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Since the beginning of the COVID-19 pandemic, 
government officials have promoted the importance of 
testing as a key tool in the effort to curb the spread of the 
disease. One complication associated with testing, however, 
is that the tests available are fallible: Less expensive tests 
have been shown to yield a significant number of false 
positives and negatives, and more expensive tests, while 
more reliable, are still not 100 percent accurate.

Still, both types of test can be useful. More reliable tests 
are easier to interpret, but less reliable tests offer important 
advantages as well with their low cost and quick results. For 
example, they can be used to test more people and increase 
the odds of identifying an infection in asymptomatic or 
presymptomatic individuals, which can help to slow the 
spread of the disease. 

It is important to understand how a test’s reliability affects 
the interpretation of its results. Physicians need to know 
how to translate a positive or negative test result into the 

likelihood a patient is actually infected. Policymakers 
need to know how to interpret results to ascertain the true 
prevalence of the disease at any point in time. 

In this Economic Commentary, we explain how test reliability is 
measured, how to interpret a test’s results given its degree 
of reliability, and how the interpretation is affected by the 
prevalence of the virus in the population being tested. 
Specifically, we show that when the prevalence of a virus 
is low in the tested population, even a highly reliable test 
can produce a large percentage of inaccurate results. We 
argue that administering inexpensive and less precise tests 
multiple times may be a more efficient way of curbing the 
pandemic than administering more precise and expensive 
tests once. Finally, we briefly discuss some recent attempts 
to determine the actual prevalence of COVID-19 in the 
general population.
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Test Results and the Probability of Infection
Medical researchers evaluate the accuracy of tests along two 
dimensions (Manski and Molinari, 2021). One is the probability 
that an infected person will receive a positive result, referred 
to as test sensitivity. In other words, given that someone is 
infected, how likely is it that the test will correctly spot infection? 
If a test’s sensitivity is 100 percent, then 100 percent of the 
infected people taking the test get a positive result. The 
other dimension is the probability that a noninfected person 
will receive a negative result, referred to as test specificity. 
In other words, given that someone is not infected, how likely 
is it that the test will correctly return a negative result? If 
a test’s specificity is 100 percent, then 100 percent of all 
noninfected people taking the test get a negative result. 

Sensitivity and specificity are important measures to medical 
researchers, but patients and their physicians are more likely 
to care about what a positive or negative result means in 
terms of a patient’s probability of being infected. While this 
probability is related to a test’s sensitivity and specificity, 
false negative and positive results can affect the probability in 
nonintuitive ways. For example, even if a test’s sensitivity is 
100 percent, patients testing positive may not be certain they 
are infected if some noninfected patients can receive a positive 
test result. Similarly, a negative result does not necessarily 
mean no infection in the case of 100 percent specificity if a 
few infected agents wrongly get a negative result. Unless 
both sensitivity and specificity are 100 percent, patients and 
physicians cannot assume a given test result is accurate; they 
must consider its probability of being accurate.

The probability of being infected based on a given test 
result also depends on another factor—the prevalence of the 
virus—which differs not only for a given virus or disease, 
but also across specific populations. 

Consider the following example that illustrates how 
these measures are related. Note that all of the numbers 
are hypothetical to make the principles easier to follow. 
Numbers are presented in table 1. 

Imagine we have a pool of 100 individuals who are tested 
for a certain disease. Of those 100, 15 are infected. Thus, 
the disease’s “prevalence” in our testing pool is 15 percent. 
When these infected individuals are tested, 13 receive a 
correct positive result, while 2 receive an incorrect negative 
result. Consequently, the test’s sensitivity is 13/15=0.867 
or 86.7 percent. Similarly, of the 85 noninfected individuals 
tested, 78 receive a correct negative result, while 7 receive 
an incorrect positive result. Consequently, the specificity of 
the test is 78/85=0.918 or 91.8 percent. Overall, this seems 
an accurate test. 

Next, we want to know how the test’s sensitivity and 
specificity rates affect the chance of a patient’s being infected 
given a positive or negative result. As we can see in table 1, 
out of 20 patients with positive results, only 13 are infected; 
that is, the chance that a patient receiving a positive result 
is actually infected is 13/20=0.65 or 65 percent. While this 
chance is significantly higher than the disease’s 15 percent 
prevalence rate in the testing pool of 100, infection is far from 
certain even with a positive test result. On the other hand, the 
chance that a patient receiving a negative result is truly not 
infected is 78/80=0.975 or 97.5 percent. So a negative result 
makes us quite certain that a patient is not infected.

This example illustrates the way in which the prevalence 
rate of a disease can affect the interpretation of a test’s 
results. Even though our hypothetical test has high 
specificity and sensitivity rates, if it is used on a population 
in which the prevalence of the disease is low, the test’s small 
error rate can mean that a significant share of the positive 
results comes from errors.

