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“Underemployment Following the Great Recession and the COVID-19 Recession” 
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Appendix A: Testing for a Structural Break 
 
     In this appendix, we test for a structural break in the relationship between the 
underemployment rate and unemployment rate. In particular, we test for a break in the 
intercept of a linear conditional expectation model that would be consistent with the level 
shift plotted in Figure 2 of the Commentary. We find evidence of a structural beak in 
January 2008. This timing aligns with the beginning of the 2008–2009 Great Recession. 

     Let 𝑦! denote the underemployment rate in month 𝑡 and 𝑢! denote the unemployment 
rate in month 𝑡. We index the available data sample with 𝑡 = 1,… , 𝑇. We estimate the 
expectation of 𝑦! conditional on 𝑢!, using a linear model 

 𝑦! = 𝛼! + 𝑢!𝛽 + 𝑒! . (A.1) 
The parameter 𝛽 is the slope coefficient, which we assume to be constant. The parameter 𝛼! 
is the intercept which we allow to be potentially time-varying. Following Andrews (1993), 
we test the null hypothesis of 𝛼! being constant, 𝐻": 𝛼! = 𝛼", against the alternative 
hypothesis of a one-time change,  

𝐻#: 0
𝛼! = 𝛼$, for	𝑡 = 1,… , 𝑇$
𝛼! = 𝛼%, for	𝑡 = 𝑇$ + 1,… , 𝑇

 

for some 𝑇$ with 1 < 𝑇$ < 𝑇. We will test this null hypothesis against the alternative for 
different values of 𝑇$ by computing a Wald statistic for each choice of 𝑇$. 

     First, we estimate the parameters 𝛼! and 𝛽. If we did not permit time variation in 𝛼!, 
then we could estimate 𝛼 and 𝛽 in (A.1) with a generalized method of moments (GMM) 
approach, using 𝐸(𝑒!) = 0 and 𝐸(𝑢!𝑒!) = 0 as our two moments to identify 𝛼 and 𝛽. Using 
(A.1), these two moments can be written as 𝐸(𝑦! − 𝛼 − 𝑢!𝛽) = 0 and 𝐸;𝑢!(𝑦! − 𝛼 − 𝑢!𝛽)< = 0.  
The GMM estimator would then minimize 𝑚>(𝛼, 𝛽)&𝑊𝑚>(𝛼, 𝛽), in which  

𝑚>(𝛼, 𝛽) =
1
𝑇
@ A

𝑦! − 𝛼 − 𝑢!𝛽
𝑢!(𝑦! − 𝛼 − 𝑢!𝛽)

B
'

!($
 

and 𝑊 is a (2 × 2) positive definite weighting matrix. Instead, for a given choice of 𝑇$, we 
allow 𝛼! = 𝛼$ for 𝑡 = 1,… , 𝑇$ and 𝛼! = 𝛼% for 𝑡 = 𝑇$ + 1,… , 𝑇. Our GMM estimator minimizes 
𝑚>(𝛼$, 𝛼%, 𝛽, 𝑇$)&𝑊𝑚>(𝛼$, 𝛼%, 𝛽, 𝑇$), in which 

 𝑚>(𝛼$, 𝛼%, 𝛽, 𝑇$) =
1
𝑇
@E

𝑦! − 𝛼$ − 𝑢!𝛽
𝑢!(𝑦! − 𝛼$ − 𝑢!𝛽)

0
0

F
'!

!($

+
1
𝑇

@ E

0
0

𝑦! − 𝛼% − 𝑢!𝛽
𝑢!(𝑦! − 𝛼% − 𝑢!𝛽)

F
'

!('!)$

 (A.2) 

and 𝑊 is a (4 × 4) positive definite weighting matrix. 

     Next, we change the notation for the GMM problem and (A.2). We define 
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𝑌$ = I
𝑌$
⋮
𝑌'!
K , 𝑌% = I

𝑌'!)$
⋮
𝑌'

K , 𝑌 = A𝑌$𝑌%
B , 𝑈$ = I

𝑢$
⋮
𝑢'!

