since consumption is a random walk (more 

generally a martingale) in this framework, the variance of the change in 

consumption (equation [9]) also represents the variance of innovations to 

consumption. Under the traditional assumption that income follows a 

trend-stationary process (because the shocks die out), the variance of 

innovations to consumption, var(ACt), should be less than the variance of 

innovations to income, i. This is what Friedman was trying to explain with 

the permanent-income hypothesis - -  namely, that consumption looks smoother 

than income. If, however, income is first-difference stationary, as 

researchers since Nelson and Plosser (1982) have claimed, the revision in 

permanent income exceeds the revision in actual income. Consumption 

imovation should then exceed income innovation, a:. Deaton (1987) 

finds that it does not. 

A numerical example based on the data used in this paper illustrates 

excess smoothness. Suppose income is a random walk. In that case, the 

variance of the change in consumption should equal the variance of the change 

in income, as intuition or equation (9) suggests. In fact, the figure for 

consumption is 11.65, while that for income is 61.14. 
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The key point to note, both in predicting the variance of consumption and 

in determining the variance of income innovations, is that we must make some 

assumptions or estimates of the income process. By making a different and 

better assumption about income - -  fractional differencing - -  the paradox can 

be resolved. 

Another advantage of assuming a fractional-differencing process for income 

is that it allows us to retain two assumptions jettisoned by others. First, 

the income process is univariate, and consumers have no information about it 

that is hidden from the econometrician. West (1988) shows that such hidden 

information can spuriously create excess smoothness, because true income 

surprises would then be less than measured income surprises. Various methods 

that correct for hidden information (Campbell and Deaton [1989], Flavin 

[1988]) still show excessive smoothness, however. Second, the 

permanent-income hypothesis is maintained throughout. Both Campbell and 

Deaton and Flavin show that departures from this can simultaneously produce 

both excess smoothness and excess sensitivity. 

The remainder of this section attempts to answer two basic questions. 

First, does there exist a difference parameter, d, that resolves the 

paradox - -  that is, if income follows such a process, consumption will no 
longer look too smooth? Second, does actual income follow such a process? In 

other words, will the fractional parameter that provides a solution fit the 

income data that we have? 

Using data for the United States, I proceed in four basic steps.l 

Section 3.1 reports estimates of the variance of income and consumption 
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changes using both Generalized Method of Moments (GMM) and classical 

chi-squared techniques to determine the estimates' precision. In section 

3.2, using the permanent-income hypothesis, I find a range of d in the income 

process that will produce the variance of consumption found in the first step. 

In section 3.3, I employ a test for fractional differencing in the income 

series. Finally, in section 3.4, I use simulations to estimate the 

probability that fractional parameters reported in section 3.2 would produce 

the value found in section 3.3. 

3.1 Distribution of the Sample Variance 

I begin by estimating and comparing the variance of income changes and the 

variance of consumption changes. Calculating the distribution of the sample 

variance depends on assumptions about the underlying process. The classical 

approach assumes an i. i .d. sample from a normal distribution and then produces 

the familiar result that the scaled sample variance is distributed chi-squared 

with degrees of freedom one less than the sample size: 

This may be appropriate for consumption, which, according to theory, should 

follow a random walk. It has the advantage of being correct for finite 

samples. 

The GMM approach allows for heteroskedasticity and autocorrelation. 

Designed to handle much more complicated estimation problems (Hansen [1982], 

Hansen and Singleton [1982]), it reduces to a fairly simple form when used to 
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determine the distribution of the sample variance. (See Ng Lo [I9881 for a 

rigorous and clear demonstration of this.) In fact, it reduces to estimating 

the covariance matrix. Therefore, I use the Newey-West (1987) covariance 

matrix. This provides a positive, definite heteroskedastic and 

autocorrelation-consistent covariance matrix. The disadvantage is that it 

provides an asymptotic result. 

The Newey-West matrix also requires that a choice be made on the number of 

lags used to compute the matrix. The authors suggest using the fourth root of 

the sample size, but the convergence results for this small number depend on 

mixing conditions, which will generally be violated in the case of long-term 

dependence. In more general cases, they suggest employing the cube or square 

root, while Chatfield (1984, p. 141) recommends using twice the square root. 

