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There are two basic types of models used by epidemiologists 
to forecast the path of the COVID-19 pandemic: curve-
fitting and structural. Fundamentally, the difference 
between the two is that curve-fitting relies on patterns in 
the data without any inference on or assumption about the 
underlying mechanisms that could shape the data, while 
the structural approach provides a theoretical framework 
to guide how the data and forecasts ought to behave in 
other circumstances, such as with out-of-sample data or 
alternative policies. Both approaches have advantages and 
disadvantages, and—depending on the context—different 
approaches suit different questions a forecaster might ask.

The distinction between the two approaches is a central 
idea of forecasting across disciplines, and it applies not only 
in epidemiology, but also in economics. This Commentary 
illustrates the tradeoffs between the structural approach and 
curve-fitting via an exploration of two prominent forecasts. 
The first, the University of Washington’s Institute for 

Health Metrics and Evaluation (IHME) forecast (or the 
“Murray forecast,” named after its lead researcher) was 
used in the early stages of the US epidemic by the Centers 
for Disease Control and Prevention (CDC) and the White 
House.1 It is an example of pure curve-fitting with no 
underlying theory and is at one extreme of the distinction 
we are exploring.2 The second, the Ohio State University 
model, is an example of a forecast with more structure, 
and it uses a network approach in its underlying theoretical 
mechanism.3 This model has been used to guide the policy 
of the governor of Ohio.4

It is important to note that we are in no way conducting a 
“horse race” to decide which approach is best. We highlight 
the advantages each offers from an economist’s point of 
view, arguing that both approaches have their uses and  
help us better understand the pandemic. Further, most  
US COVID-19 forecasts have relied on a hybrid approach 
that combines elements of both types of model.
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University of Washington IHME (Murray) Model
The IHME or Murray model is a curve-fitting model.5 It 
has been at the peak of public awareness among COVID-19 
forecasts, largely because of its use to generate one of the 
key forecasts used by the White House. In essence, the 
Murray model observes cumulative death levels and fits 
a curve to the data as accurately as possible. The choice 
of which mathematical function to use to fit the data is 
itself an important step in building a curve-fitting forecast. 
In the Murray model, the shape of the curve is given by 
the “error function,” which is a mathematical curve that 
depends on three parameters that are estimated from the 
data.6 The parameters are α, often explained as the rate at 
which the infection spreads; β, the inflection point, which 
may be thought of as the point at which the change in 
daily deaths from the previous days’ number of deaths is 
largest; and p, the maximum death rate experienced in the 
location of interest. The estimation is done by considering 
the evolution of the disease in the early stages and selecting 
the three parameters that best fit that part of the curve to 
the data. By continuing the function into the future using 
these parameters, the estimated error function then forecasts 
deaths in the near term. 

To illustrate this process, suppose we have some 
hypothetical data points on the proportion of deaths to 
infected individuals, as in figure 1. The data show a growing 
share of the population being affected. We can continue 
the path seen in the figure to generate a forecast, but it is 
not clear just how rapid the increase in deaths will be. This 
scenario illustrates just what a forecaster is faced with at the 
start of a pandemic. There are few data to deal with, yet 
the curve has to decipher as accurately as possible how the 
pandemic is progressing.7

Curve-Fitting and Structural Models
Curve-fitting describes an approach in which the forecaster 
primarily seeks to match the available data to a function, the 
“curve” that gives this approach its name. This curve is then 
used to make predictions. No part of this approach seeks to 
reflect the mechanisms that generated the data; in the case of 
virus transmission, for example, curve-fitting tracks just the 
number of infections or deaths that have been observed so far. 

Fitting a curve to an epidemic can be especially useful in 
getting an immediate estimate of the seriousness of the 
virus. It tends to do well when the question we wish to 
answer concerns how many new infections are likely in 
the upcoming weeks. Further, because curve-fitting does 
not allow for assumptions about why the data are what 
they are, there is no risk of obtaining predictions that 
are distorted by incorrect assumptions, such as assuming 
people will socially distance in the absence of a government 
mandate, for example. This problem does affect the 
structural approach we discuss below. 

However, the cost of this simplicity is that curve-fitting 
is not able to employ a counterfactual scenario. In other 
words, there is no way to create an alternative forecast 
under different scenarios, an ability which is key to 
informed policy decision-making. Finally, curve-fitting 
directly fits data on deaths or infections as they unfold 
over time. One limitation, however, is that while other data 
may be available concerning related elements such as how 
likely the virus is to spread when an infected person wears 
a mask, it is not always clear with curve-fitting how to 
use this information, whereas a well-established structural 
mechanism will often guide the use of other data.

