Appendix to

"Expected Post-Pandemic Consumption and Scarred Expectations from COVID-19." 2021. Edward S. Knotek II, Michael McMain, Raphael Schoenle, Alexander M. Dietrich, Kristian Ove R. Myrseth, Michael Weber. Federal Reserve Bank of Cleveland, *Economic Commentary*, 2021-11.

We quantify the patterns from the figures via regression exercises. We regress each individual *j*'s expected post-pandemic usage of a service on a large set of explanatory variables from our survey, following the breakdowns set out in Figures 4 through 6, along with other controls.¹ Table A1 contains the list of variables and the coefficient estimates for each post-pandemic usage question. In the table, the indicator function I(.) takes the value of 1 for individual *j* if the expression inside the parentheses is true and 0 otherwise. Without belaboring each entry in the table, we make the following observations.

- We capture the U-shaped pattern—of early pessimism about post-pandemic usage followed by subsequent optimism—by including measures of time and time-squared in the regression, where time is measured in days after April 3, 2020, which is the first day in our sample.² After including a variety of controls, our coefficients are negative on time (line 1), positive on time-squared (line 2), and highly statistically significant. Without this nonlinear time trend, it is difficult to explain the down-up pattern in beliefs with other controls, which were either included in the regression or tried and dropped because they were not statistically significant.
- For respondents older than 60 years old (line 4), we see the largest negative coefficients, ranging from -9 to -16, consistent with markedly lower expected usage than the control group, which in this case is individuals less than 40 years old.
- Other groups for which we find negative coefficients, indicating expected lower usage, include middle-aged respondents (defined to be between 40 and 60 years old, line 3); respondents who expect that the coronavirus outbreak will last for a relatively long time (lines 7 and 8); and respondents who live outside of a metropolitan core (line 9).³
- High-income respondents with household incomes above \$100,000 per year (line 11) have the largest positive coefficients, ranging from +9 to +11, consistent with markedly higher expected usage than the control group, which in this case is individuals with household incomes below \$35,000 per year.
- Other groups for which we find positive coefficients, indicating expected higher usage postpandemic compared with pre-pandemic, include individuals with post-graduate degrees (line 6); respondents from middle-income households (line 10); respondents who identify as Black

¹ We report the results from a linear regression for ease of interpretation; the reported coefficients are extremely similar to what we would have reported if we transformed our 0 to 100 slider values to a [0,1] range, estimated the regression using a fractional logit model, and then calculated the marginal effects from the 0 to 100 range of our original slider.

 $^{^2}$ Including only time in the regression would capture a linear time trend. In order to capture the down-up pattern, we need a quadratic term in the regression, time-squared. As another way to capture the trends over time, we also ran regression specifications featuring monthly fixed effects. The time fixed effects then captured the down-up pattern we document; the other coefficients in our regression were little changed from this alternative specification.

³ We compare each individual's zip code with metropolitan area code definitions from the United States Department of Agriculture. For more information on the USDA codes, see: <u>https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/documentation/</u>.

or African-American (line 12); respondents who identify as Hispanic (line 13); respondents who have children (line 14); and respondents who identify as male (line 15).⁴

	Hospitality		
	usage	Public transportation	Crowded events
1. Time	-0.04***	-0.04***	-0.05***
	(0.01)	(0.01)	(0.01)
2. Time-squared	2.0e-4***	2.0e-4***	2.4e-4***
	(1.6e-5)	(1.7e-5)	(1.6e-5)
3. I(age between 40 and 60)	-4.8***	-6.8***	-7.2***
	(0.3)	(0.3)	(0.3)
4. I(age>60)	-9.0***	-13.5***	-16.3***
	(0.3)	(0.4)	(0.3)
5. I(education=bachelor's degree)	0.4	1.8***	-0.1
	(0.3)	(0.3)	(0.3)
6. I(education=post-graduate degree)	4.6***	7.5***	4.6***
	(0.4)	(0.4)	(0.4)
7. I(outbreak duration=2-3 years)	-4.4***	-3.8***	-5.0***
	(0.3)	(0.3)	(0.3)
8. I(outbreak duration>3 years)	-7.4***	-6.0***	-7.6***
、 · · ·	(0.4)	(0.5)	(0.5)
9. I(live outside of a metropolitan core)	-1.2***	-4.0***	-1.1***
· · · · · ·	(0.3)	(0.3)	(0.3)
10. I(income between \$35k-\$100k)	4.4***	2.7***	3.0***
	(0.3)	(0.3)	(0.3)
11.I(income>\$100k)	10.7***	10.2***	8.9***
	(0.4)	(0.4)	(0.4)
12. I(identify as Black or African-American)	0.7	2.6***	1.0**
``·	(0.4)	(0.5)	(0.4)
13. I(identify as Hispanic)	2.5***	3.3***	3.0***
	(0.5)	(0.5)	(0.5)
14. I(report having children)	3.9***	3.1***	4.4***
	(0.3)	(0.3)	(0.3)
15. I(identify as male)	5.2***	6.1***	5.8***
· · ·	(0.3)	(0.3)	(0.3)
16.Constant	44.9***	41.0***	44.6***
	(0.5)	(0.5)	(0.5)
Observations	38,362	38,362	38,362
R-squared	0.11	0.14	0.14

Table A1: Regression results.

Notes: Standard errors in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels. Source: Federal Reserve Bank of Cleveland.

⁴ CDC data find large disparities a cross race and ethnicity in COVID-19-related mortality rates in the United States. After standardizing for a ge, the distribution of COVID-19 deaths is skewed toward Hispanic and Non-Hispanic Black groups. See <u>https://www.cdc.gov/nchs/nvss/vsrr/covid19/health_disparities.htm</u>. In our regression results, however, we do not find the same broad expectations scarring a cross these groups as we do among Americans older than 60. While it is possible that the differential skewness across racial and ethnic groups is much smaller than that a cross a ge groups, which helps to explain these differing results, further research into the topic is necessary. The finding that men report higher expected post-pandemic usage than women could be related to differing risk tolerances across gender groups; see Borghans et al. (2009).

Reference

Borghans, Lex, James J. Heckman, Bart H. H. Golsteyn, and Huub Meijers. 2009. "Gender Differences in Risk Aversion and Ambiguity Aversion." *Journal of the European Economic Association*, 7(2-3): 649–658. <u>https://doi.org/10.1162/JEEA.2009.7.2-3.649</u>.