K , 𝑈% = I
𝑢'!)$
⋮
𝑢'

K 

𝑋 = A
1'!×$ 0'!×$ 𝑈$
0'+'!×$ 1'+'!×$ 𝑈%

B , 𝑍 = O
1'!×$ 𝑈$ 0'!×$ 0'!×$
0'+'!×$ 0'+'!×$ 1'+'!×$ 𝑈%

P , 𝜃 = I
𝛼$
𝛼%
𝛽
K 

in which 0,×- is a (𝑚 × 𝑛) matrix of 0s and 1,×- is a (𝑚 × 𝑛) matrix of 1s. Then, (A.2) can 
be written as 

 𝑚>(𝛼$, 𝛼%, 𝛽, 𝑇$) = 𝑇+$𝑍′(𝑌 − 𝑋𝜃). (A.3) 
In the GMM problem, we then use 𝑊 = (𝑍&𝑍)+$, and the solution to the minimization 
problem is 

 𝜃T = U
𝛼V$
𝛼V%
𝛽W
X = (𝑋&𝑍(𝑍&𝑍)+$𝑍&𝑋)+$𝑋&𝑍(𝑍&𝑍)+$𝑍&𝑌, (A.4) 

in which 𝛼V$, 𝛼V%, and 𝛽W will take different values for different choices of 𝑇$. We then compute 

 𝐸T = I
�̂�$
⋮
�̂�'
K = 𝑌 − 𝑋𝜃T, (A.5) 

in which �̂�! for 𝑡 = 1,… , 𝑇 are the residuals. 

     Given these estimates for each choice of 𝑇$, we can then compute a Wald statistic for 
each choice of 𝑇$. The Wald statistic is 

 𝑊 = 𝑇(𝛼V$ − 𝛼V%) Z
𝑇
𝑇$
𝑉T$ +

𝑇
𝑇 − 𝑇$

𝑉T%\
+$
(𝛼V$ − 𝛼V%), (A.6) 

in which 𝑉T$ and 𝑉T% are variance estimates. To compute these variance estimates, we begin 
with some notation. Let 

𝑚]! = A �̂�!𝑢!�̂�!
B 

for 𝑡 = 1,… , 𝑇, 𝑚]>$ = ∑ 𝑚]!
'!
!($ , and 𝑚]>% = ∑ 𝑚]!'

!('!)$ . We denote the centered values of 𝑚]! with 
�̂�$,! = 𝑚]! −𝑚]>$ for 𝑡 = 1,… , 𝑇$ and �̂�%,! = 𝑚]! −𝑚]>% for 𝑡 = 𝑇$ + 1,… , 𝑇. Then, 𝑉T$ and 𝑉T% are given 
by 

 𝑉T$ = ;𝑀a$&Ωa$+$𝑀a$<
+$and	𝑉T% = ;𝑀a%&Ωa%+$𝑀a%<

+$, (A.7) 
in which 

 𝑀a$ =
1
𝑇$
@ A−1−𝑢!

B
'!

!($
, 𝑀a% =

1
𝑇 − 𝑇$

@ A−1−𝑢!
B

'

!('!)$
, (A.8) 

 Ωa$ =
1
𝑇$
@𝑧$,!𝑧$,!&
'!

!($

+
1
𝑇$

@ @ 𝑘$,/;𝑧$,!𝑧$,!)/& + 𝑧$,!)/𝑧$,!& <
'!+/

!($

0!+$

/($

, (A.9) 

and 
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 Ωa% =
1

𝑇 − 𝑇$
@ 𝑧%,!𝑧%,!&
'

!('!)$

+
1

𝑇 − 𝑇$
@ @ 𝑘%,/;𝑧%,!𝑧%,!)/& + 𝑧%,!)/𝑧%,!& <

'+/

!('!)$

0"+$

/($

. (A.11) 

Following Lazarus et al. (2018), we set ℎ$ equal to 1.3𝑇$
$/%, rounded to the nearest integer, 

and ℎ% equal to 1.3(𝑇 − 𝑇$)$/%, rounded to the nearest integer. Then, 𝑘$,/ and 𝑘%,/ are 
Bartlett kernels (Newey and West, 1987) given by 𝑘$,/ = 1 − 𝑗/ℎ$ and 𝑘%,/ = 1 − 𝑗/ℎ%. 

     The data sample runs from January 1994 to November 2021, giving 𝑇 = 335. We do not 
permit a break in the first 48 or the last 48 observations of our sample. That is, we compute 
Wald statistics for each month from January 1998 to November 2017, and we do not 
formally test for a second break after the 2020 recession. Our sample of Wald statistics cuts 
off the first and last 14 percent of observations in the total sample. Then, the 1 percent 
critical value for rejecting the null hypothesis is roughly 12.16 (Andrews, 2003). 