Because there are subtle and technical distinctions among 
definitions of “structural” in use by economists, we offer a 
definition here for clarity. For the purpose of this Commentary, 
we consider a forecast “structural” if it depends on an explicit 
epidemiological model in the sense that, when parameters are 
estimated, they admit interpretations in terms of that model. 
In the case of COVID-19, this can be a known or estimated 
mechanism by which the disease spreads from person to 
person or a model of the connections among people that 
facilitate virus transmission. In contrast with curve-fitting, a 
structural model emphasizes the mechanisms underlying the 
data. Structural models are thus based on a chosen theory 
of how a disease is transmitted.

While curve-fitting is useful in predicting how many new 
infections are likely in the near future, a structural model, 
on the other hand, may be able to predict the outcome of 
particular policies such as mandating the use of facemasks 
in public places or answer questions such as whether 
travel restrictions or bar closings are effective ways to curb 
the spread of the virus. Yet, to its disadvantage, using a 
structural approach adds complications that may limit 
the effectiveness of the model itself. One must define a 
convincing and realistic mechanism or lose accuracy in 
the forecast, and often such realistic mechanisms greatly 
increase the complexity in the estimation of the forecast. 
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We will try to fit these data to a curve by generating a 
family of curves, each of which is produced by adjusting the 
three parameters of the error function, α, β, and p, until the 
combination defines a function that best fits this data. We 
illustrate four possible curves from this family in figure 2. 
We plot the same hypothetical data (which could have been 
measured in the early stage of an epidemic) and the same 
four curves in each panel, but each panel highlights one of 
the curves to assess how well it fits the data. Panel A shows 
the attempt to fit the data to the blue curve (with parameter 
values α = 3, β = 2, p = 0.2), while panels B, C, and D do 
the same for the green, black, and red curves, respectively. 
When we fit the data to the blue curve in panel A, the 
curve does not match the data very well because the 
infection rate of this curve accelerates faster than the data 

show. Nor do the data fit the curve when we decrease p to 
0.1 (the green curve of panel B.) However, panels C and D 
show that the data fit the black and red lines, respectively, 
both of which look to be more accurate fits than the prior 
two. However, the outcomes of the panel C and D curves 
show very different trajectories in the path of the virus; the 
increase in infections is more gradual in the black line (panel 
C) than in the red line (panel D), which includes a higher 
α of 4, a difference that could imply a larger impact on the 
healthcare system. Further data will clarify whether the red 
or black curve fits better, as additional data usually aid in 
curve-fitting accuracy. However, the differences in the two 
curves illustrate the consequences of choosing the right or 
wrong curve.

Figure 2.	 Four Attempts at Fitting a Hypothetical Error Function

Panel A.	 Fitting our hypothetical data to the blue curve,  
with parameters α = 3, ß = 2, p = 0.2

Panel B.	 Fitting our hypothetical data to the green curve,  
with parameters α = 3, ß = 2, p = 0.1

Panel C.	 Fitting our hypothetical data to the gray curve,  
with parameters α = 3, ß = 1, p = 0.2

Panel D.	 Fitting our hypothetical data to the red curve,  
with parameters α = 4, ß = 1, p = 0.2
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As with any forecast, the quality of its out-of-sample 
performance (i.e., using our model to fit data we have not 
used to build the forecast) will depend on the assumptions 
that have been made, some of which may prove to be 
accurate and others of which may not. For instance, the 
error function presumes that the disease will progress 
symmetrically, with the growth rate tailing off at the 
same rate at which it expanded in the early stages. If this 
assumption is wrong, then the forecast will be off, especially 
at the longer horizons. Further, compared to other curves, 
the error function has a strong inflection point at which the 
rate of infection peaks, before which it grows very quickly 
and after which it tails off very quickly. With the curve-
fitting approach we cannot test the assumptions made by the 
error function family of curves until the epidemic reaches 
that point in its cycle. For example, we cannot test the 
symmetry of the error function until we have data on the 
epidemic where the growth rate tails off.

Figure 3 shows how the curve in March performed poorly 
at the longer horizons, possibly for these reasons.8 In terms 
of forecast performance, the main problems seem to be 
concerned with the error function’s longer-run performance. 
Note how the later projections from May and June match 
the data quite well into mid-July. It is only the earlier 
forecasts that are mistaken. This observation is consistent 
with our earlier point that as more data become available, 
the parameters are estimated more precisely.

