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1 Mathematical model

An individual’s preferences are represented by

U = E

[∫ τD

0

ρSe
−(ρS+ρV )t ln at + e−(ρS+ρV )τDuD

]
(1)

where ρS , ρV and uD are constants and τD is the (random) date of death. Here ρS represents the subjective

discount factor of the individual and ρV represents the arrival rate of the vaccine. The parameter uD captures

the desire of the individual to avoid exposure to the virus and the attendant possibility of death. At any

time the health status of each individual may be in one of four possible states, S, I,R or D, referred to as

Susceptible, Infected, Recovered or Dead. The population is indexed by the unit interval and ΓSt,ΓIt ⊆ [0, 1]

denote the sets of susceptible and infected individuals, respectively, at time t ≥ 0. If the actions taken at

date t are given by (ait)i∈[0,1] then a susceptible individual who adheres to activity at becomes infected at

rate βat
∫

ΓI
aitdi. Infected cases are resolved at a constant rate γ. A fraction δ(It) of resolved cases end in

death and the remaining fraction end in recovery. Once recovered an individual is assumed to be immune,

unable to contract the virus again or transmit it to others. We assume that when susceptible and infected

individuals take actions a1 and a2 that population shares evolve according to

S′ = −βSIa1a2

I ′ = βSIa1a2 − γI

R′ = γ(1− δ(I))I

D′ = γδ(I)I

where S + I +R+D = 1. We assume that the mortality function is given by

δ(I) = δ + (δ − δ) min{(I/H)κ, 1} (2)

for some positive constants δ, δ,H and κ with δ > δ. The specification (2) is a simple way of capturing the

fact that fatality rates are increasing with the strain on the healthcare system (i.e. when I is large). The

parameters δ and δ are then the lower and upper bounds of the fatality rate.
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1.1 Planner’s problem

We first analyze the problem of a utilitarian social planner who may directly control the actions of susceptible

agents, where the actions of the infected are fixed at a∗2. We write the planning problem in terms of actions

and the original state variables before simplifying. The flow payoff function is

F (S, I,R,D, a1) = ρS [DuD + S ln a1 + I ln a∗2 +R ln(1)]

where we used the fact that there is no loss in assuming recovered symptomatic individuals take the highest

action. For simplicity we suppose that a∗2 = 1 and treat the arrival of the vaccine as if it were a cure, so that

the flow payoff to the planner when the vaccine arrives is DuD. The planner’s value function then solves

ρSW (S, I,D) = ρSDuD + ρV (DuD −W (S, I,D)) + γδ(I)IW3(S, I,D)

+ max
a1∈[a1,1]

ρSS ln a1 − βSa1IW1(S, I,D) + [βSa1 − γ]IW2(S, I,D).

Direct substitution shows that we may remove one more state variable.

Lemma 1.1. The value function is of the form W (S, I,D) = DuD − V (S, I) where V solves

(ρS + ρV )V (S, I) = min
a1∈[a1,1]

−ρSS ln a1 − γδ(I)IuD − βSIa1V1(S, I) + [βSa1 − γ]IV2(S, I).

The function V has a natural interpretation as the “cost of the pandemic” in terms of utility, and is the

payoff from a cost minimization problem with flow payoff

C̃(S, I, a1) = −ρSS ln a1 − γδ(I)IuD (3)

and state variable (S, I) evolving according to

(Ṡ, İ) = (−βSIa1, βSIa1 − γI). (4)

1.2 Stationary Markov competitive equilibrium

We now consider the competitive equilibria. All individuals will maximize expected discounted utility, taking

as given the actions of everyone else. The value functions for the dead and recovered individuals are constant

at uD and u(1), respectively. Denote the average action of susceptible individuals when the aggregate state

is (S, I) by M(S, I), and note that the aggregate states again evolves according to

(Ṡ, İ) = (−βSM(S, I)I, βSM(S, I)I − γI). (5)

Denote the value functions of susceptible and infected individuals by U(S, I; 1) and U(S, I; 2), respectively.

The Hamilton-Jacobi-Bellman equations for the susceptible and infected agents are

(ρS + ρV )U(S, I; 1) = max
a1∈[a1,1]

ρS ln a1 + βa1I[U(S, I; 2)− U(S, I; 1)]

− βSM(S, I)IU1(S, I; 1) + (βSM(S, I)− γ)IU2(S, I; 1)

(ρS + ρV )U(S, I; 2) = γ(δ(I)[uD − U(S, I; 2)]− (1− δ(I))U(S, I; 2))

− βSM(S, I)IU1(S, I; 2) + (βSM(S, I)− γ)IU2(S, I; 2).
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Given an aggregate law of motion M there is an associated policy function m(S, I;M) solving the problem

of the susceptible individuals. Define an operator J on functions of the form M : [0, 1]2 → R, by

J(M)(S, I) = m(S, I;M)−M. (6)

The equilibrium notion is then standard: all individuals solve their individual problems taking the aggregate

law of motion as given, and the associated law of motion is consistent with individual behavior.