     Figure 1 shows the Wald statistics from January 1998 to November 2017. The maximum 
Wald statistic occurs in January 2008 and has a value of 48.76. This value is well above the 
1 percent critical value, providing evidence of a structural break in the intercept. Prior to 
the structural break, we find 𝛼V$ = 0.20. After the break, 𝛼V% = 0.97. This difference implies 
an upward shift of 0.77. This value is slightly less than the 1 percent found in Valetta et al. 
(2020) and discussed in the Commentary. However, we note that our data sample includes 
the data after the 2020 COVID-19 recession, data which appear more consistent with the 
pre-2008 structure based on Figure 2 in the Commentary and may pull 𝛼V% down slightly. 

 

Figure 1: Wald statistics testing for intercept breaks from January 1998 to November 2017 

Note: Gray bars indicate recessions. 

Source: US Bureau of Labor Statistics, Employment Level: Part-Time for Economic Reasons 
[LNS12032194], Employment Level [CE16OV], Unemployment Level [UNEMPLOY], and 
Civilian Labor Force Level [CLF16OV], retrieved from FRED, Federal Reserve Bank of St. 
Louis; https://fred.stlouisfed.org and authors’ calculations. 
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Appendix B. Industry Decomposition of the Underemployment Rate 

     In this appendix, we provide a decomposition of the underemployment rate by industry. 
The underemployment rate is the level of underemployment divided by the level of 
employment times 100, 𝑦! = 100 × 𝑌!/𝐸!. Both the levels of employment and 
underemployment comprise 𝐽 industries, indexed by 𝑗 = 1,… , 𝐽. Then, we have 

 𝑦! = 100 ×
𝑌$,!
𝐸$,!

𝐸$,!
𝐸!

+ 100 ×
𝑌%,!
𝐸%,!

𝐸%,!
𝐸!

+⋯+ 100 ×
𝑌2,!
𝐸2,!

𝐸2,!
𝐸!
. (B.1) 

We use the notation 𝑦/,! = 100 × 𝑌/,!/𝐸/,! to denote the industry-specific underemployment 
rate and 𝑤/,! = 𝐸/,!/𝐸! to denote the industry-specific employment share. Then, (B.1) is the 
same as 

 𝑦! = 𝑦$,!𝑤$,! + 𝑦%,!𝑤%,! +⋯+ 𝑦2,!𝑤2,! . (B.2) 
Hence, the total underemployment rate is a weighted average of industry-specific 
underemployment rates, and the employment shares provide the weights. The change in 
the underemployment rate between period 𝑠 and period 𝑡 is given by 

 𝑦! − 𝑦3 = ;𝑦$,!𝑤$,! − 𝑦$,3𝑤$,3< + ;𝑦%,!𝑤%,! − 𝑦%,3𝑤%,3< + ⋯+ ;𝑦2,!𝑤2,! − 𝑦2,3𝑤2,3<. (B.3) 
For industry 𝑗, we have 

 𝑦/,!𝑤/,! − 𝑦/,3𝑤/,3 = 𝑦/,3;𝑤/,! −𝑤/,3< + ;𝑦/,! − 𝑦/,3<𝑤/,3 + ;𝑦/,! − 𝑦/,3<;𝑤/,! −𝑤/,3<, (B.4) 
which is the decomposition that we will use to study how industries affect the 
underemployment rate. The first term on the right-hand side of (B.4) is the change in 
industry 𝑗’s employment share times its initial underemployment rate. This term measures 
the change in the industry employment share while holding the underemployment rate 
fixed. The second term of the right-hand side of (B.4) is the change in industry 𝑗’s 
underemployment rate times its initial employment share. This term measures the change 
in the industry unemployment rate while holding the employment share fixed. The third 
term is a cross term that we will ignore because it is generally very small in magnitude.  
Hence, combining (B.3) and (B.4), we have 

 𝑦! − 𝑦3 ≈@𝑦/,3;𝑤/,! −𝑤/,3<
2

/($

+@;𝑦/,! − 𝑦/,3<𝑤/,3

2

/($

, (B.5) 

which decomposes the change in the underemployment rate into industry employment 
share changes and industry underemployment rate changes. 
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