The parameters α, β, and p cannot be interpreted in an 
epidemiological framework. This is because curve-fitting 
does not rely on and therefore has no basis in structure. 
We cannot infer from an estimate of these parameters, for 
example, that individual contacts are decreasing. If one 

wants to know what would happen if a limited-contact 
policy such as mandatory masking, closing bars, or social 
distancing were adopted, the Murray forecast parameters 
would have only a limited ability to answer this question. 
This is especially true if the policy under consideration 
has not yet been enacted somewhere in the data set from 
which the forecast parameters are estimated. Rather, the 
three parameters in the Murray forecast embody a statistical 
relationship and may be estimated regardless of any context 
in which the curve is forecasting. 

However, the parameters themselves can be enriched by 
being made functions of other observed variables such as 
geographical characteristics, policy variables, and so forth. 
The Murray forecast can be made very complicated as a 
result of these new observed variables, wherein the tradeoff 
that the modeler makes is one of fitting the spread of the 
disease more precisely (by adding more observable variables 
and more complex functions of these variables) versus 
over-fitting, where the curve fits the available data so closely 
that it is useless for out-of-sample predictions. Curve-fitting 
focuses attention on a simple tradeoff between complexity 
and overfitting without the distraction of whether any 
underlying structural model matches reality.

Structure: The Ohio State University Model
The Ohio State University model, developed at the 
university’s Infectious Diseases Institute, is a structural 
forecast that uses a network of interactions among people 
to model how the virus spreads.9 This network consists of 
people, termed “nodes.” If a node interacts with another 
node, that action is termed a “link” between the two nodes. 
Here, the model assumes a distribution about the links, and 
the epidemic is modeled by observing how the virus spreads 
from an infected person to a susceptible person based on 
this distribution. The model is able to use aggregate data, 
such as the absence of travel, average mask use, or varying 
degrees of human distancing that have been present over 
the past several months, to allow these policies to influence 
human behavior and subsequently to predict how that 
behavior will affect the distribution of links.

In contrast to the Murray curve-fitting approach, the 
network design of the Ohio State University model uses 
a theoretical epidemiological framework in the form of 
the SIR mechanism,10 the most commonly used model in 
epidemiology. The SIR, short for the Susceptible, Infectious, 
Removed model, assigns each individual in a population 
to one of the three categories (labeled S, I, or R). Its 
parameters may be interpreted in such a way that they can 
be enriched or tested with clinical data, unlike parameters in 
the Murray model. The model is summarized best in terms 
of changes to the size of each category, expressed as its 
respective derivative:

dS/dt = –τ × S

dI/dt = τ × S — γ × I

dR/dt =  γ × I

Figure 3.	 Murray Model Projected US Daily Deaths
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Sources: Data for projections are from the Institute for Health 
Metrics and Evaluation, University of Washington (www.
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of deaths are from Johns Hopkins Coronavirus Resource Center.
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where τ governs the infection rate and γ governs the 
recovery rate of individuals and S, I, and R are the number 
of people that are susceptible, infected, or removed, 
respectively. These equations are described in terms of the 
instantaneous rate of change so that the notation is in terms 
of derivatives.

The first equation describes the rate of change of the 
number of susceptible individuals, which is defined to 
be the fraction of those already susceptible who become 
infected, a process which happens at a rate, τ. For example, 
if the probability of being infected in a day, given that one 
is susceptible, is 1 percent, then the number of susceptible 
people decline in that day by 1 percent times the number 
of susceptible individuals in the population. Likewise, 
the change in the number of those infected is defined as 
susceptible individuals who become infected minus those 
currently infected who are thus removed (either because 
they recover and are immune or they die), a process which 
happens at rate γ. Lastly, the change in the number of 
removed individuals is the number of infected individuals 
who then are removed from the model. After initial values 
of S, I, and R are estimated, along with the rates τ and γ, 
this system of equations is solved for values of the numbers 
of S, I, and R as the system evolves over time. 