Definition 1.1. A stationary Markov competitive equilibrium consists of value functions U(S, I; 1) and

U(S, I; 2) together with a policy function m(S, I;M) for the infected, such that:

• The functions U(S, I; 1),m(S, I;M) and U(S, I; 2) solve the problems of the susceptible and infected

individuals, respectively.

• The law of motion of the aggregate state is consistent with the policy function of the susceptible

individuals, or J(M) = 0.

2 Numerical algorithm

This section outlines the numerical algorithm used to solve both the social planner’s problem and the

competitive equilibrium. Since the mass of infected agents is often an order of magnitude smaller than the

mass of susceptible agents, we will use a non-uniform grid for I and a uniform grid for S. For fixedNS , NI ≥ 1,

define ΣS = {0, 1/NS , . . . , 1− 1/NS , 1} and ΣI = exp(u)− s, where for some c > 0, s := c2/(1− 2c) and u

is a uniform grid on [ln s, ln(1 + s)] with NI points. Writing ΣI := {I0, I1, . . . , INI
}, define

∆−Ii = Ii − Ii−1 i = 1, . . . , NI

∆+
Ii = Ii+1 − Ii i = 0, . . . , NI − 1

and declare ∆−I0 = ∆+
INI

= 0 and ∆S = 1/NS . We then write Σ := ΣS × ΣI .

2.1 Planning problem

We now wish to solve the control problem defined by (3) and (4). We must therefore construct a locally

consistent Markov chain for the law of motion (4). The local consistency requirements are given by

E[∆XS ] = −∆tβSIa1 + o(∆t)

E[∆XI ] = ∆t(βSa1 − γ)I + o(∆t).
(7)

For an arbitrary (S, I) ∈ Σ there are three possible transitions, to (S −∆S , I), (S, I −∆−I ) and (S, I + ∆+
I ),

with associated probabilities p−S , p−I and p+I . The local consistency requirements (7) are then

−∆Sp
−S = −∆tβSIa1 + o(∆t)

−∆−I p
−I + ∆+

I p
+I = ∆t(βSa1 − γ)I + o(∆t).
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Inspection reveals it will suffice to set

p−S =
∆t

∆S
βSIa1 p±I =

∆t

∆±I
max {±(βSa1 − γ)I, 0} . (8)

At I = 1 we impose a1 ≤ ã1(S) = γ/[βS]. We then have the Bellman equation

V (S, I) = min
a1∈[a1,1]

−∆tρSS ln a1 −∆tγδ(I)IuD + e−(ρS+ρV )∆tV (S, I)

+ e−(ρS+ρV )∆t
(
p−SV (S −∆S , I) + p+IV (S, I + ∆+

I ) + p−IV (S, I −∆−I )− (p−S + p+I + p−I)V (S, I)
)
.

Omitting terms independent of the controls, using (8), dividing by −∆tρSS and sending ∆t → 0 gives

max
a1∈[a1,1]

ln a1 + βSa1DV
BS + (βSa1 − γ)D

(
(a1 > ã(S))[−V FI ] + [1− (a1 > ã(S))][−V BI ]

)
where D := I/[ρSS]. Subtracting γDV BS , the above maximization is equivalent to

max
a1∈[a1,1]

ln a1 + (βSa1 − γ)
[
(a1 > ã(S))[V BI − V FI ] + V BS − V BI

]
D.

On each interval [a1, ã1] and [ã1, 1] this is of the form

G(a, b, c) := max
a1∈[a,b]

ln a1 + ca1, (9)

where c :=
(
(a1 > ã(S))[V BI − V FI ] + V BS − V BI

)
DβS. If c ≥ 0 then a1 = b. Otherwise the objective is

concave, with first-order condition 0 = v′(aFOC1 ) + c. For any 0 < a < b, the solution to (9) is

a1(c) = b1c≥0 + (1− 1c≥0) max {a,min {−1/c, b}} . (10)

Finally, to avoid overflow in the numerical examples it is useful to divide all quantities by ∆t and consider

the limit of the above as ∆t → 0. The linear system we wish to solve at each stage is 0 = b+ TV where

b = −ρSS ln a1 − γδ(I)IuD

TV = −(ρS + ρV + p−S + p+I + p−I)V + p−SV (S −∆S , I) + p+IV (S, I + ∆+
I ) + p−IV (S, I −∆−I )

where for each probability we have p = p/∆t.