With a sample size of 120 for the consumption series and 137 for the two 

income series, I use five lags. This follows Ng Lo (1988), who finds that 

this choice works well even in larger samples for a variety of series. 

Table 1 shows the sample variances for per-capita consumption of 

nondurables and services, plus both per-capita income measures used (labor and 

disposable). It also reports the 95 percent confidence bounds obtained using 

both the classical and GMM approaches. Since the GMM bounds are broader 

(because income shows autocorrelation), they are used in the next part of this 

exercise. 

3.2 Implied Variance 
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The variance of income and consumption depends on an unobservable (to the 

econometrician) variable: shocks to income. If income follows a fractional 

process with parameter d, we have from Hosking (1981) that 

Likewise, the variance-of-consumption formula (equation [9]) specializes in 

this case to 

where C, is consumption, Bt are the MA coefficients of income Y,, and 

A is the difference operator, A = (1 - L). The estimates for income and 

consumption variance give estimates of the shock variance, a:. 

Notice that the implied shock variance changes with different assumptions 

about the income process, that is, with changes in the differencing parameter, 

d. Inverting equations (11) and (12) yields the variance of income shocks as 

a function of d. Then, comparing the implied shock variances across income 

and consumption yields the d values that make the income process consistent 

with observed consumption behavior. 

Implementing the above procedure requires choosing an interest rate. I 

use three different quarterly rates: r = 0.2 percent, which corresponds to 

the long-run average rate used in Mehra and Prescott (1985); r = 1 percent, a 
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high interest rate; and r = 0.05 percent, a low interest rate. Using these 

numbers made a noticeable, if not dramatic, difference in the variance 

estimates. 

Tables 2A and 2B report the results of this investigation and make clear 

the choice of bounds on d used: 0.79 and 0.95 for labor income, and 0.72 and 

0.96 for disposable income. 

3.3 Testing for Fractional Differencing 

The next step ascertains whether the d values obtained above are consistent 

with the observed income process. This section tests for fractional 

differencing using the modified rescaled range (R/S) statistic developed by Lo 

([forthcoming] and Haubrich and Lo [1989]). In section 3.4, I use simulations 

to determine the probability that the values obtained from the test could come 

from distributions with a d parameter in the range calculated above. 

The modified R/S statistic tests whether a process X, shows long-term 

dependence, (It is based on a statistic originally developed by Hurst [I9511 

and popularized by Mandelbrot [1972].) More formally, consider a process 

defined as 

X, = p+ct, 

where p is an arbitrary but fixed constant. For the null hypothesis H, 

assume that the disturbances (E~) satisfy the conditions 

(c1) E(E~) = 0 for all t, 
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(C2) sup E [JE~~'] < w for some 8 > 2, 
t 

2 

(c3) $ = l i m E  n+a [A [: f Ej] ] exists and u2 > 0, and 
j=l 

(c4) (E,) is strong-mixing, with mixing coefficients , that satisfy 

Conditions (C2) through (C4) allow dependence and heteroskedasticity, but 

prevent them from being too large. Thus, short-term dependent processes, such 

as finite-order ARMA models, are included in the null hypothesis, as are 

models with conditional heteroskedasticity. Unlike the statistic used by 

Mandelbrot, the modified R/S statistic used here is robust to short-term 

dependence. A more in-depth discussion of these conditions appears in 

Phillips (1987), Haubrich and Lo (1989), and Lo (forthcoming). 

To construct the modified R/S statistic, take a sample XI, 3,  . . .  

X,,, with sample mean En, choose q lags, and calculate: 

k - a = -  k [ max X (Xj - X,) - min an(g) eln j=1 j=1 

where 
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Intuitively, the numerator in equation (14) measures the memory in the process 

via the partial sums. White noise does not stay long above the mean: 

Positive values are soon offset by negative values. A random walk will remain 

above or below zero for a long time, and the partial sums (positive or 

negative) will grow quickly, making the range large. Fractional processes 

fall in between. Mandelbrot (1972) refers to this as the "Joseph Effect" - -  

seven fat and seven lean years. The denominator normalizes not only by the 

variance, but by a weighted average of autoco~ariances.~ This innovation 

over Hurst's R/S statistic provides the robustness to short-term dependence. 