This structure can use the same data on infections and 
deaths as the Murray approach uses, and it can incorporate 
additional data that might be available from medical 
researchers or hospitals, such as the probability of recovery 
and time to recovery. Further, the epidemiological model 
allows one to make predictive forecasts based on logical 
inference that the model implies. For example, one 
implication of the SIR model is that eventually the disease 

will die out because it runs out of susceptible individuals to 
infect with high enough probability to sustain itself (because 
of herd immunity often mentioned in the press). Another 
implication is that if a policy manages to drive the infection 
rate, τ, low enough, then the disease will die out before 
it infects the entire population. One might miss this point 
if only matching available data with a curve. The logical 
implications of the SIR model deliver policy goals in terms 
of the model’s parameters. For example, a vaccine should 
work in terms of reducing τ, and this reduction will have 
strong implications for the progression of the disease. This 
is the reason that the SIR model, or one of its variants, is so 
popular among epidemiologists.

The Ohio State University model extends the standard SIR 
model by adding a degree of useful realism. Rather than 
looking at the entire population and assuming everyone 
can possibly come into contact with anyone else in the 
population (the implicit assumption behind the SIR model), 
the Ohio State University model hypothesizes that, typically, 
individuals routinely have set circles of people with whom 
they are likely to come in contact and expresses these links 
within a network. For instance, one meets with the same 
family members or coworkers, and one is much more likely 
to interact at the local supermarket with someone from 
one’s community rather than, for example, someone from 
across the state. Building such ideas into a model makes the 
model more realistic. This extension means that an infection 
can take off in clusters that fill up quickly and then die out 
within the cluster, and other susceptible clusters then start 
to become infected. This result changes the dynamics of 
the virus’s progression, leading to very different contagion 
predictions than those of a standard SIR forecasting model 
without clusters. 
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The mathematics involved in modeling a network with a 
large population can get very complicated, and research in 
this area is still in its adolescence. Although much progress 
has been made in the last decade, there is much that is 
unknown about what types of contact networks are realistic 
with different viruses. What we do know is that ignoring 
networks altogether can lead to dynamics that are often 
not supported by the data. Further, a simple SIR model 
with simple network assumptions, such as assuming each 
person can meet anyone else in the population, can lead 
to misleading results, as well. In contrast, the Ohio State 
University model employs a concept of network analysis 
that has been tested and has accurately predicted the 
dynamics of outbreaks in previous pandemics.11 However, 
as shown in figure 4, the long-horizon forecasts in March 
proved no better than the Murray forecast.

The fact that both the Murray model and the Ohio State 
University model both missed the “second hump” of the 
virus points to a difference in the possible response of 
the two approaches to forecasting when the forecast fails 
at the longer horizon. The curve-fitters might go to an 
encyclopedia of curves and choose a set of curves that 
allows two humps and refit the data to the new set. The 
structural forecasters face a task that is more difficult, yet 
potentially more rewarding. They must ask the deeper 
question: What in our mechanism failed? They then 
repair the mechanism so that it allows more humps earlier 
in the pandemic. The potential reward is the deeper 
understanding of reasons for the progression of the disease, 
an understanding that offers possible ways to better respond 
effectively to the pandemic’s spread.

Importantly, structural models, such as the Ohio State 
University model, provide a way to allow policy to interact 
with the specific model. For example, in the cluster example 
mentioned above, people who are connected to each other 
tend to be connected to people who are connected to 
each other. Incorporating these types of connections into 
the model allows for topics such as contact tracing, social 
distancing, and business closures to be better understood 
and to be modeled explicitly in the forecast. A curve-fitting 
model, in the absence of structure, will treat all the policies 
in a similar fashion, adding a similar parameter for each 
policy without considering the insight that a structural 
model might deliver in which different policies affect the 
evolution of the disease differently. 

The Structural Approach for Guiding Policy Choices
From a naïve point of view, curve-fitting might seem to offer 
decisive advantages in all situations. It is a straightforward 
and intuitive process. From this same point of view, the 
value of a structural approach can seem illusory. Notably, 
structural models of pandemics can provide misleading 
forecasts if the structural assumptions are wrong.12 

When guiding policy, however, a structural approach is 
absolutely necessary because models using it provide insight 
into the causal relationships that predict what happens 

when different policies are implemented. A curve-fitting 
approach cannot provide causal insights. Consider a public 
official whose job is to decide whether to open the schools 
during a spike in the number of cases. On the surface, it 
may seem that curves could be fit as a function of policy, 
and then a counterfactual could be estimated by plugging in 
a new policy. For example, we might have data from other 
counties in which schools were closed or held open and 
use that data to estimate a forecast through a fitted curve. 
The official could choose “the schools are closed” curve 
or “the schools remain open” curve to try to predict the 
outcome of each policy choice. This approach presumes 
that there is already a rich data set with both school 
closures and schools held open under a robust variety 
of circumstances in order to extrapolate and map to our 
particular official’s situation. Unfortunately, this approach 
also confuses correlation and causality.