2.2 Competitive equilibrium

The state space and transition probabilities associated with the aggregate state (S, I) will coincide with those

constructed in Section 2.1. For the symptomatic agents, the belief state vanishes identically and is therefore

omitted, so we need only specify the transition probabilities for the aggregate state and health status. For

an arbitrary (S, I) ∈ Σ there are three possible transitions, to the adjacent points (S −∆S , I), (S, I −∆−I )

and (S, I + ∆+
I ), with probabilities p−S , p−I and p+I given by

p−S =
∆t

∆S
βSM(S, I)I

p±I =
∆t

∆±I
{±[βSM(S, I)− γ]I, 0}.

(11)
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The expressions (11) give the probabilities of transitions for the aggregate state and are common to all

agents. The probabilities with which an infected agent transitions to the recovered or dead states are defined

to be ∆tγ(1 − δ(I)) and ∆tγδ(I), respectively. Writing p = p/∆t and sending ∆t → 0 gives the Bellman

equation for infected agents

0 = γδ(I)uD + p−SU(S −∆S , I; 2) + p+IU(S, I + ∆+
I ; 2) + p−IU(S, I −∆−I ; 2)

−
(
ρS + ρV + p−S + p+I + p−I + γ

)
U(S, I; 2)

(12)

which is of the form 0 = b + TU . Susceptible agents contract the virus with probability ∆tβa1I, so the

Bellman equation for susceptible agents is

U(S, I; 1) = max
a1∈[a1,1]

∆tρS ln a1 + e−(ρS+ρV )∆t∆tρβa1I[U(S, I; 2)− U(S, I; 1)]

+ e−(ρS+ρV )∆t
(
p−SU(S −∆S , I + ∆S ; 1) + p−IU(S, I −∆−I ; 1) + p+IU(S, I + ∆+

I ; 1)
)

+ e−(ρS+ρV )∆t
(
1− p−S − p−I − p+I

)
U(S, I; 1).

(13)

Omitting terms independent of a1, dividing by r∆t and sending ∆t → 0, the maximization becomes

max
a1∈[a1,1]

ln a1 + ρ−1
S βa1I[U(S, I; 2)− U(S, I; 1)]

The optimal policy is then (10), where

c = ρ−1
S β[U(S, I; 2)− U(S, I; 1)]I.

Sending ∆t → 0, the linear system associated with (13) is 0 = b+ TU where

b = ρS ln a1 + ρβa1I[U(S, I; 2)− U(S, I; 1)]

TU = p−SU(S −∆S , I + ∆S ; 1) + p−IU(S, I −∆−I ; 1) + p+IU(S, I + ∆+
I ; 1)

−
(
ρS + ρV + p−S + p−I + p+I

)
U(S, I; 1).

We then iterate upon the policy function a1: we begin with an arbitrary guess a1, solve the problem of the

asymptomatic agent, replace a1 with the implied policy function a′1, and repeat until convergence.

3 Choice of parameters

The full list of parameters in the model is: ρS , ρV , β, γ, uD, δ, δ,H and κ. The subjective discount factor

ρS = 0.05 is standard and ρV is chosen to match an expected arrival of 1.5 years at the beginning of the

pandemic, as in Farboodi et al. (2020). The parameters β = 3/10 and γ = 1/7 are also taken from Farboodi

et al. (2020). The parameter uD is chosen in a manner similar to that done in Hall et al. (2020) and Farboodi

et al. (2020). Hall et al. (2020) estimate the value of a statistical life of a typical COVID-19 victim to be

approximately $3,915,000 and quote US income per capita to be roughly $45,000. An individual would

therefore be willing to pay $39,150δ once (or $39, 150δρ daily if ρ is the daily discount rate), or a fraction

$39, 150δρ

$45, 000/365
≈ 317δρ
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of daily consumption to avoid a δ% chance of death. We determine uD by equating the utility across the

following two scenarios: 1. consume fraction 1− 317δρ of output every day and face no possibility of death;

and 2. consume all output every day but face δ% chance of incurring disutility uD. The utility from the

first scenario is ln(1− 317δρ) and that of the second is (1− δ/100) ln(1) + (δ/100)uD. We therefore have

uD =
100

δ
ln(1− 317δρ) ≈ 100

δ
[−317δρ] = −31, 700ρ

if δρ is very small. Finally, the lower and upper bounds for fatality rates are δ = 0.5% and δ = 1.0%, as

a simple way of encompassing the value 0.062% used in Farboodi et al. (2020) and the upper estimate of

0.081% in Hall et al. (2020). The Python code is available upon request.
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