The partial sums of white noise constitute a random walk, so a(q) grows 

without bound as n increases. A further normalization makes the statistic 

easier to work with and interpret: 

Vn(q) - QJq)/*j(n). 
Haubrich and Lo derive the asymptotic distribution of V, calculating a mean 

and standard deviation of approximately 1.25 and 0.27. Tables 3A and 
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3B present fractiles of the distribution of V and confidence intervals about 

the mean. Figure 3 plots the distribution and density. Note that the 

distribution is skewed, with most of its mass between three-fourths and two. 

Table 4 reports the results of the modified R/S statistic applied to first 

differences of labor income and disposable income. Note that none are 

significantly different from the mean at the 5 percent level. 

3.4 Simulation Results 

Although the modified R/S statistic provides a good test (in terms of size and 

power) for detecting long-term dependence, it does not directly provide the d 

parameter. To better assess the chances that a d parameter from the correct 

range will fit the data, I use simulation methodology. 

Simulations employed here ran as follows. I used a Vax Fortran program (a 

modification of one written by Lo) to generate 10,000 series of length 135 

(not quite matching the data-series length of 136, to compare this study to 

other papers). The series were generated to have fractional differencing 

parameter d for several d. I then computed the modified R/S statistic for 

each series and counted the number of times that this value fell below the 

value obtained from the income data above (Table 4). This gives the 

percentage of times the statistic would be that low if the income series 

actually had that d parameter. I emphasize low because in f irst-difference 

form the relevant d would be negative, which should show up as a low R/S 

statistic. Table 5 reports these results and also answers the question: If 
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the process is really fractionally differenced with a particular d, what is 

the probability that we would see the V,(q) number found in the data, or 

even a lower number? Of course, subtracting these numbers from one gives the 

probability of obtaining a higher R/S statistic. The reader may draw 

different conclusions from Table 5, but I think that the results provide mild 

support for the belief that fractional processes can explain the 

excess-smoothness problem. It seems unlikely that the actual d for either 

income process is smaller than the lower bounds obtained above; we would 

expect to see much lower numbers than those in Table 4. That is, Table 5 

tells us that the probability of seeing that number or a lower one is very 

high for such a process with a d of -0.21 or -0.28. On the other hand, the 

chance of d = -0.04 or -0.05 producing such a number is more reasonable. 

Earlier in this section, we saw what range d could fall into and still 

resolve the Deaton paradox. Now we see, in a general way, how likely it is 

that d could be in that range. The chance remains that d is too close to 

zero to resolve the paradox by invoking fractional methods. I submit that 

Table 5 opens the very real possibility that d falls into the relevant range. 

4. Conclusion 

Judging the smoothness of consumption depends on the estimate of permanent 

income, which in turn depends on our estimate of income. Paradoxes under one 

specification - -  excess smoothness when income is assumed to have a unit root 

- -  do not arise when income is fractional. 

The explanation that I propose leaves intact two similar problems in the 

consumption literature. First, panel studies have found excess sensitivity of 
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precisely the opposite type Campbell and Deaton find in aggregate data. 

Consumption variance is too high given the estimates for income. Flavin 

finds a different type of excess sensitivity, namely, that consumption depends 

on past income; it is not a martingale (the expected future value equals 

today's value), as the permanent-income hypothesis predicts. Campbell and 

Deaton refer to this as the "nonorthogonality" problem. 

Nonetheless , without dropping either the permanent - income hypothes is or 
the univariate representation of income, fractional processes resolve the 

Deaton paradox. Theoretically, a fractional-income process matches the 

observed variance of both income and consumption. Empirically, on the basis 

of a new statistic and simulations, the evidence supports income following 

such a process. 
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Table 1 

Sample Variances 

Variance 
95% Confidence 

Bounds 

Consump tion 11.65 GMM 6.37 16.93 
Classical 9.17 15.30 

Labor income 65.35 GMM 36.43 94.28 
Classical 52.18 84.24 

Disposable 61.14 GMM 28.90 93.38 
income Classical 48.82 78.81 

Consumption = First difference of real per-capita con- 
sumption of nondurables and services, 
1989:IQ-1989:IIQ (quarterly data, seasonally 
adjusted). Source: National Income and Pro- 
duct Accounts. 