Modeling causality requires structure. The science of 
distinguishing causality from correlation is too complex 
to pursue here, but one result is that without a structural 
model, one lacks the mechanism to discuss what assumption 
is needed to estimate causal parameters required to make a 
counterfactual statement, for example, asking what would 
be the effect of performing a policy that is not yet in place. 
Without an assumption on the model, such as which school 
districts decide on which policies and why, measurement of 
correlation cannot be used to make a causal statement (in 
this case, if our particular official decides to close this school 
district, whether or not doing so will slow the infection by a 
predicted amount). 

Data on regional policy differences and a rich structural 
model that identifies causality can give insights into which 
regions are likely to adopt safer practices in the absence 
of policy. One can also look at the effects (and costs) of a 
policy that affects the connections of specific people (such 
as aggressive contact tracing to isolate those connected to 
people who might be contagious). These effects can be 
compared to the effects of societal transformation, such as 
a popular reaction to news about a coronavirus outbreak 
(such as when people generally cut back on all of their 
contacts proportionally) or promoting wearing N95 masks 
throughout the population.

A final advantage offered by a more structural approach is 
that it provides more possible responses open to a researcher 
when the forecast fails. With curve-fitting, in some sense 
there are only two ways to correct a bad forecast: find 
another family of curves or re-estimate the current family 
of curves until the current data are fit by the best curve. In 
contrast, a structural model allows one to examine the entire 
model of behavior underlying the forecast. Does making 
a more sophisticated assumption about whether the public 
responds rationally produce a better forecast? How about 
the structure of the network: Is the assumption of the model 
too simple? Are asymptomatic infectious people important 
in driving the dynamics of the epidemic? Which network 
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characteristics are most relevant in which situation? As 
each facet of the model is examined with different data and 
made more sophisticated when required, one may learn 
more about the mechanism of both the virus’s spread and 
the public’s response to the virus. The vast possibilities of 
mechanisms for the spread of the virus and our response 
to it allow the epidemiology profession in its entirety to 
examine and develop a set of models about virus spread that 
are accepted as being generally true, a situation which allows 
progress in handling the next pandemic when it arises. 

It seems a paradox: Because so many things can go 
wrong with a complex structural model, it offers many 
opportunities for discovering what is right about possible 
models. When the next pandemic hits, researchers may 
be better prepared with a richer set of tools to combat the 
disease. This tradeoff, between simplicity and complexity, 
is true in all design endeavors, with the advantages of each 
often resulting in parallel research programs.

Future Developments in the Two Approaches
The early stages of the COVID-19 pandemic in the 
United States have taught much to both epidemiologists 
and economists. As can be seen in the figures 3 and 
4, both approaches underestimated the strength of the 
COVID-19 pandemic in March 2020. In fact, almost all 
forecasts of the virus based on either formal curve-fitting 
or on more structural approaches at the beginning of the 
pandemic, whether by economists or epidemiologists, were 
widely inaccurate at the longer horizons. The COVID-19 
pandemic in the United States confronted researchers 
with a particularly difficult set of circumstances: the large 
number of asymptomatic infected individuals, the lack 
of a uniform testing program at the national level, the 
lack of testing equipment at the local level, the number 
of those infected, the wide variety of policies, the wide 
variety of public response to both these policies and to 
the coronavirus itself, the sheer immensity and variety of 
economic responses, and the costs of the public response 
to the virus. Each of these problems individually presented 
both approaches with large challenges; together, they are 
almost overwhelming. 

There has been progress in using both the curve-fitting 
and the structural approaches to forecast the COVID-19 
pandemic. Curve-fitters are using some of the latest 
advances in machine-learning, such as the training of 
neural networks, to explore their potential for producing 
more accurate forecasts of the progression of the virus. 
Meanwhile, economists using structural models are also 
developing sophisticated structures of population response 
to the virus that can be adopted within empirical models 
to estimate policy costs and benefits in a straightforward 
manner. Other economists are using models of behavioral 
responses to estimate the effect of the fact that the virus 
is often spread by asymptomatic people. Optimal policy 
options and the public’s response to the virus are shown 
to be substantially affected by this characteristic of the 
current pandemic. Economists are using network models 

originally developed by epidemiologists to help estimate the 
costs of the pandemic. And epidemiologists are developing 
revolutionary new techniques as well.13 What is curious 
is that the same tradeoffs endemic to the forecasting of 
pandemics between structure and curve-fitting show up 
in other fields in which forecasting is used, particularly in 
economics. This perhaps should be unsurprising. Both fields 
involve similar foundational elements: Policy action must be 
decided quickly, and such policies involve costly tradeoffs. 