To illustrate this effect further, we vary the prevalence rate 
of the disease in the example’s population while keeping the 
sensitivity and specificity of the test the same as in table 1. 
Figure 1 shows the effects of these changes in the prevalence 
rate on the percentage of correct positives. 

Table 1. Distribution of 100 Hypothetically Tested Individuals 
across Actual Status of Infection and Test Results

Infected Noninfected Total
Positive test result 13 7 20
Negative test result 2 78 80
Actual status of infection 15 85 100

Figure 1. Likelihood of Infection by Prevalence Rate

Source: Authors’ calculations—illustrative example. Source: Authors’ calculations—illustrative example.
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In order to illustrate how a repeated antigen testing 
compares to a single RT-PCR test, in table 3 we present 
the results for one, two, and three tests of each type. We 
assume the antigen test has a sensitivity rate of 85 percent 
and a specificity rate of 98, while those for the RT-PCR 
test are 98 percent and 99 percent, respectively (based on 
evidence from Johns Hopkins University Center for Health 
Security data). Following Yang et al. (2020), we assume 
the prevalence rate of COVID-19 is 5.96 percent, which 
is their estimate for the disease’s active prevalence in the 
United States on January 4, 2021.6 As we can see in table 3, 
two antigen tests are significantly more accurate than one 
RT-PCR test and close to the performance of two RT-PCR 
tests. Notice that it costs less to repeat antigen tests three 
times per suspected case than it does to conduct one RT-
PCR test. Additionally, using the antigen tests, it would 
be possible to obtain faster results, which could potentially 
avoid further disease spread. 

That said, it is important to emphasize that these results 
rely heavily on the assumption of test independence. 
When we say tests A and B are independent, it means that 
knowing that test A’s result was either positive or negative 
does not help us to predict test B’s outcome. In practical 
terms, test independence rules out issues that may induce 
tests to give a particular outcome regardless of the infection 
rate. For example, antigen tests are not very sensitive to 
low viral loads. Consequently, if a patient is tested twice 
early on in her infection, both tests are more likely to give 
a negative result, violating the independence assumption.7 
Consequently, as discussed in the literature, the assumption 
that these repeated test results are independent is a strong 
one and far from certain (see Rubin, 2020). 

Finally, we note that COVID-19’s active prevalence rate 
is unknown in most cases. One reason for this is that tests 
were not widely available until recently. As a result, the 
tested pool was not a random one earlier in the pandemic, 
but comprised of individuals who were more likely to have 
been infected (those who exhibited flu symptoms or were 
exposed to infected individuals and so on). Hence, even 
if tests were perfectly accurate, the biased sample would 
prevent us from monitoring the evolving prevalence rate in 
the population. 

This is one of the reasons why public health advisors are 
sometimes reluctant to recommend widespread screening 
for some relatively rare diseases (some types of cancer, 
for example) while recommending screening be done 
only in some subpopulations with a higher prevalence 
of the disease. Similarly, health officials tend to focus 
widespread COVID-19 testing in target areas that have 
been heavily affected by the virus.1 The goal is to focus on 
a subpopulation in which the disease’s prevalence is higher, 
in which case a positive result would be a good indicator of 
actual illness. 

One final point we will explain is the effect of repeated 
testing. Repeated tests may significantly improve a test’s 
overall sensitivity and specificity rates. Let’s return to the 
example presented in table 1 and imagine that we repeat 
the same test with only those individuals from the original 
population who received a positive result. Because it’s the 
same test, its sensitivity and specificity rates are the same. 
For the sake of our example, assume the results of the 
second test are those in table 2.2 

Table 3. Probability of Infection Given Test Results: 
RT-PCR versus Antigen Tests (Percent)

Number of positive tests  out of total number of tests

Test
1+ out 

of 1
1+ out 

of 2
2+ out 

of 2
1+ out 

of 3
2+ out 

of 3
3+ out 

of 3
RT-PCR 86.13 11.15 99.84 0.25 92.48 100
Antigen 72.93 29.19 99.13 5.94 94.60 99.98

Infected Noninfected Total
Positive result, first test 13 7 20

Positive result, second test 11 1 12
Negative result, second test 2 6 8

Table 2. Distribution of Hypothetical Follow-up Tests 
across Infection and Results

The probability of being infected after two positive test 
results is 11/12=0.92 or 92 percent. Consequently, we 
became significantly more certain about the infection status 
of 11/15=0.73 or 73 percent of the infected patients in our 
initial testing pool by conducting a follow-up test after an 
initial positive result.