Population = U.S. total resident population, including 
armed forces. Source: National Income and 
Product Accounts. 

Labor = First difference of quarterly real per- 
income capita labor income, 1952:IQ-1986:IQ. 

Sources: Auerbach and Hassett (1989) and 
National Income and Product Accounts. 

Disposable = As above. Source: Auerbach and Hassett (1989). 
income 
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Table 2A 

Implied Income Innovation Variances 
Labor Income 

Implied variance from consumption Implied variance 

d Lower bound Upper bound from income 

Interest rate = 0.05% 

Interest rate = 1% 

Interest rate = 0.2% 

Source: See table 1. 
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Table 2B 

Implied Income Innovation Variances 
Labor Income 

Implied variance from consumption Imp1 ied variance 

d Lower bound Upper bound from income 

Interest rate = 0.05% 

Interest rate = 1% 

Interest rate = 0.2% 

Source: See table 1. 
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Note, Tables 2A and 2B 

Approximations: Closed-form solutions fo r  the i n f i n i t e  sums used i n  these 

calculations do not ex i s t .  An upper bound on the f i n i t e  

sum of N terms and the i n f i n i t e  sum is ;(l/l+r)'. 

The approximation is i n  f ac t  be t te r .  10,000 terms were 

used fo r  the i n t e r e s t  ra tes  r = 0.01 and r = 0.002, leading 

t o  errors  of l e s s  than 1 x lo-' and 1.05 x 

20,000 terms used fo r  r = 0.0005 give an e r ror  of l e s s  than 

0.09. 
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Table 3A 

Fractiles of the Distribution F,(v) 

Source: Haubrich and Lo (1989). 

Table 3B 

Symmetric Confidence Intervals About the Mean 

7 

Source: Haubrich and Lo (1989). 
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Table 4 

R/S Analysis of Income 

Labor Income 1.310 1.193 1.140 1.062 1.018 
Disposable Income 1.268 1.261 1.245 1.176 1.170 

Note: Both series per capita. 

Sources: See table 1. 

Table 5 

Probability of Observing R/S Statistic 

Probability of I Vn(q) 

LAG ( 1) Labor Income Disposable Income 

d=-0.05 d=-0.21 d=-0 .04 d=-0.28 

Source: Author's simulations. 
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26 

Footnotes 

1. For an estimate of income with a view to explaining consumption anomalies 

in the spirit of this section, see the interesting (independent) work of 

Diebold and Rudebusch (1989). Quah (1990) explains the paradox using 

permanent and temporary movements in income. 

2. These weights define the Bartlett window. Newey and West (1987) enumerate 

the advantages of this specification. 
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Figure 1 

Autocorrelation functions of an AR(1) with coefficient 0.90 [dashed line] and a fractionally 
differenced series Xt = (1 - L ) - ~ @  with differencing parameter d = 0.475 [solid lie]. Al- 
though both processes have a &&order autocorrelation of 0.90, the fractionally differenced 
process decays much more slowly. 
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Figure  2A 

Impulse response function [solid line] of the fractiindly differenced time series Xt = 
(1 - ~ ) ~ e ~  for differencing parameter d = 0.475. For comparisiin, the imp&-- 
function of an AR(1) with autoregressive parameter 0.90 is slso plotted [dashed lines]. 

Source: Haubrich and Lo (1989). 
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Equivalent p of AR(I) 

.. . . .  : . . . . .  

LAG 

Values of aa AR(1)kr a u t o ~ e  parameta required to generate the same k-th order 
autocorrelation as the &actionally diflaenced suies Xt = (1 - L)'~Q for diff-~ing 
parameter d = 0.475 [wUd he]. Formdo, th& ia himply the k-th root of the frrctionally 
differenced eeries' hpubmpomw function [dashed line]. For large k, the autmegrasipe 
parameter must be very close to unity. 

Source: Haubrich and Lo (1989). 
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F igu re  3 

Distribution and density function of the range V of a Brownian bridge. Dashed curves are 
the n o d  distribution and density functions with mean and variance equal to t h e  of V. 

Source: Haubrich and Lo (1989). 
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