Footnotes
1. Coronavirus Task Team coordinator Deborah Birx 
repeatedly cited the Murray forecast as a source the White 
House was using in the early stages of the epidemic in the 
United States. Indeed, she first reported on the forecast, 
stating “Chris Murray ended up at the same numbers [as 
the White House models for previous epidemics]. So if you 
go on his website, you can see the concern we had, with 
the gray—growing number of potential fatalities.” https://
trumpwhitehouse.archives.gov/briefings-statements/remarks-
president-trump-vice-president-pence-members-coronavirus-
task-force-press-briefing-14/. 

2. Other forecasting models of the pandemic include 
Imperial College, London; Northeastern University; 
Massachusetts Institute of Technology; University of Texas 
at Austin; University of California, Los Angeles; Los 
Alamos National Laboratory; and Columbia University. 
The CDC reports on a number of these models at https://
www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-
us.html. This list is, of course, indicative rather than 
exhaustive.

3. For a comprehensive overview of network models and 
epidemics, see Craig et al. (2020).

4. The Ohio Department of Health keeps a webpage with 
the Ohio State University model’s prediction on its website. 
It is available at https://coronavirus.ohio.gov/wps/portal/gov/
covid-19/dashboards/other-resources/forecast-model.

5. The Murray model has undergone multiple alterations 
since its initial publication in March. We refer to the original 
model, Murray (2020). Details of model updates are 
available at http://www.healthdata.org/covid/updates.

6. More formally, the error function is defined as 

p /2 (1+2 / √π ∫0
α (t–β)   exp(–τ²)dτ),

where p is the maximum death rate per location, α is the 
rate at which infection spreads, β is when the change in 
daily deaths is largest from the previous days’ number 
of deaths, t is the time since the death rate exceeded 
approximately 0, and τ is time.

7. The data in figure 1 are generated using a base-case 
scenario of the error function above using parameters α=3, 
β=1, and p= 0.2 and a normal shock with mean 0 and 
standard deviation 0.001.

https://trumpwhitehouse.archives.gov/briefings-statements/remarks-president-trump-vice-president-pence-members-coronavirus-task-force-press-briefing-14/
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https://trumpwhitehouse.archives.gov/briefings-statements/remarks-president-trump-vice-president-pence-members-coronavirus-task-force-press-briefing-14/
https://trumpwhitehouse.archives.gov/briefings-statements/remarks-president-trump-vice-president-pence-members-coronavirus-task-force-press-briefing-14/
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards/other-resources/forecast-model
https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards/other-resources/forecast-model
http://www.healthdata.org/covid/updates
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8. We use data provided from the Murray model’s website, 
https://www.healthdata.org/covid/data-downloads. We use 
data from Johns Hopkins Coronavirus Resource Center, 
https://coronavirus.jhu.edu/map.html as a comparison, 
which we transform into a seven-day rolling mean.

9. The Ohio State University model is described in OSU/
IDI COVID-19 Response Modeling Team (2020). Data in 
figures are taken from https://github.com/wasiur/dynamic_
survival_analysis.

10. This quality of the standard SIR model is more fully 
described in Craig et al. (2020). 

11. See Keeling and Rohani (2008), Rand (1999), House 
and Keeling (2010), and, especially, Kiss, Miller, and Simon 
(2017) for a through discussion of the advantages of type 
of structure used in the Ohio State University model. 
The specific and highly original structure of the Ohio 
State University model is discussed in reference to past 
pandemics in KhudaBukhsh et al. (2019).

12. For an exposition of this phenomenon, see Craig et al. 
(2020).

13. For machine learning modeling, see Wang et al. (2020); 
for a sophisticated economic response in a real business 
cycle model, see Farboodi, Jarosch, and Shimer (2020); 
for the optimal policy response, see Krueger, Uhlig, and 
Xie (2020); for a comprehensive overview of networks 
and epidemiological modeling, see Kiss, Miller, and Simon 
(2017).
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