Some Implications for COVID-19 Testing 
In terms of COVID-19 tests, RT-PCR tests are considered 
the “gold standard,” with high sensitivity and specificity 
rates.3 However, these tests can be quite expensive, $75 
to $150 per kit, and slow to process (four to six hours 
processing time and a results turnaround of two to four 
days). Conversely, antigen tests, while having lower 
sensitivity rates, are significantly cheaper ($1 to $23) and 
produce results in a few minutes.4

A significant issue related to COVID-19 is that symptoms 
can develop after the disease has become contagious. To 
limit the spread of infection from asymptomatic individuals, 
some public health experts recommend conducting repeated 
cheap and fast antigen tests (see Paltiel and Walensky, 2020; 
Guglielmi, 2021; and Ramdas et al., 2020, for example) 
even though such tests have lower sensitivity and specificity 
rates than RT-PCR tests.5

Source: Authors’ calculations—illustrative example.

Sources: Authors’ calculations based on Johns Hopkins University Center 
for Health Security data and Yang et al. (2020).
Note: The initially published table wrongly used a sensitivity rate of 95% 
instead of 98% for the RT-PCR test. The updated table fixes this issue. 
Nevertheless, our conclusions are unchanged. We thank Mr. Keng Siak 
Lam for pointing out the mistake.

https://www.centerforhealthsecurity.org/covid-19TestingToolkit/molecular-based-tests/current-molecular-and-antigen-tests.html
https://www.centerforhealthsecurity.org/covid-19TestingToolkit/molecular-based-tests/current-molecular-and-antigen-tests.html
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One of the few large-scale tests of a random sample in the 
United States was done by the Utah Health and Economic 
Recovery Outreach (HERO) project (see details in Samore  
et al., 2020). The study combined both RT-PCR and 
antibody tests8 to improve accuracy and to detect current 
and past infection. The results pointed to a prevalence rate of 
0.8 percent in the period May 4 to June 30, 2020, with only 
42 percent of the infections identified in the case counts. 
Based on the results from the HERO Project tests and the 
positivity rates for other states, Yang et al. (2020) show that 
active prevalence is likely to be two to three times higher 
than what case counts would suggest. However, even 
in their analysis, the effect of test fallibility has not been 
factored in.

Conclusion
Since the beginning of the pandemic, testing and 
quarantining have been promoted as two of the key tools 
to curb disease spread. Not only can testing screen for and 
potentially curb the spread of infection among individuals, 
it also can act as a useful tool by which we might determine 
in which stage of the pandemic we are and what to expect 
going forward. Thus, in order to design efficient testing 
policies, it is important to understand testing limitations and 
what we can really learn from them. 

We showed that even tests considered precise can produce 
a high percentage of false positives if the prevalence of a 
disease in the population is low. This statistical fact has 
some implications for the design of testing policies. First, it 
highlights the difficulties of widespread testing to monitor 
the evolution of the pandemic and as a tool to control it 
when conducted only once. Second, it shows that repeated 
testing can be even more important when the prevalence of 
a disease is low. Given limited public budgets, cheap and 
less precise tests that can be conducted multiple times can 
be more efficient in curbing the pandemic than expensive 
more precise tests conducted less often.

Footnotes
1. You can find the CDC guidelines for COVID-19 testing
and an overview of the different tests.

2. Apart from small rounding effects.

3. Reverse Transcription Polymerase Chain Reaction
(RT-PCR) tests (also called molecular tests) are tests that
detect viral genetic material. A fluid sample is collected
usually with a nasal swab. While there is uncertainty
about the actual rates, most analyses put the sensitivity
and specificity rates around 98 percent and 100 percent,
respectively. For more information, please see the rates
for different tests provided by Johns Hopkins University’s
Center for Health Security.

4. Antigen tests detect the presence of certain viral proteins,
after collecting fluid using a nasal swab. Specificity rates are
usually closer to the PCR tests, although there is significant
variation across test brands. See the Johns Hopkins

University Center for Health Security for more details. 
Rapid antigen tests, such as the BinaxNOW COVID-19 
Ag Card, whose emergency use authorization has been 
granted by the FDA, do not require a laboratory or other 
equipment to process or analyze the test results. Results 
are usually available within 15 minutes, and the test can be 
performed in authorized locations including doctors’ offices 
and emergency rooms. 

5. Proponents of this strategy argue that rapid and cheap
tests are not personal diagnostic tools but public health
tools, since they help to monitor the spread of the disease in
real time.

6. See https://marriner.eccles.utah.edu/covid-research/.

7. One possible solution to this issue would be to delay the
repeated test for a day to reduce the correlation between tests.

8. Antibody or serology tests look for antibodies in the
blood sample in order to determine if the person had a past
infection with SARS-CoV-2.
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